1
|
Mashimo R, Ohban H, Kumazaki Y, Ito S, Katagiri T, Kusaba N, Kawashima C. Dairy cow parity affects relationships among nutritional parameters in the blood of dams, umbilical cords, and calves and placental development at calving. J Reprod Dev 2024; 70:264-271. [PMID: 38972735 PMCID: PMC11461519 DOI: 10.1262/jrd.2024-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Heifer growth and milk production in lactating cows may diminish the nutrient supply to the fetus. This study aimed to analyze the characteristics of the nutrient supply to the fetus in primiparous and multiparous cows. We investigated maternal, umbilical cord, and calf blood glucose and amino acid levels, as well as placental development in 28 primiparous (PP) and 30 multiparous (MP) Holstein cows. Although the total cotyledonary weight and surface area showed no significant differences, the MP group exhibited larger individual cotyledons (P < 0.01) and fewer medium-sized cotyledons (P < 0.05). Within the PP group, total cotyledonary weight and surface area positively correlated with blood glucose (r = 0.71-0.77; P < 0.01) and total essential amino acid (r = 0.55; P < 0.05) concentrations in the umbilical veins. However, no significant correlation was observed in the MP group. Blood glucose and amino acid concentrations in the umbilical vein, umbilical artery, and calf were significantly lower in the MP group (P < 0.05), although no difference was observed in the dams between the groups. In conclusion, the nutrient status of primiparous cows can alter fetal nutrient supply. Moreover, multiparous cows have larger individual cotyledons as an adaptive response to increased milk production during pregnancy. However, this adaptive response in multiparous cows did not completely restore nutrient supply to the fetus to the same extent as that in primiparous cows. Therefore, the nutritional management of multiparous cows during pregnancy must be reconsidered.
Collapse
Affiliation(s)
- Riku Mashimo
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Hanon Ohban
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Yuka Kumazaki
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Sayaka Ito
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Tomono Katagiri
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Nobuyuki Kusaba
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Chiho Kawashima
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|
2
|
Erichsen C, Heiser A, Haack N, Maclean P, Dwyer CM, McCoard S. Increasing the Understanding of Nutrient Transport Capacity of the Ovine Placentome. Animals (Basel) 2024; 14:1294. [PMID: 38731298 PMCID: PMC11083602 DOI: 10.3390/ani14091294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Placental nutrient transport capacity influences fetal growth and development; however, it is affected by environmental factors, which are poorly understood. The objective of this study was to understand the impact of the ovine placentome morphological subtype, tissue type, and maternal parenteral supplementation of arginine mono-hydrochloride (Arg) on nutrient transport capacity using a gene expression approach. Placentomal tissues of types A, B, and C morphologic placentome subtypes were derived from 20 twin-bearing ewes, which were infused thrice daily with Arg (n = 9) or saline (Ctrl, n = 11) from 100 to 140 days of gestation. Samples were collected at day 140 of gestation. Expression of 31 genes involved in placental nutrient transport and function was investigated. Differential expression of specific amino acid transporter genes was found in the subtypes, suggesting a potential adaptive response to increase the transport capacity. Placentomal tissues differed in gene expression, highlighting differential transport capacity. Supplementation with Arg was associated with differential expressions of genes involved in amino acid transport and angiogenesis, suggesting a greater nutrient transport capacity. Collectively, these results indicate that the morphological subtype, tissue type, and maternal Arg supplementation can influence placental gene expression, which may be an adaptive response to alter the transport capacity to support fetal growth in sheep.
Collapse
Affiliation(s)
- Cathrine Erichsen
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
- Scotland’s Rural College (SRUC), Easter Bush Campus, Edinburgh EH25 9RG, UK;
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Axel Heiser
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
| | - Neville Haack
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
| | - Paul Maclean
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
| | - Cathy Mary Dwyer
- Scotland’s Rural College (SRUC), Easter Bush Campus, Edinburgh EH25 9RG, UK;
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Sue McCoard
- AgResearch Ltd., Grasslands Research Centre, Private Bag 11008, Palmerston North 4474, New Zealand (A.H.)
| |
Collapse
|
3
|
Ashley RL, Trigo EM, Ervin JM. Placental insufficiency and heavier placentas in sheep after suppressing CXCL12/CXCR4 signaling during implantation†. Biol Reprod 2023; 109:982-993. [PMID: 37724932 PMCID: PMC10724462 DOI: 10.1093/biolre/ioad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
During implantation, trophoblast cell invasion and differentiation is predominantly important to achieving proper placental formation and embryonic development. The chemokine, C-X-C motif chemokine ligand 12 (CXCL12) working through its receptor C-X-C motif chemokine receptor 4 (CXCR4) is implicated in implantation and placentation but precise roles of this axis are unclear. Suppressing CXCL12/CXCR4 signaling at the fetal-maternal interface in sheep reduces trophoblast invasion, disrupts uterine remodeling, and diminishes placental vascularization. We hypothesize these negative impacts during implantation will manifest as compromised fetal and placental growth at midgestation. To test, on day 12 postbreeding, osmotic pumps were surgically installed in 30 ewes and delivered intrauterine CXCR4 inhibitor or saline for 7 or 14 days. On day 90, fetal/maternal tissues were collected, measured, weighed, and maternal (caruncle) and fetal (cotyledon) placenta components separated and analyzed. The objectives were to determine if (i) suppressing CXCL12/CXCR4 during implantation results in reduced fetal and placental growth and development and (ii) if varying the amount of time CXCL12/CXCR4 is suppressed impacts fetal/placental development. Fetal weights were similar; however greater placental weight and placentome numbers occurred when CXCL12/CXCR4 was suppressed for 14 days. In caruncles, greater abundance of fibroblast growth factor 2, vascular endothelial growth factor A, vascular endothelial growth factor A receptor 1 (FLT-1), and placental growth factor were observed after suppressing CXCL12/CXCR4. Similar results occurred in cotyledons except less vascular endothelial growth factor in 7 day group and less fibroblast growth factor in 14 day group. Our data underscore the importance of CXCL12/CXCR4 signaling during placentation and provide strong evidence that altering CXCL12-mediated signaling induces enduring placental effects manifesting later in gestation.
Collapse
Affiliation(s)
- Ryan L Ashley
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Elisa M Trigo
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Jacqueline M Ervin
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
4
|
Zhang H, Zha X, Zhang B, Zheng Y, Liu X, Elsabagh M, Ma Y, Wang H, Shu G, Wang M. Dietary rumen-protected L-arginine or N-carbamylglutamate enhances placental amino acid transport and suppresses angiogenesis and steroid anabolism in underfed pregnant ewes. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:149-158. [PMID: 38023379 PMCID: PMC10679858 DOI: 10.1016/j.aninu.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023]
Abstract
This study aimed to investigate the effects of dietary supplementation of underfed Hu ewes from d 35 to 110 of gestation with either rumen-protected L-arginine (RP-Arg) or N-carbamylglutamate (NCG) on placental amino acid (AA) transport, angiogenic gene expression, and steroid anabolism. On d 35 of gestation, 32 Hu ewes carrying twin fetuses were randomly divided into four treatment groups, each consisting of eight ewes, and were fed the following diets: A diet providing 100% of NRC's nutrient requirements for pregnant ewes (CON); A diet providing 50% of NRC's nutrient requirements for pregnant ewes (RES); RES diet plus 5 g/d NCG (RES + NCG); or RES diet plus 20 g/d RP-Arg (RES + ARG). On the d 110 of pregnancy, blood samples were taken from the mother, and samples were collected from type A cotyledons (COT; the fetal portions of the placenta). The levels of 17β-estradiol and progesterone in the maternal serum and both the capillary area density (CAD) and capillary surface density (CSD) in type A COT were decreased in response to Arg or NCG supplementation when compared to the RES group. The concentrations of arginine, leucine, putrescine and spermidine in type A COT were higher (P < 0.05) in the RES + ARG or RES + NCG group than in the RES group. The mRNA expression levels of inducible nitric oxide synthase (iNOS) and solute carrier family 15, member 1 (SLC15A1) were increased (P < 0.05) while those of progesterone receptor (PGR) and fibroblast growth factor 2 (FGF2) were decreased in type A COT by supplementation with either NCG or RP-Arg compared to the RES group. The results suggest that providing underfed pregnant ewes from d 35 to 110 of gestation with a diet supplemented with NCG or RP-Arg improves placental AA transport, and reduces the expression of angiogenic growth factor genes and steroid anabolism, leading to better fetal development.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guihua Shu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Mashimo R, Ito S, Kawashima C. Differences in daily milk production during early pregnancy alter placental characteristics and neonatal metabolic amino acid levels in dairy cows. J Reprod Dev 2023; 69:254-260. [PMID: 37587048 PMCID: PMC10602765 DOI: 10.1262/jrd.2023-004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023] Open
Abstract
We investigated the effects of differences in milk production during early pregnancy on placental characteristics at full term, calf birth weights, and their metabolic status. Thirty-four Holstein cows were categorized into three groups (Low, n = 9; Middle, n = 16; High, n = 9) based on the quartile of average daily 4% fat-corrected milk production during early pregnancy. The High group showed higher milk component production than the other groups (P < 0.05) during early and mid-pregnancy. Although most placental characteristics did not differ significantly among the groups, cows in the High group had larger individual cotyledons and fewer medium-sized cotyledons than those in the Low group (P < 0.05). Plasma amino acid concentrations of calves in the Low and High groups were significantly higher than those of calves in the Middle group, although calf birth weights were similar among the groups. Furthermore, cows in the Low group had longer dry periods than those in the High (P = 0.004) and Middle (P = 0.058) groups. This suggests that cows in the Low group may have provided more amino acids to the fetus because of low lactation and long dry periods. Conversely, cows in the High group required more energy for lactation during early pregnancy, which can reduce nutrient availability to the placenta and fetus; however, increasing individual cotyledonary sizes during late pregnancy may ensure that the same amounts of amino acids as those in cows in the Low group are supplied to the fetus, recovering the birth weights.
Collapse
Affiliation(s)
- Riku Mashimo
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Sayaka Ito
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Chiho Kawashima
- Field Centre of Animal Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|
6
|
Speckhart SL, Oliver MA, Ealy AD. Developmental Hurdles That Can Compromise Pregnancy during the First Month of Gestation in Cattle. Animals (Basel) 2023; 13:1760. [PMID: 37889637 PMCID: PMC10251927 DOI: 10.3390/ani13111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 10/29/2023] Open
Abstract
Several key developmental events are associated with early embryonic pregnancy losses in beef and dairy cows. These developmental problems are observed at a greater frequency in pregnancies generated from in-vitro-produced bovine embryos. This review describes critical problems that arise during oocyte maturation, fertilization, early embryonic development, compaction and blastulation, embryonic cell lineage specification, elongation, gastrulation, and placentation. Additionally, discussed are potential remediation strategies, but unfortunately, corrective actions are not available for several of the problems being discussed. Further research is needed to produce bovine embryos that have a greater likelihood of surviving to term.
Collapse
Affiliation(s)
| | | | - Alan D. Ealy
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.S.); (M.A.O.)
| |
Collapse
|
7
|
Meakin AS, Amirmostofian M, Darby JRT, Holman SL, Morrison JL, Wiese MD. Characterisation of cytochrome P450 isoenzyme activity in sheep liver and placental microsomes. Placenta 2023; 131:82-89. [PMID: 36527743 DOI: 10.1016/j.placenta.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Drug metabolism during pregnancy is a complex process that involves maternal, placental and fetal sites of metabolism. Indeed, there is a lack of clarity provided from drug metabolism in human pregnancy due to ethical limitations. Large animal models of human pregnancy provide an opportunity to quantify activity of phase 1 drug metabolism mediated by cytochrome P450 (CYP) enzymes in the maternal, placental, and fetal compartments. Herein, we have validated a comprehensive assay to quantify maternal, placental, and fetal CYP activity. METHODS Isolated microsomes from sheep maternal liver, placenta, and fetal liver (140d gestation, term = 150d) were incubated with CYP-specific probe drugs to quantify the activity of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A. Inhibition studies were performed to validate specificity of probe drugs. The validated assay was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS CYP1A2, CYP2B6, CYP2C8, CYP2C19, CYP2D6, CYP2E1 and CYP3A were active in maternal liver. In contrast, only CYP1A2, CYP2C8 and CYP2D6 were active in the placenta, whereas CYP2B6, CYP2C8 and CYP2D6 were active in the fetal liver. Of the placental-specific CYPs validated, CYP1A2 increased in type A compared with type D placentomes, whereas CYP2C8 activity increased in type B compared with type A and C. DISCUSSION This study has established conditions for compartment-specific CYP activity in the sheep maternal-placental-fetal unit using a validated and standardised experimental workflow. Compartment- and placentome type-specific CYP activity are important considerations when examining drug metabolism in the maternal-placental-fetal unit and in determining the impact of pregnancy complications.
Collapse
Affiliation(s)
- Ashley S Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Marzieh Amirmostofian
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jack RT Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | - Michael D Wiese
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
8
|
Contreras-Correa ZE, Cochran T, Metcalfe A, Burnett DD, Lemley CO. Seasonal and temporal variation in the placenta during melatonin supplementation in a bovine compromised pregnancy model. J Anim Sci 2022; 100:skac372. [PMID: 36370127 PMCID: PMC9762882 DOI: 10.1093/jas/skac372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2023] Open
Abstract
Compromised pregnancies result in a poorly functioning placenta restricting the amount of oxygen and nutrient supply to the fetus resulting in intrauterine growth restriction (IUGR). Supplementing dietary melatonin during a compromised pregnancy increased uteroplacental blood flow and prevented IUGR in a seasonal-dependent manner. The objectives were to evaluate seasonal melatonin-mediated changes in temporal alterations of the bovine placental vascularity and transcript abundance of clock genes, angiogenic factors, and nutrient sensing genes in 54 underfed pregnant Brangus heifers (Fall, n = 29; Summer, n = 25). At day 160 of gestation, heifers were assigned to treatments consisting of adequately fed (ADQ-CON; 100% NRC; n = 13), nutrient restricted (RES-CON; 60% NRC; n = 13), and ADQ or RES supplemented with 20 mg/d of melatonin (ADQ-MEL, n = 13; RES-MEL, n = 15). The animals were fed daily at 0900 hours until day 240 where Cesarean sections were performed in the morning (0500 hours) or afternoon (1300 hours) for placentome collections. In both seasons, we observed a temporal alteration of the core clock genes in the cotyledonary tissue in a season-dependent manner. In the fall, ARNTL, CLOCK, NR1D1, and RORA transcript abundance were decreased (P ≤ 0.05) in the afternoon compared to the morning; whereas in the summer, ARNTL, PER2, and RORA expression were increased (P ≤ 0.05) in the afternoon. Interestingly, in both seasons, there was a concomitant temporal increase (P ≤ 0.05) of cotyledonary blood vessel perfusion and caruncular melatonin receptor 1A transcript abundance. Melatonin supplementation did not alter the melatonin receptor 1A transcript abundance (P > 0.05), however, in the summer, melatonin supplementation increased cotyledonary VEGFA, CRY1, and RORA (P ≤ 0.05) transcript abundance. In addition, during the summer the placentomes from underfed dams had increased average capillary size and HIF1α transcript abundance compared to those adequately fed (P ≤ 0.05). In conclusion, these data indicate increased cotyledonary blood vessel size and blood distribution after feeding to better facilitate nutrient transport. Interestingly, the maternal nutritional plane appears to play a crucial role in regulating the bovine placental circadian clock. Based on these findings, the regulation of angiogenic factors and clock genes in the bovine placenta appears to be an underlying mechanism of the therapeutic effect of dietary melatonin supplementation in the summer.
Collapse
Affiliation(s)
- Zully E Contreras-Correa
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Taylor Cochran
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Abbie Metcalfe
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Derris D Burnett
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| |
Collapse
|
9
|
Makela B, Recktenwald E, Alves FC, Ehrhardt R, Veiga-Lopez A. Effect of pre-conceptional nutrition and season on fetal growth during early pregnancy in sheep. Theriogenology 2022; 190:22-31. [PMID: 35914348 PMCID: PMC9574784 DOI: 10.1016/j.theriogenology.2022.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/20/2022]
Abstract
Gestational age in sheep can be closely predicted through ultrasonographic measurement of fetal bones when correlated to standardized fetal growth curves. However, these standardized curves do not account for factors that are known modulators of fetal growth, such as maternal nutrition or health status. Despite being seasonal breeders, and studies reporting an effect of season on birth weight, the influence of season on fetal growth has not been well characterized. In this study, we hypothesized that season of conception will affect fetal growth curves during mid-gestation and that pre-conceptional nutrition would have no effect. We investigated this by provisioning treatments of low, control, and high planes of nutrition during the lactation and flushing pre-conceptional periods to multiparous Dorset x Polypay and Dorset ewes over two seasons (the optimal breeding season [n = 97] and the suboptimal breeding season [n = 104]). Females were mated naturally with mating dates recorded, fetal biparietal diameter measured via ultrasound between gestational days 35-71, and newborn weights recorded at lambing. Pre-conceptional nutritional treatments did not affect fetal biparietal diameter. However, low vs. high nutrition in the pre-conceptional lactation (but not flushing) period resulted in reduced lamb birth weights (P < 0.001). Early fetal growth tended to be faster in the suboptimal breeding season than in the optimal breeding season (P < 0.061) with lambs being heavier at birth in the optimal breeding season (P < 0.001). There was no effect of fetal sex or litter size on fetal biparietal diameter during the first half of pregnancy, however both sex and litter size influenced lamb birth weight (P < 0.001) with males being heavier than females and singletons being heavier than twins and triplets. Mating date within the flushing period had a significant effect on lamb birth weight regardless of season and independent of treatment, with ewes that conceived later in the flushing period having heavier lambs at birth (P = 0.007). These findings suggest that pre-conceptional under- or overnutrition resulting in substantial changes in body condition does not affect fetal growth during the first half of pregnancy. However, the reduction in lamb birth weight indicates that pre-conceptional maternal nutrition during the previous lactation period may affect fetal growth later in pregnancy.
Collapse
Affiliation(s)
- Barbara Makela
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Erin Recktenwald
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Filipe Couto Alves
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Richard Ehrhardt
- Department of Animal Science, Michigan State University, East Lansing, MI, USA; Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, MI, USA; Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
10
|
Brzozowska A, Stankiewicz T, Błaszczyk B, Chundekkad P, Udała J, Wojtasiak N. Ultrasound parameters of early pregnancy and Doppler indices of blood vessels in the placenta and umbilical cord throughout the pregnancy period in sheep. BMC Vet Res 2022; 18:326. [PMID: 36042514 PMCID: PMC9426239 DOI: 10.1186/s12917-022-03424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ultrasonography is one of the most important techniques that enable the detection and monitoring of pregnancy. One such study using this technique is the assessment of the hemodynamics of fetal and umbilical blood vessels. However, there is little data on blood flow in the placentomes, which is the basic structural unit of the sheep's placenta. Therefore, the aim of this study was to determine the Doppler parameters in the arterial vessels of the caruncles, cotyledons and the umbilical cord as well as measuring venous flow rates during the entire gestation period of the sheep. Additionally, the usefulness of various other ultrasound parameters in the early diagnosis of pregnancy in sheep was analyzed. RESULTS Most of the Doppler parameters in umbilical, cotyledonary and caruncular arteries were significantly correlated with the day of pregnancy (p < 0.01). In the early stages of pregnancy, the peak systolic velocity (PSV), regardless of the location of the artery, was significantly lower than that in the later stages of pregnancy (p < 0.01). PSV was also found to be significantly higher in the umbilical artery than in the cotyledonary and caruncular arteries (p < 0.01). Until the 50th day of pregnancy, the end diastolic velocity (EDV) was not found in the umbilical and cotyledonary arteries. EDV was significantly higher in the caruncular arteries than in the cotyledonary and umbilical arteries (p < 0.01). The resistance index (RI) and pulsatility index (PI) in the early stages of pregnancy were found to be significantly higher than that in the later stages of pregnancy (p < 0.01). The RI and PI were significantly lower in the caruncular arteries than in the arteries of the cotyledons and umbilical cord (p < 0.01). In the umbilical vein, all Doppler parameters were observed to be significantly higher than those in the placentomal veins (p < 0.01 or p < 0.05). Using transrectal ultrasound, pregnancy was detected between 20 and 28 days after mating. The ovaries were observed to have corpora lutea, the diameter of which was fairly consistent from the 17th to the 56th day of pregnancy. CONCLUSIONS It has been demonstrated that both the location of the arterial vessel in the placental-umbilical circulation and the gestational age have a significant impact on hemodynamic parameters. The results also provide new insights about the blood flow in caruncular and cotyledonary arteries, which could contribute to a more holistic understanding of hemodynamic changes in the placentas of sheep. Analyzing haemodynamic parameters in the umbilical and placental veins are preliminary studies in sheep, but it could inspire further research in this field. Furthermore, the research conducted confirms the practicality and convenience of transrectal ultrasonography in the early diagnosis of pregnancy in sheep and also indicates that the identification and imaging of the corpus luteum using B-mode ultrasonography can be a very early and simple method of confirming effective mating in sheep.
Collapse
Affiliation(s)
- Angelika Brzozowska
- West Pomeranian University of Technology in Szczecin, Faculty of Biotechnology and Animal Husbandry, Department of Animal Reproduction Biotechnology and Environmental Hygiene, 29 Klemensa Janickiego Street, 71-270, Szczecin, Poland
| | - Tomasz Stankiewicz
- West Pomeranian University of Technology in Szczecin, Faculty of Biotechnology and Animal Husbandry, Department of Animal Reproduction Biotechnology and Environmental Hygiene, 29 Klemensa Janickiego Street, 71-270, Szczecin, Poland.
| | - Barbara Błaszczyk
- West Pomeranian University of Technology in Szczecin, Faculty of Biotechnology and Animal Husbandry, Department of Animal Reproduction Biotechnology and Environmental Hygiene, 29 Klemensa Janickiego Street, 71-270, Szczecin, Poland
| | - Pavitra Chundekkad
- Department of Biology, University of Victoria, 3800 Finnerty Road Victoria BC, Victoria, V8P 5C2, Canada
| | - Jan Udała
- West Pomeranian University of Technology in Szczecin, Faculty of Biotechnology and Animal Husbandry, Department of Animal Reproduction Biotechnology and Environmental Hygiene, 29 Klemensa Janickiego Street, 71-270, Szczecin, Poland
| | - Natalia Wojtasiak
- West Pomeranian University of Technology in Szczecin, Faculty of Biotechnology and Animal Husbandry, Department of Animal Reproduction Biotechnology and Environmental Hygiene, 29 Klemensa Janickiego Street, 71-270, Szczecin, Poland
| |
Collapse
|
11
|
Maternal metabolizable protein restriction during gestation affects the vascular function of maternal and fetal placental arteries in sheep. Theriogenology 2022; 185:24-33. [DOI: 10.1016/j.theriogenology.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022]
|
12
|
Britt JL, Greene MA, Klotz JL, Justice SM, Powell RR, Noorai RE, Bruce TF, Duckett SK. Mycotoxin ingestion during late gestation alters placentome structure, cotyledon transcriptome, and fetal development in pregnant sheep. Hum Exp Toxicol 2022; 41:9603271221119177. [PMID: 35947831 DOI: 10.1177/09603271221119177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ergot alkaloids, a class of mycotoxins, induce vasoconstriction when consumed by animals and humans. Pregnant ewes (n = 16; 81.2 kg ± 7.7) were assigned fed endophyte-infected tall fescue seed (E+; 4.14 μg ergovaline + ergovalinine/g seed) or a control diet (CON; 0 μg ergovaline + ergovalinine) for increasing duration during late gestation (from gd86 to gd110 or gd133) to examine changes in placentome morphology and mRNA transcriptome, and fetal development. Exposure to E+ fescue reduced serum prolactin concentrations at gd110 and gd133 demonstrating treatment efficacy. For control ewes, cotyledon and total placentome weights decreased with advancing gestation due to remodeling of placental tissues; however, cotyledon and placentome weight did not change with advancing gestation in E+ fed ewes. Fetal brain sparing was evident in E+ exposed fetuses at gd110 and gd133 compared to CON, which demonstrates asymmetrical growth and intrauterine growth restriction. Mycotoxin exposure (E+) resulted in differential expression of 22 genes in the cotyledon tissue at gd110 but only one gene at gd133 compared to CON. These results suggest that the response to mycotoxin exposure in the pregnant sheep model has an immediate impact on placental remodeling and fetal development that persists throughout the duration of the exposure period.
Collapse
Affiliation(s)
- J L Britt
- Department of Animal and Veterinary Sciences, 2545Clemson University, Clemson, SC, USA
| | - M A Greene
- Department of Animal and Veterinary Sciences, 2545Clemson University, Clemson, SC, USA
| | - J L Klotz
- Forage Production Research Unit, USDA-ARS, Lexington, KY, USA
| | - S M Justice
- Department of Animal and Veterinary Sciences, 2545Clemson University, Clemson, SC, USA
| | - R R Powell
- Clemson University Light Imaging Facility, 2545Clemson University, Clemson, SC, USA
| | - R E Noorai
- Clemson University Genomics and Bioinformatics Facility, 2545Clemson University, Clemson, SC, USA
| | - T F Bruce
- Clemson University Light Imaging Facility, 2545Clemson University, Clemson, SC, USA
| | - S K Duckett
- Department of Animal and Veterinary Sciences, 2545Clemson University, Clemson, SC, USA
| |
Collapse
|
13
|
Reid DS, Burnett DD, Contreras-Correa ZE, Lemley CO. Differences in bovine placentome blood vessel density and transcriptomics in a mid to late-gestating maternal nutrient restriction model. Placenta 2021; 117:122-130. [PMID: 34883456 DOI: 10.1016/j.placenta.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Prenatal development is reliant on a functioning placenta, which can be influenced by maternal nutrition. Moreover, the variation in cotyledonary capacity within an animal has not been fully examined to date. Therefore, the purpose of this study was to determine the effect of (1) placentome size and (2) maternal nutrient restriction on molecular, microscopic, and macroscopic features of bovine placentomes during late gestation. METHODS Pregnant cows (n = 6) were placed into one of 2 treatments: CON (100% NRC) vs RES (60% of NRC) from day 140 until slaughter at day 240 of gestation. Placentomes of various sizes were perfused to assess macroscopic blood vessel density of the cotyledon. Microscopic imaging and RNA extraction for sequencing was performed. RESULTS Macroscopic blood vessel density relative to placentome weight was not different (P = 0.42) among small, medium, or large placentomes. Cotyledonary microscopic blood vessel number, area, and perimeter was increased (P < 0.005) in high versus low blood perfusion areas. Differential expressed gene (DEG) analysis showed 209 upregulations and 168 downregulations in the RES group (P ≤ 0.0001). Gene Ontology (GO) analysis showed that downregulated enriched terms were involved in blood vessel and mesenchymal stem cells development, whereas upregulated enriched terms were involved with translation and ribosomal function. DISCUSSION This study demonstrates that placentome function is uniform across various placentome sizes within an animal. However, microscopic heterogeneity exists within each placentome. Maternal nutrient constraints alter placental transcriptomics which may yield compensatory mechanisms involved in nutrient transport including increased perimeter.
Collapse
Affiliation(s)
- Dana S Reid
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Derris D Burnett
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Zully E Contreras-Correa
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
14
|
Okoye CN, Ugwu IA, Agina OA, Udeani IJ, Udoumoh AF, Ihedioha JI. Changes in the morphometry of the uterus, ovary, and foetus, and biochemistry of allantoic and amniotic membrane fluids of Yankasa ewes across the gestation period. Trop Anim Health Prod 2021; 53:375. [PMID: 34181121 DOI: 10.1007/s11250-021-02838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
This study evaluated the uterine and fetal morphometric changes and fetal membrane fluids biochemistry across the gestation of Yankasa sheep. The amniotic and allantoic fluids are actively involved in the constant physiologic exchange between the fetus and maternal circulation. Hence, the knowledge regarding changes in the composition of fetal membrane fluids is important for understanding fetal metabolism, and the diagnosis of pathophysiological conditions during gestation. Gravid uteri from 37 ewes and their corresponding ovaries were sampled. The number and size of the placentomes in the second and third terms of gestation were significantly higher relative to the first term. The total protein, albumin, glucose, urea, creatinine, and calcium levels as well as alkaline phosphatase (ALP) and aspartate aminotransferase (AST) activities were higher in the allantoic fluid. In the allantoic fluid, the levels of total protein, globulin, and the activity levels of ALT and AST increased progressively with the advancement of gestation; contrarily, the levels of calcium, chloride, and the activity level of ALT decreased. For the amniotic fluid, the levels of total protein, globulin, urea, calcium, and the enzyme activities in the second and third terms did not differ but were higher than the level in the first term of gestation. In addition, the most significant increases in creatinine level and white blood cell count were observed in the third term of gestation. Therefore, notable differences in the levels of ALT, AST, total proteins, glucose, urea, creatinine, and WBC counts were observed in the two fetal membrane fluids.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Veterinary Obstetrics and Reproductive Diseases, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Izuchukwu A Ugwu
- Department of Veterinary Obstetrics and Reproductive Diseases, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Onyinyechukwu A Agina
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Ikechukwu J Udeani
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anietie F Udoumoh
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - John I Ihedioha
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
15
|
Vonnahme KA, Arndt WJ, Borowicz PP, Caton JS, Grazul-Bilska AT, Redmer DA, Reynolds LP. Effects of fetal and maternal genotype on placentome morphology in sheep. Theriogenology 2020; 158:283-289. [PMID: 33002772 DOI: 10.1016/j.theriogenology.2020.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022]
Abstract
Both maternal and fetal genotypes contribute to conceptus development. The objective was to determine how placentome number, size, and type and fetal weight was influenced after reciprocal embryo transfer in Columbia and Romanov sheep. Reciprocal embryo transfer was conducted between Columbia and Romanov ewes where a single embryo was transferred into Romanov and Columbia recipients [Romanov embryo in a Romanov uterus (RinR, n = 9); Romanov embryo in a Columbia uterus (RinC, n = 7); Columbia embryo in a Columbia uterus (CinC, n = 8); Columbia embryo in a Romanov uterus (CinR, n = 4)]. On day 130 of gestation, fetuses were weighed and placentomes were morphologically typed, weighed, and measured. Regardless of maternal genotype, Romanov fetuses were smaller (P < 0.05) compared to Columbia fetuses. Moreover, CinC fetuses were larger (P < 0.05) than CinR fetuses. There was a tendency (P = 0.12) for a fetal by maternal genotype interaction on total placentome weight, but main effects were significant for fetal genotype (P = 0.04) and maternal genotype (P < 0.01). The number of Type A placentomes was greater than any other types. Type A placentomes had a greater (P < 0.05) contribution to total placentome weight within the Romanov uterus, or when associated with a Romanov fetus, than within the Columbia breed, in which placentome type was evenly distributed. The hypothesis that the Romanov uterus would limit the growth of a Columbia conceptus is accepted; however, the Romanov conceptus did not experience augmented growth when transferred into a Columbia uterus as predicted.
Collapse
Affiliation(s)
- K A Vonnahme
- Department of Animal Sciences, North Dakota State University, Fargo, 58105, USA; Zoetis LLC, Parsippany, NJ, USA.
| | - W J Arndt
- Department of Animal Sciences, North Dakota State University, Fargo, 58105, USA
| | - P P Borowicz
- Department of Animal Sciences, North Dakota State University, Fargo, 58105, USA
| | - J S Caton
- Department of Animal Sciences, North Dakota State University, Fargo, 58105, USA
| | - A T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, 58105, USA
| | - D A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, 58105, USA
| | - L P Reynolds
- Department of Animal Sciences, North Dakota State University, Fargo, 58105, USA
| |
Collapse
|
16
|
Schwarz ER, Oliveira LJ, Bonfante F, Pu R, Pozor MA, Maclachlan NJ, Beachboard S, Barr KL, Long MT. Experimental Infection of Mid-Gestation Pregnant Female and Intact Male Sheep with Zika Virus. Viruses 2020; 12:v12030291. [PMID: 32156037 PMCID: PMC7150993 DOI: 10.3390/v12030291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is an arbovirus that causes birth defects, persistent male infection, and sexual transmission in humans. The purpose of this study was to continue the development of an ovine ZIKV infection model; thus, two experiments were undertaken. In the first experiment, we built on previous pregnant sheep experiments by developing a mid-gestation model of ZIKV infection. Four pregnant sheep were challenged with ZIKV at 57–64 days gestation; two animals served as controls. After 13–15 days (corresponding with 70–79 days of gestation), one control and two infected animals were euthanized; the remaining animals were euthanized at 20–22 days post-infection (corresponding with 77–86 days of gestation). In the second experiment, six sexually mature, intact, male sheep were challenged with ZIKV and two animals served as controls. Infected animals were serially euthanized on days 2–6 and day 9 post-infection with the goal of isolating ZIKV from the male reproductive tract. In the mid-gestation study, virus was detected in maternal placenta and spleen, and in fetal organs, including the brains, spleens/liver, and umbilicus of infected fetuses. Fetuses from infected animals had visibly misshapen heads and morphometrics revealed significantly smaller head sizes in infected fetuses when compared to controls. Placental pathology was evident in infected dams. In the male experiment, ZIKV was detected in the spleen, liver, testes/epididymides, and accessory sex glands of infected animals. Results from both experiments indicate that mid-gestation ewes can be infected with ZIKV with subsequent disruption of fetal development and that intact male sheep are susceptible to ZIKV infection and viral dissemination and replication occurs in highly vascular tissues (including those of the male reproductive tract).
Collapse
Affiliation(s)
- Erika R. Schwarz
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
| | - Lilian J. Oliveira
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Francesco Bonfante
- Laboratory of Experimental Animal Models, Division of Comparative Biomedical Sciences, Instituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Ruiyu Pu
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
| | - Malgorzata A. Pozor
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - N. James Maclachlan
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Sarah Beachboard
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
| | - Kelli L. Barr
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX 76798, USA;
| | - Maureen T. Long
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (E.R.S.); (R.P.); (S.B.)
- Correspondence:
| |
Collapse
|
17
|
El-Samahy MA, Yao X, Zhang G, Zhang Y, Wang F. A proposed sample handling of ovine cotyledon for proteomic studies. Anal Biochem 2020; 593:113585. [PMID: 31954698 DOI: 10.1016/j.ab.2020.113585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 11/28/2022]
Abstract
Ovine trophoblast is a suitable material for placental studies. However, a universal protocol for handling ruminant cotyledon samples has still not been reported. Considering the villous structure of ovine cotyledon, we suggest procedures to prepare cotyledons with limited inherent contamination, using semi-dry conditions to avoid freezing damage and sample errors. The cytosolic water-soluble proteins were physically extracted from the frozen cotyledons. High homogeneity was demonstrated between the replicates of both tissue and extract samples. Importantly, the chemical lysis of placental crude extracts was necessary for protein separation and immunoreaction. The integrity of stored tissues was histologically validated using a formalin-fixed paraffin-embedded technique. Using label-free proteomics, we detected 388 Ovis protein-groups in at least two of three biological replicates of either the tissue or extract. Although the water-soluble proteins were dominated by hemoglobin subunits, ten proteins were identified exclusively in all extract replicates. The physical extraction selectively reduced the membrane, extracellular matrix, and cytoskeleton proteins. The hydrolase enzymes, in the extract, hindered the identification of some specific proteins, such as histone H2A. In summary, the proposed workflow may guide further proteomic investigations of ovine cotyledon biology. Furthermore, our proteomic data have inferred some potential mechanisms of ovine trophoblast at parturition.
Collapse
Affiliation(s)
- M A El-Samahy
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaolei Yao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
18
|
Britt JL, Greene MA, Bridges WC, Klotz JL, Aiken GE, Andrae JG, Pratt SL, Long NM, Schrick FN, Strickland JR, Wilbanks SA, Miller MF, Koch BM, Duckett SK. Ergot alkaloid exposure during gestation alters. I. Maternal characteristics and placental development of pregnant ewes1. J Anim Sci 2019; 97:1874-1890. [PMID: 30895321 DOI: 10.1093/jas/skz068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
Tall fescue [Lolium arundinaceum (Scheyreb.) Darbysh] is the primary cool season forage grass in the Southeastern United States. Most tall fescue contains an endophytic fungus (Epichloë coenophiala) that produces ergot alkaloids and upon ingestion induces fescue toxicosis. The objective of this study was to assess how exposure to endophyte-infected (E+; 1.77 mg hd-1 d-1 ergovaline and ergovalinine) or endophyte-free (E-; 0 mg hd-1 d-1 ergovaline and ergovalinine) tall fescue seed fed during 2 stages of gestation (MID, days 35-85/LATE, days 86-133) alters placental development. Thirty-six, fescue naïve Suffolk ewes were randomly assigned to 1 of 4 fescue treatments: E-/E-, E-/E+, E+/E-, or E+/E+. Ewes were individually fed the same amount of E+ or E- seed mixed into total mixed ration during MID and LATE gestation. Terminal surgeries were conducted on day 133 of gestation. Ewes fed E+ fescue seed had elevated (P < 0.001) ergot alkaloid excretion and reduced (P < 0.001) prolactin levels during the periods when fed E+ seed. Ewes switched on day 86 from E- to E+ seed had a 4% reduction (P = 0.005) in DMI during LATE gestation, which translated to a 2% reduction (P = 0.07) in DMI overall. Average daily gain was also reduced (P = 0.049) by 64% for E-/E+ ewes during LATE gestation and tended to be reduced (P = 0.06) by 33% overall. Ewes fed E+ seed during LATE gestation exhibited a 14% and 23% reduction in uterine (P = 0.03) and placentome (P = 0.004) weights, respectively. Caruncle weights were also reduced by 28% (P = 0.003) for E-/E+ ewes compared with E-/E- and E+/E-. Ewes fed E+ seed during both MID and LATE gestation exhibited a 32% reduction in cotyledon (P = 0.01) weights, whereas ewes fed E+ seed only during MID gestation (E+/E-) had improved (P = 0.01) cotyledon weights. The percentage of type A placentomes tended to be greater (P = 0.08) for E+/E+ ewes compared with other treatments. Other placentome types (B, C, or D) did not differ (P > 0.05). Total fetal weight per ewe was reduced (P = 0.01) for ewes fed E+ seed during LATE gestation compared with E-; however, feeding E+ seed during MID gestation did not alter (P = 0.70) total fetal weight per ewe. These results suggest that exposure to ergot alkaloids during LATE (days 86-133) gestation has the greatest impact on placental development by reducing uterine and placentome weights. This, in turn, reduced total fetal weight per ewe by 15% in ewes fed E+ seed during LATE gestation (E-/E+ and E+/E+).
Collapse
Affiliation(s)
- Jessica L Britt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Maslyn A Greene
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - William C Bridges
- Department of Mathematical Sciences, Clemson University, Clemson, SC
| | - James L Klotz
- USDA-ARS, Forage Production Research Unit, Lexington, KY
| | - Glen E Aiken
- USDA-ARS, Forage Production Research Unit, Lexington, KY
| | - John G Andrae
- Simpson Research and Education Center, Clemson University, Clemson, SC
| | - Scott L Pratt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Nathan M Long
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | | | - James R Strickland
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Sarah A Wilbanks
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Markus F Miller
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Brandon M Koch
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Susan K Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| |
Collapse
|
19
|
Small size at birth predicts decreased cardiomyocyte number in the adult ovine heart. J Dev Orig Health Dis 2018; 8:618-625. [PMID: 28975880 DOI: 10.1017/s2040174417000381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Low birth weight is associated with increased risk of cardiovascular disease in adulthood. Intrauterine growth restriction (IUGR) hearts have fewer CMs in early postnatal life, which may impair postnatal cardiovascular function and hence, explain increased disease risk, but whether the cardiomyocyte deficit persists to adult life is unknown. We therefore studied the effects of experimentally induced placental restriction (PR) on cardiac outcomes in young adult sheep. Heart size, cardiomyocyte number, nuclearity and size were measured in control (n=5) and PR (n=5) male sheep at 1 year of age. PR lambs were 36% lighter at birth (P=0.007), had 38% faster neonatal relative growth rates (P=0.001) and had 21% lighter heart weights relative to body weight as adults (P=0.024) than control lambs. Cardiomyocyte number, nuclearity and size in the left ventricle did not differ between control and PR adults; hearts of both groups contained cardiomyocytes (CM) with between one and four nuclei. Overall, cardiomyocyte number in the adult left ventricle correlated positively with birth weight but not with adult weight. This study is the first to demonstrate that intrauterine growth directly influences the complement of CM in the adult heart. Cardiomyocyte size was not correlated with cardiomyocyte number or birth weight. Our results suggest that body weight at birth affects lifelong cardiac functional reserve. We hypothesise that decreased cardiomyocyte number of low birth weight individuals may impair their capacity to adapt to additional challenges such as obesity and ageing.
Collapse
|
20
|
Loi P, Galli C, Lazzari G, Matsukawa K, Fulka J, Goeritz F, Hildebrandt TB. Development to term of sheep embryos reconstructed after inner cell mass/trophoblast exchange. J Reprod Dev 2018; 64:187-191. [PMID: 29445070 PMCID: PMC5902907 DOI: 10.1262/jrd.2017-109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here we report in vitro and term development of sheep embryos after the inner cell mass (ICM) from one set of sheep blastocysts were injected into the trophoblast vesicles
of another set. We also observed successful in vitro development of chimeric blastocysts made from sheep trophoblast vesicles injected with bovine ICM. First, we dissected
ICMs from 35 sheep blastocysts using a stainless steel microblade and injected them into 29 re-expanded sheep trophoblastic vesicles. Of the 25 successfully micromanipulated trophoblastic
vesicles, 15 (51.7%) re-expanded normally and showed proper ICM integration. The seven most well reconstructed embryos were transferred for development to term. Three ewes receiving
manipulated blastocysts were pregnant at day 45 (42.8%), and all delivered normal offspring (singletons, two females and one male, average weight: 3.54 ± 0.358 kg). Next, we monitored
in vitro development of sheep trophoblasts injected with bovine ICMs. Of 17 injected trophoblastic vesicles, 10 (58.8%) re-expanded after 4 h in culture, and four (40%)
exhibited integrated bovine ICM. Our results indicate that ICM/trophoblast exchange is feasible, allowing full term development with satisfactory lambing rate. Therefore, ICM exchange is a
promising approach for endangered species conservation.
Collapse
Affiliation(s)
- Pasqualino Loi
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Cesare Galli
- Avantea srl., Laboratorio di Tecnologie della Riproduzione, Cremona, Italy
| | - Giovanna Lazzari
- Avantea srl., Laboratorio di Tecnologie della Riproduzione, Cremona, Italy
| | - Kazutsugu Matsukawa
- Research and Education Faculty, Multidisciplinary Science Cluster, Life and Environmental Medicine Science Unit, Kochi University, Kochi 783-8502, Japan
| | - Josef Fulka
- Institute of Animal Science, Prague, Czech Republic
| | - Frank Goeritz
- Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | | |
Collapse
|
21
|
Liu Y, Li H, Sha Q, Hai R, Wang Y, Song Y, Gao F. Effects of maternal undernutrition on the growth, development and antioxidant status of ovine placentome subtypes during late pregnancy. Theriogenology 2018; 110:96-102. [DOI: 10.1016/j.theriogenology.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/25/2017] [Accepted: 01/02/2018] [Indexed: 11/29/2022]
|
22
|
Zhang S, Barker P, Botting KJ, Roberts CT, McMillan CM, McMillen IC, Morrison JL. Early restriction of placental growth results in placental structural and gene expression changes in late gestation independent of fetal hypoxemia. Physiol Rep 2018; 4:4/23/e13049. [PMID: 27923976 PMCID: PMC5357827 DOI: 10.14814/phy2.13049] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/02/2016] [Accepted: 10/31/2016] [Indexed: 01/12/2023] Open
Abstract
Placental restriction and insufficiency are associated with altered patterns of placental growth, morphology, substrate transport capacity, growth factor expression, and glucocorticoid exposure. We have used a pregnant sheep model in which the intrauterine environment has been perturbed by uterine carunclectomy (Cx). This procedure results in early restriction of placental growth and either the development of chronic fetal hypoxemia (PaO2≤17 mmHg) in late gestation or in compensatory placental growth and the maintenance of fetal normoxemia (PaO2>17 mmHg). Based on fetal PaO2, Cx, and Control ewes were assigned to either a normoxemic fetal group (Nx) or a hypoxemic fetal group (Hx) in late gestation, resulting in 4 groups. Cx resulted in a decrease in the volumes of fetal and maternal connective tissues in the placenta and increased placental mRNA expression of IGF2, vascular endothelial growth factor (VEGF), VEGFR‐2,ANGPT2, and TIE2. There were reduced volumes of trophoblast, maternal epithelium, and maternal connective tissues in the placenta and a decrease in placental GLUT1 and 11βHSD2 mRNA expression in the Hx compared to Nx groups. Our data show that early restriction of placental growth has effects on morphological and functional characteristics of the placenta in late gestation, independent of whether the fetus becomes hypoxemic. Similarly, there is a distinct set of placental changes that are only present in fetuses that were hypoxemic in late gestation, independent of whether Cx occurred. Thus, we provide further understanding of the different placental cellular and molecular mechanisms that are present in early placental restriction and in the emergence of later placental insufficiency.
Collapse
Affiliation(s)
- Song Zhang
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Paige Barker
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Claire T Roberts
- The Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Christine M McMillan
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Isabella Caroline McMillen
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
23
|
Placental restriction in multi-fetal pregnancies and between-twin differences in size at birth alter neonatal feeding behaviour in the sheep. J Dev Orig Health Dis 2017; 8:357-369. [DOI: 10.1017/s2040174417000137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most individuals whose growth was restricted before birth undergo accelerated or catch-up neonatal growth. This is an independent risk factor for later metabolic disease, but the underlying mechanisms are poorly understood. This study aimed to test the hypothesis that natural and experimentally induced in utero growth restriction increase neonatal appetite and milk intake. Control (CON) and placentally restricted (PR) ewes carrying multiple fetuses delivered naturally at term. Outcomes were compared between CON (n=14) and PR (n=12) progeny and within twin lamb pairs. Lamb milk intake and feeding behaviour and ewe milk composition were determined using a modified weigh-suckle-weigh procedure on days 15 and 23. PR lambs tended to have lower birth weights than CON (−15%, P=0.052). Neonatal growth rates were similar in CON and PR, whilst heavier twins grew faster in absolute but not fractional terms than their co-twins. At day 23, milk protein content was higher in PR than CON ewes (P=0.038). At day 15, PR lambs had fewer suckling bouts than CON lambs and in females light twins had more suckling attempts than their heavier co-twins. Birth weight differences between twins positively predicted differences in milk intakes. Lactational constraint and natural prenatal growth restriction in twins may explain the similar milk intakes in CON and PR. Within twin comparisons support the hypothesis that prenatal constraint increases lamb appetite, although this did not increase milk intake. We suggest that future mechanistic studies of catch-up growth be performed in singletons and be powered to assess effects in each sex.
Collapse
|
24
|
Jones AK, Gately RE, McFadden KK, Hoffman ML, Pillai SM, Zinn SA, Govoni KE, Reed SA. Ultrasound during mid‐gestation: Agreement with physical foetal and placental measurements and use in predicting gestational age in sheep. Reprod Domest Anim 2017; 52:649-654. [DOI: 10.1111/rda.12961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/09/2017] [Indexed: 11/28/2022]
Affiliation(s)
- AK Jones
- Department of Animal Science University of Connecticut Storrs CT USA
| | - RE Gately
- Department of Environmental and Population Health Tufts Cummings School of Veterinary Medicine North Grafton MA USA
| | - KK McFadden
- Department of Animal Science University of Connecticut Storrs CT USA
| | - ML Hoffman
- Department of Animal Science University of Connecticut Storrs CT USA
| | - SM Pillai
- Department of Animal Science University of Connecticut Storrs CT USA
| | - SA Zinn
- Department of Animal Science University of Connecticut Storrs CT USA
| | - KE Govoni
- Department of Animal Science University of Connecticut Storrs CT USA
| | - SA Reed
- Department of Animal Science University of Connecticut Storrs CT USA
| |
Collapse
|
25
|
Hunter DS, Hazel SJ, Kind KL, Liu H, Marini D, Giles LC, De Blasio MJ, Owens JA, Pitcher JB, Gatford KL. Effects of induced placental and fetal growth restriction, size at birth and early neonatal growth on behavioural and brain structural lateralization in sheep. Laterality 2016; 22:560-589. [PMID: 27759494 DOI: 10.1080/1357650x.2016.1243552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poor perinatal growth in humans results in asymmetrical grey matter loss in fetuses and infants and increased functional and behavioural asymmetry, but specific contributions of pre- and postnatal growth are unclear. We therefore compared strength and direction of lateralization in obstacle avoidance and maze exit preference tasks in offspring of placentally restricted (PR: 10M, 13F) and control (CON: 23M, 17F) sheep pregnancies at 18 and 40 weeks of age, and examined gross brain structure of the prefrontal cortex at 52 weeks of age (PR: 14M, 18F; CON: 23M, 25F). PR did not affect lateralization direction, but 40-week-old PR females had greater lateralization strength than CON (P = .021). Behavioural lateralization measures were not correlated with perinatal growth. PR did not alter brain morphology. In males, cross-sectional areas of the prefrontal cortex and left hemisphere correlated positively with skull width at birth, and white matter area correlated positively with neonatal growth rate of the skull (all P < .05). These studies reinforce the need to include progeny of both sexes in future studies of neurodevelopmental programming, and suggest that restricting in utero growth has relatively mild effects on gross brain structural or behavioural lateralization in sheep.
Collapse
Affiliation(s)
- Damien Seth Hunter
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia.,c School of Animal and Veterinary Sciences , Adelaide , South Australia , Australia
| | - Susan J Hazel
- c School of Animal and Veterinary Sciences , Adelaide , South Australia , Australia
| | - Karen L Kind
- a Robinson Research Institute , North Adelaide , Australia.,c School of Animal and Veterinary Sciences , Adelaide , South Australia , Australia
| | - Hong Liu
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| | - Danila Marini
- c School of Animal and Veterinary Sciences , Adelaide , South Australia , Australia
| | - Lynne C Giles
- a Robinson Research Institute , North Adelaide , Australia.,d School of Population Health , University of Adelaide , Adelaide , South Australia , Australia
| | - Miles J De Blasio
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| | - Julie A Owens
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| | - Julia B Pitcher
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| | - Kathryn L Gatford
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| |
Collapse
|
26
|
Fowden AL, Valenzuela OA, Vaughan OR, Jellyman JK, Forhead AJ. Glucocorticoid programming of intrauterine development. Domest Anim Endocrinol 2016; 56 Suppl:S121-32. [PMID: 27345310 DOI: 10.1016/j.domaniend.2016.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/11/2016] [Accepted: 02/29/2016] [Indexed: 12/26/2022]
Abstract
Glucocorticoids (GCs) are important environmental and maturational signals during intrauterine development. Toward term, the maturational rise in fetal glucocorticoid receptor concentrations decreases fetal growth and induces differentiation of key tissues essential for neonatal survival. When cortisol levels rise earlier in gestation as a result of suboptimal conditions for fetal growth, the switch from tissue accretion to differentiation is initiated prematurely, which alters the phenotype that develops from the genotype inherited at conception. Although this improves the chances of survival should delivery occur, it also has functional consequences for the offspring long after birth. Glucocorticoids are, therefore, also programming signals that permanently alter tissue structure and function during intrauterine development to optimize offspring fitness. However, if the postnatal environmental conditions differ from those signaled in utero, the phenotypical outcome of early-life glucocorticoid receptor overexposure may become maladaptive and lead to physiological dysfunction in the adult. This review focuses on the role of GCs in developmental programming, primarily in farm species. It examines the factors influencing GC bioavailability in utero and the effects that GCs have on the development of fetal tissues and organ systems, both at term and earlier in gestation. It also discusses the windows of susceptibility to GC overexposure in early life together with the molecular mechanisms and long-term consequences of GC programming with particular emphasis on the cardiovascular, metabolic, and endocrine phenotype of the offspring.
Collapse
Affiliation(s)
- A L Fowden
- Centre for Trophoblast and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | - O A Valenzuela
- Centre for Trophoblast and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - O R Vaughan
- Centre for Trophoblast and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - J K Jellyman
- Centre for Trophoblast and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, CA 90502, USA
| | - A J Forhead
- Centre for Trophoblast and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
27
|
Zhang H, Sun L, Wang Z, Deng M, Nie H, Zhang G, Ma T, Wang F. N-carbamylglutamate and L-arginine improved maternal and placental development in underfed ewes. Reproduction 2016; 151:623-35. [DOI: 10.1530/rep-16-0067] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/15/2016] [Indexed: 11/08/2022]
Abstract
AbstractThe objectives of this study were to determine how dietary supplementation ofN-carbamylglutamate (NCG) and rumen-protected L-arginine (RP-Arg) in nutrient-restricted pregnant Hu sheep would affect (1) maternal endocrine status; (2) maternal, fetal, and placental antioxidation capability; and (3) placental development. From day 35 to day 110 of gestation, 32 Hu ewes carrying twin fetuses were allocated randomly into four groups: 100% of NRC-recommended nutrient requirements, 50% of NRC recommendations, 50% of NRC recommendations supplemented with 20g/day RP-Arg, and 50% of NRC recommendations supplemented with 5g/day NCG product. The results showed that in maternal and fetal plasma and placentomes, the activities of total antioxidant capacity and superoxide dismutase were increased (P<0.05); however, the activity of glutathione peroxidase and the concentration of maleic dialdehyde were decreased (P<0.05) in both NCG- and RP-Arg-treated underfed ewes. The mRNA expression of vascular endothelial growth factor and Fms-like tyrosine kinase 1 was increased (P<0.05) in 50% NRC ewes than in 100% NRC ewes, and had no effect (P>0.05) in both NCG- and RP-Arg-treated underfed ewes. A supplement of RP-Arg and NCG reduced (P<0.05) the concentrations of progesterone, cortisol, and estradiol-17β; had no effect on T4/T3; and improved (P<0.05) the concentrations of leptin, insulin-like growth factor 1, tri-iodothyronine (T3), and thyroxine (T4) in serum from underfed ewes. These results indicate that dietary supplementation of NCG and RP-Arg in underfed ewes could influence maternal endocrine status, improve the maternal–fetal–placental antioxidation capability, and promote fetal and placental development during early-to-late gestation.
Collapse
|
28
|
Positive and negative gestational handling influences placental traits and mother-offspring behavior in dairy goats. Physiol Behav 2016; 157:129-38. [DOI: 10.1016/j.physbeh.2016.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/17/2015] [Accepted: 02/01/2016] [Indexed: 11/24/2022]
|
29
|
Ni W, You S, Cao Y, Li C, Wei J, Wang D, Qiao J, Zhao X, Hu S, Quan R. Aberrant expression of miR-127, miR-21 and miR-16 in placentas of deceased cloned sheep. Res Vet Sci 2016; 105:200-4. [PMID: 27033933 DOI: 10.1016/j.rvsc.2016.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/22/2016] [Accepted: 02/21/2016] [Indexed: 01/01/2023]
Abstract
Placental deficiencies are associated with developmental abnormalities of animal produced by somatic cell nuclear transfer (SCNT). It is reported that aberrant expression of microRNAs (miRNAs) in the common placenta is associated with fetal growth restriction and placental deficiencies. However, an understanding of the expression and function of miRNAs in the placentas of cloned animal is lacking. In this study, we characterized the expression of five growth-associated miRNAs (miR-127, miR-16, miR-21, miR-93 and miR-182) in placentas of deceased transgenic cloned sheep (deceased group, n=7), live transgenic cloned sheep (live group, n=5) and conventionally produced sheep (control group, n=10). Expression levels of miR-127 (P<0.01), miR-21 (P<0.01) and miR-16 (P<0.05) were significantly up-regulated in the placentas of deceased group compared to that of control group. In contrast, the expression of these miRNAs was largely normal in the placentas of live group, except for the expression of miR-21. Furthermore, we confirmed that retrotransposon-like gene (Rtl1), a key gene in placental development, was down-regulated by miR-127 as a target in placenta cells. Our results suggested that the abnormal expression of miR-127, miR-21 and miR-16 in placentas of deceased sheep, through dysregulation of target genes, may result in developmental deficiencies of transgenic cloned sheep.
Collapse
Affiliation(s)
- Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shuang You
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yang Cao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Junchuang Wei
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Dawei Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jun Qiao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xinxia Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Renzhe Quan
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
30
|
Brain KL, Allison BJ, Niu Y, Cross CM, Itani N, Kane AD, Herrera EA, Giussani DA. Induction of controlled hypoxic pregnancy in large mammalian species. Physiol Rep 2015; 3:3/12/e12614. [PMID: 26660546 PMCID: PMC4760453 DOI: 10.14814/phy2.12614] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Progress in the study of pregnancy complicated by chronic hypoxia in large mammals has been held back by the inability to measure long-term significant reductions in fetal oxygenation at values similar to those measured in human pregnancy complicated by fetal growth restriction. Here, we introduce a technique for physiological research able to maintain chronically instrumented maternal and fetal sheep for prolonged periods of gestation under significant and controlled isolated chronic hypoxia beyond levels that can be achieved by habitable high altitude. This model of chronic hypoxia permits measurement of materno-fetal blood gases as the challenge is actually occurring. Chronic hypoxia of this magnitude and duration using this model recapitulates the significant asymmetric growth restriction, the pronounced cardiomyopathy, and the loss of endothelial function measured in offspring of high-risk pregnancy in humans, opening a new window of therapeutic research.
Collapse
Affiliation(s)
- Kirsty L Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Beth J Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christine M Cross
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nozomi Itani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew D Kane
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emilio A Herrera
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Transabdominal ultrasound for detection of pregnancy, fetal and placental landmarks, and fetal age before Day 45 of gestation in the sheep. Theriogenology 2015; 85:939-945.e1. [PMID: 26706599 DOI: 10.1016/j.theriogenology.2015.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 11/21/2022]
Abstract
Detection of pregnancy during early gestation is advantageous for flock breeding management. Transabdominal ultrasound is a practical and efficient approach for monitoring pregnancy and fetal growth in small ruminants. However, there is limited information using the transabdominal technique before Day 45 of gestation in sheep. Therefore, our objective was to determine how accurately transabdominal ultrasound could be used to detect pregnancy, to identify pregnancy landmarks, and to quantify fetal length before Day 45 in ewes. Multiparous Western White-faced ewes (n = 99) were estrus synchronized and exposed to one of four Dorset rams. The day a ewe was marked by a ram was considered Day 0 of gestation. Ewes not remarked by Day 20 were separated for ultrasonography. To detect pregnancy and landmarks, ewes were scanned three times per week between Day 26.0 ± 0.3 (mean ± standard error) and Day 40.0 ± 0.2. A single technician performed all scans in the right nonhaired abdominal pit using a real-time portable Eazi-Scan machine and a 5-MHz linear rectal transducer. All data were analyzed using the MIXED procedure in SAS (with repeated measures where appropriate). Because of rebreeding activity, 113 ultrasound periods were initiated. The specificity and positive predictive value were 100% during the entire study. The accuracy, sensitivity, and negative predictive value of ultrasound scanning were greater than 90% beginning at Day 33 ± 1. On average, pregnancy (n = 85) was detected at Day 28.7 ± 0.4 and nonpregnancy (n = 28) at Day 25.5 ± 0.6. Three early fetal losses were identified at Day 39.7 ± 0.7. In pregnant ewes (n = 82), the overall accuracy of fetal counting was 78%. The first observance of an enlarged uterus (P = 0.05) and pregnancy (P = 0.03) was detected earlier when multiple fetuses were developing compared with singletons. Placentome evagination was first observed earlier in triplets compared with twins and singletons (P = 0.02). Fetal length increased with day of gestation (P < 0.0001) but not fetal number (P = 0.72). A fetal number by day of gestation interaction (P = 0.01) indicated differences in fetal length at Day 29 ± 1 and Day 32 ± 1. These data demonstrate that a portable ultrasound using the transabdominal technique can be used to accurately determine pregnancy, identify landmarks indicative of gestation, and estimate fetal age, before Day 45 of gestation in sheep.
Collapse
|
32
|
Clifton VL, Moss TJM, Wooldridge AL, Gatford KL, Liravi B, Kim D, Muhlhausler BS, Morrison JL, Davies A, De Matteo R, Wallace MJ, Bischof RJ. Development of an experimental model of maternal allergic asthma during pregnancy. J Physiol 2015; 594:1311-25. [PMID: 26235954 DOI: 10.1113/jp270752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/15/2015] [Indexed: 12/31/2022] Open
Abstract
Maternal asthma during pregnancy adversely affects pregnancy outcomes but identification of the cause/s, and the ability to evaluate interventions, is limited by the lack of an appropriate animal model. We therefore aimed to characterise maternal lung and cardiovascular responses and fetal-placental growth and lung surfactant levels in a sheep model of allergic asthma. Immune and airway functions were studied in singleton-bearing ewes, either sensitised before pregnancy to house dust mite (HDM, allergic, n = 7) or non-allergic (control, n = 5), and subjected to repeated airway challenges with HDM (allergic group) or saline (control group) throughout gestation. Maternal lung, fetal and placental phenotypes were characterised at 140 ± 1 days gestational age (term, ∼147 days). The eosinophil influx into lungs was greater after HDM challenge in allergic ewes than after saline challenge in control ewes before mating and in late gestation. Airway resistance increased throughout pregnancy in allergic but not control ewes, consistent with increased airway smooth muscle in allergic ewes. Maternal allergic asthma decreased relative fetal weight (-12%) and altered placental phenotype to a more mature form. Expression of surfactant protein B mRNA was 48% lower in fetuses from allergic ewes than controls, with a similar trend for surfactant protein D. Thus, allergic asthma in pregnant sheep modifies placental phenotype, and inhibits fetal growth and lung development consistent with observations from human pregnancies. Preconceptional allergen sensitisation and repeated airway challenges in pregnant sheep therefore provides an animal model to identify mechanisms of altered fetal development and adverse pregnancy outcomes caused by maternal asthma in pregnancy.
Collapse
Affiliation(s)
- Vicki L Clifton
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia.,Mater Medical Research Institute, University of Queensland, Brisbane, Qld, 4101, Australia
| | - Timothy J M Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Amy L Wooldridge
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kathryn L Gatford
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Bahar Liravi
- Department of Physiology, Monash University, Clayton, VIC, 3168, Australia
| | - Dasom Kim
- Department of Physiology, Monash University, Clayton, VIC, 3168, Australia
| | - Beverly S Muhlhausler
- FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - Andrew Davies
- Department of Physiology, Monash University, Clayton, VIC, 3168, Australia.,School of Biomedical Sciences, Peninsula Campus, Monash University, Frankston, VIC, 3199, Australia
| | - Robert De Matteo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3168, Australia
| | - Megan J Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, 3168, Australia
| | - Robert J Bischof
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia.,Department of Physiology, Monash University, Clayton, VIC, 3168, Australia
| |
Collapse
|
33
|
Poudel R, McMillen IC, Dunn SL, Zhang S, Morrison JL. Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus. Am J Physiol Regul Integr Comp Physiol 2015; 308:R151-62. [DOI: 10.1152/ajpregu.00036.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the fetus, there is a redistribution of cardiac output in response to acute hypoxemia, to maintain perfusion of key organs, including the brain, heart, and adrenal glands. There may be a similar redistribution of cardiac output in the chronically hypoxemic, intrauterine growth-restricted fetus. Surgical removal of uterine caruncles in nonpregnant ewe results in the restriction of placental growth (PR) and intrauterine growth. Vascular catheters were implanted in seven control and six PR fetal sheep, and blood flow to organs was determined using microspheres. Placental and fetal weight was significantly reduced in the PR group. Despite an increase in the relative brain weight in the PR group, there was no difference in blood flow to the brain between the groups, although PR fetuses had higher blood flow to the temporal lobe. Adrenal blood flow was significantly higher in PR fetuses, and there was a direct relationship between mean gestational PaO2 and blood flow to the adrenal gland. There was no change in blood flow, but a decrease in oxygen and glucose delivery to the heart in the PR fetuses. In another group, there was a decrease in femoral artery blood flow in the PR compared with the Control group, and this may support blood flow changes to the adrenal and temporal lobe. In contrast to the response to acute hypoxemia, these data show that there is a redistribution of blood flow to the adrenals and temporal lobe, but not the heart or whole brain, in chronically hypoxemic PR fetuses in late gestation.
Collapse
Affiliation(s)
- Rajan Poudel
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - I. Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Stacey L. Dunn
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
34
|
Zhang S, Regnault TRH, Barker PL, Botting KJ, McMillen IC, McMillan CM, Roberts CT, Morrison JL. Placental adaptations in growth restriction. Nutrients 2015; 7:360-89. [PMID: 25580812 PMCID: PMC4303845 DOI: 10.3390/nu7010360] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022] Open
Abstract
The placenta is the primary interface between the fetus and mother and plays an important role in maintaining fetal development and growth by facilitating the transfer of substrates and participating in modulating the maternal immune response to prevent immunological rejection of the conceptus. The major substrates required for fetal growth include oxygen, glucose, amino acids and fatty acids, and their transport processes depend on morphological characteristics of the placenta, such as placental size, morphology, blood flow and vascularity. Other factors including insulin-like growth factors, apoptosis, autophagy and glucocorticoid exposure also affect placental growth and substrate transport capacity. Intrauterine growth restriction (IUGR) is often a consequence of insufficiency, and is associated with a high incidence of perinatal morbidity and mortality, as well as increased risk of cardiovascular and metabolic diseases in later life. Several different experimental methods have been used to induce placental insufficiency and IUGR in animal models and a range of factors that regulate placental growth and substrate transport capacity have been demonstrated. While no model system completely recapitulates human IUGR, these animal models allow us to carefully dissect cellular and molecular mechanisms to improve our understanding and facilitate development of therapeutic interventions.
Collapse
Affiliation(s)
- Song Zhang
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Timothy R H Regnault
- Departments of Obstetrics and Gynecology, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Paige L Barker
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Isabella C McMillen
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Christine M McMillan
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Claire T Roberts
- The Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
35
|
Shukla P, Lemley C, Dubey N, Meyer A, O'Rourke S, Vonnahme K. Effect of maternal nutrient restriction and melatonin supplementation from mid to late gestation on vascular reactivity of maternal and fetal placental arteries. Placenta 2014; 35:461-6. [DOI: 10.1016/j.placenta.2014.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/12/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
|
36
|
Vonnahme KA, Lemley CO, Shukla P, O'Rourke ST. 2011 AND 2012 EARLY CAREERS ACHIEVEMENT AWARDS: Placental programming: How the maternal environment can impact placental function1,2. J Anim Sci 2013; 91:2467-80. [DOI: 10.2527/jas.2012-5929] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- K. A. Vonnahme
- Department of Animal Sciences, Mississippi State University, Mississippi State 39762
| | - C. O. Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State 39762
| | - P. Shukla
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58108
| | - S. T. O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo 58108
| |
Collapse
|
37
|
Yunusova RD, Neville TL, Vonnahme KA, Hammer CJ, Reed JJ, Taylor JB, Redmer DA, Reynolds LP, Caton JS. Impacts of maternal selenium supply and nutritional plane on visceral tissues and intestinal biology in 180-day-old offspring in sheep1. J Anim Sci 2013; 91:2229-42. [DOI: 10.2527/jas.2012-5134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- R. D. Yunusova
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - T. L. Neville
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - K. A. Vonnahme
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - C. J. Hammer
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - J. J. Reed
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - J. B. Taylor
- ARS-USDA, U.S. Sheep Experiment Station, Dubois, ID 83423
| | - D. A. Redmer
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - L. P. Reynolds
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| | - J. S. Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo 58108; and
| |
Collapse
|
38
|
van der Linden DS, Sciascia Q, Sales F, McCoard SA. Placental nutrient transport is affected by pregnancy rank in sheep. J Anim Sci 2012; 91:644-53. [PMID: 23097400 DOI: 10.2527/jas.2012-5629] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding the link between placental function and fetal growth is critical to comprehend the mechanisms underlying altered fetal growth. This study investigated the relationship between fetal weight and placentome type and size in placentae of singleton and twin fetuses and fetuses within a twin pair from ad libitum-fed ewes at d 140 of pregnancy. In addition, insulin, IGF-I, metabolites, and free AA profiles in fetal, umbilical artery, and vein plasma of singleton and twin fetuses were investigated and used as an indicator of placental nutrient transport. Individual placentae per fetus were dissected, placentomes were classed per type (A to D) and size (light to heavy), and placentome number and individual weight were recorded. Twin fetuses were 16% lighter (P = 0.01) than singletons and had a smaller placenta, with 28% decreased placentome weight (P = 0.03) and 35% fewer placentomes (P = 0.001). Twins also had a different distribution of placentome type and size compared with placentae of singletons, such that twins showed a greater proportion of type B and light placentomes compared with singletons. In twins, umbilical artery plasma had less Glu (P < 0.05) and greater Gln (P < 0.05) concentrations than fetal plasma or umbilical vein plasma, but no differences in AA concentrations were observed between these pools in singletons. Glutamate is a major oxidation energy source for the placenta, and the fetal liver is the net producer of Glu using Gln as its main precursor, indicating that the functionality of the fetoplacental unit may be different between singletons and twins. Twin fetuses had 13% less insulin (P = 0.04) concentrations in umbilical artery plasma than singletons. plasma of twin fetuses had 39% less IGF-I (P = 0.003), 33% less His (P = 0.03), and 22% less Gln (P = 0.02) concentrations and tended to have 44% less Arg (P = 0.07) and 20% less Leu (P = 0.06) concentrations than singletons. Arginine, His, and Leu are examples of AA that can promote insulin secretion, and in turn, insulin can increase fetal IGF-I concentrations. In addition, insulin and IGF-I are important fetal growth factors by stimulating and regulating AA transport across the placenta. Collectively, these results indicate that the functionality of the fetoplacental unit may be different between singletons and twins and that AA transport may be reduced in twin placentae.
Collapse
Affiliation(s)
- D S van der Linden
- Animal Nutrition and Health, AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
39
|
Ashworth CJ, Dwyer CM, McIlvaney K, Werkman M, Rooke JA. Breed differences in fetal and placental development and feto-maternal amino acid status following nutrient restriction during early and mid pregnancy in Scottish Blackface and Suffolk sheep. Reprod Fertil Dev 2011; 23:1024-33. [DOI: 10.1071/rd10290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 05/06/2011] [Indexed: 01/17/2023] Open
Abstract
This study assessed the effect of feeding 0.75 energy requirements between Days 1 and 90 of pregnancy on placental development and feto-placental amino acid status on Day 125 of pregnancy in Scottish Blackface and Suffolk ewes carrying a single fetus. Such moderate nutrient restriction did not affect placental size, placentome number or the distribution of placentome types. Although fetal weight was unaffected by maternal nutrition, fetuses carried by nutrient restricted mothers had relatively lighter brains and gastrocnemius muscles. Suffolk fetuses were heavier and longer with a greater abdominal circumference, relatively lighter brains, hearts and kidneys, but heavier spleens, livers and gastrocnemius muscles than Blackface fetuses. Total placentome weight was greater in Suffolk than Blackface ewes. Ewe breed had a greater effect on amino acid concentrations than nutrition. Ratios of maternal to fetal amino acid concentrations were greater in Suffolk ewes than Blackface ewes, particularly for some essential amino acids. The heavier liver and muscles in Suffolk fetuses may suggest increased amino acid transport across the Suffolk placenta in the absence of breed differences in gross placental efficiency. These data provide evidence of differences in nutrient handling and partitioning between the maternal body and the fetus in the two breeds studied.
Collapse
|
40
|
Jensen EC, Rochette M, Bennet L, Wood CE, Gunn AJ, Keller-Wood M. Physiological changes in maternal cortisol do not alter expression of growth-related genes in the ovine placenta. Placenta 2010; 31:1064-9. [PMID: 20951429 DOI: 10.1016/j.placenta.2010.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the effect of cortisol on growth-related genes in the ovine placenta. STUDY DESIGN Ewes carrying singleton pregnancies were operated on between 112 and 116 days of gestation (115 ± 0.4, term = 147 days) and randomly assigned into three groups: six control animals, five ewes that were administered cortisol by continuous intravenous infusion (1 mg/kg/day, high cortisol), and five ewes that were adrenalectomized and replaced with 0.5-0.6 mg cortisol/kg/day and 3 μg aldosterone/kg/day to produce cortisol concentrations equivalent to pre-pregnancy values (low cortisol). At necropsy (130 ± 0.2 days of gestation), placental tissue was frozen and stored at -80 °C for mRNA analysis. MAIN OUTCOME MEASURES To assess potential molecular mechanisms by which cortisol alters placental structure and function and fetal growth. RESULTS Cortisol levels did not significantly affect 11β-hydroxysteroid dehydrogenase 1 and 2 enzymes, glucocorticoid receptor, mineralocorticoid receptor and angiotensin II receptor, type 1 (AT1R) expression levels. Gene expression levels of AT2R were increased in the high cortisol group for type B placentomes. There was little effect of cortisol on the insulin-like growth factor (IGF) axis. There was significantly more IGF-I mRNA in B versus A type and more IGFBP-2 mRNA in B and C type versus A type placentomes regardless of treatment (p < 0.05). CONCLUSIONS These data suggest that cortisol increases placental AT2R expression at high concentrations whereas it has little effect on the placental IGF axis.
Collapse
Affiliation(s)
- E C Jensen
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
41
|
Meyer KM, Koch JM, Ramadoss J, Kling PJ, Magness RR. Ovine surgical model of uterine space restriction: interactive effects of uterine anomalies and multifetal gestations on fetal and placental growth. Biol Reprod 2010; 83:799-806. [PMID: 20574052 DOI: 10.1095/biolreprod.110.085381] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is observed in conditions with limitations in uterine space (e.g., uterine anomalies and multifetal gestations). IUGR is associated with reduced fetal weight, organ growth, and a spectrum of adult-onset diseases. To examine the interaction of uterine anomalies and multifetal gestations, we developed a surgical uterine space restriction model with a unilateral uterine horn ligation before breeding (unilateral surgery). Placentas and fetuses were studied on Gestational Day (GD) 120 and GD 130 (term = 147 days). Unilateral surgery decreased placentome numbers in singleton and twin pregnancies (25% and 50%, respectively) but not unilateral triplets. Unilateral surgery decreased total placentome weight in twin pregnancies (decreased 24%). Fetuses categorized as uterine space restricted (unilateral twin and both groups of triplets) had 51% fewer placentomes per fetus and a 31% reduction in placentomal weight per fetus compared to the nonrestricted group (control singleton, unilateral singleton, and control twin). By GD 130, uterine space-restricted fetuses exhibited decreased weight, smaller crown-rump, abdominal girth, and thoracic girth as well as decreased fetal heart, kidney, liver, spleen, and thymus weights. Lung and brain weights were unaffected, demonstrating asymmetric IUGR. At GD 130, placental efficiency (fetal weight per total placentomal weight) was elevated in uterine space-restricted fetuses. However, fetal arterial creatinine, blood urea nitrogen, and cholesterol were elevated, suggesting insufficient placental clearance. Maternal-to-fetal glucose and triglycerides ratios were elevated in the uterine space-restricted pregnancies, suggesting placental nutrient transport insufficiency. This model allows for examination of interactive effects of uterine space restriction-induced IUGR on placental adaptation and fetal organ growth.
Collapse
Affiliation(s)
- Katie M Meyer
- Departments of Pediatrics, University of Wisconsin, Madison, Wisconsin 53715, USA
| | | | | | | | | |
Collapse
|
42
|
Cotyledonary responses to maternal selenium and dietary restriction may influence alterations in fetal weight and fetal liver glycogen in sheep. Anim Reprod Sci 2010; 117:216-25. [DOI: 10.1016/j.anireprosci.2009.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 05/04/2009] [Accepted: 05/11/2009] [Indexed: 11/19/2022]
|
43
|
Lekatz LA, Caton JS, Taylor JB, Reynolds LP, Redmer DA, Vonnahme KA. Maternal selenium supplementation and timing of nutrient restriction in pregnant sheep: effects on maternal endocrine status and placental characteristics. J Anim Sci 2009; 88:955-71. [PMID: 19933425 DOI: 10.2527/jas.2009-2152] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To determine the effects of maternal Se intake and plane of nutrition during midgestation, late gestation, or both on hormone and metabolite concentrations in the dam and on placental characteristics, pregnant ewe lambs (n = 64) were assigned to 1 of 8 treatments arranged in a 2 x 2 x 2 factorial array: Se level [initiated at breeding; adequate (3.05 microg/kg of BW) or high (70.4 microg/kg of BW)] and nutritional level [100% (control) or 60% (restricted) of NRC recommendations] fed at different times of gestation [d 50 to 90 (midgestation) or d 91 to 130 (late gestation)]. The control ewes had a greater (P = 0.01) percentage change in BW from d 50 than restricted ewes during both mid- and late gestation. Although blood urea N was not affected by either Se or nutritional level, restricted ewes had greater (P = 0.01) concentrations of circulating Se on d 66, 78, 106, 120, and 130 of gestation compared with control ewes. Both Se and timing of the nutritional level affected circulating progesterone; however, only nutritional level affected thyroxine and triiodothyronine concentrations in the dam. Nutrient restriction during late gestation decreased (P <or= 0.01) fetal BW and fetal fluid weight compared with the control ewes (3.75 vs. 4.13 +/- 0.10 kg and 1.61 vs. 2.11 +/- 0.11 kg). Although neither Se nor nutritional level affected (P >or= 0.1) placental, caruncular, or cotyledonary weights, cotyledonary cellular proliferation was decreased (P < 0.05) in ewes receiving a high concentration of Se compared with those receiving adequate Se. In addition, either Se or nutritional level affected vascular endothelial growth factor (VEGFA), VEGFA-receptor 1, VEGFA-receptor 2, and NO synthase mRNA abundance in the cotyledonary tissue. In the caruncular tissue, either Se or nutritional level affected VEGFA-receptor 1, placental growth factor, and NO synthase mRNA abundance. Selenium supplementation and the duration or timing of nutrient restriction appear to influence the endocrine and metabolic status of the ewe, which may influence nutrient transport and placental function.
Collapse
Affiliation(s)
- L A Lekatz
- Department of Animal Sciences, North Dakota State University, Center for Nutrition and Pregnancy, Fargo 58108, USA
| | | | | | | | | | | |
Collapse
|