1
|
Sabry R, Nguyen M, Younes S, Favetta LA. BPA and its analogs increase oxidative stress levels in in vitro cultured granulosa cells by altering anti-oxidant enzymes expression. Mol Cell Endocrinol 2022; 545:111574. [PMID: 35065199 DOI: 10.1016/j.mce.2022.111574] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
Abstract
Bisphenol A is a widespread endocrine disruptor with numerous effects on reproductive functions. Limitations on BPA in manufacturing has prompted the use of analogs, such as BPS and BPF, with limited research on their safety. The objective of this study was to evaluate the effects of BPA and its analogs on oxidative stress levels within bovine granulosa cells and to measure the expression of key antioxidant genes. Results indicate that BPA and BPF reduce cell viability and induce mitochondrial dysfunction and all three bisphenols increased production of reactive oxygen species as early as 12hrs post exposure. BPA increased the levels of antioxidants at 12hrs at the mRNA and protein levels, while these results were not significant at 48hrs. These results together suggest that BPA and its analogs can induce oxidative stress within bovine granulosa cells, although not necessarily through common mechanisms. Therefore, the use of BPA analogs may have to be re-considered.
Collapse
Affiliation(s)
- R Sabry
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M Nguyen
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - S Younes
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - L A Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Rajendran R, Ragavan RP, Al-Sehemi AG, Uddin MS, Aleya L, Mathew B. Current understandings and perspectives of petroleum hydrocarbons in Alzheimer's disease and Parkinson's disease: a global concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10928-10949. [PMID: 35000177 DOI: 10.1007/s11356-021-17931-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Over the last few decades, the global prevalence of neurodevelopmental and neurodegenerative illnesses has risen rapidly. Although the aetiology remains unclear, evidence is mounting that exposure to persistent hydrocarbon pollutants is a substantial risk factor, predisposing a person to neurological diseases later in life. Epidemiological studies correlate environmental hydrocarbon exposure to brain disorders including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders like autism spectrum disorder (ASD); and neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). Particulate matter, benzene, toluene, ethylbenzene, xylenes, polycyclic aromatic hydrocarbons and endocrine-disrupting chemicals have all been linked to neurodevelopmental problems in all class of people. There is mounting evidence that supports the prevalence of petroleum hydrocarbon becoming neurotoxic and being involved in the pathogenesis of AD and PD. More study is needed to fully comprehend the scope of these problems in the context of unconventional oil and natural gas. This review summarises in vitro, animal and epidemiological research on the genesis of neurodegenerative disorders, highlighting evidence that supports inexorable role of hazardous hydrocarbon exposure in the pathophysiology of AD and PD. In this review, we offer a summary of the existing evidence gathered through a Medline literature search of systematic reviews and meta-analyses of the most important epidemiological studies published so far.
Collapse
Affiliation(s)
- Rajalakshmi Rajendran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Roshni Pushpa Ragavan
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha, 61413, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Lotfi Aleya
- Laboratoire Chrono-Environment, CNRS6249, Universite de Bourgogne Franche-Comte, Besancon, France
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India.
| |
Collapse
|
3
|
Mandour DA, Aidaros AAM, Mohamed S. Potential long-term developmental toxicity of in utero and lactational exposure to Triclocarban (TCC) in hampering ovarian folliculogenesis in rat offspring. Acta Histochem 2021; 123:151772. [PMID: 34428603 DOI: 10.1016/j.acthis.2021.151772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
Triclocarban (TCC), an antimicrobial compound commonly added to a wide range of household and personal hygiene care products, is one of the most prevalent endocrine-disrupting substances (EDS). This study was conducted to elucidate whether in utero and lactational exposure to TCC could adversely affect folliculogenesis and the onset of puberty in female rat offspring. Twenty pregnant Sprague Dawley rats were equally divided into Control and TCC dam groups (supplemented daily with drinking water enriched with 0.5 mg/L of TCC) from gestational day5 to postnatal day21 (PND21). Female offspring, 20 from control and 20 from TCC dams, were subdivided into 4 subgroups (PND21, PND28, PND35 & PND42). The day of vaginal opening and first estrous cycle were determined. Ovarian sections of the offspring were processed for H&E staining and for immunohistochemical expression of Ki67, Caspase-3 and androgen receptors (AR) on the granulosa cells of ovarian follicles. Follicular count and atretic index were assessed besides, serum estradiol, progesterone, FSH and LH, C-reactive protein (CRP), malondialdehyde (MDA) and total antioxidant capacity (TAC) were measured. TCC offspring exhibited a significant delay in the onset of puberty and impedance of normal transition of the primordial follicles to more developed ones with altered cyctoarchitecture. Also, TCC decreased follicular count, proliferation and gonado-somatic index while it increased atretic index, apoptosis and AR of the granulosa cells along with disturbance of the feminine hormonal profile and oxidant/antioxidant balance. This study highlighted the potential long-term consequences of in utero and lactational exposure to TCC on the postnatal development of the ovary in rat offspring.
Collapse
Affiliation(s)
- Dalia A Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt.
| | - Abd Al-Mawla Aidaros
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| | - Soad Mohamed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
4
|
Xu J, Wang Y, Kauffman AE, Zhang Y, Li Y, Zhu J, Maratea K, Fabre K, Zhang Q, Woodruff TK, Xiao S. A Tiered Female Ovarian Toxicity Screening Identifies Toxic Effects of Checkpoint Kinase 1 Inhibitors on Murine Growing Follicles. Toxicol Sci 2021; 177:405-419. [PMID: 32697846 DOI: 10.1093/toxsci/kfaa118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ovarian toxicity (ovotoxicity) is one of the major side effects of pharmaceutical compounds for women at or before reproductive age. The current gold standard for screening of compounds' ovotoxicity largely relies on preclinical investigations using whole animals. However, in vivo models are time-consuming, costly, and harmful to animals. Here, we developed a 3-tiered ovotoxicity screening approach starting from encapsulated in vitro follicle growth (eIVFG) and screened for the potential ovotoxicity of 8 preclinical compounds from AstraZeneca (AZ). Results from Tiers 1 to 2 screenings using eIVFG showed that the first 7 tested AZ compounds, AZ-A, -B, -C, -D, -E, -F, and -G, had no effect on examined mouse follicle and oocyte reproductive outcomes, including follicle survival and development, 17β-estradiol secretion, ovulation, and oocyte meiotic maturation. However, AZ-H, a preclinical compound targeting the checkpoint kinase 1 inhibitor to potentiate the anticancer effects of DNA-damaging agents, significantly promoted granulosa cell apoptosis and the entire growing follicle atresia at clinically relevant concentrations of 1 and 10 μM. The more targeted explorations in Tier 2 revealed that the ovotoxic effect of AZ-H primarily resulted from checkpoint kinase 1 inhibition in granulosa cells. Using in vivo mouse model, the Tier 3 screening confirmed the in vitro ovotoxicities of AZ-H discovered in Tiers 1 and 2. Also, although AZ-H at 0.1 μM alone was not ovotoxic, it significantly exacerbated gemcitabine-induced ovotoxicities on growing follicles. Taken together, our study demonstrates that the tiered ovotoxicity screening approach starting from eIVFG identifies and prioritizes pharmaceutical compounds of high ovotoxicity concern.
Collapse
Affiliation(s)
- Jingshan Xu
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208.,NIEHS Center for Oceans and Human Health and Climate Change Interactions (OHHC2I), University of South Carolina, Columbia, South Carolina 29208
| | - Yingzheng Wang
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208.,NIEHS Center for Oceans and Human Health and Climate Change Interactions (OHHC2I), University of South Carolina, Columbia, South Carolina 29208
| | - Alexandra E Kauffman
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208
| | - Yaqi Zhang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yang Li
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208
| | - Jie Zhu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Kimberly Maratea
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451
| | - Kristin Fabre
- Department of Pathology and Immunology and Center for Space Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Shuo Xiao
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208.,NIEHS Center for Oceans and Human Health and Climate Change Interactions (OHHC2I), University of South Carolina, Columbia, South Carolina 29208.,Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
5
|
Impact of Nonylphenols and Polyhalogenated Compounds in Follicular Fluid on the Outcome of Intracytoplasmic Sperm Injection. Reprod Sci 2021; 28:2118-2128. [PMID: 33620705 DOI: 10.1007/s43032-021-00472-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/03/2021] [Indexed: 01/17/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) interfere with the mammalian hormone system and alter its endo- and paracrine regulation. The goal of the present study was to examine the presence of 14 EDCs, including the technical mixture of nonylphenols and Mirex, in human follicular fluid (FF) and to find a potential correlation between endocrine active substances and a possible impact on female fertility. Furthermore, potential sources of EDC exposition regarding patients' lifestyle and socioeconomic factors were investigated. Human FF was collected from a total of 210 women undergoing intracytoplasmic sperm injection-treatment cycles because of male subfertility. The presence of EDCs was analyzed using gas chromatography coupled with mass spectrometry. Thirteen of the 14 investigated EDCs were present in every FF sample; compounds with the highest concentrations in FF were nonylphenol and Mirex. Nearly all kinds of EDCs led to significantly reduced maturation and fertilization rate. No significant influence of EDC concentration on the clinical pregnancy rate was observed for neither of the analyzed EDCs. Patients who obtained their clothes and textiles at fashion discounters displayed a higher amount of EDCs in their FF. In contrast, patients' residential area, source of food products, and nicotine or caffeine consumed were not associated with EDC accumulation. Clinicaltrials.gov NCT01385605 (11 July 2011).
Collapse
|
6
|
Mir RH, Sawhney G, Pottoo FH, Mohi-Ud-Din R, Madishetti S, Jachak SM, Ahmed Z, Masoodi MH. Role of environmental pollutants in Alzheimer's disease: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44724-44742. [PMID: 32715424 DOI: 10.1007/s11356-020-09964-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Neurodegenerative disorders are commonly erratic influenced by various factors including lifestyle, environmental, and genetic factors. In recent observations, it has been hypothesized that exposure to various environmental factors enhances the risk of Alzheimer's disease (AD). The exact etiology of Alzheimer's disease is still unclear; however, the contribution of environmental factors in the pathology of AD is widely acknowledged. Based on the available literature, the review aims to culminate in the prospective correlation between the various environmental factors and AD. The prolonged exposure to the various well-known environmental factors including heavy metals, air pollutants (particulate matter), pesticides, nanoparticles containing metals, industrial chemicals results in accelerating the progression of AD. Common mechanisms have been documented in the field of environmental contaminants for enhancing amyloid-β (Aβ) peptide along with tau phosphorylation, resulting in the initiation of senile plaques and neurofibrillary tangles, which results in the death of neurons. This review offers a compilation of available data to support the long-suspected correlation between environmental risk factors and AD pathology. Graphical abstract .
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441, Saudi Arabia
| | - Roohi Mohi-Ud-Din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India
| | - Sreedhar Madishetti
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Sanjay M Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi, Jammu, 180001, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, Kashmir, 190006, India.
| |
Collapse
|
7
|
Zubizarreta ME, Xiao S. Bioengineering models of female reproduction. Biodes Manuf 2020; 3:237-251. [PMID: 32774987 PMCID: PMC7413245 DOI: 10.1007/s42242-020-00082-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/23/2020] [Indexed: 12/25/2022]
Abstract
The female reproductive system consists of the ovaries, the female gonads, and the reproductive track organs of the fallopian tubes, uterus, cervix, and vagina. It functions to provide hormonal support and anatomical structure for the production of new offspring. A number of endogenous and exogenous factors can impact female reproductive health and fertility, including genetic vulnerability, medications, environmental exposures, age, nutrition, and diseases, etc. To date, due to the ethical concerns of using human subjects in biomedical research, the majority of studies use in vivo animal models and 2D cell/tissue culture models to study female reproduction. However, the complexity and species difference of the female reproductive system in humans makes it difficult to compare to those of animals. Moreover, the monolayered cells cultured on flat plastics or glass lose their 3D architecture as well as the physical and/or biochemical contacts with other cells in vivo. Further, all reproductive organs do not work alone but interconnect with each other and also with non-reproductive organs to support female reproductive, endocrine, and systemic health. These facts suggest that there is an urgent and unmet need to develop representative, effective, and efficient in vitro models for studying human female reproduction. The prodigious advancements of bioengineering (e.g. biomaterials, 3D printing, and organ-on-a-chip) allow us to study female reproduction in an entirely new way. Here, we review recent advances that use bioengineering methods to study female reproduction, including the bioengineering models of the ovary, fallopian tube, uterus, embryo implantation, placenta, and reproductive disease.
Collapse
Affiliation(s)
- Maria E. Zubizarreta
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Shuo Xiao
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental Health Sciences Institute, Rutgers University, Piscataway, NJ, 08854, USA
| |
Collapse
|
8
|
Olaniyan LWB, Okoh OO, Mkwetshana NT, Okoh AI. Environmental Water Pollution, Endocrine Interference and Ecotoxicity of 4-tert-Octylphenol: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:81-109. [PMID: 30460491 DOI: 10.1007/398_2018_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
4-tert-Octylphenol is a degradation product of non-ionic surfactants alkylphenol polyethoxylates as well as raw material for a number of industrial applications. It is a multimedia compound having been detected in all environmental compartments such as indoor air and surface waters. The pollutant is biodegradable, but certain degradation products are more toxic than the parent compound. Newer removal techniques from environmental waters have been presented, but they still require development for large-scale applications. Wastewater treatment by plant enzymes such as peroxidases offers promise in total removal of 4-tert-octylphenol leaving less toxic degradation products. The pollutant's endocrine interference has been well reported but more in oestrogens than in any other signalling pathways through which it is believed to exert toxicity on human and wildlife. In this paper we carried out a review of the activities of this pollutant in environmental waters, endocrine interference and relevance to its toxicities and concluded that inadequate knowledge of its endocrine activities impedes understanding of its toxicity which may frustrate current efforts at ridding the compound from the environment.
Collapse
Affiliation(s)
- Lamidi W B Olaniyan
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.
| | - Omobola O Okoh
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
| | - Noxolo T Mkwetshana
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- South Africa Medical Research Council, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
9
|
Acir IH, Guenther K. Endocrine-disrupting metabolites of alkylphenol ethoxylates - A critical review of analytical methods, environmental occurrences, toxicity, and regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1530-1546. [PMID: 29874777 DOI: 10.1016/j.scitotenv.2018.04.079] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 05/07/2023]
Abstract
Despite the fact that metabolites of alkylphenol ethoxylates (APEO) are classified as hazardous substances, they continue to be released into the environment from a variety of sources and are not usually monitored. Their wide use has led to an increase in the possible exposure pathways for humans, which is cause for alarm. Moreover, there is a lack of knowledge about the behaviour of these metabolites with respect to the environment and toxicity, and their biological effects on human health. The aim of this work is to give an overview of the APEO metabolites and their analysis, occurrences and toxicity in various environmental and human samples. APEO metabolites have adverse effects on humans, wildlife, and the environment through their release into the environment. Currently, there are some reviews available on the behaviour of alkylphenols in soil, sediments, groundwater, surface water and food. However, none of these articles consider their toxicity in humans and especially their effect on the nervous and immune system. This work summarises the environmental occurrences of metabolites of APEOs in matrices, e.g. water, food and biological matrices, their effect on the immune and nervous systems, and isomer-specific issues. With that emphasis we are able to cover most common occurrences of human exposure, whether direct or indirect.
Collapse
Affiliation(s)
- Ismail-H Acir
- University of Bonn, Institute of Nutrition and Food Sciences, Food Chemistry, Endenicher Allee 11-13, D-53115 Bonn, Germany
| | - Klaus Guenther
- University of Bonn, Institute of Nutrition and Food Sciences, Food Chemistry, Endenicher Allee 11-13, D-53115 Bonn, Germany.
| |
Collapse
|
10
|
Fitzgerald AC, Peyton C, Dong J, Thomas P. Bisphenol A and Related Alkylphenols Exert Nongenomic Estrogenic Actions Through a G Protein-Coupled Estrogen Receptor 1 (Gper)/Epidermal Growth Factor Receptor (Egfr) Pathway to Inhibit Meiotic Maturation of Zebrafish Oocytes. Biol Reprod 2015; 93:135. [PMID: 26490843 DOI: 10.1095/biolreprod.115.132316] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/19/2015] [Indexed: 11/01/2022] Open
Abstract
Xenobiotic estrogens, such as bisphenol A (BPA), disrupt a wide variety of genomic estrogen actions, but their nongenomic estrogen actions remain poorly understood. We investigated nongenomic estrogenic effects of low concentrations of BPA and three related alkylphenols on the inhibition of zebrafish oocye maturation (OM) mediated through a G protein-coupled estrogen receptor 1 (Gper)-dependent epidermal growth factor receptor (Egfr) pathway. BPA (10-100 nM) treatment for 3 h mimicked the effects of estradiol-17beta (E2) and EGF, decreasing spontaneous maturation of defolliculated zebrafish oocytes, an effect not blocked by coincubation with actinomycin D, but blocked by coincubation with a Gper antibody. BPA displayed relatively high binding affinity (15.8% that of E2) for recombinant zebrafish Gper. The inhibitory effects of BPA were attenuated by inhibition of upstream regulators of Egfr, intracellular tyrosine kinase (Src) with PP2, and matrix metalloproteinase with ilomastat. Treatment with an inhibitor of Egfr transactivation, AG1478, and an inhibitor of the mitogen-activated protein kinase (MAPK) 3/1 pathway, U0126, increased spontaneous OM and blocked the inhibitory effects of BPA, E2, and the selective GPER agonist, G-1. Western blot analysis showed that BPA (10-200 nM) mimicked the stimulatory effects of E2 and EGF on Mapk3/1 phosphorylation. Tetrabromobisphenol A, 4-nonylphenol, and tetrachlorobisphenol A (5-100 nM) also inhibited OM, an effect blocked by cotreatment with AG1478, as well as with the GPER antagonist, G-15, and displayed similar binding affinities as BPA to zebrafish Gper. The results suggest that BPA and related alkylphenols disrupt zebrafish OM by a novel nongenomic estrogenic mechanism involving activation of the Gper/Egfr/Mapk3/1 pathway.
Collapse
Affiliation(s)
| | - Candace Peyton
- University of Texas at Austin Marine Science Institute, Port Aransas, Texas
| | - Jing Dong
- University of Texas at Austin Marine Science Institute, Port Aransas, Texas
| | - Peter Thomas
- University of Texas at Austin Marine Science Institute, Port Aransas, Texas
| |
Collapse
|
11
|
Yegambaram M, Manivannan B, Beach TG, Halden RU. Role of environmental contaminants in the etiology of Alzheimer's disease: a review. Curr Alzheimer Res 2015; 12:116-46. [PMID: 25654508 PMCID: PMC4428475 DOI: 10.2174/1567205012666150204121719] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/10/2014] [Accepted: 01/14/2015] [Indexed: 12/11/2022]
Abstract
Alzheimer's dis ease (AD) is a leading cause of mortality in the developed world with 70% risk attributable to genetics. The remaining 30% of AD risk is hypothesized to include environmental factors and human lifestyle patterns. Environmental factors possibly include inorganic and organic hazards, exposure to toxic metals (aluminium, copper), pesticides (organochlorine and organophosphate insecticides), industrial chemicals (flame retardants) and air pollutants (particulate matter). Long term exposures to these environmental contaminants together with bioaccumulation over an individual's life-time are speculated to induce neuroinflammation and neuropathology paving the way for developing AD. Epidemiologic associations between environmental contaminant exposures and AD are still limited. However, many in vitro and animal studies have identified toxic effects of environmental contaminants at the cellular level, revealing alterations of pathways and metabolisms associated with AD that warrant further investigations. This review provides an overview of in vitro, animal and epidemiological studies on the etiology of AD, highlighting available data supportive of the long hypothesized link between toxic environmental exposures and development of AD pathology.
Collapse
Affiliation(s)
| | | | | | - Rolf U Halden
- Center for Environmental Security, The Biodesign Institute, Arizona State University, PO Box 875904 Tempe, AZ 85287, USA.
| |
Collapse
|
12
|
Gilbreath ET, MohanKumar SMJ, Balasubramanian P, Agnew DW, MohanKumar PS. Chronic exposures to low levels of estradiol and their effects on the ovaries and reproductive hormones: Comparison with aging. ACTA ACUST UNITED AC 2014; 2. [PMID: 26779558 DOI: 10.4161/23273739.2014.967127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aging in female rats is characterized by a state called "constant estrous" in which rats are unable to ovulate, have polycystic ovaries and moderately elevated estrogen levels. We hypothesized that chronic exposure of young animals to low levels of E2 can produce reproductive changes similar to that seen in aging animals. Adult female rats were sham-implanted (control) or implanted with slow-release E2 (20 ng/day) pellets for 30, 60, or 90 days. Old constant estrous (OCE) rats were used for comparison. Estrous cyclicity was monitored periodically. At the end of treatment, animals were sacrificed, trunk blood was collected for hormone measurements and ovaries for immunohistochemistry. Young animals became acyclic with increasing duration of E2 exposure while OCE rats were in a state of acyclicity. Ovaries became increasingly more cystic with E2 exposure, and were comparable to OCE rats; however, there was a marked reduction in interstitial tissue with exogenous E2 treatment. Exogenous E2 also decreased Mullerian inhibiting substance expression, increased infiltration of macrophages without much impact on apoptosis in the ovaries. Serum testosterone levels decreased in E2-treated young animals, while it increased significantly in OCE rats. There was a marked reduction in LH but not FSH levels with E2 exposure in both young and old animals. These results indicate that even very low doses of E2 are capable of inducing aging-like changes in young animals.
Collapse
Affiliation(s)
- Ebony T Gilbreath
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, AL
| | - Sheba M J MohanKumar
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Priya Balasubramanian
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Dalen W Agnew
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - P S MohanKumar
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Santos RR, Schoevers EJ, Roelen BAJ. Usefulness of bovine and porcine IVM/IVF models for reproductive toxicology. Reprod Biol Endocrinol 2014; 12:117. [PMID: 25427762 PMCID: PMC4258035 DOI: 10.1186/1477-7827-12-117] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/05/2014] [Indexed: 11/10/2022] Open
Abstract
Women presenting fertility problems are often helped by Assisted Reproductive Techniques (ART), such as in vitro fertilization (IVF) programs. However, in many cases the etiology of the in/subfertility remains unknown even after treatment. Although several aspects should be considered when assisting a woman with problems to conceive, a survey on the patients' exposure to contaminants would help to understand the cause of the fertility problem, as well as to follow the patient properly during IVF. Daily exposure to toxic compounds, mainly environmental and dietary ones, may result in reproductive impairment. For instance, because affects oocyte developmental competence. Many of these compounds, natural or synthetic, are endocrine disruptors or endocrine active substances that may impair reproduction. To understand the risks and the mechanism of action of such chemicals in human cells, the use of proper in vitro models is essential. The present review proposes the bovine and porcine models to evaluate toxic compounds on oocyte maturation, fertilization and embryo production in vitro. Moreover, we discuss here the species-specific differences when mice, bovine and porcine are used as models for human.
Collapse
Affiliation(s)
- Regiane R Santos
- />Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University,TD Utrecht,, P.O Box 80152, 3508 The Netherlands
- />Laboratory of Wild Animal Biology and Medicine, Federal University of Pará,, Rua Augusto Corrêa,Belém, CEP 66075-110 Pará Brazil
| | - Eric J Schoevers
- />Department of Farm Animal Health, Utrecht University,, Yalelaan, 104, 3584 CM Utrecht, The Netherlands
| | - Bernard AJ Roelen
- />Department of Farm Animal Health, Utrecht University,, Yalelaan, 104, 3584 CM Utrecht, The Netherlands
- />Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan, 104, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
14
|
Abstract
The oocyte is at the center of the equation that results in female fertility. Many factors influence oocyte quality, including external factors such as maternal nutrition, stress, and environmental exposures, as well as ovarian factors such as steroids, intercellular communication, antral follicle count, and follicular fluid composition. These influences are interconnected; changes in the external environment of the female translate into ovarian changes that affect the oocyte. The lengthy period during which the oocyte remains arrested in the ovary provides ample time and opportunity for environmental factors to take their toll. An appropriate environment for growth and maturation of the oocyte, in vivo and in vitro, is critical to ensure optimal oocyte quality, which determines the success of fertilization and preimplantation embryo development, and has long-term implications for implantation, fetal growth, and offspring health.
Collapse
Affiliation(s)
- Rebecca L Krisher
- National Foundation for Fertility Research, Lone Tree, Colorado 80124;
| |
Collapse
|
15
|
Petro E, Leroy J, Van Cruchten S, Covaci A, Jorssen E, Bols P. Endocrine disruptors and female fertility: Focus on (bovine) ovarian follicular physiology. Theriogenology 2012; 78:1887-900. [DOI: 10.1016/j.theriogenology.2012.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/03/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
|
16
|
Sows exposed to octylphenol in early gestation: No estrogenic effects in male piglets, but increased rate of stillbirth. Theriogenology 2012; 78:1494-9. [DOI: 10.1016/j.theriogenology.2012.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/22/2022]
|
17
|
Bellingham M, Fiandanese N, Byers A, Cotinot C, Evans NP, Pocar P, Amezaga MR, Lea RG, Sinclair KD, Rhind SM, Fowler PA. Effects of Exposure to Environmental Chemicals During Pregnancy on the Development of the Male and Female Reproductive Axes. Reprod Domest Anim 2012; 47 Suppl 4:15-22. [DOI: 10.1111/j.1439-0531.2012.02050.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Magnusson U. Environmental Endocrine Disruptors in Farm Animal Reproduction: Research and Reality. Reprod Domest Anim 2012; 47 Suppl 4:333-7. [DOI: 10.1111/j.1439-0531.2012.02095.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Favetta L, Villagómez D, Iannuzzi L, Di Meo G, Webb A, Crain S, King W. Disorders of Sexual Development and Abnormal Early Development in Domestic Food-Producing Mammals: The Role of Chromosome Abnormalities, Environment and Stress Factors. Sex Dev 2012; 6:18-32. [DOI: 10.1159/000332754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
20
|
Rhind SM, Evans NP, Bellingham M, Sharpe RM, Cotinot C, Mandon-Pepin B, Loup B, Sinclair KD, Lea RG, Pocar P, Fischer B, van der Zalm E, Hart K, Schmidt JS, Amezaga MR, Fowler PA. Effects of environmental pollutants on the reproduction and welfare of ruminants. Animal 2010; 4:1227-1239. [PMID: 20582145 PMCID: PMC2888112 DOI: 10.1017/s1751731110000595] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 02/02/2010] [Indexed: 12/27/2022] Open
Abstract
Anthropogenic pollutants comprise a wide range of synthetic organic compounds and heavy metals, which are dispersed throughout the environment, usually at low concentrations. Exposure of ruminants, as for all other animals, is unavoidable and while the levels of exposure to most chemicals are usually too low to induce any physiological effects, combinations of pollutants can act additively or synergistically to perturb multiple physiological systems at all ages but particularly in the developing foetus. In sheep, organs affected by pollutant exposure include the ovary, testis, hypothalamus and pituitary gland and bone. Reported effects of exposure include changes in organ weight and gross structure, histology and gene and protein expression but these changes are not reflected in changes in reproductive performance under the conditions tested. These results illustrate the complexity of the effects of endocrine disrupting compounds on the reproductive axis, which make it difficult to extrapolate between, or even within, species. Effects of pollutant exposure on the thyroid gland, immune, cardiovascular and obesogenic systems have not been shown explicitly, in ruminants, but work on other species suggests that these systems can also be perturbed. It is concluded that exposure to a mixture of anthropogenic pollutants has significant effects on a wide variety of physiological systems, including the reproductive system. Although this physiological insult has not yet been shown to lead to a reduction in ruminant gross performance, there are already reports indicating that anthropogenic pollutant exposure can compromise several physiological systems and may pose a significant threat to both reproductive performance and welfare in the longer term. At present, many potential mechanisms of action for individual chemicals have been identified but knowledge of factors affecting the rate of tissue exposure and of the effects of combinations of chemicals on physiological systems is poor. Nevertheless, both are vital for the identification of risks to animal productivity and welfare.
Collapse
Affiliation(s)
- S. M. Rhind
- Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - N. P. Evans
- Division of Cell Sciences, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow G6 1QH, UK
| | - M. Bellingham
- Division of Cell Sciences, Institute of Comparative Medicine, University of Glasgow Veterinary School, Glasgow G6 1QH, UK
| | - R. M. Sharpe
- MRC Human Reproductive Sciences Unit, Queen’s Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - C. Cotinot
- INRA, UMR 1198, Biologie du Developpement et de la Reproduction 78350, Jouy-en-Josas, France
| | - B. Mandon-Pepin
- INRA, UMR 1198, Biologie du Developpement et de la Reproduction 78350, Jouy-en-Josas, France
| | - B. Loup
- INRA, UMR 1198, Biologie du Developpement et de la Reproduction 78350, Jouy-en-Josas, France
| | - K. D. Sinclair
- Schools of Biosciences, and Veterinary Medicine and Sciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - R. G. Lea
- Schools of Biosciences, and Veterinary Medicine and Sciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - P. Pocar
- Department of Animal Science, Division of Veterinary Anatomy and Histology, University of Milan, Via Celoria 10, 20133 Milano, Italy
| | - B. Fischer
- Department of Anatomy and Cell Biology, University of Halle, Grosse Steinstrasse 52, 06097 Halle, Germany
| | - E. van der Zalm
- Department of Anatomy and Cell Biology, University of Halle, Grosse Steinstrasse 52, 06097 Halle, Germany
| | - K. Hart
- Department of Anatomy and Cell Biology, University of Halle, Grosse Steinstrasse 52, 06097 Halle, Germany
| | - J.-S. Schmidt
- Department of Anatomy and Cell Biology, University of Halle, Grosse Steinstrasse 52, 06097 Halle, Germany
| | - M. R. Amezaga
- Centre for Reproductive Endocrinology & Medicine, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - P. A. Fowler
- Centre for Reproductive Endocrinology & Medicine, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
21
|
Sahambi SK, Pelland A, Cooke GM, Schrader T, Tardif R, Charbonneau M, Krishnan K, Haddad S, Cyr DG, Devine PJ. Oral p-tert-octylphenol exposures induce minimal toxic or estrogenic effects in adult female Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2010; 73:607-622. [PMID: 20391140 DOI: 10.1080/15287390903566682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Contamination of the environment with endocrine-disrupting chemicals (EDC) has raised concerns about potential health hazards for humans and wildlife. Human and wildlife exposure to one such ubiquitous chemical, p-tert-octylphenol (OP), are likely, due to its persistence in the environment and its presence in food, water, and items of daily use. OP is reported to bind to the estrogen receptor (ER) and alter expression of estrogen-responsive genes. Detrimental effects of OP exposures on the reproductive system have been observed in most, but not all, in vivo experiments. This study examined estrogenic effects of oral exposures of adult female rats to OP. In vitro, OP bound weakly to human ER and a co-activator protein, and accelerated proliferation of MCF-7 cells. Adult Sprague-Dawley rats were given OP by gavage daily for 35 d (25, 50, or 125 mg/kg/d). Body and organ weights and ovarian follicle populations were not significantly altered in OP-exposed adult rats, despite detectable levels of OP in reproductive organs. The estrous cycle of rats was slightly altered, but there were no significant estrogen-like changes in histomorphology or gene expression of the uterus. Prepubertal rats given 125 or 250 mg/kg OP by gavage for 3 d had reduced body weight compared to vehicle-exposed rats but failed to show any uterotrophic response, although 17alpha-ethinyl estradiol (EE, 10 microg/kg/d, ip) induced a threefold increase in uterine weight. Overall, results suggest that toxicity will occur before estrogenic effects with oral exposures to OP. Relevant environmental exposures likely pose little risk for estrogenic effects.
Collapse
Affiliation(s)
- Sukhdeep K Sahambi
- INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Laval, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rossi G, Palmerini MG, Macchiarelli G, Buccione R, Cecconi S. Mancozeb adversely affects meiotic spindle organization and fertilization in mouse oocytes. Reprod Toxicol 2006; 22:51-5. [PMID: 16406479 DOI: 10.1016/j.reprotox.2005.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 11/07/2005] [Accepted: 11/14/2005] [Indexed: 11/19/2022]
Abstract
In this study the effects of mancozeb, a widely used ethylenebisdithiocarbamate fungicide, on mouse oocyte meiotic maturation and fertilization were analyzed. Oocyte cumulus cell-complexes were matured in vitro with or without increasing concentrations of the fungicide (from 0.001 to 1 microg/ml) that, due to its different stability in organic solvents and in water, was resuspended either in dimethyl sulfoxide or in culture medium. Although, about 95% of oocytes reached the metaphase II stage; mancozeb-exposed oocytes showed a dose-dependent increase of alterations in spindle morphology, and this negative effect was more evident when the fungicide was resuspended in culture medium. Under the latter culture condition, oocytes matured in the presence of 0.1 and 1 microg/ml mancozeb showed a significant reduction also in the formation of male and female pronuclei. These results indicate that mancozeb can adversely affect mammalian reproductive performance, likely by perturbing microtubular organization during meiotic maturation.
Collapse
Affiliation(s)
- Gianna Rossi
- Dipartimento di Scienze e Tecnologie Biomediche, Università degli Studi di L'Aquila, 67100 L'Aquila, Italy
| | | | | | | | | |
Collapse
|
23
|
Brevini TAL, Cillo F, Antonini S, Gandolfi F. Effects of endocrine disrupters on the oocytes and embryos of farm animals. Reprod Domest Anim 2005; 40:291-9. [PMID: 16008759 DOI: 10.1111/j.1439-0531.2005.00592.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Currently, approximately 60 chemicals have been identified as endocrine disruptors (EDs): exogenous agents that interfere with the synthesis, secretion, transport, metabolism, binding, action, or elimination of natural blood-borne hormones. Farm animals ingest these substances with food and drinking water. Their stability and lipid solubility has led to increased concern that these substances may compromise the reproductive health of both humans and animals. Oocytes are a permanent cell population established before birth which is exposed to environmental stimuli for a period that, in farm animals, can be as long as several years. Oocyte competence is acquired within the ovary during the developmental stages that precede ovulation and its role is critical during the interval between fertilization and the so-called maternal to embryonic transition, when the transcriptional activity of the embryonic genome becomes fully functional. Any perturbation of these delicate process is likely to reduce oocyte developmental competence and, therefore, to cause an arrest of embryonic development at any given stage. A critical analysis of the doses and time of exposure is presented together with a description of the effects of different EDs on farm animal oocytes and early embryonic development. Finally some of the mechanisms mediating EDs effects on the oocytes will be described. In particular the role of arylhydrocarbon receptor, maternal mRNA stability and cytoplasmic remodelling during oocyte maturation will be discussed in some details.
Collapse
Affiliation(s)
- T A L Brevini
- Department of Anatomy of Domestic Animals, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
24
|
Magnusson U. Can farm animals help to study endocrine disruption? Domest Anim Endocrinol 2005; 29:430-5. [PMID: 15885963 DOI: 10.1016/j.domaniend.2005.02.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 02/16/2005] [Accepted: 02/19/2005] [Indexed: 10/25/2022]
Abstract
The phenomenon of endocrine disruption can be regarded as part of the disciplines of toxicology and environmental toxicology. These two disciplines have generated guideline protocols on how various effects of chemicals should be tested as a basis for regulatory decisions. These protocols almost exclusively involve laboratory rodents and the data obtained are then used for human risk assessment. Would it be justifiable, then, to introduce or promote the use of other species in these test protocols? There are, at any rate rationales for studying effects in species other than laboratory rodents: (1) other species may better mimic the human system; (2) they may in some cases be more useful for studying a certain mechanism or phenomenon; (3) they may highlight the diversity of effects or sensitivity between species. However, there are at least two basic criteria that must be met for a species before it can be introduced in this context: (a) we must have a good understanding of the physiological system to be studied; and (b) we must have a number of tools to study effects on this system. When it comes to the reproductive system--regarding which most endocrine disruption has been reported--farm animals are second only, or in some respects superior, to laboratory rodents with respect to these criteria. This review gives examples of how farm animals can be of use in the study of endocrine disruption with a focus on the author's own data from studies in the pig.
Collapse
Affiliation(s)
- Ulf Magnusson
- Centre for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, P.O. Box 7039, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
25
|
Roth Z, Hansen PJ. Sphingosine 1-Phosphate Protects Bovine Oocytes from Heat Shock During Maturation1. Biol Reprod 2004; 71:2072-8. [PMID: 15317688 DOI: 10.1095/biolreprod.104.031989] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a sphingolipid metabolite that can block apoptosis by counteracting the proapoptotic effects of ceramide. Experiments were performed to evaluate whether S1P blocks the disruption in oocyte developmental competence caused by heat shock. Cumulus-oocyte complexes (COCs) were placed in maturation medium and cultured at 38.5 or 41 degrees C for the first 12 h of maturation. Incubation during the last 10 h of maturation, fertilization, and embryonic development were performed at 38.5 degrees C. Heat shock during the first 12 h of maturation reduced cleavage rate, the number of oocytes developing to the blastocyst stage, and the percentage of cleaved embryo that subsequently developed to blastocysts. Addition of 50 nM S1P to maturation medium had no effect on oocytes matured at 38.5 degrees C but blocked effects of thermal stress on cleavage and subsequent development. The blastocysts formed at Day 8 did not differ between S1P and control groups in caspase activity, total cell number, or percentage of cells that were apoptotic. Blocking endogenous generation of S1P by addition of 50 nM N1N-dimethylsphingosine, a sphingosine kinase inhibitor, reduced or tended to reduce cleavage rate and blastocyst development regardless of whether maturation of COCs was at 38.5 or 41 degrees C. Results demonstrate that S1P protects oocytes from a physiologically relevant heat shock and affects oocyte maturation even in the absence of heat shock. The S1P-treated oocytes that survived heat shock and became blastocysts had a normal developmental potential as determined by caspase activity, total cell number, and percentage of apoptotic cells. Thus, modulation of developmental competence of oocytes using S1P may be a useful approach for enhancing fertility in situations where developmental competence of oocytes is compromised.
Collapse
Affiliation(s)
- Z Roth
- Department of Animal Sciences, University of Florida, Gainesville, Florida 32611-0910, USA
| | | |
Collapse
|