1
|
Cao Y, Zhang X, Song X, Li W, Ren Z, Feng J, Ma Z, Liu X, Wang Y. Efficacy and toxic action of the natural product natamycin against Sclerotinia sclerotiorum. PEST MANAGEMENT SCIENCE 2024; 80:1981-1990. [PMID: 38087429 DOI: 10.1002/ps.7930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/31/2023]
Abstract
BACKGROUND Sclerotinia stem rot caused by Sclerotinia sclerotiorum seriously endangers oilseed rape production worldwide, and the occurrence of fungicide-resistant mutants of S. sclerotiorum leads to control decline. Thus, it is critical to explore new green substitutes with different action mechanisms and high antifungal activity. Herein, the activity and the action mechanism of natamycin against S. sclerotiorum were evaluated. RESULTS Natamycin showed potent inhibition on the mycelial growth of S. sclerotiorum, and half-maximal effective concentration (EC50 ) values against 103 S. sclerotiorum strains ranged from 0.53 to 4.04 μg/mL (mean 1.44 μg/mL). Natamycin also exhibited high efficacy against both carbendazim- and dimethachlone-resistant strains of S. sclerotiorum on detached oilseed rape leaves. No cross-resistance was detected between natamycin and carbendazim. Natamycin markedly disrupted hyphal form, sclerotia formation, integrity of the cell membrane, and reduced the content of oxalic acid and ergosterol, whereas it increased the reactive oxygen species (ROS) and malondialdehyde content. Interestingly, exogenous addition of ergosterol could reduce the inhibition of natamycin against S. sclerotiorum. Importantly, natamycin significantly inhibited expression of the Cyp51 gene, which is contrary to results for the triazole fungicide flusilazole, indicating a different action mechanism from triazole fungicides. CONCLUSION Natamycin is a promising effective candidate for the resistance management of S. sclerotiorum. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxuan Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Xiaoning Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Wenkui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| | - Zheng Ren
- College of Language and Culture, Northwest A&F University, Xianyang, China
| | - Juntao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| | - Zhiqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Xianyang, China
- Provincial Center for Bio-Pesticide Engineering, Xianyang, China
| |
Collapse
|
2
|
Cao Y, Song X, Xu G, Zhang X, Yan H, Feng J, Ma Z, Liu X, Wang Y. Study on the Antifungal Activity and Potential Mechanism of Natamycin against Colletotrichum fructicola. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17713-17722. [PMID: 37943656 DOI: 10.1021/acs.jafc.3c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In this investigation, the antifungal activity, its influence on the quality of apples, and the molecular mechanism of natamycin against Colletotrichum fructicola were systematically explored. Our findings indicated that natamycin showed significant inhibition against C. fructicola. Moreover, it efficaciously maintained the apple quality by modulating the physicochemical index. Research on the antifungal mechanism showed that natamycin altered the mycelial microstructure, disrupted the plasma membrane integrality, and decreased the ergosterol content of C. fructicola. Interestingly, the exogenous addition of ergosterol weakened the antifungal activity of natamycin. Importantly, natamycin markedly inhibited the expression of Cyp51A and Cyp51B genes in C. fructicola, which was contrary to the results obtained after treatment with triazole fungicide flusilazole. All these results exhibited sufficient proof that natamycin had enormous potential to be conducive as a promising biopreservative against C. fructicola on apples, and these findings will advance our knowledge on the mechanism of natamycin against pathogenic fungi.
Collapse
Affiliation(s)
- Yuxuan Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Xiaoning Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Guanyou Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Xu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - He Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Juntao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Zhiqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| |
Collapse
|
3
|
Gelain J, Lykins S, Rosa PF, Soares AT, Dowling M, Schnabel G, May De Mio LL. Identification and Fungicide Sensitivity of Colletotrichum spp. from Apple Flowers and Fruitlets in Brazil. PLANT DISEASE 2023; 107:1183-1191. [PMID: 36256738 DOI: 10.1094/pdis-01-22-0243-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glomerella leaf spot (GLS) and bitter rot (BR), caused by Colletotrichum spp., are major diseases on apple in southern Brazil. Among integrated pest management tools for disease management in commercial orchards, fungicides remain an important component. This study aimed to identify Colletotrichum spp. from cultivar Eva in Paraná state orchards; evaluate their in vitro sensitivity to cyprodinil, tebuconazole, iprodione, and fluazinam; and determine the baseline in vitro sensitivity of these isolates to benzovindiflupyr and natamycin. Most isolates belonged to Colletotrichum melonis and C. nymphaeae of the C. acutatum species complex. The two species varied in sensitivity to fluazinam and tebuconazole, but no variability was found for any other fungicide. The lowest 50% effective concentration (EC50) values of Colletotrichum spp. were observed for cyprodinil (mean EC50 < 0.02) and benzovindiflupyr (mean EC50 < 0.05); EC50 values were intermediate for fluazinam (mean EC50 < 0.33) and tebuconazole (mean EC50 < 0.14), and they were highest for natamycin (mean EC50 < 5.56) and iprodione (mean EC50 > 12). Cyprodinil and fluazinam are registered for use in Brazil for apple disease management but not specifically for GLS and BR. Tebuconazole is one of the few products registered for Colletotrichum spp. control in apples. In conclusion, flowers and fruitlets can serve as sources of inoculum for GLS and BR disease; C. acutatum was the predominant species complex in these tissues; cyprodinil and fluazinam applications may suppress GLS and BR; and benzovindiflupyr and natamycin warrant further investigation for GLS and BR disease control of apple due to comparably high in vitro sensitivity.
Collapse
Affiliation(s)
- Jhulia Gelain
- Department of Plant Science and Plant Protection, Universidade Federal do Paraná, Curitiba, Paraná 80035-050, Brazil
| | - Sydney Lykins
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, U.S.A
| | - Pâmela Franciella Rosa
- Department of Plant Science and Plant Protection, Universidade Federal do Paraná, Curitiba, Paraná 80035-050, Brazil
| | - Alex Teixeira Soares
- Department of Plant Science and Plant Protection, Universidade Federal do Paraná, Curitiba, Paraná 80035-050, Brazil
| | - Madeline Dowling
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, U.S.A
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, U.S.A
| | - Louise Larissa May De Mio
- Department of Plant Science and Plant Protection, Universidade Federal do Paraná, Curitiba, Paraná 80035-050, Brazil
| |
Collapse
|
4
|
Xu X, Peng X, Huan C, Chen J, Meng Y, Fang S. Development of natamycin-loaded zein-casein composite nanoparticles by a pH-driven method and application to postharvest fungal control on peach against Monilinia fructicola. Food Chem 2023; 404:134659. [DOI: 10.1016/j.foodchem.2022.134659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/05/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022]
|
5
|
Guo TR, Zeng Q, Yang G, Ye SS, Chen ZY, Xie SY, Wang H, Mo YW. Isolation, identification, biological characteristics, and antifungal efficacy of sodium bicarbonate combined with natamycin on Aspergillus niger from Shengzhou nane ( Prunus salicina var. taoxingli) fruit. Front Microbiol 2023; 13:1075033. [PMID: 36713153 PMCID: PMC9879613 DOI: 10.3389/fmicb.2022.1075033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
The fungi causing fruit rot were isolated from symptomatic Shengzhou nane (Prunus salicina var. taoxingli) fruit and were identified as Aspergillus niger by biological characteristics and molecular analysis of the internal transcribed spacer region (rDNA-ITS) and translation elongation factor-1α (TEF-1α) sequences. Optimal growth conditions for A. niger were 30°C, pH 5.0-6.0, and fructose and peptone as carbon and nitrogen sources. The effects of sodium bicarbonate (SBC), natamycin (NT), and combined treatments on A. niger inhibition were investigated. Treatment with 4.0 g/L sodium bicarbonate (SBC) + 5.0 mg/L natamycin (NT) inhibited mycelial growth and spore germination as completely as 12.0 mg/L SBC or 25.0 mg/L NT. SBC and NT treatments disrupted the structural integrity of cell and mitochondria membranes and decreased enzyme activities involved in the tricarboxylic acid (TCA) cycle, mitochondrial membrane potential (MMP), ATP production in mitochondria, and ergosterol content in the plasma membrane, thus leading to the inhibition of A. niger growth. Moreover, experimental results in vivo showed that the rot lesion diameter and decay rate of Shengzhou nane fruit treated with SBC and NT were significantly reduced compared with the control. The results suggest that the combination treatment of SBC and NT could be an alternative to synthetic fungicides for controlling postharvest Shengzhou nane decay caused by A. niger.
Collapse
|
6
|
Du Y, Li Y, Tian Z, Cheng Y, Long CA. Natamycin as a safe food additive to control postharvest green mold and sour rot in citrus. J Appl Microbiol 2022; 133:3438-3450. [PMID: 35947063 DOI: 10.1111/jam.15769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
AIMS The purpose of this study was to explore the potential inhibitory mechanism and assess the feasibility of natamycin as an antifungal agent in the utilization of citrus storage. METHODS AND RESULTS In this study, the mycelial growth, spore germination as well as germ tube elongations of Geotrichum citri-aurantii and Penicillium digitatum were significantly inhibited by natamycin treatment. The relative conductivities of G. citri-aurantii and P. digitatum mycelia were increased as time went by and the damages of plasma membranes were up to 17.43 % and 28.61 %. The mitochondria abnormalities and vacuolation were also observed in the TEM. Moreover, the sour rot and green mold decay incidences were reduced to 18.33 % and 10 % post-incubation with G. citri-aurantii and P. digitatum under 300 mg L-1 natamycin application, respectively. For the citrus storage experiment, there was no significant difference in edible rate, juice yield, total soluble solid (TSS) content, titratable acid (TA) and decay incidences of the 'Newhall' navel orange fruit treated with 300 mg L-1 natamycin stored for 90 d. CONCLUSIONS Natamycin could decrease the expansions of green mold and sour rot and maintain quality and improve storability on citrus fruit. SIGNIFICANCE AND IMPACT OF THE STUDY This work explores the potential inhibition mechanism of natamycin G. citri-aurantii and P. digitatum, and assesses the feasibility of natamycin as an antifungal agent in the utilization of citrus storage.
Collapse
Affiliation(s)
- Yujie Du
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, National R&D Center For Citrus Preservation, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| | - Yajuan Li
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, National R&D Center For Citrus Preservation, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| | - Zhonghuan Tian
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, National R&D Center For Citrus Preservation, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, National R&D Center For Citrus Preservation, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| | - Chao-An Long
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, National R&D Center For Citrus Preservation, National Centre of Citrus Breeding, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Rebello CS, Baggio JS, Forcelini BB, Peres NA. Sensitivity of Colletotrichum acutatum Species Complex from Strawberry to Fungicide Alternatives to Quinone-Outside Inhibitors. PLANT DISEASE 2022; 106:2053-2059. [PMID: 35285270 DOI: 10.1094/pdis-09-21-1934-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colletotrichum acutatum is a species complex that causes anthracnose fruit rot and root necrosis on strawberry. The major and minor species within the complex that affect strawberry production are C. nymphaeae and C. fioriniae, respectively. The disease can significantly reduce yield under conducive weather, and its management has greatly relied on quinone-outside inhibitor fungicides (QoI). However, due to the emergence of resistant isolates, such products are no longer effective. Therefore, alternative fungicides were investigated. C. nymphaeae and C. fioriniae isolates were collected from multiple strawberry fields in the United States from 1995 to 2017. The sensitivity of benzovindiflupyr, penthiopyrad, pydiflumetofen, fluazinam, fludioxonil, and cyprodinil was assessed by in vitro and in vivo assays. Both Colletotrichum species were sensitive to benzovindiflupyr, penthiopyrad, fluazinam, and fludioxonil based on mycelial growth assays. Interestingly, of these products, only penthiopyrad did not inhibit conidial germination at 100 µg/ml. For cyprodinil, C. nymphaeae was sensitive based on the mycelial growth, whereas C. fioriniae was not inhibited. Neither species was inhibited by pydiflumetofen in mycelial growth, conidial germination, nor detached fruit assays. The prepackaged mixtures fludioxonil + cyprodinil and fludioxonil + pydiflumetofen were effective in a field trial; however, their use should be carefully considered because of the lack of efficacy of one of the compounds in the mixture. This study sheds light on the potential registration of products alternative to QoIs, such as benzovindiflupyr and fluazinam, which could improve the management of strawberry anthracnose.
Collapse
Affiliation(s)
- Carolina S Rebello
- Department of Plant Pathology, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
| | - Juliana S Baggio
- Department of Plant Pathology, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
- Syngenta Crop Protection, Vero Beach, FL 32967
| | - Bruna B Forcelini
- Department of Plant Pathology, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
- Corteva Agriscience, Indianapolis, IN 46268
| | - Natalia A Peres
- Department of Plant Pathology, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
| |
Collapse
|
8
|
Fernández G, Sbres M, Lado J, Pérez-Faggiani E. Postharvest sour rot control in lemon fruit by natamycin and an Allium extract. Int J Food Microbiol 2022; 368:109605. [DOI: 10.1016/j.ijfoodmicro.2022.109605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 10/19/2022]
|
9
|
Antimicrobial Efficacy of Edible Mushroom Extracts: Assessment of Fungal Resistance. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antimicrobial efficacy of the water or methanolic extracts of three medicinal mushrooms Taiwanofungus camphoratus, Agaricus blazei Murrill, and Ganoderma lucidum (Curtis) P. Karst were investigated against yeast and filamentous fungal pathogens as well as against commensal and pathogenic bacteria. The methanolic extract of T. camphoratus (TcM) exhibited both potent antifungal and antibacterial activity, while the water extract of T. camphoratus (TcW) showed limited antibacterial activity against Listeria monocytogenes. Neither the methanolic nor water extracts of A. blazei and G. lucidum exhibited antimicrobial activity. In the risk assessment testing monitoring the development of fungal tolerance to mushroom extracts in food matrices, two P. expansum mitogen-activated protein kinase (MAPK) mutants exhibited a tolerance to TcM. In a proof-of-concept bioassay using the natural benzoic salicylaldehyde (SA), P. expansum and A. fumigatus MAPK antioxidant mutants showed similar tolerance to SA, suggesting that natural ingredients in TcM such as benzoic derivatives could negatively affect the efficacy of TcM when antioxidant mutants are targeted. Conclusion: TcM could be developed as a food ingredient having antimicrobial potential. The antimicrobial activity of TcM operates via the intact MAPK antioxidant signaling system in microbes, however, mutants lacking genes in the MAPK system escape the toxicity triggered by TcM. Therefore, caution should be exercised in the use of TcM so as to not adversely affect food safety and quality by triggering the resistance of antioxidant mutants in contaminated food.
Collapse
|
10
|
Hu S, Zhang Y, Yu H, Zhou J, Hu M, Liu A, Wu J, Wang H, Zhang C. Colletotrichum Spp. Diversity Between Leaf Anthracnose and Crown Rot From the Same Strawberry Plant. Front Microbiol 2022; 13:860694. [PMID: 35495690 PMCID: PMC9048825 DOI: 10.3389/fmicb.2022.860694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Leaf anthracnose (LA) and anthracnose crown rot (ACR) represent serious fungal diseases that pose significant threats to strawberry production. To characterize the pathogen diversity associated with above diseases, 100 strawberry plants, including varieties of "Hongjia," "Zhangji," and "Tianxianzui," were sampled from Jiande and Zhoushan, the primary plantation regions of Zhejiang province, China. A total of 309 Colletotrichum isolates were isolated from crown (150 isolates) and leaves (159 isolates) of affected samples. Among these, 100 isolates obtained from the plants showing both LA and CR symptoms were selected randomly for further characterization. Based on the morphological observations combined with phylogenetic analysis of multiple genes (ACT, ITS, CAL, GAPDH, and CHS), all the 100 tested isolates were identified as C. gloeosporioides species complex, including 91 isolates of C. siamense, 8 isolates of C. fructicola causing both LA and ACR, and one isolate of C. aenigma causing ACR. The phenotypic characteristics of these isolated species were investigated using the BIOLOG phenotype MicroArray (PM) and a total of 950 different metabolic phenotype were tested, showing the characteristics among these isolates and providing the theoretical basis for pathogenic biochemistry and metabolism. The pathogenicity tests showed that even the same Colletotrichum species isolated from different diseased tissues (leaves or crowns) had significantly different pathogenicity toward strawberry leaves and crown. C. siamense isolated from diseased leaves (CSLA) was more aggressive than C. siamense isolated from rotted crown (CSCR) during the infection on "Zhangji" leaves. Additionally, C. fructicola isolated from affected leaf (CFLA) caused more severe symptoms on the leaves of four strawberry varieties compared to C. fructicola isolated from diseased crown (CFCR). For crown rot, the pathogenicity of CSCR was higher than that of CSLA.
Collapse
Affiliation(s)
- Shuodan Hu
- College of Modern Agriculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yanting Zhang
- College of Modern Agriculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Hong Yu
- Research Institute for the Agriculture Science of Hangzhou, Hangzhou, China
| | - Jiayan Zhou
- Agricultural Technology Extension Center of Zhejiang Province, Hangzhou, China
| | - Meihua Hu
- Agricultural Technology Extension Center of Zhejiang Province, Hangzhou, China
| | - Aichun Liu
- Research Institute for the Agriculture Science of Hangzhou, Hangzhou, China
| | - Jianyan Wu
- College of Modern Agriculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | | | - Chuanqing Zhang
- College of Modern Agriculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
11
|
Martin PL, Krawczyk T, Pierce K, Thomas C, Khodadadi F, Aćimović SG, Peter KA. Fungicide Sensitivity of Colletotrichum Species Causing Bitter Rot of Apple in the Mid-Atlantic U.S.A. PLANT DISEASE 2022; 106:549-563. [PMID: 34353127 DOI: 10.1094/pdis-06-21-1142-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Apple growers in the Mid-Atlantic region of the U.S.A. have reported increased losses to bitter rot of apple. We tested the hypothesis that this increase is because the Colletotrichum population has developed resistance to commonly used single-mode-of-action (single-MoA) fungicides. We screened 220 Colletotrichum isolates obtained from 38 apple orchards in the Mid-Atlantic region for resistance to 11 fungicides in Fungicide Resistance Action Committee (FRAC) groups 1, 7, 9, 11, 12, and 29. Eleven (5%) of these isolates were resistant to FRAC group 1 with confirmed β-tubulin E198A mutations, and two (<1%) were also resistant to FRAC group 11 with confirmed cytochrome-b G143A mutations. Such low frequencies of resistant isolates indicate that fungicide resistance is unlikely to be the cause of any regional increase in bitter rot. A subsample of isolates was subsequently tested in vitro for sensitivity to every single-MoA fungicide registered for apple in the Mid-Atlantic U.S.A. (22 fungicides; FRAC groups 1, 3, 7, 9, 11, 12, and 29), and 13 fungicides were tested in field trials. These fungicides varied widely in efficacy both within and between FRAC groups. Comparisons of results from our in vitro tests with results from our field trials and other field trials conducted across the eastern U.S.A. suggested that EC25 values (concentrations that reduce growth by 25%) are better predictors of fungicide efficacy in normal field conditions than EC50 values. We present these results as a guideline for choosing single-MoA fungicides for bitter rot control in the Mid-Atlantic U.S.A.
Collapse
Affiliation(s)
- Phillip L Martin
- Fruit Research and Extension Center, Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, Biglerville, PA 17307
| | - Teresa Krawczyk
- Fruit Research and Extension Center, Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, Biglerville, PA 17307
| | - Kristen Pierce
- Fruit Research and Extension Center, Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, Biglerville, PA 17307
| | - Catherine Thomas
- Fruit Research and Extension Center, Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, Biglerville, PA 17307
| | - Fatemeh Khodadadi
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Winchester, VA 22602
| | - Srđan G Aćimović
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Winchester, VA 22602
| | - Kari A Peter
- Fruit Research and Extension Center, Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, Biglerville, PA 17307
| |
Collapse
|
12
|
Sun H, Liu X, Pei J, Hao D, Li X, Chen D, Shen Y, Xu Z. Identification, characterisation and inhibition of
Geotrichum pseudocandidum
spoilage microbe in
Gastrodia elata
tuber. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haiyan Sun
- Key Laboratory of Life Resources of Shaanxi Province Shaanxi Key Laboratory of Resource Biology College of Biological Science and Engineering Shaanxi University of Technology Hanzhong China
| | - Xiao Liu
- Key Laboratory of Life Resources of Shaanxi Province Shaanxi Key Laboratory of Resource Biology College of Biological Science and Engineering Shaanxi University of Technology Hanzhong China
| | - Jinjin Pei
- Key Laboratory of Life Resources of Shaanxi Province Shaanxi Key Laboratory of Resource Biology College of Biological Science and Engineering Shaanxi University of Technology Hanzhong China
| | - Danqing Hao
- Key Laboratory of Life Resources of Shaanxi Province Shaanxi Key Laboratory of Resource Biology College of Biological Science and Engineering Shaanxi University of Technology Hanzhong China
| | - Xinsheng Li
- Key Laboratory of Life Resources of Shaanxi Province Shaanxi Key Laboratory of Resource Biology College of Biological Science and Engineering Shaanxi University of Technology Hanzhong China
| | - Dejing Chen
- Key Laboratory of Life Resources of Shaanxi Province Shaanxi Key Laboratory of Resource Biology College of Biological Science and Engineering Shaanxi University of Technology Hanzhong China
| | - Yixiao Shen
- College of Food Science Shenyang Agricultural University Shenyang China
- School of Nutrition and Food Sciences Louisiana State University Baton Rouge LA USA
| | - Zhimin Xu
- School of Nutrition and Food Sciences Louisiana State University Baton Rouge LA USA
| |
Collapse
|
13
|
Wang F, Saito S, Michailides TJ, Xiao CL. Baseline Sensitivity of Alternaria alternata and A. arborescens to Natamycin and Control of Alternaria Rot on Stored Mandarin Fruit. PLANT DISEASE 2021; 105:3653-3656. [PMID: 34085850 DOI: 10.1094/pdis-04-21-0809-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alternaria rot caused by Alternaria alternata and A. arborescens is one of the major postharvest diseases on mandarin fruit in California. In this study, natamycin, a newly registered biofungicide, was evaluated for its potential as a postharvest treatment to control Alternaria rot on mandarin fruit. The baseline sensitivities of A. alternata and A. arborescens to natamycin were determined. Effective concentration inhibiting 50% of fungal growth (EC50) values of natamycin for 70 A. alternata isolates ranged from 0.694 to 1.275 µg/ml (mean = 0.921 µg/ml) in a conidial germination assay and from 2.001 to 3.788 µg/ml (mean = 2.797 µg/ml) for 40 A. alternata isolates in a mycelial growth assay. EC50 values of natamycin for 30 A. arborescens isolates ranged from 0.698 to 1.203 µg/ml (mean = 0.923 µg/ml) in a conidial germination assay and from 2.035 to 3.368 µg/ml (mean = 2.658 µg/ml) for 20 A. arborescens isolates in a mycelial growth assay. Control tests on detached mandarin fruit showed that natamycin at both low (460 µg/ml) and high (920 µg/ml) recommended rates significantly reduced disease incidence and severity on mandarin fruit inoculated with Alternaria isolates, regardless of species. High rate of natamycin significantly reduced disease incidence and severity compared with the nontreated control even when natamycin treatment was delayed for 6, 12, and 18 h after inoculation. Our results suggested that natamycin can be an effective postharvest fungicide for control of Alternaria rot on mandarin fruit.
Collapse
Affiliation(s)
- Fei Wang
- USDA-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Seiya Saito
- USDA-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Themis J Michailides
- Department of Plant Pathology, Kearney Agricultural Research and Extension Center, University of California Davis, Parlier, CA 93648
| | - Chang-Lin Xiao
- USDA-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|
14
|
Antifungal Efficacy of Redox-Active Natamycin against Some Foodborne Fungi-Comparison with Aspergillus fumigatus. Foods 2021; 10:foods10092073. [PMID: 34574183 PMCID: PMC8469148 DOI: 10.3390/foods10092073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
The fungal antioxidant system is one of the targets of the redox-active polyene antifungal drugs, including amphotericin B (AMB), nystatin (NYS), and natamycin (NAT). Besides medical applications, NAT has been used in industry for preserving foods and crops. In this study, we investigated two parameters (pH and food ingredients) affecting NAT efficacy. In the human pathogen, Aspergillus fumigatus, NAT (2 to 16 μg mL−1) exerted higher activity at pH 5.6 than at pH 3.5 on a defined medium. In contrast, NAT exhibited higher activity at pH 3.5 than at pH 5.6 against foodborne fungal contaminants, Aspergillus flavus, Aspergillus parasiticus, and Penicillium expansum, with P. expansum being the most sensitive. In commercial food matrices (10 organic fruit juices), food ingredients differentially affected NAT antifungal efficacy. Noteworthily, NAT overcame tolerance of the A. fumigatus signaling mutants to the fungicide fludioxonil and exerted antifungal synergism with the secondary metabolite, kojic acid (KA). Altogether, NAT exhibited better antifungal activity at acidic pH against foodborne fungi; however, the ingredients from commercial food matrices presented greater impact on NAT efficacy compared to pH values. Comprehensive determination of parameters affecting NAT efficacy and improved food formulation will promote sustainable food/crop production, food safety, and public health.
Collapse
|
15
|
Chen D, Fӧrster H, Adaskaveg JE. Baseline Sensitivities of Major Citrus, Pome, and Stone Fruits Postharvest Pathogens to Natamycin and Estimation of the Resistance Potential in Penicillium digitatum. PLANT DISEASE 2021; 105:2114-2121. [PMID: 33306429 DOI: 10.1094/pdis-07-20-1421-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natamycin is a biofungicide that was registered in the United States in 2016 and approved in California in 2017 for postharvest use on citrus and stone fruits. It has been used as a food preservative for many decades, with no resistance ever observed to date. The objective of this study was to determine baseline sensitivities for mycelial growth of 43 to 72 isolates of seven postharvest pathogens to natamycin and the resistance potential of Penicillium digitatum. Mean effective concentrations to inhibit mycelial growth by 50% (EC50 values), as determined by the spiral gradient method, were 0.90 μg/ml for Alternaria alternata, 0.76 μg/ml for Botrytis cinerea, 3.20 μg/ml for Geotrichum citri-aurantii, 0.17 μg/ml for Monilinia fructicola, 1.54 μg/ml for P. digitatum, 1.14 μg/ml for P. expansum, and 0.48 μg/ml for Rhizopus stolonifer. Distributions of EC50 values for each pathogen were unimodal and mostly normal with no outliers detected. Natamycin was also inhibitory to spore germination with values for five of the species similar to those for mycelial growth. Microscopically, natamycin generally arrested spores at the pregermination swelling stage. Mass platings of a conidial mixture of 10 isolates of P. digitatum were inoculated on agar media with 2.5-log radial concentration gradients of natamycin or fludioxonil, and a conidial mixture of 10 isolates of G. citri-aurantii were plated on media amended with natamycin or propiconazole. No resistant isolates were observed for both species to natamycin or for G. citri-aurantii to propiconazole, whereas a resistance frequency of 4.5 × 10-6 to 3.1 × 10-6 was calculated for P. digitatum to fludioxonil. The wide spectrum of activity against different fungal pathogens and a low resistance potential support the registration of natamycin as a postharvest treatment and its integration into an integrated pest management program with other practices including sanitation and rotation of other fungicides with different modes of action.
Collapse
Affiliation(s)
- Daniel Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Helga Fӧrster
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - James E Adaskaveg
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| |
Collapse
|
16
|
Gama AB, Cordova LG, Rebello CS, Peres NA. Validation of a Decision Support System for Blueberry Anthracnose and Fungicide Sensitivity of Colletotrichum gloeosporioides Isolates. PLANT DISEASE 2021; 105:1806-1813. [PMID: 32954983 DOI: 10.1094/pdis-09-20-1961-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Blueberry is an increasingly important crop in Florida. Anthracnose fruit rot (AFR), caused mostly by Colletotrichum gloeosporioides, is favored by long wetness periods and temperatures from 15 to 27°C. Currently, the model in the Strawberry Advisory System (StAS) guides fungicide applications targeting strawberry AFR. Given the similarity between blueberry and strawberry AFR, we hypothesized that the model used in StAS could be used in a decision support system (DSS) built for blueberry AFR. There is no information on inhibition posed by fungicides on C. gloeosporioides isolates from blueberry. Our objectives were to demonstrate that the model used in the StAS could be used for blueberry AFR management in Florida and to assess the sensitivity of isolates to fungicides. Four trials were undertaken in blueberry fields in Florida during two seasons to compare the effectiveness of fungicide applications according to the model with that of the growers' standard calendar. Sensitivity of blueberry C. gloeosporioides isolates to azoxystrobin, benzovindiflupyr, penthiopyrad, pydiflumetofen, boscalid, thiophanate-methyl, fluazinam, and fludioxonil was evaluated. AFR incidence and yield were compared between treatments. Following recommendations from the model resulted in disease control as effective as the standard program and in some cases with fewer applications. All isolates were sensitive to benzovindiflupyr, penthiopyrad, fluazinam, and fludioxonil. Low frequency of in vitro inhibition of isolates by azoxystrobin, pydiflumetofen, boscalid, and thiophanate-methyl should raise concern about fungicide resistance. Our results indicate that the model used in StAS could be used in a DSS to help Florida growers to manage AFR in blueberry.
Collapse
Affiliation(s)
- Andre B Gama
- University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
| | | | - Carolina S Rebello
- University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
| | - Natalia A Peres
- University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
| |
Collapse
|
17
|
Chen D, Förster H, Adaskaveg JE. Natamycin, a Biofungicide for Managing Major Postharvest Fruit Decays of Citrus. PLANT DISEASE 2021; 105:1408-1414. [PMID: 33320038 DOI: 10.1094/pdis-08-20-1650-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The antifungal polyene macrolide natamycin was evaluated as a postharvest biopesticide for citrus fruit. Aqueous spray applications with 1,000 µg/ml were moderately to highly effective against green mold incidence after inoculation but did not reduce sporulation of Penicillium digitatum on infected fruit. Treatments with natamycin were significantly more effective against green mold on grapefruit and lemon than on orange and mandarin, with 92.9, 88.5, 57.5, and 60.9% reductions in decay, respectively, as compared with the control. The biofungicide was compatible with a storage fruit coating but was less effective when applied in a packing coating. However, when either fruit coating was applied following an aqueous natamycin treatment (i.e., staged applications), the incidence of decay was reduced to ≤10.7% as compared with the untreated control (with 81.9%). The incidence of sour rot of lemon and mandarin was also significantly reduced from the untreated control by natamycin (1,000 µg/ml) but propiconazole (540 µg/ml) and propiconazole + natamycin (540 + 500 µg/ml) mixtures generally were significantly more effective than natamycin alone when using a severe inoculation procedure. Experimental and commercial packingline studies demonstrated that natamycin-fludioxonil or natamycin-propiconazole mixtures applied in a storage fruit coating or as an aqueous flooder treatment were highly effective and typically resulted in a >85.0% reduction of green mold and sour rot. Resistance to natamycin has never been documented in filamentous fungi. Thus, the use of natamycin, in contrast to other registered postharvest fungicides for citrus, can be an antiresistance strategy and an effective treatment in mixtures with other fungicides for the management of major postharvest decays of citrus.
Collapse
Affiliation(s)
- Daniel Chen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Helga Förster
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - James E Adaskaveg
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| |
Collapse
|
18
|
Schnabel G, Tan Q, Schneider V, Ishii H. Inherent tolerance of Colletotrichum gloeosporioides to fludioxonil. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104767. [PMID: 33518054 DOI: 10.1016/j.pestbp.2020.104767] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Colletotrichum spp. cause devastating diseases in agricultural crops, including fruit crops. They can differ in host plant and plant organ specificity and even in fungicide sensitivity. In strawberry, members of the C. gloeosporioides species complex (referred to as C. gloeosporioides) primarily cause crown rot and those of the C. acutatum species complex (referred to as C. acutatum) primarily cause fruit rot. Fludioxonil is registered for use (in combination with cyprodinil; Switch 62.5WG in the US) in strawberry against anthracnose disease caused by Colletotrichum spp. In this study we examined the sensitivity of C. gloeosporioides (C. fructicola and C. siamense) and C. acutatum (C. nymphaeae and C. fioriniae) isolates from different hosts and different geographical locations in the US to fludioxonil and examined possible mechanisms of inherent fungicide tolerance. The dose response to fludioxonil of C. gloeosporioides isolates (including 4 isolates of C. theobromicola) revealed about 70% inhibition of mycelial growth at 1 mg/L that was maintained at 10 mg/L and 100 mg/L and lead to minimum inhibitory concentration (MIC) values >100 mg/L. In contrast, mycelial growth of C. acutatum isolates was completely inhibited at 1 mg/L. C. gloeosporioides isolates were also significantly less sensitive to iprodione. An investigation into possible mechanisms of C. gloeosporioides isolates tolerance to fludioxonil and iprodione revealed no evidence of OS-1 gene involvement. Isolates of both species complexes were equally sensitive to salt stress based on mycelial growth inhibition on potato dextrose agar amended with 2%, 4%, and 6% NaCl. In addition, orthologous amino acid alterations in OS-1 previously linked to fludioxonil resistance in Botrytis cinerea were not found in C. gloeosporioides or C. acutatum isolates. This study also showed limited in vitro inhibitory activity of cyprodinil against isolates of both species complexes (MIC values >100 mg/L) and unveils a potential weakness of the fludioxonil+cyprodinil premixture marketed as Switch 62.5WG against C. gloeosporioides species complexes.
Collapse
Affiliation(s)
- Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, United States of America.
| | - Qin Tan
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, United States of America
| | - Verena Schneider
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, United States of America
| | - Hideo Ishii
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, United States of America; University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
19
|
Oliveira MS, Cordova LG, Peres NA. Efficacy and Baseline Sensitivity of Succinate-Dehydrogenase-Inhibitor Fungicides for Management of Colletotrichum Crown Rot of Strawberry. PLANT DISEASE 2020; 104:2860-2865. [PMID: 32946349 DOI: 10.1094/pdis-01-20-0083-re] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The current management of Colletotrichum crown rot (CCR) of strawberry, caused by Colletotrichum gloeosporioides sensu lato, relies on the use of a few fungicide classes, particularly QoI fungicides. Since resistance to QoI fungicides has recently been detected, alternative fungicide groups are needed to control this disease. Our objective was to evaluate the efficacy of succinate-dehydrogenase-inhibitor (SDHI) fungicides in managing CCR. Five SDHI fungicides, fluopyram, isofetamid, penthiopyrad, fluxapyroxad, and benzovindiflupyr, were applied 2 days before or 1 day after inoculation of cultivar Strawberry Festival. SDHI treatments were compared with the most common fungicides used for CCR management, i.e., thiophanate-methyl, pyraclostrobin, and captan. Benzovindiflupyr applied 1 day after inoculation was effective in reducing plant mortality and disease development. The baseline sensitivity of C. gloeosporioides isolates was determined in vitro using a spiral gradient dilution assay. The EC50 for benzovindiflupyr and penthiopyrad varied from 0.08 to 1.11 and 0.45 to 3.17 µg/ml, respectively, whereas the other SDHI fungicides did not inhibit fungal growth. If registered, benzovindiflupyr could serve as an alternative to manage CCR in Florida.
Collapse
Affiliation(s)
- Michelle S Oliveira
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Leandro G Cordova
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Natalia A Peres
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| |
Collapse
|
20
|
Dowling M, Peres N, Villani S, Schnabel G. Managing Colletotrichum on Fruit Crops: A "Complex" Challenge. PLANT DISEASE 2020; 104:2301-2316. [PMID: 32689886 DOI: 10.1094/pdis-11-19-2378-fe] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fungal genus Colletotrichum includes numerous important plant pathogenic species and species complexes that infect a wide variety of hosts. Its taxonomy is particularly complex because species' phenotypes and genotypes are difficult to differentiate. Two notable complexes, C. acutatum and C. gloeosporioides, are known for infecting temperate fruit crops worldwide. Even species within these complexes vary in traits such as tissue specificity, aggressiveness, geographic distribution, and fungicide sensitivity. With few effective chemicals available to control these pathogens, and the persistent threat of fungicide resistance, there is a need for greater understanding of this destructive genus and the methods that can be used for disease management. This review summarizes current research on diseases caused by Colletotrichum spp. on major fruit crops in the United States, focusing on the taxonomy of species involved, disease management strategies, and future management outlook.
Collapse
Affiliation(s)
- Madeline Dowling
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Natalia Peres
- Department of Plant Pathology, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
| | - Sara Villani
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
21
|
Khodadadi F, González JB, Martin PL, Giroux E, Bilodeau GJ, Peter KA, Doyle VP, Aćimović SG. Identification and characterization of Colletotrichum species causing apple bitter rot in New York and description of C. noveboracense sp. nov. Sci Rep 2020; 10:11043. [PMID: 32632221 PMCID: PMC7338416 DOI: 10.1038/s41598-020-66761-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
Apple bitter rot caused by Colletotrichum species is a growing problem worldwide. Colletotrichum spp. are economically important but taxonomically un-resolved. Identification of Colletotrichum spp. is critical due to potential species-level differences in pathogenicity-related characteristics. A 400-isolate collection from New York apple orchards were morphologically assorted to two groups, C. acutatum species complex (CASC) and C. gloeosporioides species complex (CGSC). A sub-sample of 44 representative isolates, spanning the geographical distribution and apple varieties, were assigned to species based on multi-locus phylogenetic analyses of nrITS, GAPDH and TUB2 for CASC, and ITS, GAPDH, CAL, ACT, TUB2, APN2, ApMat and GS genes for CGSC. The dominant species was C. fioriniae, followed by C. chrysophilum and a novel species, C. noveboracense, described in this study. This study represents the first report of C. chrysophilum and C. noveboracense as pathogens of apple. We assessed the enzyme activity and fungicide sensitivity for isolates identified in New York. All isolates showed amylolytic, cellulolytic and lipolytic, but not proteolytic activity. C. chrysophilum showed the highest cellulase and the lowest lipase activity, while C. noveboracense had the highest amylase activity. Fungicide assays showed that C. fioriniae was sensitive to benzovindiflupyr and thiabendazole, while C. chrysophilum and C. noveboracense were sensitive to fludioxonil, pyraclostrobin and difenoconazole. All species were pathogenic on apple fruit with varying lesion sizes. Our findings of differing pathogenicity-related characteristics among the three species demonstrate the importance of accurate species identification for any downstream investigations of Colletotrichum spp. in major apple growing regions.
Collapse
Affiliation(s)
- Fatemeh Khodadadi
- Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Hudson Valley Research Laboratory, Highland, NY, USA
| | - Jonathan B González
- Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Ithaca, NY, USA
| | - Phillip L Martin
- Pennsylvania State University, Department of Plant Pathology and Environmental Microbiology, Fruit Research and Extension Center, Biglerville, PA, USA
| | - Emily Giroux
- Pathogen Identification Research Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Guillaume J Bilodeau
- Pathogen Identification Research Laboratory, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Kari A Peter
- Pennsylvania State University, Department of Plant Pathology and Environmental Microbiology, Fruit Research and Extension Center, Biglerville, PA, USA
| | - Vinson P Doyle
- Louisiana State University AgCenter, Department of Plant Pathology and Crop Physiology, Baton Rouge, Louisiana, USA
| | - Srđan G Aćimović
- Cornell University, Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Hudson Valley Research Laboratory, Highland, NY, USA.
| |
Collapse
|
22
|
Saito S, Wang F, Xiao CL. Efficacy of Natamycin Against Gray Mold of Stored Mandarin Fruit Caused by Isolates of Botrytis cinerea With Multiple Fungicide Resistance. PLANT DISEASE 2020; 104:787-792. [PMID: 31940447 DOI: 10.1094/pdis-04-19-0844-re] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gray mold caused by Botrytis cinerea is an emerging postharvest disease of mandarin fruit in California. Management of postharvest diseases of mandarins relies on postharvest fungicides; however, multiple resistance to fungicides of different modes of action is common in B. cinerea populations from mandarin, leading to their failure to control decay. Natamycin is commonly used in the food industry as an additive, and it has been registered as a biofungicide for postharvest use on citrus and some other fruits. Sensitivity to natamycin of 64 isolates of B. cinerea from decayed mandarin fruit with known resistance phenotypes to other citrus postharvest fungicides (azoxystrobin, fludioxonil, pyrimethanil, and thiabendazole) was tested. Effective concentrations of natamycin to cause a 50% reduction relative to the control for conidial germination were from 0.324 to 0.567 µg/ml (mean of 0.444 µg/ml), and those for mycelial growth were 1.021 to 2.007 µg/ml (mean of 1.578 µg/ml). Minimum inhibitory concentrations where no fungal growth was present were 0.7 to 1.0 µg/ml for conidial germination and 5.0 to 10.0 µg/ml for mycelial growth. No cross-resistance between natamycin and other citrus postharvest fungicides was detected. Decay control efficacy tests with natamycin were conducted on mandarin fruit inoculated with B. cinerea isolates exhibiting five different fungicide resistance phenotypes, and natamycin significantly reduced incidence and lesion size of gray mold on fruit, regardless of fungicide resistance phenotypes. Natamycin has the potential to be an effective tool for integration into postharvest fungicide programs to control gray mold and manage B. cinerea isolates resistant to fungicides with other modes of action.
Collapse
Affiliation(s)
- S Saito
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - F Wang
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - C L Xiao
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|
23
|
Wang X, Liu S, Chen M, Yu C, Zhao Y, Yang H, Zha L, Li Z. Low Temperature (15 °C) Reduces Bacterial Diversity and Prolongs the Preservation Time of Volvariella volvacea. Microorganisms 2019; 7:microorganisms7100475. [PMID: 31635138 PMCID: PMC6843861 DOI: 10.3390/microorganisms7100475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Straw mushroom (Volvariella volvacea) is the most commonly cultivated edible fungus in the world, but the challenges associated with the preservation have limited its marketability. Microbiology, especially bacteria, play a key role in the deterioration of food, this study aimed to reveal the succession of the bacterial community on the surfaces of V. volvacea fruit bodies under different temperature conditions. We amplified 16S rRNA genes of V4 regions, obtained the bacterial species information by using high-throughput sequencing technology, and analyzed the effects of environmental temperature and preservation time on bacterial communities. The relative abundances of Firmicutes, Bacilli, and Bacillales increased significantly when straw mushrooms began to rot. Furthermore, the relative abundances of Paenibacillus, Lysinibacillus and Solibacillus, which belong to Bacillales, increased with the decay of straw mushroom. The Shannon and Simpson indices of V. volvacea stored at 30 °C were significantly higher than those of V. volvacea stored at 15 °C, which indicates that a high temperature contributes to the improvement in the species diversity. According to the linear discriminant analysis (LDA) effect size (LEfSe) results, the number of biomarkers in the 30 °C group (32, 42.11%) was significantly higher than that in the 15 °C group (17, 22.37%), indicating that a high temperature has a clustering effect on some bacterial communities. A Spearman correlation analysis showed that Pseudomonas, Stenotrophomonas and Solibacillus promoted the decay of straw mushroom. In conclusion, a high temperature increases the bacterial diversity on the straw mushroom surfaces and has a clustering effect on the bacterial communities. The bacterial community consisting of Firmicutes, Bacilli, Bacillales, Paenibacillus, Lysinibacillus, Pseudomonas, Stenotrophomonas and Solibacillus could promote the decay of straw mushroom, so new preservation materials research can focus on inhibiting anaerobic and decay-causing bacteria to prolong preservation time.
Collapse
Affiliation(s)
- Xiuling Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Shunjie Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Huanling Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|