1
|
Yin L, Venturi GM, Barfield R, Fischer BM, Kim-Chang JJ, Chan C, De Paris K, Goodenow MM, Sleasman JW. Maternal immunity shapes biomarkers of germinal center development in HIV-exposed uninfected infants. Front Immunol 2024; 15:1443886. [PMID: 39328414 PMCID: PMC11424517 DOI: 10.3389/fimmu.2024.1443886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction HIV-exposed uninfected (HEU) infants exhibit elevated pro-inflammatory biomarkers that persist after birth. However, comprehensive assessments of bioprofiles associated with immune regulation and development in pregnant women with HIV (PWH) and HEU infants has not been performed. Maternal immunity in PWH may be imprinted on their HEU newborns, altering immune bioprofiles during early immune development. Methods Cryopreserved paired plasma samples from 46 HEU infants and their mothers enrolled in PACTG 316, a clinical trial to prevent perinatal HIV-1 transmission were analyzed. PWH received antiretrovirals (ARV) and had either fully suppressed or unsuppressed viral replication. Maternal blood samples obtained during labor and infant samples at birth and 6 months were measured for 21 biomarkers associated with germinal centers (GC), macrophage activation, T-cell activation, interferon gamma (IFN-γ)-inducible chemokines, and immune regulatory cytokines using Mesoscale assays. Pregnant women without HIV (PWOH) and their HIV unexposed uninfected (HUU) newborns and non-pregnant women without HIV (NPWOH) served as reference groups. Linear regression analysis fitted for comparison among groups and adjusted for covariant(s) along with principal component analysis performed to assess differences among groups. Results Compared with NPWOH, PWOH displayed higher levels of GC, macrophage, and regulatory biomarkers. PWH compared to PWOH displayed elevated GC, T cell activation, and IFN-γ-inducible chemokines biomarkers at delivery. Similar to their mothers, HEU infants had elevated GC, macrophage, and IFN-γ-inducible chemokines, as well as elevated anti-inflammatory cytokines, IL-10 and IL-1RA. Across all mother/newborn dyads, multiple biomarkers positively correlated, providing further evidence that maternal inflammation imprints on newborn bioprofiles. By 6 months, many HEU biomarkers normalized to levels similar to HUU infants, but some GC and inflammatory biomarkers remained perturbed. Bioprofiles in PWH and HEU infants were similar regardless of the extent of maternal viral suppression by ARV. Conclusions GC immune pathways are perturbed in HEU newborns, but immune regulatory responses down regulate inflammation during early infancy, indicating a transient inflammatory effect. However, several GC biomarkers that may alter immune development remain perturbed.
Collapse
Affiliation(s)
- Li Yin
- Molecular HIV Host Interactions Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Guglielmo M. Venturi
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Bernard M. Fischer
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Julie J. Kim-Chang
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Institute of Global Health and Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Maureen M. Goodenow
- Molecular HIV Host Interactions Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - John W. Sleasman
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
2
|
Habelrih T, Augustin TL, Mauffette-Whyte F, Ferri B, Sawaya K, Côté F, Gallant M, Olson DM, Chemtob S. Inflammatory mechanisms of preterm labor and emerging anti-inflammatory interventions. Cytokine Growth Factor Rev 2024; 78:50-63. [PMID: 39048393 DOI: 10.1016/j.cytogfr.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Preterm birth is a major public health concern, requiring a deeper understanding of its underlying inflammatory mechanisms and to develop effective therapeutic strategies. This review explores the complex interaction between inflammation and preterm labor, highlighting the pivotal role of the dysregulation of inflammation in triggering premature delivery. The immunological environment of pregnancy, characterized by a fragile balance of immune tolerance and resistance, is disrupted in preterm labor, leading to a pathological inflammatory response. Feto-maternal infections, among other pro-inflammatory stimuli, trigger the activation of toll-like receptors and the production of pro-inflammatory mediators, promoting uterine contractility and cervical ripening. Emerging anti-inflammatory therapeutics offer promising approaches for the prevention of preterm birth by targeting key inflammatory pathways. From TLR-4 antagonists to chemokine and interleukin receptor antagonists, these interventions aim to modulate the inflammatory environment and prevent adverse pregnancy outcomes. In conclusion, a comprehensive understanding of the inflammatory mechanisms leading to preterm labor is crucial for the development of targeted interventions in hope of reducing the incidence of preterm birth and improving neonatal health outcomes.
Collapse
Affiliation(s)
- Tiffany Habelrih
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Thalyssa-Lyn Augustin
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Félix Mauffette-Whyte
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Béatrice Ferri
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Kevin Sawaya
- Research Center, CHU Sainte-Justine, Montreal, QC, Canada; Programmes de cycles supérieurs en sciences biomédicales, Faculté de médecine, Université de Montréal, Montreal, QC, Canada
| | - France Côté
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - Mathilde Gallant
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics, and Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Research Center, CHU Sainte-Justine, Montreal, QC, Canada.
| |
Collapse
|
3
|
Bosco M, Romero R, Gallo DM, Suksai M, Gotsch F, Jung E, Chaemsaithong P, Tarca AL, Gomez-Lopez N, Arenas-Hernandez M, Meyyazhagan A, Al Qasem M, Franchi MP, Grossman LI, Aras S, Chaiworapongsa T. Clinical chorioamnionitis at term is characterized by changes in the plasma concentration of CHCHD2/MNRR1, a mitochondrial protein. J Matern Fetal Neonatal Med 2023; 36:2222333. [PMID: 37349086 PMCID: PMC10445405 DOI: 10.1080/14767058.2023.2222333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE Mitochondrial dysfunction was observed in acute systemic inflammatory conditions such as sepsis and might be involved in sepsis-induced multi-organ failure. Coiled-Coil-Helix-Coiled-Coil-Helix Domain Containing 2 (CHCHD2), also known as Mitochondrial Nuclear Retrograde Regulator 1 (MNRR1), a bi-organellar protein located in the mitochondria and the nucleus, is implicated in cell respiration, survival, and response to tissue hypoxia. Recently, the reduction of the cellular CHCHD2/MNRR1 protein, as part of mitochondrial dysfunction, has been shown to play a role in the amplification of inflammatory cytokines in a murine model of lipopolysaccharide-induced systemic inflammation. The aim of this study was to determine whether the plasma concentration of CHCHD2/MNRR1 changed during human normal pregnancy, spontaneous labor at term, and clinical chorioamnionitis at term. METHODS We conducted a cross-sectional study that included the following groups: 1) non-pregnant women (n = 17); 2) normal pregnant women at various gestational ages from the first trimester until term (n = 110); 3) women at term with spontaneous labor (n = 50); and 4) women with clinical chorioamnionitis at term in labor (n = 25). Plasma concentrations of CHCHD2/MNRR1 were assessed by an enzyme-linked immunosorbent assay. RESULTS 1) Pregnant women at term in labor with clinical chorioamnionitis had a significantly higher plasma CHCHD2/MNRR1 concentration than those in labor without chorioamnionitis (p = .003); 2) CHCHD2/MNRR1 is present in the plasma of healthy non-pregnant and normal pregnant women without significant differences in its plasma concentrations between the two groups; 3) there was no correlation between maternal plasma CHCHD2/MNRR1 concentration and gestational age at venipuncture; and 4) plasma CHCHD2/MNRR1 concentration was not significantly different in women at term in spontaneous labor compared to those not in labor. CONCLUSIONS CHCHD2/MNRR1 is physiologically present in the plasma of healthy non-pregnant and normal pregnant women, and its concentration does not change with gestational age and parturition at term. However, plasma CHCHD2/MNRR1 is elevated in women at term with clinical chorioamnionitis. CHCHD2/MNRR1, a novel bi-organellar protein located in the mitochondria and the nucleus, is released into maternal plasma during systemic inflammation.
Collapse
Affiliation(s)
- Mariachiara Bosco
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Dahiana M Gallo
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecology and Obstetrics, Universidad del Valle, Cali, Colombia
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Francesca Gotsch
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Mahidol University, Bangkok, Thailand
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Malek Al Qasem
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Massimo P Franchi
- Department of Obstetrics and Gynecology, AOUI Verona, University of Verona, Verona, Italy
| | - Lawrence I Grossman
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Siddhesh Aras
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
4
|
Gonzalez A, Hammock EAD. Oxytocin and microglia in the development of social behaviour. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210059. [PMID: 35858111 PMCID: PMC9272152 DOI: 10.1098/rstb.2021.0059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/18/2022] [Indexed: 08/31/2023] Open
Abstract
Oxytocin is a well-established regulator of social behaviour. Microglia, the resident immune cells of the central nervous system, regulate brain development and maintenance in health and disease. Oxytocin and microglia interact: microglia appear to regulate the oxytocin system and are, in turn, regulated by oxytocin, which appears to have anti-inflammatory effects. Both microglia and oxytocin are regulated in sex-specific ways. Oxytocin and microglia may work together to promote experience-dependent circuit refinement through multiple developmental-sensitive periods contributing to individual differences in social behaviour. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Alicia Gonzalez
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 32306, USA
| | - Elizabeth A. D. Hammock
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Teraoka Y, Sugimoto J, Konishi H, Miyoshi H, Furusho H, Miyauchi M, Kajioka S, Koh I, Kudo Y. Progesterone Suppresses Uterine Contraction by Reducing Odontogenic Porphyromonas gingivalis Induced Chronic Inflammation in Mice. Biomolecules 2022; 12:biom12081029. [PMID: 35892338 PMCID: PMC9332501 DOI: 10.3390/biom12081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Preterm birth is one of the most significant obstetric complications. Inflammation reportedly promotes uterine contraction and weakening of the fetal membrane, which induces preterm birth. Previous studies using animal models of lipopolysaccharide-induced acute inflammation have shown that progesterone (P4) promotes uterine quiescence. However, this effect is not fully understood in chronic inflammation. This study aimed to investigate the effects of P4 on uterine contractility and inflammation of the fetal membrane in mice infected with Porphyromonas gingivalis (P.g.), a major periodontal pathogen as a model of preterm birth caused by chronic inflammation. Mice were injected with 1 mg of P4 from day 15.5 to 17.5. P4 prolonged the mean gestation period of P.g mice from 18.3 to 20.4 days, and no reduction in the gestation period was observed. P4 treatment suppressed spontaneous uterine contractility and decreased oxytocin sensitivity. In addition, the expression of inflammatory cytokines in the fetal membrane was significantly reduced. Thus, P4 prevented preterm birth by suppressing enhanced uterine contractility induced by chronic inflammation in this model. This result describes the effects of P4 in a chronic inflammation model, which may lead to a better understanding of the efficacy of P4 in preventing preterm birth in humans.
Collapse
Affiliation(s)
- Yuko Teraoka
- Department of Obstetrics and Gynecology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (J.S.); (I.K.); (Y.K.)
- Correspondence:
| | - Jun Sugimoto
- Department of Obstetrics and Gynecology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (J.S.); (I.K.); (Y.K.)
| | - Haruhisa Konishi
- Department of Obstetrics and Gynecology, Miyoshi Central Hospital, Miyoshi 728-8502, Japan;
| | - Hiroshi Miyoshi
- Department of Obstetrics and Gynecology, Hiroshima Prefectural Hospital, Hiroshima 734-0004, Japan;
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (H.F.); (M.M.)
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (H.F.); (M.M.)
| | - Shunichi Kajioka
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health Welfare, Fukuoka 812-8582, Japan;
| | - Iemasa Koh
- Department of Obstetrics and Gynecology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (J.S.); (I.K.); (Y.K.)
| | - Yoshiki Kudo
- Department of Obstetrics and Gynecology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (J.S.); (I.K.); (Y.K.)
| |
Collapse
|
6
|
Pisacreta E, Mannella P. Molecular and endocrine mechanisms involved in preterm birth. Gynecol Endocrinol 2022; 38:368-378. [PMID: 35319334 DOI: 10.1080/09513590.2022.2053519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Preterm birth is a worldwide social problem. Incidence rates may vary from 5 to 18% of all deliveries, with important differences observed between developed and developing countries. Preterm birth has a negative impact on newborns and neonatal mortality and morbidity are high. Despite improvements in modern neonatal care, we know little of the mechanisms that determine the onset and development of preterm birth. Infections seem to be one the most important triggers, determining the activation of protective mechanisms aimed at ending the pregnancy and safeguarding the health of the woman. However, threatened preterm birth often occurs even in women who do not have any ongoing infectious process. Of these, which are the majority, the causes and the activation mechanisms remain unknown or unclear; however, there are several molecular and endocrine mechanisms that finally lead to preterm birth. In this review, we seek to shed light and summarize the molecular and endocrine mechanisms underlying the development of preterm birth. Their understanding could help us to understand the dynamics of premature birth but, above all, to allow an early diagnosis and primary prevention of the problem.
Collapse
Affiliation(s)
- Elena Pisacreta
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Mannella
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Belville C, Ponelle-Chachuat F, Rouzaire M, Gross C, Pereira B, Gallot D, Sapin V, Blanchon L. Physiological TLR4 regulation in human fetal membranes as an explicative mechanism of a pathological preterm case. eLife 2022; 11:71521. [PMID: 35119365 PMCID: PMC8816379 DOI: 10.7554/elife.71521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
The integrity of human fetal membranes is crucial for harmonious fetal development throughout pregnancy. Their premature rupture is often the consequence of a physiological phenomenon that has been exacerbated. Beyond all the implied biological processes, inflammation is of primary importance and is qualified as ‘sterile’ at the end of pregnancy. In this study, complementary methylomic and transcriptomic strategies on amnion and choriodecidua explants obtained from the altered (cervix zone) and intact fetal membranes at term and before labour were used. By cross-analysing genome-wide studies strengthened by in vitro experiments, we deciphered how the expression of toll-like receptor 4 (TLR4), an actor in pathological fetal membrane rupture, is controlled. Indeed, it is differentially regulated in the altered zone and between both layers by a dual mechanism: (1) the methylation of TLR4 and miRNA promoters and (2) targeting by miRNA (let-7a-2 and miR-125b-1) acting on the 3’-UTR of TLR4. Consequently, this study demonstrates that fine regulation of TLR4 is required for sterile inflammation establishment at the end of pregnancy and that it may be dysregulated in the pathological premature rupture of membranes.
Collapse
Affiliation(s)
- Corinne Belville
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Flora Ponelle-Chachuat
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Marion Rouzaire
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Christelle Gross
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, Biostatistics unit (DRCI) Department, clermont-ferrand, France
| | - Denis Gallot
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France.,CHU Clermont-Ferrand, Obstetrics and Gynaecology Department, Clermont-ferrand, France
| | - Vincent Sapin
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France.,CHU Clermont-Ferrand, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France
| | - Loïc Blanchon
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| |
Collapse
|
8
|
Nold C, Barros A, Rogi C, Sulzer C, Quental A, Reid S, Serdah M, Vella AT. Concentration of vaginal and systemic cytokines obtained early in pregnancy and their impact on preterm birth. J Matern Fetal Neonatal Med 2022; 35:9271-9276. [PMID: 35012420 DOI: 10.1080/14767058.2022.2026916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE A number of factors can lead to a maternal pro-inflammatory response resulting in a spontaneous preterm birth. However, it remains unknown if an upregulation in the maternal immune system early in pregnancy leads to an increase in pro-inflammatory cytokines and ultimately preterm birth. Therefore, we hypothesize an increase in vaginal and systemic pro-inflammatory cytokines early pregnancy is associated with an increased risk of preterm birth. STUDY DESIGN Patients initiating prenatal care prior to 14 weeks gestation were recruited for eligibility. A vaginal swab and serum sample was obtained at the first prenatal visit and these were then stored at -80 C. Patients were then followed for their gestational age at delivery. Five patients delivering preterm (cases) were matched with ten patients delivering at term (controls) based on age, BMI, smoking status and ethnicity. The serum and vaginal swabs from the cases and controls were then analyzed for the following cytokines using a multiplex cytokine assay: GM-CSF, IL-1b, IL-6, TNFα, and Rantes. RESULTS A total of 116 patients were screened for eligibility and 96 of these patients had samples obtained prior to 14 weeks gestation. Of these 96, 5 had a spontaneous preterm birth and these were matched to 10 controls. There was no difference detected in the cytokine concentrations of GM-CSF, IL-1b, IL-6, TNFα, and Rantes in the serum or cervicovaginal fluid between cases and controls. CONCLUSION This study demonstrates there is no difference in cytokine concentrations of several pro-inflammatory cytokines in the vagina or in the serum prior to 14 weeks gestation in patients delivering preterm. Therefore, the concentration of the cytokines analyzed in this study from the vagina and serum have little predictive value on the risk of preterm birth. Further research is needed to deepen our understanding of the mechanisms leading to preterm birth.
Collapse
Affiliation(s)
- Christopher Nold
- Department of Women's Health, Hartford Hospital, Hartford, CT, USA.,Department of Pediatrics, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Anastasia Barros
- School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Caroline Rogi
- School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Carsen Sulzer
- School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Angela Quental
- School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Sarah Reid
- School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Mohaned Serdah
- School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Anthony T Vella
- School of Medicine, Department of Immunology, University of Connecticut, Farmington, CT, USA
| |
Collapse
|
9
|
Terzic M, Aimagambetova G, Terzic S, Radunovic M, Bapayeva G, Laganà AS. Periodontal Pathogens and Preterm Birth: Current Knowledge and Further Interventions. Pathogens 2021; 10:pathogens10060730. [PMID: 34207831 PMCID: PMC8227634 DOI: 10.3390/pathogens10060730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 12/03/2022] Open
Abstract
Preterm labor is defined as a birth before 37 weeks of gestation and occurs in 5–20% of pregnancies. Preterm labor, as multifactorial entity associated with a high risk of neonatal morbidity and mortality, is influenced by maternal, fetal and environmental factors. Microbiological studies suggest that infectious pathogens may account for 25–40% of preterm birth. Infections of different sites, like genital, urinary tract infections, and pneumonia, are linked to the preterm labor. The most recent epidemiological studies consistently report that maternal periodontal disease is associated with preterm delivery, as well as the association between the presence of pathogenic oral bacteria in the placenta and adverse pregnancy outcomes. On the other hand, some previously published papers found periodontal bacteria in placentas of term pregnancies. In spite of a huge research done on the topic, both experimental and clinical, there are many controversial opinions about the role of periodontal infections in preterm birth. Thus, this comprehensive review addresses this very important topic and evaluates novel strategies of preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Milan Terzic
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.T.); (S.T.)
- Clinical Academic Department of Women’s Health, National Research Center of Mother and Child Health, University Medical Center, Nur-Sultan 010000, Kazakhstan;
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gulzhanat Aimagambetova
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Correspondence:
| | - Sanja Terzic
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.T.); (S.T.)
| | - Milena Radunovic
- Laboratory for Microbiology, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Gauri Bapayeva
- Clinical Academic Department of Women’s Health, National Research Center of Mother and Child Health, University Medical Center, Nur-Sultan 010000, Kazakhstan;
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, “Filippo Del Ponte” Hospital, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
10
|
Rasheed ZBM, Lee YS, Kim SH, Rai RK, Ruano CSM, Anucha E, Sullivan MHF, MacIntyre DA, Bennett PR, Sykes L. Differential Response of Gestational Tissues to TLR3 Viral Priming Prior to Exposure to Bacterial TLR2 and TLR2/6 Agonists. Front Immunol 2020; 11:1899. [PMID: 32983111 PMCID: PMC7477080 DOI: 10.3389/fimmu.2020.01899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Infection/inflammation is an important causal factor in spontaneous preterm birth (sPTB). Most mechanistic studies have concentrated on the role of bacteria, with limited focus on the role of viruses in sPTB. Murine studies support a potential multi-pathogen aetiology in which a double or sequential hit of both viral and bacterial pathogens leads to a higher risk preterm labour. This study aimed to determine the effect of viral priming on bacterial induced inflammation in human in vitro models of ascending and haematogenous infection. Methods: Vaginal epithelial cells, and primary amnion epithelial cells and myocytes were used to represent cell targets of ascending infection while interactions between peripheral blood mononuclear cells (PBMCs) and placental explants were used to model systemic infection. To model the effect of viral priming upon the subsequent response to bacterial stimuli, each cell type was stimulated first with a TLR3 viral agonist, and then with either a TLR2 or TLR2/6 agonist, and responses compared to those of each agonist alone. Immunoblotting was used to detect cellular NF-κB, AP-1, and IRF-3 activation. Cellular TLR3, TLR2, and TLR6 mRNA was quantified by RT-qPCR. Immunoassays were used to measure supernatant cytokine, chemokine and PGE2 concentrations. Results: TLR3 (“viral”) priming prior to TLR2/6 agonist (“bacterial”) exposure augmented the pro-inflammatory, pro-labour response in VECs, AECs, myocytes and PBMCs when compared to the effects of agonists alone. In contrast, enhanced anti-inflammatory cytokine production (IL-10) was observed in placental explants. Culturing placental explants in conditioned media derived from PBMCs primed with a TLR3 agonist enhanced TLR2/6 agonist stimulated production of IL-6 and IL-8, suggesting a differential response by the placenta to systemic inflammation compared to direct infection as a result of haematogenous spread. TLR3 agonism generally caused increased mRNA expression of TLR3 and TLR2 but not TLR6. Conclusion: This study provides human in vitro evidence that viral infection may increase the susceptibility of women to bacterial-induced sPTB. Improved understanding of interactions between viral and bacterial components of the maternal microbiome and host immune response may offer new therapeutic options, such as antivirals for the prevention of PTB.
Collapse
Affiliation(s)
- Zahirrah B M Rasheed
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yun S Lee
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| | - Sung H Kim
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| | - Ranjit K Rai
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Camino S M Ruano
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,INSERM U1016 Institut Cochin, Paris, France
| | - Eberechi Anucha
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Mark H F Sullivan
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - David A MacIntyre
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| | - Phillip R Bennett
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| | - Lynne Sykes
- Imperial College Parturition Research Group, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.,March of Dimes European Preterm Birth Research Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Blois SM, Verlohren S, Wu G, Clark G, Dell A, Haslam SM, Barrientos G. Role of galectin-glycan circuits in reproduction: from healthy pregnancy to preterm birth (PTB). Semin Immunopathol 2020; 42:469-486. [PMID: 32601855 PMCID: PMC7508936 DOI: 10.1007/s00281-020-00801-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Growing evidence suggests that galectins, an evolutionarily conserved family of glycan-binding proteins, fulfill key roles in pregnancy including blastocyst implantation, maternal-fetal immune tolerance, placental development, and maternal vascular expansion, thereby establishing a healthy environment for the growing fetus. In this review, we comprehensively present the function of galectins in shaping cellular circuits that characterize a healthy pregnancy. We describe the current understanding of galectins in term and preterm labor and discuss how the galectin-glycan circuits contribute to key immunological pathways sustaining maternal tolerance and preventing microbial infections. A deeper understanding of the glycoimmune pathways regulating early events in preterm birth could offer the broader translational potential for the treatment of this devastating syndrome.
Collapse
Affiliation(s)
- Sandra M Blois
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, AG GlycoImmunology, Berlin, Germany. .,Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stefan Verlohren
- Department of Obstetrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gang Wu
- Department of Life Sciences, Imperial College London, London, UK
| | - Gary Clark
- Department of Obstetrics, Gynaecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
12
|
Padron JG, Saito Reis CA, Kendal-Wright CE. The Role of Danger Associated Molecular Patterns in Human Fetal Membrane Weakening. Front Physiol 2020; 11:602. [PMID: 32625109 PMCID: PMC7311766 DOI: 10.3389/fphys.2020.00602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
The idea that cellular stress (including that precipitated by stretch), plays a significant role in the mechanisms initiating parturition, has gained considerable traction over the last decade. One key consequence of this cellular stress is the increased production of Danger Associated Molecular Patterns (DAMPs). This diverse family of molecules are known to initiate inflammation through their interaction with Pattern Recognition Receptors (PRRs) including, Toll-like receptors (TLRs). TLRs are the key innate immune system surveillance receptors that detect Pathogen Associated Molecular Patterns (PAMPs) during bacterial and viral infection. This is also seen during Chorioamnionitis. The activation of TLR commonly results in the activation of the pro-inflammatory transcription factor Nuclear Factor Kappa-B (NF-kB) and the downstream production of pro-inflammatory cytokines. It is thought that in the human fetal membranes both DAMPs and PAMPs are able, perhaps via their interaction with PRRs and the induction of their downstream inflammatory cascades, to lead to both tissue remodeling and weakening. Due to the high incidence of infection-driven Pre-Term Birth (PTB), including those that have preterm Premature Rupture of the Membranes (pPROM), the role of TLR in fetal membranes with Chorioamnionitis has been the subject of considerable study. Most of the work in this field has focused on the effect of PAMPs on whole pieces of fetal membrane and the resultant inflammatory cascade. This is important to understand, in order to develop novel prevention, detection, and therapeutic approaches, which aim to reduce the high number of mothers suffering from infection driven PTB, including those with pPROM. Studying the role of sterile inflammation driven by these endogenous ligands (DAMPs) activating PRRs system in the mesenchymal and epithelial cells in the amnion is important. These cells are key for the maintenance of the integrity and strength of the human fetal membranes. This review aims to (1) summarize the knowledge to date pertinent to the role of DAMPs and PRRs in fetal membrane weakening and (2) discuss the clinical potential brought by a better understanding of these pathways by pathway manipulation strategies.
Collapse
Affiliation(s)
- Justin G Padron
- Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Chelsea A Saito Reis
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States
| | - Claire E Kendal-Wright
- Natural Science and Mathematics, Chaminade University of Honolulu, Honolulu, HI, United States.,Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
13
|
Hantoushzadeh S, Anvari Aliabad R, Norooznezhad AH. Antibiotics, Inflammation, and Preterm Labor: A Missed Conclusion. J Inflamm Res 2020; 13:245-254. [PMID: 32547156 PMCID: PMC7261809 DOI: 10.2147/jir.s248382] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
Regarding the risk of antibiotic therapy during pregnancy, any medication given to the mother should be according to the indications due to the risk of possible side effects. Antibiotics are one of the most important groups of these medications to be considered. Along with direct antibiotic-induced side effects, indirect pathways also affect the fetus through the maternal changes. According to the data, different cytokines including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) are involved in both term and preterm parturition. These cytokines could trigger expression of different substances such as prostaglandins (PGs), their receptors, and PGs synthetizing molecules with already proven roles in parturition. Moreover, IL-1, IL-6, and TNF-α knocked-out mice have delayed parturition and lower levels of PGs compared to the wild types. The earlier-mentioned cytokines are able to induce matrix metalloproteinases and are also involved in parturition. Certain antibiotics have been shown capable of inducing inflammation cascade directly. Both in-vivo and in-vitro studies in human have also demonstrated this inflammation as elevated levels of inflammatory cytokines especially IL-1, IL-6, and TNF-α. This increase has been observed both in the presence and the absence of lipopolysaccharide (LPS). Moreover, antibiotics can induce endotoxemia in healthy cases which finally leads to the pro-inflammatory cytokine release. Regarding the role of mentioned pro-inflammatory cytokines in both term and preterm parturition, it seems that non-indicated use of antibiotics during pregnancy may increase the risk of preterm labor.
Collapse
Affiliation(s)
- Sedigheh Hantoushzadeh
- Maternal, Fetal and Neonatal Research Center, Vali-Asr Hospital, Imam Khomeini Hospital Complexes, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Anvari Aliabad
- Department of Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Norooznezhad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Jain VG, Kong F, Kallapur SG, Presicce P, Senthamaraikannnan P, Cappelletti M, Chougnet CA, Bhattacharyya S, Pasare C, Muglia LJ. IRAK1 Is a Critical Mediator of Inflammation-Induced Preterm Birth. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2651-2660. [PMID: 32238461 PMCID: PMC7366796 DOI: 10.4049/jimmunol.1901368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 01/09/2023]
Abstract
Preterm birth (PTB) is a major cause of neonatal mortality and morbidity, often triggered by chorioamnionitis or intrauterine inflammation (IUI) with or without infection. Recently, there has been a strong association of IL-1 with PTB. We hypothesized that IL-1R-associated kinase 1 (IRAK1), a key signaling mediator in the TLR/IL-1 pathway, plays a critical role in PTB. In human fetal membranes (FM) collected immediately after birth from women delivering preterm, p-IRAK1 was significantly increased in all the layers of FM with chorioamnionitis, compared with no-chorioamnionitis subjects. In a preterm rhesus macaque model of IUI given intra-amniotic LPS, induction of p-IRAK1 and downstream proinflammatory signaling mediators were seen in the FM. In a C57BL/6J wild-type PTB mouse model of IUI given intrauterine LPS, an IRAK1 inhibitor significantly decreased PTB and increased live birth in a dose-dependent manner. Furthermore, IRAK1 knockout mice were protected from LPS-induced PTB, which was seen in wild-type controls. Activation of IRAK1 was maintained by K63-mediated ubiquitination in preterm FM of humans with chorioamnionitis and rhesus and mouse IUI models. Mechanistically, IRAK1 induced PTB in the mouse model of IUI by upregulating expression of COX-2. Thus, our data from human, rhesus, and mouse demonstrates a critical role IRAK1 in IUI and inflammation-associated PTB and suggest it as potential therapeutic target in IUI-induced PTB.
Collapse
Affiliation(s)
- Viral G Jain
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Fansheng Kong
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Suhas G Kallapur
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Neonatology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Pietro Presicce
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Division of Neonatology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Monica Cappelletti
- Division of Neonatology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA 90095
| | - Claire A Chougnet
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital, Cincinnati, OH 45229; and
| | - Sandip Bhattacharyya
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Chandrashekhar Pasare
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital, Cincinnati, OH 45229; and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Louis J Muglia
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229;
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| |
Collapse
|
15
|
Robertson SA, Hutchinson MR, Rice KC, Chin PY, Moldenhauer LM, Stark MJ, Olson DM, Keelan JA. Targeting Toll-like receptor-4 to tackle preterm birth and fetal inflammatory injury. Clin Transl Immunology 2020; 9:e1121. [PMID: 32313651 PMCID: PMC7156293 DOI: 10.1002/cti2.1121] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/30/2022] Open
Abstract
Every year, 15 million pregnancies end prematurely, resulting in more than 1 million infant deaths and long-term health consequences for many children. The physiological processes of labour and birth involve essential roles for immune cells and pro-inflammatory cytokines in gestational tissues. There is compelling evidence that the mechanisms underlying spontaneous preterm birth are initiated when a premature and excessive inflammatory response is triggered by infection or other causes. Exposure to pro-inflammatory mediators is emerging as a major factor in the 'fetal inflammatory response syndrome' that often accompanies preterm birth, where unscheduled effects in fetal tissues interfere with normal development and predispose to neonatal morbidity. Toll-like receptors (TLRs) are critical upstream gatekeepers of inflammatory activation. TLR4 is prominently involved through its ability to sense and integrate signals from a range of microbial and endogenous triggers to provoke and perpetuate inflammation. Preclinical studies have identified TLR4 as an attractive pharmacological target to promote uterine quiescence and protect the fetus from inflammatory injury. Novel small-molecule inhibitors of TLR4 signalling, specifically the non-opioid receptor antagonists (+)-naloxone and (+)-naltrexone, are proving highly effective in animal models for preventing preterm birth induced by bacterial mimetic LPS, heat-killed Escherichia coli, or the TLR4-dependent pro-inflammatory lipid, platelet-activating factor (PAF). Here, we summarise the rationale for targeting TLR4 as a master regulator of inflammation in fetal and gestational tissues, and the potential utility of TLR4 antagonists as candidates for preventative and therapeutic application in preterm delivery and fetal inflammatory injury.
Collapse
Affiliation(s)
- Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School University of Adelaide Adelaide SA Australia
| | - Mark R Hutchinson
- Robinson Research Institute and Adelaide Medical School University of Adelaide Adelaide SA Australia.,ARC Centre for Nanoscale Biophotonics and Adelaide Medical School University of Adelaide Adelaide SA Australia
| | - Kenner C Rice
- Drug Design and Synthesis Section National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism National Institutes of Health Rockville MD USA
| | - Peck-Yin Chin
- Robinson Research Institute and Adelaide Medical School University of Adelaide Adelaide SA Australia
| | - Lachlan M Moldenhauer
- Robinson Research Institute and Adelaide Medical School University of Adelaide Adelaide SA Australia
| | - Michael J Stark
- Robinson Research Institute and Adelaide Medical School University of Adelaide Adelaide SA Australia
| | - David M Olson
- Department of Obstetrics and Gynecology Department of Physiology and Pediatrics 220 HMRC University of Alberta Edmonton AB Canada
| | - Jeffrey A Keelan
- Division of Obstetrics & Gynaecology University of Western Australia Perth WA Australia
| |
Collapse
|
16
|
Wahid HH, Chin PY, Sharkey DJ, Diener KR, Hutchinson MR, Rice KC, Moldenhauer LM, Robertson SA. Toll-Like Receptor-4 Antagonist (+)-Naltrexone Protects Against Carbamyl-Platelet Activating Factor (cPAF)-Induced Preterm Labor in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1030-1045. [PMID: 32084361 DOI: 10.1016/j.ajpath.2020.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/24/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Spontaneous preterm labor is frequently caused by an inflammatory response in the gestational tissues elicited by either infectious or sterile agents. In sterile preterm labor, the key regulators of inflammation are not identified, but platelet-activating factor (PAF) is implicated as a potential rate-limiting effector agent. Since Toll-like receptor (TLR)-4 can amplify PAF signaling, we evaluated whether TLR4 contributes to inflammation and fetal loss in a mouse model of PAF-induced sterile preterm labor, and whether a small-molecule TLR4 inhibitor, (+)-naltrexone, can mitigate adverse PAF-induced effects. The administration of carbamyl (c)-PAF caused preterm labor and fetal loss in wild-type mice but not in TLR4-deficient mice. Treatment with (+)-naltrexone prevented preterm delivery and alleviated fetal demise in utero elicited after cPAF administered by i.p. or intrauterine routes. Pups born after cPAF and (+)-naltrexone treatment exhibited comparable rates of postnatal survival and growth to carrier-treated controls. (+)-Naltrexone suppressed the cPAF-induced expression of inflammatory cytokine genes Il1b, Il6, and Il10 in the decidua; Il6, Il12b, and Il10 in the myometrium; and Il1b and Il6 in the placenta. These data demonstrate that the TLR4 antagonist (+)-naltrexone inhibits the inflammatory cascade induced by cPAF, preventing preterm birth and perinatal death. The inhibition of TLR4 signaling warrants further investigation as a candidate strategy for fetal protection and delay of preterm birth elicited by sterile stimuli.
Collapse
Affiliation(s)
- Hanan H Wahid
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Peck Yin Chin
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - David J Sharkey
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Kerrilyn R Diener
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; School of Pharmacy and Medical Science, University of South Australia, Adelaide, South Australia, Australia
| | - Mark R Hutchinson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia, Australia
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Lachlan M Moldenhauer
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
17
|
Early pregnancy loss in 15-hydroxyprostaglandin dehydrogenase knockout (15-HPGD -/-) mice due to requirement for embryo 15-HPGD activity. Sci Rep 2019; 9:17612. [PMID: 31772225 PMCID: PMC6879597 DOI: 10.1038/s41598-019-54064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/08/2019] [Indexed: 11/08/2022] Open
Abstract
Prostaglandins (PGs) have critical signaling functions in a variety of processes including the establishment and maintenance of pregnancy, and the initiation of labor. Most PGs are non-enzymatically degraded, however, the two PGs most prominently implicated in the termination of pregnancy, including the initiation of labor, prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α), are enzymatically degraded by 15-hydroxyprostaglandin dehydrogenase (15-HPGD). The role of PG metabolism by 15-HPGD in the maintenance of pregnancy remains largely unknown, as direct functional studies are lacking. To test the hypothesis that 15-PGDH-mediated PG metabolism is essential for pregnancy maintenance and normal labor timing, we generated and analyzed pregnancy in 15-HPGD knockout mice (Hpgd-/-). We report here that pregnancies resulting from matings between 15-HPGD KO mice (Hpgd-/- X Hpgd-/-KO mating) are terminated at mid gestation due to a requirement for embryo derived 15-HPGD. Aside from altered implantation site spacing, pregnancies from KO matings look grossly and histologically normal at days post coitum (dpc) 6.5 and 7.5 of pregnancy. However, virtually all of these pregnancies are resorbed by dpc 8.5. This resorption is preceded by elevation of PGF2∝ but is not preceded by a decrease in circulating progesterone, suggesting that pregnancy loss is a local inflammatory phenomenon rather than a centrally mediated phenomena. This pregnancy loss can be temporarily deferred by indomethacin treatment, but treated pregnancies are not maintained to term and indomethacin treatment increases maternal mortality. We conclude that PG metabolism to inactive products by embryo derived 15-HPGD is essential for pregnancy maintenance in mice, and may serve a similar function during human pregnancy.
Collapse
|
18
|
Chin PY, Dorian C, Sharkey DJ, Hutchinson MR, Rice KC, Moldenhauer LM, Robertson SA. Toll-Like Receptor-4 Antagonist (+)-Naloxone Confers Sexually Dimorphic Protection From Inflammation-Induced Fetal Programming in Mice. Endocrinology 2019; 160:2646-2662. [PMID: 31504393 PMCID: PMC6936318 DOI: 10.1210/en.2019-00493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
Abstract
Inflammation elicited by infection or noninfectious insults during gestation induces proinflammatory cytokines that can shift the trajectory of development to alter offspring phenotype, promote adiposity, and increase susceptibility to metabolic disease in later life. In this study, we use mice to investigate the utility of a small molecule Toll-like receptor (TLR)4 antagonist (+)-naloxone, the nonopioid isomer of the opioid receptor antagonist (-)-naloxone, for mitigating altered fetal metabolic programming induced by a modest systemic inflammatory challenge in late gestation. In adult progeny exposed to lipopolysaccharide (LPS) challenge in utero, male but not female offspring exhibited elevated adipose tissue, reduced muscle mass, and elevated plasma leptin at 20 weeks of age. Effects were largely reversed by coadministration of (+)-naloxone following LPS. When given alone without LPS, (+)-naloxone elicited accelerated postweaning growth and elevated muscle and fat mass in adult male but not female offspring. LPS induced expression of inflammatory cytokines Il1a, Il1b, Il6, Tnf, and Il10 in fetal brain, placental, and uterine tissues, and (+)-naloxone suppressed LPS-induced cytokine expression. Fetal sex-specific regulation of cytokine expression was evident, with higher Il1a, Il1b, Il6, and Il10 induced by LPS in tissues associated with male fetuses, and greater suppression by (+)-naloxone of Il6 in females. These data demonstrate that modulating TLR4 signaling with (+)-naloxone provides protection from inflammatory diversion of fetal developmental programming in utero, associated with attenuation of gestational tissue cytokine expression in a fetal sex-specific manner. The results suggest that pharmacologic interventions targeting TLR4 warrant evaluation for attenuating developmental programming effects of fetal exposure to maternal inflammatory mediators.
Collapse
Affiliation(s)
- Peck Yin Chin
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Camilla Dorian
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - David J Sharkey
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark R Hutchinson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia, Australia
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Lachlan M Moldenhauer
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Correspondence: Sarah A. Robertson, PhD, Robinson Research Institute and the Adelaide Medical School, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia. E-mail:
| |
Collapse
|
19
|
Sun X, Guo JH, Zhang D, Chen JJ, Lin WY, Huang Y, Chen H, Huang WQ, Liu Y, Tsang LL, Yu MK, Chung YW, Jiang X, Huang H, Chan HC, Ruan YC. Activation of the epithelial sodium channel (ENaC) leads to cytokine profile shift to pro-inflammatory in labor. EMBO Mol Med 2019; 10:emmm.201808868. [PMID: 30154237 PMCID: PMC6402451 DOI: 10.15252/emmm.201808868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The shift of cytokine profile from anti‐ to pro‐inflammatory is the most recognizable sign of labor, although the underlying mechanism remains elusive. Here, we report that the epithelial sodium channel (ENaC) is upregulated and activated in the uterus at labor in mice. Mechanical activation of ENaC results in phosphorylation of CREB and upregulation of pro‐inflammatory cytokines as well as COX‐2/PGE2 in uterine epithelial cells. ENaC expression is also upregulated in mice with RU486‐induced preterm labor as well as in women with preterm labor. Interference with ENaC attenuates mechanically stimulated uterine contractions and significantly delays the RU486‐induced preterm labor in mice. Analysis of a human transcriptome database for maternal–fetus tissue/blood collected at onset of human term and preterm births reveals significant and positive correlation of ENaC with labor‐associated pro‐inflammatory factors in labored birth groups (both term and preterm), but not in non‐labored birth groups. Taken together, the present finding reveals a pro‐inflammatory role of ENaC in labor at term and preterm, suggesting it as a potential target for the prevention and treatment of preterm labor.
Collapse
Affiliation(s)
- Xiao Sun
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Hui Guo
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Dan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun-Jiang Chen
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Wei Yin Lin
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Chen
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen Qing Huang
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yifeng Liu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lai Ling Tsang
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mei Kuen Yu
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yiu Wa Chung
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaohua Jiang
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hefeng Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
20
|
Probiotic Lactobacillus rhamnosus GR-1 is a unique prophylactic agent that suppresses infection-induced myometrial cell responses. Sci Rep 2019; 9:4698. [PMID: 30886179 PMCID: PMC6423128 DOI: 10.1038/s41598-019-41133-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/27/2019] [Indexed: 01/08/2023] Open
Abstract
Preterm birth (PTB) is a multifactorial syndrome affecting millions of neonates worldwide. Intrauterine infection can induce PTB through the secretion of pro-inflammatory cytokines and untimely activation of uterine contractions. In pregnant mice, prophylactic administration of probiotic Lactobacillus rhamnosus GR-1 supernatant (GR1SN) prevented lipopolysaccharide (LPS)-induced PTB and reduced cytokine expression in the uterine muscle (myometrium). In this study we sought to delineate the mechanisms by which GR1SN suppressed cytokine secretion in the myometrium. We observed that L. rhamnosus GR-1 uniquely secretes heat-resistant but trypsin-sensitive factors, which significantly suppressed LPS-induced secretion of pro-inflammatory cytokines IL-6, IL-8, and MCP-1 in the human myometrial cell line, hTERT-HM. This effect was unique to GR1SN and could not be replicated using supernatant derived from non-GR-1 commensal lactobacilli species: L. rhamnosus GG, L. lactis, L. casei, or L. reuteri RC-14. Furthermore, pre-incubation of hTERT-HM cells with low-dose Pam3CSK (a TLR1/2 synthetic agonist which mimics LPS action) prior to LPS administration also significantly decreased LPS-induced cytokine secretion. This study highlights the distinct capacity of protein-like moieties secreted by L. rhamnosus GR-1 to inhibit pro-inflammatory cytokine production by human myometrial cells, potentially through a TLR1/2-mediated mechanism.
Collapse
|
21
|
Lim R, Lappas M. Expression and function of macrophage-inducible C-type lectin (Mincle) in inflammation driven parturition in fetal membranes and myometrium. Clin Exp Immunol 2019; 197:95-110. [PMID: 30793298 DOI: 10.1111/cei.13281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
The pivotal role of inflammatory processes in human parturition is well known, but not completely understood. We have performed a study to examine the role of macrophage-inducible C-type lectin (Mincle) in inflammation-associated parturition. Using human samples, we show that spontaneous labour is associated with up-regulated Mincle expression in the myometrium and fetal membranes. Mincle expression was also increased in fetal membranes and myometrium in the presence of pro-labour mediators, the proinflammatory cytokines interleukin (IL)-1B and tumour necrosis factor (TNF), and Toll-like receptor (TLR) ligands fsl-1, poly(I:C), lipopolysaccharide (LPS) and flagellin. These clinical studies are supported by mouse studies, where an inflammatory challenge in a mouse model of preterm birth increased Mincle expression in the uterus. Importantly, elimination of Mincle decreased the effectiveness of proinflammatory cytokines and TLR ligands to induce the expression of pro-labour mediators; namely, proinflammatory cytokines and chemokines, contraction-associated proteins and prostaglandins, and extracellular matrix remodelling enzymes, matrix metalloproteinases. The data presented in this study suggest that Mincle is required when inflammatory activation precipitates parturition.
Collapse
Affiliation(s)
- R Lim
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - M Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Analysis of stage-specific expression of the toll-like receptor family in the porcine endometrium throughout the estrous cycle and pregnancy. Theriogenology 2018; 125:173-183. [PMID: 30448720 DOI: 10.1016/j.theriogenology.2018.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/10/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLRs) play critical roles in innate immunity by regulating antimicrobial responses in mucosal tissues. The expression and function of TLRs in female reproductive tissues have been studied in several species, but the expression and function of TLRs and MYD88, an adaptor molecule in the TLR signaling pathway, at the maternal-conceptus interface are not well understood in pigs. Thus, we determined the expression of TLR1 - TLR10 and MYD88 in the endometrium, conceptus, and chorioallantoic tissues of pigs. TLR1 - TLR10 and MYD88 mRNAs were expressed in the endometrium during the estrous cycle and pregnancy in a stage-dependent manner. TLR and MYD88 mRNAs were also detected in early stage conceptuses and chorioallantoic tissues from Day 30 to term pregnancy. The expression of TLR2, TLR4, TLR5, and TLR7 was localized to epithelial and stromal cells in endometrial and chorioallantoic tissues. Increasing doses of P4, but not E2, induced the expression of TLR4, TLR5, TLR6, TLR7, and TLR8, while interferon-γ increased the expression of TLR2 and TLR7 in endometrial explant tissues. Expression of TLR3, TLR5, TLR6, TLR7, and MYD88 was higher in the endometrium with somatic cell nucleus transfer-derived conceptuses than conceptuses derived from natural mating on Day 12. These results indicate that the expression of TLR1 - TLR10 and MYD88 is dynamically regulated at the maternal-conceptus interface in pigs, suggesting that TLRs expressed in the endometrium and the placenta may play a critical role in regulating mucosal immune responses to support the establishment and maintenance of pregnancy.
Collapse
|
23
|
Konishi H, Urabe S, Miyoshi H, Teraoka Y, Maki T, Furusho H, Miyauchi M, Takata T, Kudo Y, Kajioka S. Fetal Membrane Inflammation Induces Preterm Birth Via Toll-Like Receptor 2 in Mice With Chronic Gingivitis. Reprod Sci 2018; 26:869-878. [PMID: 30223727 DOI: 10.1177/1933719118792097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation is associated with preterm birth. We previously described a mouse model of chronic inflammation-induced preterm birth after dental Porphyromonas gingivalis infection. The aim of this study was to employ this model system to investigate the mechanisms through which enhanced uterine contractility induces preterm birth. Messenger RNA (mRNA) encoding contraction-associated proteins, such as oxytocin receptors, was measured at various gestational time points by real-time polymerase chain reaction (PCR). Spontaneous and oxytocin-induced uterine contractile activity at gestational day 18 was assessed using a tissue organ bath. The expression levels of Toll-like receptor 2 (TLR2), TLR4, cyclooxygenase (COX)-2, nuclear factor-kappa B (NF-κB) p65, and p38 mitogen-activated protein kinase (MAPK) on gestational day 18 were also determined by real-time PCR or Western blotting. Messenger RNA encoding contraction-associated proteins was increased at gestational day 18, and the spontaneous contractile activity (1.6-fold greater area under the contraction curve) and sensitivity to oxytocin (EC50: 8.8 nM vs 2.2 nM) were enhanced in the P gingivalis group compared to those in the control group. In the P gingivalis group, COX-2 mRNA expression was not elevated in the placenta or myometrium but was upregulated 2.3-fold in the fetal membrane. The TLR2 mRNA levels in the fetal membrane were 2.7-fold higher in the P gingivalis group, whereas TLR4 levels were not elevated. Activation of the NF-κB p65 and p38 MAPK pathways was enhanced in the fetal membrane of the P gingivalis group. Thus, in mice with chronic dental P gingivalis infection, TLR2-induced inflammation in the fetal membrane leads to upregulation of uterine contractility, leading to preterm birth.
Collapse
Affiliation(s)
- Haruhisa Konishi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Urabe
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Miyoshi
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Obstetrics and Gynecology, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Yuko Teraoka
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoko Maki
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Applied Urology and Molecular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshiki Kudo
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shunichi Kajioka
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. .,Department of Applied Urology and Molecular Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
24
|
Lappas M. Expression and regulation of metallothioneins in myometrium and fetal membranes. Am J Reprod Immunol 2018; 80:e13040. [PMID: 30155998 DOI: 10.1111/aji.13040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 12/28/2022] Open
Abstract
PROBLEM Metallothioneins (MTs) play important roles in regulating oxidative stress, inflammation, and hormone signaling. These processes play a major role in labor at term and preterm. The aims of this study were to characterize (a) temporal- and labor-associated changes and (b) the effect of pro-inflammatory and pro-labor insults on the expression of MT1 isoforms, MT2A, MT3, and MT4 in fetal membranes and myometrium. METHOD OF STUDY The expression of MTs was assessed in fetal membranes and myometrium from nonlaboring and laboring women at preterm and term by RT-qPCR. Tissue explants were used to assess the effect of pro-inflammatory cytokines and Toll-like receptor (TLR) ligands on the expression of MTs in fetal membranes and myometrium. RESULTS In fetal membranes, the expression of MT1A, MT1E, MT1F, MT1X, and MT2A was higher at term compared with preterm. Preterm labor and preterm histological chorioamnionitis were associated with increased expression of MT1A, MT1G, MT1M, MT1X, MT2A, and MT3. Term labor was associated with increased expression of MT1A, MT1F, MT1X, MT2A, and MT3 in fetal membranes and expression of MT1A, MT1E, MT1F, MT1G, MT1M, MT1X, MT2A, and MT3 in myometrium. Pro-inflammatory cytokines and TLR ligands increased the expression of MT1A, MT1E, MT1F, MT1G, MT1H, MT1X, and MT2A in fetal membranes and myometrium. CONCLUSION Temporal-, labor-, and infection-associated increases in MT1 isoforms, MT2A, and MT3 have been observed in fetal membranes and/or myometrium. Furthermore, pro-inflammatory cytokines and bacterial and viral products increased the expression of MT1 isoforms, MT2A, MT3, and MT4 mRNA expression in fetal membranes and myometrium.
Collapse
Affiliation(s)
- Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
25
|
Wang C, Cheng W, Yu Q, Xing T, Chen S, Liu L, Yu L, Du J, Luo Q, Shen J, Xu Y. Toxoplasma Chinese 1 Strain of WH3Δ rop16I/III / gra15II Genetic Background Contributes to Abnormal Pregnant Outcomes in Murine Model. Front Immunol 2018; 9:1222. [PMID: 29910815 PMCID: PMC5992278 DOI: 10.3389/fimmu.2018.01222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii infection evokes a strong Th1-type response with interleukin (IL)-12 and interferon (IFN)-γ secretion. Recent studies suggest that the infection of pregnant mice with T. gondii may lead to adverse pregnancy results caused by subversion of physiological immune tolerance at maternofetal interface rather than direct invasion of the parasite. Genotype-associated dense granule protein GRA15II tends to induce classically activated macrophage (M1) differentiation and subsequently activating NK, Th1, and Th17 cells whereas rhoptry protein ROP16I/III drives macrophages to alternatively activated macrophage (M2) polarization and elicits Th2 immune response. Unlike the archetypal strains of types I, II, and III, type Chinese 1 strains possess both GRA15II and ROP16I/III, suggesting a distinct pathogenesis of Toxoplasma-involved adverse pregnancies. We constructed T. gondii type Chinese 1 strain of WH3Δrop16 based on CRISPR/Cas9 technology to explore the ROP16I/III-deficient/GRA15II-dominant parasites in induction of trophoblast apoptosis in vitro and abnormal pregnant outcomes of mice in vivo. Our study showed that Toxoplasma WH3Δrop16 remarkably induced apoptosis of trophoblasts. C57BL/6 pregnant mice injected with the tachyzoites of WH3Δrop16 presented increased absorptivity of fetuses in comparison with the mice infected with WH3 wild type (WH3 WT) parasites although no remarkable difference of virulence to mice was seen between the two strains. Additionally, the mice inoculated with WH3Δrop16 tachyzoites exhibited a notable expression of both IL-17A and IFN-γ, while the percentage of CD4+CD25+FoxP3 [T regulatory cells (Tregs)] were diminished in splenocytes and placenta tissues compared to those infected with WH3 WT parasites. Accordingly, expressions of IL-4, IL-10, and transforming growth factor beta 1, the pivotal cytokines of Th2 and Tregs response, were significantly dampened whereas IFN-γ and IL-12 expressions were upregulated in WH3Δrop16-infected mice, which gave rise to more prominent outcomes of abnormal pregnancies. Our results indicated that the WH3Δrop16 parasites with gra15II background of T. gondii type Chinese 1 strains may cause miscarriage and stillbirth due to subversion of the maternal immune tolerance and system immunity of the animals and the GRA15II effector contributes to the process of adverse pregnant consequences.
Collapse
Affiliation(s)
- Cong Wang
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Weisheng Cheng
- Department of Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, The Key Laboratory of Tropical Disease Control, Ministry of Education, Guangzhou, China
| | - Qian Yu
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Tian Xing
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Shoubin Chen
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Lei Liu
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Qingli Luo
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses, School of Basic Medicine, Anhui Medical University, Hefei, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses, School of Basic Medicine, Anhui Medical University, Hefei, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Abstract
The comparison of the immunological state of pregnancy to an immunosuppressed host-graft model continues to lead research and clinical practice to ill-defined approaches. This Review discusses recent evidence that supports the idea that immunological responses at the receptive maternal-fetal interface are not simply suppressed but are instead highly dynamic. We discuss the crucial role of trophoblast cells in shaping not only the way in which immune cells respond to the invading blastocyst but also how they collectively react to external stimuli. We also discuss the role of the microbiota in promoting a tolerogenic maternal immune system and highlight how subclinical viral infections can disrupt this status quo, leading to pregnancy complications.
Collapse
Affiliation(s)
- Gil Mor
- Division of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Paulomi Aldo
- Division of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| | - Ayesha B Alvero
- Division of Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
| |
Collapse
|
27
|
S. Lashkari B, Anumba DOC. Estradiol alters the immune-responsiveness of cervical epithelial cells stimulated with ligands of Toll-like receptors 2 and 4. PLoS One 2017; 12:e0173646. [PMID: 28296959 PMCID: PMC5351915 DOI: 10.1371/journal.pone.0173646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/22/2017] [Indexed: 11/19/2022] Open
Abstract
The mucosa of the female reproductive tract plays a pivotal role in host defence. Pregnancy must alter immunological mechanisms at this interface to protect the conceptus. We sought to determine how estradiol (E2) alters the immune-responsiveness of cervical epithelial cells to ligand stimulation of Toll-like receptor (TLR)-2 and -4. Human ectocervical epithelial cells (HECECs) were cultured and co-incubated with two concentrations of E2 and peptidoglycan (PGN) or lipopolysaccharide (LPS) over durations that ranged between 10 minutes and 18 hours. Cytometric Bead Array was performed to quantify eight cytokines in the supernatant fluid. In response to PGN, HECECs co-incubated with E2 released lesser quantities of IL-1ß and IFNγ, higher levels of RANTES, and variable levels of IL-6 and IL-8 than those not exposed to E2. In contrast, HECECs co-incubated with LPS and E2 secreted increased levels of IL-1ß, IL-6, IL-8, and IFNγ at 2 and 18 hours than HECECs not exposed to E2, and reduced levels of RANTES at same study time-points. Estradiol alters the immune-responsiveness of cultured HECECs to TLR2 and TLR4 ligands in a complex fashion that appears to vary with bacterial ligand, TLR subtype, and duration of exposure. Our observations are consistent with the functional complexity that this mucosal interface requires for its immunological roles.
Collapse
Affiliation(s)
- Behnia S. Lashkari
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, University of Sheffield, Jessop Wing, Sheffield, United Kingdom
| | - Dilly O. C. Anumba
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, University of Sheffield, Jessop Wing, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Chin PY, Dorian CL, Hutchinson MR, Olson DM, Rice KC, Moldenhauer LM, Robertson SA. Novel Toll-like receptor-4 antagonist (+)-naloxone protects mice from inflammation-induced preterm birth. Sci Rep 2016; 6:36112. [PMID: 27819333 PMCID: PMC5098167 DOI: 10.1038/srep36112] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/11/2016] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptor 4 (TLR4) activation by bacterial infection, or by sterile inflammatory insult is a primary trigger of spontaneous preterm birth. Here we utilize mouse models to investigate the efficacy of a novel small molecule TLR4 antagonist, (+)-naloxone, the non-opioid isomer of the opioid receptor antagonist (−)-naloxone, in infection-associated preterm birth. Treatment with (+)-naloxone prevented preterm delivery and alleviated fetal demise in utero elicited by i.p. LPS administration in late gestation. A similar effect with protection from preterm birth and perinatal death, and partial correction of reduced birth weight and postnatal mortality, was conferred by (+)-naloxone administration after intrauterine administration of heat-killed E. coli. Local induction by E. coli of inflammatory cytokine genes Il1b, Il6, Tnf and Il10 in fetal membranes was suppressed by (+)-naloxone, and cytokine expression in the placenta, and uterine myometrium and decidua, was also attenuated. These data demonstrate that inhibition of TLR4 signaling with the novel TLR4 antagonist (+)-naloxone can suppress the inflammatory cascade of preterm parturition, to prevent preterm birth and perinatal death. Further studies are warranted to investigate the utility of small molecule inhibition of TLR-driven inflammation as a component of strategies for fetal protection and delaying preterm birth in the clinical setting.
Collapse
Affiliation(s)
- Peck Yin Chin
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Camilla L Dorian
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mark R Hutchinson
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA, 5005, Australia
| | - David M Olson
- Departments of Obstetrics &Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, Alberta T6G2S2, Canada
| | - Kenner C Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Lachlan M Moldenhauer
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
29
|
Ji YF, Xu J, Zhang T, Chen LY. Decreased Toll-like receptor-2 messenger ribonucleic acid and increased Toll-like receptor-4 in the tubal epithelium next to the infiltrated trophoblasts during tubal pregnancy. Fertil Steril 2016; 107:282-288.e1. [PMID: 27793374 DOI: 10.1016/j.fertnstert.2016.09.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To explore the expression patterns of Toll-like receptor (TLR)2 and TLR4 in the tubal epithelial cells next to the infiltrated trophoblasts at the maternal-fetal interface during tubal pregnancy. DESIGN Prospective, observational study. SETTING University-based obstetrics and gynecology hospital. PATIENT(S) Thirty-seven women undergoing salpingectomy for tubal ampullary pregnancy and nine nonpregnant patients with benign uterine or appendix disease. INTERVENTION(S) Oviduct tissues with ectopic gestations were separated into implantation site (group 1) and nonimplantation site (group 2). Tissues from ampullary fallopian tubes during mid-secretory phase (group 3) were collected as the control group. Immunohistochemistry and quantitative real-time polymerase chain reaction were performed. MAIN OUTCOME MEASURE(S) Differences of TLR2 and TLR4 expression patterns between group 1 and group 2 and between the pregnant group (combined group 1 and group 2) and the nonpregnant group (group 3). RESULT(S) Comparing the pregnant group with group 3, TLR4 messenger RNA (mRNA) and protein were both significantly up-regulated in the pregnant group. In contrast, TLR2 mRNA was significantly down-regulated, whereas TLR2 protein showed a tendency toward reduction. Detailed analysis between group 1 and group 3 revealed statistically significantly higher TLR2 and TLR4 protein in group 1. In terms of mRNA, TLR4 expression was still shown to be significantly increased in group 1, whereas TLR2 expression was markedly decreased in group 1. CONCLUSION(S) Decreased TLR2 mRNA and increased TLR4 in the tubal epithelial cells next to the infiltrated trophoblasts may be associated with aspects of the pathophysiology of tubal ectopic pregnancy in immune defense.
Collapse
Affiliation(s)
- Yin Fen Ji
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, People's Republic of China
| | - Jian Xu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, People's Republic of China
| | - Tao Zhang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, People's Republic of China
| | - Li You Chen
- Center of Gynecological Laparoscopy, People's Hospital of Zhejiang Province, People's Republic of China.
| |
Collapse
|
30
|
Pekson R, Poltoratsky V, Gorasiya S, Sundaram S, Ashby CR, Vancurova I, Reznik SE. N,N-Dimethylacetamide Significantly Attenuates LPS- and TNFα-Induced Proinflammatory Responses Via Inhibition of the Nuclear Factor Kappa B Pathway. Mol Med 2016; 22:747-758. [PMID: 27782292 DOI: 10.2119/molmed.2016.00017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 10/18/2016] [Indexed: 12/25/2022] Open
Abstract
Previously, we have shown that N,N-dimethylacetamide (DMA) prevents inflammation-induced preterm birth in a murine model, inhibits LPS-induced increases in placental pro-inflammatory cytokines and up-regulates the anti-inflammatory cytokine Interleukin-10 (IL-10). However, DMA's mechanism of action remains to be elucidated. In the current study we investigate how DMA produces its anti-inflammatory effect. Using in vitro and ex vivo models, we show that DMA suppresses secretion of pro-inflammatory cytokines in lipopolysaccharide (LPS)-induced RAW 264.7 cells, TNFα-challenged JEG-3 cells and LPS-stimulated human placental explants. DMA significantly attenuated the secretion of TNFα, IL-6, IL-10, and granulocyte macrophage colony stimulating factor (GM-CSF) from LPS-stimulated RAW 264.7 cells, IL-6 secretion from TNFα-stimulated JEG-3 cells and TNFα, IL-6, IL-10, GM-CSF and Interleukin-8 (IL-8) from LPS-stimulated human placental explants. We further investigated if DMA's effect on cytokine expression involves the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. DMA (10 mM) significantly inhibited nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) degradation in LPS-stimulated RAW 264.7 cells, but there was no significant change in the expression of phosphorylated or native forms of downstream proteins in the MAPK pathway. In addition, DMA significantly attenuated luciferase activity in cells co-transfected with NF-κB-Luc reporter plasmid, but not with AP-1-Luc or CEBP-Luc reporters. Overall, our findings suggest that the anti-inflammatory activity of DMA is mediated by inhibition of the NF-κB pathway via decreased IκBα degradation.
Collapse
Affiliation(s)
- Ryan Pekson
- Dept of Pharmaceutical Sciences, St. John's University
| | | | | | | | | | | | - Sandra E Reznik
- Dept of Pharmaceutical Sciences, St. John's University.,Depts of Pathology and Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine
| |
Collapse
|
31
|
Edey LF, O'Dea KP, Herbert BR, Hua R, Waddington SN, MacIntyre DA, Bennett PR, Takata M, Johnson MR. The Local and Systemic Immune Response to Intrauterine LPS in the Prepartum Mouse. Biol Reprod 2016; 95:125. [PMID: 27760748 PMCID: PMC5333944 DOI: 10.1095/biolreprod.116.143289] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/04/2016] [Accepted: 10/11/2016] [Indexed: 01/30/2023] Open
Abstract
Inflammation plays a key role in human term and preterm labor (PTL). Intrauterine LPS has been widely used to model inflammation-induced complications of pregnancy, including PTL. It has been shown to induce an intense myometrial inflammatory cell infiltration, but the role of LPS-induced inflammatory cell activation in labor onset and fetal demise is unclear. We investigated this using a mouse model of PTL, where an intrauterine injection of 10 μg of LPS (serotype 0111:B4) was given at E16 of CD1 mouse pregnancy. This dose induced PTL at an average of 12.7 h postinjection in association with 85% fetal demise. Flow cytometry showed that LPS induced a dramatic systemic inflammatory response provoking a rapid and marked leucocyte infiltration into the maternal lung and liver in association with increased cytokine levels. Although there was acute placental inflammatory gene expression, there was no corresponding increase in fetal brain inflammatory gene expression until after fetal demise. There was marked myometrial activation of NFκB and MAPK/AP-1 systems in association with increased chemokine and cytokine levels, both of which peaked with the onset of parturition. Myometrial macrophage and neutrophil numbers were greater in the LPS-injected mice with labor onset only; prior to labor, myometrial neutrophils and monocytes numbers were greater in PBS-injected mice, but this was not associated with an earlier onset of labor. These data suggest that intrauterine LPS induces parturition directly, independent of myometrial inflammatory cell infiltration, and that fetal demise occurs without fetal inflammation. Intrauterine LPS provokes a marked local and systemic inflammatory response but with limited inflammatory cell infiltration into the myometrium or placenta.
Collapse
Affiliation(s)
- Lydia F Edey
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Bronwen R Herbert
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Renyi Hua
- The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH), Shanghai, China
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom.,Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus DuCane Road, London, United Kingdom
| | - Philip R Bennett
- Institute of Reproductive and Developmental Biology, Hammersmith Hospital Campus DuCane Road, London, United Kingdom
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R Johnson
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
32
|
|
33
|
Ilekis JV, Tsilou E, Fisher S, Abrahams VM, Soares MJ, Cross JC, Zamudio S, Illsley NP, Myatt L, Colvis C, Costantine MM, Haas DM, Sadovsky Y, Weiner C, Rytting E, Bidwell G. Placental origins of adverse pregnancy outcomes: potential molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am J Obstet Gynecol 2016; 215:S1-S46. [PMID: 26972897 DOI: 10.1016/j.ajog.2016.03.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/26/2022]
Abstract
Although much progress is being made in understanding the molecular pathways in the placenta that are involved in the pathophysiology of pregnancy-related disorders, a significant gap exists in the utilization of this information for the development of new drug therapies to improve pregnancy outcome. On March 5-6, 2015, the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health sponsored a 2-day workshop titled Placental Origins of Adverse Pregnancy Outcomes: Potential Molecular Targets to begin to address this gap. Particular emphasis was given to the identification of important molecular pathways that could serve as drug targets and the advantages and disadvantages of targeting these particular pathways. This article is a summary of the proceedings of that workshop. A broad number of topics were covered that ranged from basic placental biology to clinical trials. This included research in the basic biology of placentation, such as trophoblast migration and spiral artery remodeling, and trophoblast sensing and response to infectious and noninfectious agents. Research findings in these areas will be critical for the formulation of the development of future treatments and the development of therapies for the prevention of a number of pregnancy disorders of placental origin that include preeclampsia, fetal growth restriction, and uterine inflammation. Research was also presented that summarized ongoing clinical efforts in the United States and in Europe that has tested novel interventions for preeclampsia and fetal growth restriction, including agents such as oral arginine supplementation, sildenafil, pravastatin, gene therapy with virally delivered vascular endothelial growth factor, and oxygen supplementation therapy. Strategies were also proposed to improve fetal growth by the enhancement of nutrient transport to the fetus by modulation of their placental transporters and the targeting of placental mitochondrial dysfunction and oxidative stress to improve placental health. The roles of microRNAs and placental-derived exosomes, as well as messenger RNAs, were also discussed in the context of their use for diagnostics and as drug targets. The workshop discussed the aspect of safety and pharmacokinetic profiles of potential existing and new therapeutics that will need to be determined, especially in the context of the unique pharmacokinetic properties of pregnancy and the hurdles and pitfalls of the translation of research findings into practice. The workshop also discussed novel methods of drug delivery and targeting during pregnancy with the use of macromolecular carriers, such as nanoparticles and biopolymers, to minimize placental drug transfer and hence fetal drug exposure. In closing, a major theme that developed from the workshop was that the scientific community must change their thinking of the pregnant woman and her fetus as a vulnerable patient population for which drug development should be avoided, but rather be thought of as a deprived population in need of more effective therapeutic interventions.
Collapse
Affiliation(s)
- John V Ilekis
- Pregnancy and Perinatology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Ekaterini Tsilou
- Obstetric and Pediatric Pharmacology and Therapeutics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Department of Health and Human Services, Bethesda, MD.
| | - Susan Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA
| | - Vikki M Abrahams
- Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine; New Haven, CT
| | - Michael J Soares
- Institute of Reproductive Health and Regenerative Medicine and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - James C Cross
- Comparative Biology and Experimental Medicine, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Nicholas P Illsley
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack, NJ
| | - Leslie Myatt
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX
| | - Christine Colvis
- Therapeutics Discovery Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | - Maged M Costantine
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - David M Haas
- Department of Obstetrics and Gynecology Indiana University, Indianapolis, IN
| | | | - Carl Weiner
- University of Kansas Medical Center, Kansas City, KS
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX
| | - Gene Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
34
|
Migale R, MacIntyre DA, Cacciatore S, Lee YS, Hagberg H, Herbert BR, Johnson MR, Peebles D, Waddington SN, Bennett PR. Modeling hormonal and inflammatory contributions to preterm and term labor using uterine temporal transcriptomics. BMC Med 2016; 14:86. [PMID: 27291689 PMCID: PMC4904357 DOI: 10.1186/s12916-016-0632-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Preterm birth is now recognized as the primary cause of infant mortality worldwide. Interplay between hormonal and inflammatory signaling in the uterus modulates the onset of contractions; however, the relative contribution of each remains unclear. In this study we aimed to characterize temporal transcriptome changes in the uterus preceding term labor and preterm labor (PTL) induced by progesterone withdrawal or inflammation in the mouse and compare these findings with human data. METHODS Myometrium was collected at multiple time points during gestation and labor from three murine models of parturition: (1) term gestation; (2) PTL induced by RU486; and (3) PTL induced by lipopolysaccharide (LPS). RNA was extracted and cDNA libraries were prepared and sequenced using the Illumina HiSeq 2000 system. Resulting RNA-Seq data were analyzed using multivariate modeling approaches as well as pathway and causal network analyses and compared against human myometrial transcriptome data. RESULTS We identified a core set of temporal myometrial gene changes associated with term labor and PTL in the mouse induced by either inflammation or progesterone withdrawal. Progesterone withdrawal initiated labor without inflammatory gene activation, yet LPS activation of uterine inflammation was sufficient to override the repressive effects of progesterone and induce a laboring phenotype. Comparison of human and mouse uterine transcriptomic datasets revealed that human labor more closely resembles inflammation-induced PTL in the mouse. CONCLUSIONS Labor in the mouse can be achieved through inflammatory gene activation yet these changes are not a requisite for labor itself. Human labor more closely resembles LPS-induced PTL in the mouse, supporting an essential role for inflammatory mediators in human "functional progesterone withdrawal." This improved understanding of inflammatory and progesterone influence on the uterine transcriptome has important implications for the development of PTL prevention strategies.
Collapse
Affiliation(s)
- Roberta Migale
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - David A MacIntyre
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom.
| | - Stefano Cacciatore
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Yun S Lee
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Henrik Hagberg
- Perinatal Center, Department of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Bronwen R Herbert
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom.,Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R Johnson
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom.,Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Donald Peebles
- UCL Centre for Perinatal Brain Protection & Repair, Institute for Women's Health, University College London, London, United Kingdom
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom.,Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Phillip R Bennett
- Imperial College Parturition Research Group, Institute of Reproduction and Developmental Biology, Imperial College London, Hammersmith Campus, London, United Kingdom.
| |
Collapse
|
35
|
Dincel GC, Atmaca HT. Role of oxidative stress in the pathophysiology of Toxoplasma gondii infection. Int J Immunopathol Pharmacol 2016; 29:226-40. [PMID: 26966143 PMCID: PMC5806720 DOI: 10.1177/0394632016638668] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/19/2016] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress (OS) plays an essential role in the pathogenesis of common neurodegenerative diseases. We have previously shown that Toxoplasma gondii (T. gondii) induces high nitric oxide (NO) production, glial activation, and apoptosis that altogether cause severe neuropathology in toxoplasma encephalitis (TE). The objective of this study was to investigate the cytotoxic effect of OS and to identify a correlation between the causes of T. gondii induced neuropathology. Expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (SOD1), neuron specific enolase (NSE), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were investigated. Results of the study revealed that the levels of GR (P <0.005) and NSE (P <0.001) expression in the brain tissue markedly increased while SOD1 activity decreased (P <0.001) in the infected group compared to the non-infected group. In addition, intense staining for 8-OHdG (P <0.05) was observed both in the nucleus and the cytoplasm of neurons and glial cells that underwent OS. These results were reasonable to suggest that T. gondii-mediated OS might play a pivotal role and a different type of role in the mechanism of neurodegeneration/neuropathology in the process of TE. The results also clearly indicated that increased levels of NO and apoptosis might contribute to OS-related pathogenesis of TE. As a result, OS and expression of NSE might give an idea of the disease progress and may have a critical diagnostic significance for patients with T. gondii infection.
Collapse
Affiliation(s)
- Gungor Cagdas Dincel
- Gumushane University, Siran Mustafa Beyaz Vocational High School, Siran, Gumushane, Turkey
| | - Hasan Tarik Atmaca
- Kirikkale University, Faculty of Veterinary Medicine, Department of Pathology, Yahsihan, Kirikkale, Turkey
| |
Collapse
|
36
|
Triggianese P, Perricone C, Chimenti MS, De Carolis C, Perricone R. Innate Immune System at the Maternal-Fetal Interface: Mechanisms of Disease and Targets of Therapy in Pregnancy Syndromes. Am J Reprod Immunol 2016; 76:245-57. [PMID: 27108670 DOI: 10.1111/aji.12509] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/14/2016] [Indexed: 01/01/2023] Open
Abstract
The maternal-fetal interface is an immunologically unique site that allows the tolerance to the allogenic fetus and maintains host defense against possible pathogens. Balanced immune responses are required for the maintenance of successful pregnancy. It has been demonstrated that innate immune disturbances may be responsible for some adverse pregnancy outcomes such as preeclampsia (PE); hemolysis, elevated liver enzymes, low platelets (HELLP) syndrome; intrauterine growth restriction (IUGR); and recurrent spontaneous abortion (RSA). Observational studies suggest that immunomodulatory treatments in pregnancy-specific complications may improve both the hematological/biochemical features in the mother and the perinatal outcomes. The following review will discuss how recent and relevant findings in the field of the innate immunity have advanced our understanding of the role of inflammation and innate immune system in the pathogenesis of pregnancy failure and will discuss the therapeutic outcomes of the existing studies and clinical trials in light of these new insights.
Collapse
Affiliation(s)
- Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of 'Medicina dei Sistemi', University of Rome Tor Vergata, Rome, Italy
| | - Carlo Perricone
- Reumatologia, Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy.
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of 'Medicina dei Sistemi', University of Rome Tor Vergata, Rome, Italy
| | - Caterina De Carolis
- Past Head of Obstetrics and Gynecology II, San Giovanni Addolorata Hospital, Rome, Italy
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of 'Medicina dei Sistemi', University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
37
|
Romero R, Chaemsaithong P, Docheva N, Korzeniewski SJ, Tarca AL, Bhatti G, Xu Z, Kusanovic JP, Dong Z, Ahmed AI, Yoon BH, Hassan SS, Chaiworapongsa T, Yeo L. Clinical chorioamnionitis at term IV: the maternal plasma cytokine profile. J Perinat Med 2016; 44:77-98. [PMID: 26352068 PMCID: PMC5624710 DOI: 10.1515/jpm-2015-0103] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/17/2015] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Fever is a major criterion for clinical chorioamnionitis; yet, many patients with intrapartum fever do not have demonstrable intra-amniotic infection. Some cytokines, such as interleukin (IL)-1, IL-6, interferon-gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α), can induce a fever. The objective of this study was to determine whether maternal plasma concentrations of cytokines could be of value in the identification of patients with the diagnosis of clinical chorioamnionitis at term who have microbial-associated intra-amniotic inflammation. METHODS A retrospective cross-sectional study was conducted, including patients with clinical chorioamnionitis at term (n=41; cases) and women in spontaneous labor at term without clinical chorioamnionitis (n=77; controls). Women with clinical chorioamnionitis were classified into three groups according to the results of amniotic fluid culture, broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry (PCR/ESI-MS), and amniotic fluid IL-6 concentration: 1) no intra-amniotic inflammation; 2) intra-amniotic inflammation without detectable microorganisms; or 3) microbial-associated intra-amniotic inflammation. The maternal plasma concentrations of 29 cytokines were determined with sensitive and specific V-PLEX immunoassays. Nonparametric statistical methods were used for analysis, adjusting for a false discovery rate of 5%. RESULTS 1) The maternal plasma concentrations of pyrogenic cytokines (IL-1β, IL-2, IL-6, IFN-γ, and TNF-α) were significantly higher in patients with clinical chorioamnionitis at term than in those with spontaneous term labor without clinical chorioamnionitis; 2) the maternal plasma concentrations of cytokines were not significantly different among the three subgroups of patients with clinical chorioamnionitis (intra-amniotic inflammation with and without detectable bacteria and those without intra-amniotic inflammation); and 3) among women with the diagnosis of clinical chorioamnionitis, but without evidence of intra-amniotic inflammation, the maternal plasma concentrations of pyrogenic cytokines were significantly higher than in patients with spontaneous labor at term. These observations suggest that a fever can be mediated by increased circulating concentrations of these cytokines, despite the absence of a local intra-amniotic inflammatory response. CONCLUSIONS 1) The maternal plasma concentrations of pyrogenic cytokines (e.g. IL-1β, IL-2, IL-6, IFN-γ, and TNF-α) are higher in patients with intra-partum fever and the diagnosis of clinical chorioamnionitis at term than in those in spontaneous labor at term without a fever; and 2) maternal plasma cytokine concentrations have limited value in the identification of patients with bacteria in the amniotic cavity. Accurate assessment of the presence of intra-amniotic infection requires amniotic fluid analysis.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikolina Docheva
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven J. Korzeniewski
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhonghui Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juan P. Kusanovic
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF). Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
- Department of Obstetrics and Gynecology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zhong Dong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ahmed I. Ahmed
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
38
|
Cappelletti M, Della Bella S, Ferrazzi E, Mavilio D, Divanovic S. Inflammation and preterm birth. J Leukoc Biol 2016; 99:67-78. [DOI: 10.1189/jlb.3mr0615-272rr] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Preterm birth is the leading cause of neonatal morbidity and mortality. Although the underlying causes of pregnancy-associated complication are numerous, it is well established that infection and inflammation represent a highly significant risk factor in preterm birth. However, despite the clinical and public health significance, infectious agents, molecular trigger(s), and immune pathways underlying the pathogenesis of preterm birth remain underdefined and represent a major gap in knowledge. Here, we provide an overview of recent clinical and animal model data focused on the interplay between infection-driven inflammation and induction of preterm birth. Furthermore, here, we highlight the critical gaps in knowledge that warrant future investigations into the interplay between immune responses and induction of preterm birth.
Collapse
Affiliation(s)
- Monica Cappelletti
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, and the University of Cincinnati College of Medicine , Cincinnati, Ohio , USA
| | - Silvia Della Bella
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Enrico Ferrazzi
- Department of Woman, Mother and Neonate, Buzzi Childrenˈs Hospital, Biomedical and Clinical Sciences School of Medicine, University of Milan , Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, and the University of Cincinnati College of Medicine , Cincinnati, Ohio , USA
| |
Collapse
|
39
|
Nadeau-Vallée M, Obari D, Quiniou C, Lubell WD, Olson DM, Girard S, Chemtob S. A critical role of interleukin-1 in preterm labor. Cytokine Growth Factor Rev 2015; 28:37-51. [PMID: 26684042 DOI: 10.1016/j.cytogfr.2015.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 12/16/2022]
Abstract
Preterm birth (PTB) is a leading cause of neonatal mortality and morbidity worldwide, and represents a heavy economic and social burden. Despite its broad etiology, PTB has been firmly linked to inflammatory processes. Pro-inflammatory cytokines are produced in gestational tissues in response to stressors and can prematurely induce uterine activation, which precedes the onset of preterm labor. Of all cytokines implicated, interleukin (IL)-1 has been largely studied, revealing a central role in preterm labor. However, currently approved IL-1-targeting therapies have failed to show expected efficacy in pre-clinical studies of preterm labor. Herein, we (a) summarize animal and human studies in which IL-1 or IL-1-targeting therapeutics are implicated with preterm labor, (b) focus on novel IL-1-targeting therapies and diagnostic tests, and (c) develop the case for commercialization and translation means to hasten their development.
Collapse
Affiliation(s)
- Mathieu Nadeau-Vallée
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montréal H3C 3J7, Canada
| | - Dima Obari
- Department of Pharmacology, Université de Montréal, Montréal H3C 3J7, Canada
| | - Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada
| | - William D Lubell
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton AB TG6 2S2, Canada
| | - Sylvie Girard
- Departments of Obstetrics and Gynecology, CHU Sainte-Justine Research Centre, Montréal H3T 1C5, Canada.
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada.
| |
Collapse
|
40
|
Trophoblast-microbiome interaction: a new paradigm on immune regulation. Am J Obstet Gynecol 2015; 213:S131-7. [PMID: 26428492 DOI: 10.1016/j.ajog.2015.06.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 01/12/2023]
Abstract
The immunologic paradigm of pregnancy led to the conceptualization of pregnancy as an organ transplant that requires, for its success, suppression of the maternal immune system. Growing scientific evidence suggests that in many ways the placenta functions as a tumor rather than a transplant and the immune regulation of the maternal-fetal interface is the result of the coordinated interaction between all its cellular components, including bacteria. Examining the role of microbiota in reproduction is in its infancy, but there is growing literature that supports its relevance. We discuss a potential normal function of bacteria in the establishment of immune tolerance and compelling evidence that a viral infection might be the underlying cause of perturbation of homeostasis. There is compelling evidence that many infectious diseases of human beings are caused by >1 microorganism and are defined as polymicrobial infections. We propose that pregnancy complications, such as preterm birth, are the result of polymicrobial infections. We examine the potential cellular and molecular mechanisms by which a viral infection of the placenta might disrupt the normal interaction between the cellular component of the implantation site and bacteria. As we better understand the normal homeostasis among the maternal immune system, placenta, and commensal, we will be able to elucidate pathogenic conditions and design better approaches to treat pregnancy complications associated with infection.
Collapse
|
41
|
Wahid HH, Dorian CL, Chin PY, Hutchinson MR, Rice KC, Olson DM, Moldenhauer LM, Robertson SA. Toll-Like Receptor 4 Is an Essential Upstream Regulator of On-Time Parturition and Perinatal Viability in Mice. Endocrinology 2015; 156:3828-41. [PMID: 26151355 PMCID: PMC4588813 DOI: 10.1210/en.2015-1089] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An inflammatory response is instrumental in the physiological process of parturition but the upstream signals initiating inflammation are undefined. Because endogenous ligands for Toll-like receptor 4 (TLR4) are released in late gestation, we hypothesized that on-time labor requires TLR4 signaling, to trigger a cytokine and leukocyte response and accelerate the parturition cascade. In pregnant TLR4-deficient (Tlr4-/-) mice, average gestation length was extended by 13 hours and increased perinatal mortality was seen compared with wild-type controls. Quantification of cytokine and uterine activation gene expression showed that late gestation induction of Il1b, Il6, Il12b, and Tnf expression seen in control placenta and fetal membranes was disrupted in Tlr4-/- mice, and accompanied by a transient delay in expression of uterine activation genes, including prostaglandin F receptor, oxytocin receptor, and connexin-43. Leukocyte populations were altered before birth in TLR4-deficient females, with fewer neutrophils and macrophages in the placenta, and fewer dendritic cells and more regulatory T cells in the myometrium. Administration of TLR4 ligand lipopolysaccharide to pregnant wild-type mice induced cytokine expression and fetal loss, whereas Tlr4-/- pregnancies were protected. The small molecule TLR4 antagonist (+)-naloxone increased mean duration of gestation by 16 hours in wild-type mice. Collectively, these data demonstrate that TLR4 is a key upstream regulator of the inflammatory response acting to drive uterine activation and control the timing of labor. Because causal pathways for term and preterm labor converge with TLR4, interventions to manipulate TLR4 signaling may have therapeutic utility for women at risk of preterm labor, or in postterm pregnancy.
Collapse
Affiliation(s)
- Hanan H Wahid
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - Camilla L Dorian
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - Peck Yin Chin
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - Mark R Hutchinson
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - Kenner C Rice
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - David M Olson
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - Lachlan M Moldenhauer
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - Sarah A Robertson
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| |
Collapse
|
42
|
Migale R, Herbert BR, Lee YS, Sykes L, Waddington SN, Peebles D, Hagberg H, Johnson MR, Bennett PR, MacIntyre DA. Specific Lipopolysaccharide Serotypes Induce Differential Maternal and Neonatal Inflammatory Responses in a Murine Model of Preterm Labor. THE AMERICAN JOURNAL OF PATHOLOGY 2015. [PMID: 26212908 DOI: 10.1016/j.ajpath.2015.05.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Intrauterine inflammation is recognized as a key mediator of both normal and preterm birth but is also associated with neonatal neurological injury. Lipopolysaccharide (LPS) is often used to stimulate inflammatory pathways in animal models of infection/inflammation-induced preterm labor; however, inconsistencies in maternal and neonatal responses to LPS are frequently reported. We hypothesized that LPS serotype-specific responses may account for a portion of these inconsistencies. Four different Escherichia coli LPS serotypes (O111:B4, O55:B5, O127:B8, and O128:B12) were administered to CD1 mice via intrauterine injection at gestational day 16. Although control animals delivered at term 60 ± 15 hours postinjection (p.i.), those administered with O111:B4 delivered 7 ± 2 hours p.i., O55:B5 delivered 10 ± 3 hours p.i., O127:B8 delivered 16 ± 10 hours p.i., and O128:B12 delivered 17 ± 2 hours p.i. (means ± SD). A correlation between the onset of preterm labor and myometrial activation of the inflammatory transcription factor, activator protein 1, but not NF-κB was observed. Specific LPS serotypes induced differential activation of downstream contractile and inflammatory pathways in myometrium and neonatal pup brain. Our findings demonstrate functional disparity in inflammatory pathway activation in response to differing LPS serotypes. Selective use of LPS serotypes may represent a useful tool for targeting specific inflammatory response mechanisms in these models.
Collapse
Affiliation(s)
- Roberta Migale
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Bronwen R Herbert
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom; Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Yun S Lee
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Lynne Sykes
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, United Kingdom; Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Donald Peebles
- UCL Centre for Perinatal Brain Protection & Repair, Institute for Women's Health, University College London, London, United Kingdom
| | - Henrik Hagberg
- Department of Clinical Sciences, Perinatal Center, University of Gothenburg, Gothenburg, Sweden; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Mark R Johnson
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom; Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London, United Kingdom
| | - Phillip R Bennett
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - David A MacIntyre
- Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom.
| |
Collapse
|
43
|
Pirianov G, MacIntyre DA, Lee Y, Waddington SN, Terzidou V, Mehmet H, Bennett PR. Specific inhibition of c-Jun N-terminal kinase delays preterm labour and reduces mortality. Reproduction 2015; 150:269-77. [PMID: 26183892 PMCID: PMC4982111 DOI: 10.1530/rep-15-0258] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/16/2015] [Indexed: 11/08/2022]
Abstract
Preterm labour (PTL) is commonly associated with infection and/or inflammation. Lipopolysaccharide (LPS) from different bacteria can be used to independently or mutually activate Jun N-terminal kinase (JNK)/AP1- or NF-κB-driven inflammatory pathways that lead to PTL. Previous studies using Salmonella abortus LPS, which activates both JNK/AP-1 and NF-κB, showed that selective inhibition of NF-κB delays labour and improves pup outcome. Where labour is induced using Escherichia coli LPS (O111), which upregulates JNK/AP-1 but not NF-κB, inhibition of JNK/AP-1 activation also delays labour. In this study, to determine the potential role of JNK as a therapeutic target in PTL, we investigated the specific contribution of JNK signalling to S. Abortus LPS-induced PTL in mice. Intrauterine administration of S. Abortus LPS to pregnant mice resulted in the activation of JNK in the maternal uterus and fetal brain, upregulation of pro-inflammatory proteins COX-2, CXCL1, and CCL2, phosphorylation of cPLA2 in myometrium, and induction of PTL. Specific inhibition of JNK by co-administration of specific D-JNK inhibitory peptide (D-JNKI) delayed LPS-induced preterm delivery and reduced fetal mortality. This is associated with inhibition of myometrial cPLA2 phosphorylation and proinflammatory proteins synthesis. In addition, we report that D-JNKI inhibits the activation of JNK/JNK3 and caspase-3, which are important mediators of neural cell death in the neonatal brain. Our data demonstrate that specific inhibition of TLR4-activated JNK signalling pathways has potential as a therapeutic approach in the management of infection/inflammation-associated PTL and prevention of the associated detrimental effects to the neonatal brain.
Collapse
Affiliation(s)
- Grisha Pirianov
- Imperial College Parturition Research GroupDepartment of Reproductive Biology, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UKGene Transfer Technology GroupInstitute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UKProteostasis Therapeutics 200 Technology SquareSuite 402, Cambridge, Massachusetts 02139, USADepartment of Biomedical and Forensic SciencesAnglia Ruskin University, East Road, Cambridge CB1 1PT, UK
| | - David A MacIntyre
- Imperial College Parturition Research GroupDepartment of Reproductive Biology, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UKGene Transfer Technology GroupInstitute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UKProteostasis Therapeutics 200 Technology SquareSuite 402, Cambridge, Massachusetts 02139, USADepartment of Biomedical and Forensic SciencesAnglia Ruskin University, East Road, Cambridge CB1 1PT, UK
| | - Yun Lee
- Imperial College Parturition Research GroupDepartment of Reproductive Biology, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UKGene Transfer Technology GroupInstitute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UKProteostasis Therapeutics 200 Technology SquareSuite 402, Cambridge, Massachusetts 02139, USADepartment of Biomedical and Forensic SciencesAnglia Ruskin University, East Road, Cambridge CB1 1PT, UK
| | - Simon N Waddington
- Imperial College Parturition Research GroupDepartment of Reproductive Biology, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UKGene Transfer Technology GroupInstitute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UKProteostasis Therapeutics 200 Technology SquareSuite 402, Cambridge, Massachusetts 02139, USADepartment of Biomedical and Forensic SciencesAnglia Ruskin University, East Road, Cambridge CB1 1PT, UK
| | - Vasso Terzidou
- Imperial College Parturition Research GroupDepartment of Reproductive Biology, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UKGene Transfer Technology GroupInstitute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UKProteostasis Therapeutics 200 Technology SquareSuite 402, Cambridge, Massachusetts 02139, USADepartment of Biomedical and Forensic SciencesAnglia Ruskin University, East Road, Cambridge CB1 1PT, UK
| | - Huseyin Mehmet
- Imperial College Parturition Research GroupDepartment of Reproductive Biology, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UKGene Transfer Technology GroupInstitute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UKProteostasis Therapeutics 200 Technology SquareSuite 402, Cambridge, Massachusetts 02139, USADepartment of Biomedical and Forensic SciencesAnglia Ruskin University, East Road, Cambridge CB1 1PT, UK
| | - Phillip R Bennett
- Imperial College Parturition Research GroupDepartment of Reproductive Biology, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UKGene Transfer Technology GroupInstitute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UKProteostasis Therapeutics 200 Technology SquareSuite 402, Cambridge, Massachusetts 02139, USADepartment of Biomedical and Forensic SciencesAnglia Ruskin University, East Road, Cambridge CB1 1PT, UK
| |
Collapse
|
44
|
Patni S, Bryant AH, Wynen LP, Seager AL, Morgan G, Thornton CA. Functional activity but not gene expression of toll-like receptors is decreased in the preterm versus term human placenta. Placenta 2015; 36:1031-8. [PMID: 26190036 DOI: 10.1016/j.placenta.2015.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Toll-like receptor (TLR) activity within gestation-associated tissues might have a role in normal pregnancy progression as well as adverse obstetric outcomes such as preterm birth (PTB). METHODS The expression and activity of TLRs 1-9 in placentas collected following preterm vaginal delivery after infection-associated preterm labour (IA-PTL) at 25-36 weeks of gestation (preterm-svd, n = 10) were compared with those obtained after normal vaginal delivery at term (term-laboured; n = 17). Placental explants were cultured in the presence of agonists for TLR2, 3, 4, 5, 7, 8 and 9 and cytokine production after 24 h examined. Expression of TLR transcripts was determined using real time quantitative PCR. RESULTS Reactivity to all agonists except CpG oligonucleotides was observed indicating that other than TLR9 all of the receptors studied yielded functional responses both term and preterm. Significantly less TNFα and IL-6, but not IL-10, were produced by preterm than term samples in response to all TLR agonists. Changes in TLR mRNA expression did not underlie functional differences in the preterm and term groups; nor does a pre-exposure/tolerance model mimic this finding. While glucocorticoids suppressed cytokine production in an in vitro model using term tissue the association between lower gestational age and decreased cytokine outputs suggests a temporally regulated response. DISCUSSION Pro-inflammatory cytokine output in response to multiple TLR ligands was decreased in the preterm compared to the term placenta but gene expression for each TLR tended to be similar. Reduced cytokine production by the preterm placenta in response to stimulation of TLRs therefore must be regulated at the post-transcriptional level in a gestational age dependent manner.
Collapse
Affiliation(s)
- Shalini Patni
- Princess of Wales Maternity Unit, Birmingham Heartlands Hospital, Birmingham, UK
| | - Aled H Bryant
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, UK
| | - Louise P Wynen
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, UK
| | - Anna L Seager
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, UK
| | - Gareth Morgan
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, UK
| | - Catherine A Thornton
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, UK.
| |
Collapse
|
45
|
Norwitz ER, Bonney EA, Snegovskikh VV, Williams MA, Phillippe M, Park JS, Abrahams VM. Molecular Regulation of Parturition: The Role of the Decidual Clock. Cold Spring Harb Perspect Med 2015; 5:a023143. [PMID: 25918180 PMCID: PMC4632866 DOI: 10.1101/cshperspect.a023143] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The timing of birth is a critical determinant of perinatal outcome. Despite intensive research, the molecular mechanisms responsible for the onset of labor both at term and preterm remain unclear. It is likely that a "parturition cascade" exists that triggers labor at term, that preterm labor results from mechanisms that either prematurely stimulate or short-circuit this cascade, and that these mechanisms involve the activation of proinflammatory pathways within the uterus. It has long been postulated that the fetoplacental unit is in control of the timing of birth through a "placental clock." We suggest that it is not a placental clock that regulates the timing of birth, but rather a "decidual clock." Here, we review the evidence in support of the endometrium/decidua as the organ primarily responsible for the timing of birth and discuss the molecular mechanisms that prime this decidual clock.
Collapse
Affiliation(s)
- Errol R Norwitz
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, Massachusetts 02111 Mother Infant Research Institute (MIRI), Tufts University School of Medicine, Boston, Massachusetts 02110
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, Vermont 05405
| | - Victoria V Snegovskikh
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island 02905
| | - Michelle A Williams
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Mark Phillippe
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
46
|
Toxoplasma gondii isolate with genotype Chinese 1 triggers trophoblast apoptosis through oxidative stress and mitochondrial dysfunction in mice. Exp Parasitol 2015; 154:51-61. [PMID: 25913086 DOI: 10.1016/j.exppara.2015.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/01/2015] [Accepted: 04/19/2015] [Indexed: 01/04/2023]
Abstract
Congenital toxoplasmosis may result in abortion, severe mental retardation and neurologic damage in the offspring. Placental damage is considered as the key event in this disease. Here we show that maternal infection with Toxoplasma gondii Wh3 isolate of genotype Chinese 1, which is predominantly prevalent in China, induced trophoblast apoptosis of pregnant mouse. PCR array analysis of 84 key genes in the biogenesis and functions of mouse mitochondrion revealed that ten genes were up-regulated at least 2-fold in the Wh3 infection group, compared with those in the control. The elevated levels of reactive oxygen species (ROS), malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG), as well as the decreased glutathione (GSH), were observed in the infected mice. The mRNA levels of NADPH oxidase 1 and glutathione peroxidase 6 (GPx6) were significantly increased. The production of excessive ROS was NADPH oxidase-dependent, which contributed to mitochondrial structural damage and mitochondrial dysfunction in placentas, followed by the cleavage of caspase-9 and caspase-3, and finally resulted in apoptosis of trophoblasts. All the above-mentioned phenomena were inhibited by pretreatment with the antioxidant of N-acetylcysteine (NAC). Taken together, we concluded that Wh3 infection during pregnancy may contribute to trophoblast apoptosis by oxidative stress-induced mitochondrial dysfunction and activation of the downstream signaling pathway.
Collapse
|
47
|
Potter JA, Garg M, Girard S, Abrahams VM. Viral single stranded RNA induces a trophoblast pro-inflammatory and antiviral response in a TLR8-dependent and -independent manner. Biol Reprod 2014; 92:17. [PMID: 25429091 DOI: 10.1095/biolreprod.114.124032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Interest is growing in the role of viral infections and their association with adverse pregnancy outcomes. The trophoblast is permissive to viruses, but little is known about their impact on the placenta. We previously established that viral single stranded RNA (ssRNA), a Toll-like receptor 8 (TLR8) agonist, induces a restricted trophoblast pro-inflammatory cytokine/chemokine response by upregulating the secretion of interleukin (IL)-6 and IL-8. In parallel, the type I interferon, IFNbeta, is produced and acts back on the cell in an autocrine/paracrine manner to trigger caspase-3-dependent apoptosis. In this study, we sought to extend these findings by determining the mechanisms involved, examining whether viral ssRNA could induce a trophoblast antiviral response, and evaluating the influence of viral ssRNA on pregnancy outcome using a mouse model. Viral ssRNA induced human first-trimester trophoblast inflammation, type I interferon production, an antiviral response, and apoptosis in both a TLR8/MyD88-dependent and -independent manner. Furthermore, administration of viral ssRNA to pregnant mice induced placental caspase-3 activation, a pro-inflammatory cytokine/chemokine, type I interferon, and antiviral response as well as immune cell infiltration. Thus, ssRNA viral infections may compromise pregnancy by altering placental trophoblast survival and function through both TLR8 and non-TLR8 signaling pathways, leading to immune changes at the maternal-fetal interface.
Collapse
Affiliation(s)
- Julie A Potter
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Divisions of Reproductive Sciences and Maternal-Fetal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Manish Garg
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom
| | - Sylvie Girard
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Divisions of Reproductive Sciences and Maternal-Fetal Medicine, Yale School of Medicine, New Haven, Connecticut Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Divisions of Reproductive Sciences and Maternal-Fetal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
48
|
Yang J, Shi SQ, Shi L, Fang D, Liu H, Garfield RE. Nicotine, an α7 nAChR agonist, reduces lipopolysaccharide-induced inflammatory responses and protects fetuses in pregnant rats. Am J Obstet Gynecol 2014; 211:538.e1-7. [PMID: 24769008 DOI: 10.1016/j.ajog.2014.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/24/2014] [Accepted: 04/17/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The objective of the study was to examine the effects of nicotine, an α7 nicotinic acetylcholine receptor agonist, on lipopolysaccharide (LPS)-induced inflammatory responses in rats during pregnancy. STUDY DESIGN Pregnant Sprague Dawley rats were randomly divided into groups (n = 6 rats/group): group 1 rats each received a single intraperitoneal injection of LPS (25 μg/kg) on gestation day 16; group 2 rats were first pretreated with nicotine (1 mg/kg per day, subcutaneously) on gestation days 14 and 15 and then were treated with single injections of LPS on gestational day 16; group 3 rats were treated with the vehicle (saline) used for groups 2 and 3 (controls). Maternal blood was collected at 6 hours and 24 hours after LPS and vehicle treatments and assayed for tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), and interleukin-10 (IL-10). In addition, the number of live pups and pup weights were obtained at the time of delivery. RESULTS LPS treatment significantly (P < .001) elevates maternal blood levels of TNF-α and IL-6 but not IL-10 (P > .05). Nicotine treatment significantly reduces LPS-induced TNF-α and IL-6 concentrations (P < .001) but does not change (P > .05) IL-10 levels. The number of live pups in the LPS group are significantly lower (P < .001) than the vehicle treated controls, and nicotine treatment significantly (P < .011) reverses this change. Similarly, fetal weights are lower following LPS (P < .016) and higher (P < .024) in the group treated with nicotine plus LPS. CONCLUSION Nicotine reduces the LPS-induced inflammatory responses and rescues the fetus in rats during pregnancy. Thus, nicotine exerts dramatic antiinflammatory effects. These observations have important implications for control of inflammatory responses during pregnancy.
Collapse
|
49
|
Young OM, Tang Z, Niven-Fairchild T, Tadesse S, Krikun G, Norwitz ER, Mor G, Abrahams VM, Guller S. Toll-like receptor-mediated responses by placental Hofbauer cells (HBCs): a potential pro-inflammatory role for fetal M2 macrophages. Am J Reprod Immunol 2014; 73:22-35. [PMID: 25345551 DOI: 10.1111/aji.12336] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/26/2014] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Microbial-driven responses in placenta are linked with adverse pregnancy outcomes. The role of Toll-like receptor (TLR) function in Hofbauer cells (HBCs) and fetal macrophages of the placental villous core remains understudied. METHOD OF STUDY Flow cytometry and immunohistochemistry (IHC) were used to establish the phenotype of HBCs. Regulation of cytokine secretion in response to treatment with TLR agonists and expression levels of TLRs and co-activators were compared in HBCs, placental fibroblasts (FIBs), and human umbilical vein endothelial cells (HUVECs) using ELISA and qPCR. RESULTS Although flow cytometry and IHC revealed HBCs to be M2 (anti-inflammatory) macrophages, LPS and polyinosinic: polycytidylic acid [poly (I:C)] treatments markedly enhanced IL-6 secretion by HBCs, and expression of TLR-2, TLR-3, TLR-4, CD14, and MD-2 was the highest in HBCs. CONCLUSION These results indicate that although HBCs are M2 macrophages, inflammatory responses are induced through TLR-3 and TLR-4 in this cell type, suggesting a role in microbial-driven placental/fetal inflammation.
Collapse
Affiliation(s)
- Omar M Young
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Agrawal V, Jaiswal MK, Ilievski V, Beaman KD, Jilling T, Hirsch E. Platelet-activating factor: a role in preterm delivery and an essential interaction with Toll-like receptor signaling in mice. Biol Reprod 2014; 91:119. [PMID: 25253732 DOI: 10.1095/biolreprod.113.116012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelet-activating factor (PAF), a potent phospholipid activator of inflammation that signals through its cognate receptor (platelet-activating factor receptor, PTAFR), has been shown to induce preterm delivery in mice. Toll-like receptors (TLRs) are transmembrane receptors that mediate innate immunity. We have shown previously that Escherichia coli-induced preterm delivery in mice requires TLR signaling via the adaptor protein myeloid differentiation primary response gene 88 (MyD88), but not an alternative adaptor, Toll/IL-1 receptor domain-containing adapter protein-inducing interferon-beta (TRIF). In the present work, we analyzed the role of endogenously produced PAF in labor using mice lacking (knockout [KO]) PAF acetylhydrolase (PAF-AH; the key degrading enzyme for PAF). PAF-AH KO mice are more susceptible to E. coli-induced preterm delivery and inflammation than controls. In peritoneal macrophages, the PTAFR agonist carbamyl PAF induces production of inflammatory markers previously demonstrated to be upregulated during bacterially induced labor, including: inducible nitric oxide synthase (Nos2), the chemokine Ccl5 (RANTES), tumor necrosis factor (Tnf), and level of their end-products (NO, CCL5, TNF) in a process dependent upon both IkappaB kinase and calcium/calmodulin-dependent protein kinase II. Interestingly, this induced expression was completely eliminated not only in macrophages deficient in PTAFR, but also in those lacking either TLR4, MyD88, or TRIF. The dependence of PAF effects upon TLR pathways appears to be related to production of PTAFR itself: PAF-induced expression of Ptafr mRNA was eliminated completely in TLR4 KO and partially in MyD88 and TRIF KO macrophages. We conclude that PAF signaling plays an important role in bacterially induced preterm delivery. Furthermore, in addition to its cognate receptor, PAF signaling in peritoneal macrophages requires TLR4, MyD88, and TRIF.
Collapse
Affiliation(s)
- Varkha Agrawal
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois
| | - Mukesh Kumar Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Vladimir Ilievski
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Tamas Jilling
- Department of Pediatrics, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|