1
|
Maggs X. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2024. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- X Maggs
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Ding Y, Zhao F, Hu J, Zhao Z, Shi B, Li S. A conjoint analysis of renal structure and omics characteristics reveal new insight to yak high-altitude hypoxia adaptation. Genomics 2024; 116:110857. [PMID: 38729453 DOI: 10.1016/j.ygeno.2024.110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Yaks have unique adaptive mechanisms to the hypoxic environment, in which the kidney plays an important role. The aim of this study was to explore the histological changes of yak kidney at different altitudes and the metabolites and genes associated with adaptation to the hypoxic environment. METHODS We analyzed the tissue structure and transcriptomic metabolomic data of yak kidney tissue at two altitudes, 2600 and 4400 m. We compared and identified the morphological adaptations of the kidney and the metabolites and genes associated with hypoxia adaptation in yaks. Changes in renal morphological adaptations, differential metabolites and genes were compared and identified, combining the two in a joint analysis. RESULTS High-altitude yak kidneys showed significant adaptive changes: increased mitochondria, increased glomerular thylakoid area, and decreased localized ribosomes. Transcriptomics and metabolomics identified 69 DAMs (Differential metabolites) and 594 DEGs (differential genes). Functional enrichment analysis showed that the DAMs were associated with protein digestion and absorption, ABC transporter, and MTOR signaling pathway; the DEGs were significantly enriched in Cholesterol metabolism and P53 signaling pathway. The joint analysis indicated that metabolites such as lysine and arginine, as well as key genes such as ABCB5 and COL1A2, were particularly affected under hypoxic conditions, whereas changes in mitochondria in the tissue structure may be related to the expression of MFN1 and OPA1, and changes in glomerular thylakoid membranes are related to VEGFA and TGFB3. CONCLUSION The kidney regulates metabolites and gene expression related to hormone synthesis, protein metabolism, and angiogenesis by adjusting the mitochondrial and glomerular thylakoid membrane structure to support the survival of yaks in high-altitude environments.
Collapse
Affiliation(s)
- Yuan Ding
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
3
|
Jameel S, Bhuwalka R, Begum M, Bonu R, Jahan P. Circulating levels of cytokines (IL-6, IL-10 and TGF- β) and CD4 +CD25 +FOXP3 +Treg cell population in recurrent pregnancy loss. Reprod Biol 2024; 24:100842. [PMID: 38176116 DOI: 10.1016/j.repbio.2023.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024]
Abstract
Recurrent pregnancy loss (RPL), a serious reproductive health issue, characterized by two or more pregnancy losses before 20th week of gestation. Globally, it affects 2-5% couples and the basis of the crisis is still unknown in 50% cases. Successful pregnancy is associated with pro and anti-inflammatory gestational phases that tolerate the semi-allogenic foetus, and disturbance leads to pregnancy complications like RPL. This case-control study aimed to assess the inflammatory status in the mid-gestation of ongoing pregnancy of women with (RPL) and without (NRPL) the history of RPL. Blood samples were processed for PBMC isolation, subjected to Flow-cytometry for CD4+CD25+FOXP3+Treg-cell population count and serum samples for IL-6, TGF-β, IL-10 cytokine levels (ELISA). Significant reduction in the percentage of Treg cells, and elevated values for IL-6/TGF-β and IL-6/IL-10 ratios were observed in RPL over NRPL group (p = 0.0001). Opposing results were seen with respect to the magnitude of history of RPL (2 vs. >2 losses). ROC curve analysis showed the superior discriminatory ability of cytokine ratios (IL-6/TGF-β > IL-6/IL-10) for RPL over Treg cells. Our findings are suggestive of pro-inflammatory dominance in mid-gestation of pregnant women with a history of RPL in general and greater than normal anti-inflammatory milieu in cases with > 2 pregnancy loss. As both sterile and infection related inflammation plays a role in pregnancy loss, studies enrolling women with favourable and unfavourable ongoing pregnancies may shed light on the importance of the present study for developing better management/therapeutic strategies.
Collapse
Affiliation(s)
- Sufaya Jameel
- School of Sciences (Zoology), Maulana Azad National Urdu University, Gachibowli, Hyderabad 32, Telangana, India
| | - Rashmi Bhuwalka
- School of Sciences (Zoology), Maulana Azad National Urdu University, Gachibowli, Hyderabad 32, Telangana, India
| | - Mahmooda Begum
- School of Sciences (Zoology), Maulana Azad National Urdu University, Gachibowli, Hyderabad 32, Telangana, India
| | - Rajeshwari Bonu
- Gynaecology and Obstetrics Department, Niloufer Hospital, Hyderabad, Telangana, India
| | - Parveen Jahan
- School of Sciences (Zoology), Maulana Azad National Urdu University, Gachibowli, Hyderabad 32, Telangana, India.
| |
Collapse
|
4
|
Wen B, Liao H, Lin W, Li Z, Ma X, Xu Q, Yu F. The Role of TGF-β during Pregnancy and Pregnancy Complications. Int J Mol Sci 2023; 24:16882. [PMID: 38069201 PMCID: PMC10706464 DOI: 10.3390/ijms242316882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 12/18/2023] Open
Abstract
Transforming growth factor beta (TGF-β), a multifunctional cytokine, is one of the most important inflammatory cytokines closely related to pregnancy. It plays significant roles in hormone secretion, placental development, and embryonic growth during pregnancy. TGF-β is implicated in embryo implantation and inhibits the invasion of extraepithelial trophoblast cells. It also moderates the mother-fetus interaction by adjusting the secretion pattern of immunomodulatory factors in the placenta, consequently influencing the mother's immune cells. The TGF-β family regulates the development of the nervous, respiratory, and cardiovascular systems by regulating gene expression. Furthermore, TGF-β has been associated with various pregnancy complications. An increase in TGF-β levels can induce the occurrences of pre-eclampsia and gestational diabetes mellitus, while a decrease can lead to recurrent miscarriage due to the interference of the immune tolerance environment. This review focuses on the role of TGF-β in embryo implantation and development, providing new insights for the clinical prevention and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Baohong Wen
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Huixin Liao
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Weilin Lin
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Zhikai Li
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Xiaoqing Ma
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Qian Xu
- Laboratory of Molecular Pathology, Department of Pathology, Shantou University Medical College, Shantou 515041, China
| | - Feiyuan Yu
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
5
|
Hong-yan S, Huan L, Ye-xin Y, Yu-xuan C, Ji-shuang T, Na-ying L. Transcriptome alterations in chicken HD11 cells with steady knockdown and overexpression of RIPK2 gene. Poult Sci 2022; 102:102263. [PMID: 36371910 PMCID: PMC9660593 DOI: 10.1016/j.psj.2022.102263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Receptor interacting protein kinase 2 (RIPK2) is involved in a variety of signaling pathway to produce a series of inflammatory cytokines in response to a diverse of bacterial, viral and protozoal pathogens. However, the underlying regulating of RIPK2 remain unknown. Transcriptome alterations in chicken HD11 cells following RIPK2 overexpression or silencing by shRNA were analyzed by next-generation sequencing. Both overexpression and knockdown of the RIPK2 gene caused wide-spread changes in gene expression in chicken HD11 cells. Differentially expressed genes (DEGs) caused by altered RIPK2 gene expression were associated with multiple biological processes linked with biological regulation, response to stimulus, cell communication, and signal transduction etc. KEGG analysis revealed that many of the DEGs were enriched in VEGF signaling pathway, ECM-receptor interaction, Focal adhesion, TGF-beta signaling pathway etc. Moreover, we show that initiation genes, TGFB1 and TGFB3, in the TGF-beta signaling pathway are biological targets regulated by RIPK2 in chicken HD11 cells. This is the first transcriptome-wide study in which RIPK2-regulated genes in chicken cells have been screened. Our findings elucidate the molecular events associated with RIPK2 in chicken HD11 cells.
Collapse
Affiliation(s)
- Sun Hong-yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China,Corresponding author:
| | - Li Huan
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Yang Ye-xin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Cao Yu-xuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tan Ji-shuang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Li Na-ying
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Crute CE, Hall SM, Landon CD, Garner A, Everitt JI, Zhang S, Blake B, Olofsson D, Chen H, Murphy SK, Stapleton HM, Feng L. Evaluating maternal exposure to an environmental per and polyfluoroalkyl substances (PFAS) mixture during pregnancy: Adverse maternal and fetoplacental effects in a New Zealand White (NZW) rabbit model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156499. [PMID: 35679923 PMCID: PMC9374364 DOI: 10.1016/j.scitotenv.2022.156499] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 05/06/2023]
Abstract
Mixtures of per- and polyfluoroalkyl substances (PFAS) are often found in drinking water, and serum PFAS are detected in up to 99% of the population. However, very little is known about how exposure to mixtures of PFAS affects maternal and fetal health. The aim of this study was to investigate maternal, fetal, and placental outcomes after preconceptional and gestational exposure to an environmentally relevant PFAS mixture in a New Zealand White (NZW) rabbit model. Dams were exposed via drinking water to control (no detectable PFAS) or a PFAS mixture for 32 days. This mixture was formulated with PFAS to resemble levels measured in tap water from Pittsboro, NC (10 PFAS compounds; total PFAS load = 758.6 ng/L). Maternal, fetal, and placental outcomes were evaluated at necropsy. Thyroid hormones were measured in maternal serum and kit blood. Placental gene expression was evaluated by RNAseq and qPCR. PFAS exposure resulted in higher body weight (p = 0.01), liver (p = 0.01) and kidney (p = 0.01) weights, blood pressure (p = 0.05), and BUN:CRE ratio (p = 0.04) in dams, along with microscopic changes in renal cortices. Fetal weight, measures, and histopathology were unchanged, but a significant interaction between dose and sex was detected in the fetal: placental weight ratio (p = 0.036). Placental macroscopic changes were present in PFAS-exposed dams. Dam serum showed lower T4 and a higher T3:T4 ratio, although not statistically significant. RNAseq revealed that 11 of the 14 differentially expressed genes (adj. p < 0.1) are involved in placentation or pregnancy complications. In summary, exposure elicited maternal weight gain and signs of hypertension, renal injury, sex-specific changes in placental response, and differential expression of genes involved in placentation and preeclampsia. Importantly, these are the first results to show adverse maternal and placental effects of an environmentally-relevant PFAS mixture in vivo.
Collapse
Affiliation(s)
- Christine E Crute
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Samantha M Hall
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Chelsea D Landon
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Angela Garner
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey I Everitt
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Bevin Blake
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Didrik Olofsson
- Omiqa Bioinformatics GmbH, Altensteinstasse 40, 14195 Berlin, Germany
| | - Henry Chen
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Susan K Murphy
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Heather M Stapleton
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Liping Feng
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
7
|
He Y, Zang X, Kuang J, Yang H, Gu T, Yang J, Li Z, Zheng E, Xu Z, Cai G, Wu Z, Hong L. iTRAQ-based quantitative proteomic analysis of porcine uterine fluid during pre-implantation period of pregnancy. J Proteomics 2022; 261:104570. [DOI: 10.1016/j.jprot.2022.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
|
8
|
Qin XY, Shen HH, Zhou WJ, Mei J, Lu H, Tan XF, Zhu R, Zhou WH, Li DJ, Zhang T, Ye JF, Li MQ. Insight of Autophagy in Spontaneous Miscarriage. Int J Biol Sci 2022; 18:1150-1170. [PMID: 35173545 PMCID: PMC8771834 DOI: 10.7150/ijbs.68335] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/26/2021] [Indexed: 11/05/2022] Open
Abstract
In some cases of spontaneous miscarriage (SM), the exact etiology cannot be determined. Autophagy, which is responsible for cellular survival under stress conditions, has also been implicated in many diseases. Recently, it is also surmised to be correlated with SM. However, the detailed mechanism remains elusive. In fact, there are several essential steps during pregnancy establishment and maintenance: trophoblasts invasion, placentation, decidualization, enrichment and infiltration of decidua immune cells (e.g., natural killer, macrophage and T cells). Accordingly, upstream molecules and downstream effects of autophagy are discussed in these processes, respectively. Of note, autophagy regulates the crosstalk between these cells at the maternal-fetal interface as well. Aberrant autophagy is found in villi, decidual stromal cells, peripheral blood mononuclear cells in SM patients, although the findings are inconsistent among different studies. Furthermore, potential treatments targeting autophagy are included, during which rapamycin and vitamin D are hot-spots in recent literatures. To conclude, a moderately activated autophagy is deeply involved in pregnancy, suggesting that autophagy should be a regulator and promising target for treating SM.
Collapse
Affiliation(s)
- Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
| | - Hui-Hui Shen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jie Mei
- Reproductive Medicine Centre, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People's Republic of China
| | - Han Lu
- Departments of Assisted Reproduction, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Xiao-Fang Tan
- Reproductive Medicine Centre, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226006, People's Republic of China
| | - Rui Zhu
- Center for Human Reproduction and Genetics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, People's Republic of China
| | - Wen-Hui Zhou
- Medicine Centre for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jiang-Feng Ye
- Division of Obstetrics and Gynecology, KK Women's and Children's Hospital, 229899, Singapore
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200080, People's Republic of China
| |
Collapse
|
9
|
Kreicberga I, Junga A, Pilmane M. Investigation of HoxB3 and Growth Factors Expression in Placentas of Various Gestational Ages. J Dev Biol 2021; 10:jdb10010002. [PMID: 35076557 PMCID: PMC8788416 DOI: 10.3390/jdb10010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/04/2022] Open
Abstract
An evaluation of transforming growth factor beta (TGFβ), hepatocyte growth factor (HGF), basic fibroblast growth factor (FGF-2), fibroblast growth factors receptor 1 (FGFR1) and Hox-positive cells in the human placenta, and their correlation with gestational time at delivery and pregnancy outcomes, may provide not only a better understanding of the role of Hox genes and growth factors in human development, but also may be of clinical importance in reproductive medicine. This study analyzed the immunohistochemical identification of TGFβ, HGF, FGF-2, FGFR1 and HoxB3 in placentas of various gestational ages. We found few (+) TGFβ, moderate (++) FGF-2 and numerous (+++) HGF and FGFR1 positive structures. Occasional (0/+) to numerous (+++) HoxB3-positive structures were detected in different types of placental cells specifically, cytotrophoblasts, syncytiotrophoblast, extravillous trophoblasts, and Höfbauer cells. Correlating the appearance of HoxB3 staining in placentas with neonatal parameters, we found a statistically significant negative correlation with ponderal index (r = −0.323, p = 0.018) and positive correlation with neonate body length (r = 0.541, p = 0.046). The number of HoxB3-positive cells did not correlate with growth factors and gestational age, but with neonatal anthropometrical parameters, indicating the role of HoxB3 not only in placental development, but also in the longitudinal growth of the fetus. TGFβ and FGF-2 did not play a significant role in the development of the placenta beyond 22nd week of pregnancy, while HGF and FGFR1 immunoreactive cells increased with advancing gestation, indicating increasingly evolving maturation (growth, proliferation) of the placenta, especially in the third trimester.
Collapse
|
10
|
Hilgers L, Roth O, Nolte AW, Schüller A, Spanke T, Flury JM, Utama IV, Altmüller J, Wowor D, Misof B, Herder F, Böhne A, Schwarzer J. Inflammation and convergent placenta gene co-option contributed to a novel reproductive tissue. Curr Biol 2021; 32:715-724.e4. [PMID: 34932936 PMCID: PMC8837275 DOI: 10.1016/j.cub.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/27/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
The evolution of pregnancy exposes parental tissues to new, potentially stressful conditions, which can trigger inflammation.1 Inflammation is costly2,3 and can induce embryo rejection, which constrains the evolution of pregnancy.1 In contrast, inflammation can also promote morphological innovation at the maternal-embryonic interface as exemplified by co-option of pro-inflammatory signaling for eutherian embryo implantation.1,4,5 Given its dual function, inflammation could be a key process explaining how innovations such as pregnancy and placentation evolved many times convergently. Pelvic brooding ricefishes evolved a novel “plug” tissue,6,7 which forms inside the female gonoduct after spawning, anchors egg-attaching filaments, and enables pelvic brooders to carry eggs externally until hatching.6,8 Compared to pregnancy, i.e., internal bearing of embryos, external bearing should alleviate constraints on inflammation in the reproductive tract. We thus hypothesized that an ancestral inflammation triggered by the retention of attaching filaments gave rise to pathways orchestrating plug formation. In line with our hypothesis, histological sections of the developing plug revealed signs of gonoduct injuries by egg-attaching filaments in the pelvic brooding ricefish Oryzias eversi. Tissue-specific transcriptomes showed that inflammatory signaling dominates the plug transcriptome and inflammation-induced genes controlling vital processes for plug development such as tissue growth and angiogenesis were overexpressed in the plug. Finally, mammalian placenta genes were enriched in the plug transcriptome, indicating convergent gene co-option for building, attaching, and sustaining a transient tissue in the female reproductive tract. This study highlights the role of gene co-option and suggests that recruiting inflammatory signaling into physiological processes provides a fast-track to evolutionary innovation. Pelvic brooding induces tissue-specific changes in gene expression Inflammatory signaling characterizes transcriptome of the egg-anchoring plug Similar to embryo implantation, the plug likely evolved from an inflammatory response Mammalian placenta genes were independently co-opted into the plug
Collapse
Affiliation(s)
- Leon Hilgers
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany; LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt, Germany.
| | - Olivia Roth
- Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany; Marine Evolutionary Biology, Kiel University, Kiel, Germany
| | | | - Alina Schüller
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Tobias Spanke
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Jana M Flury
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Ilham V Utama
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Cibinong, Indonesia
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Cologne University, Cologne, Germany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Cibinong, Indonesia
| | - Bernhard Misof
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Fabian Herder
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Astrid Böhne
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Julia Schwarzer
- Zoological Research Museum Alexander Koenig (ZFMK), Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany.
| |
Collapse
|
11
|
Wang J, Ding J, Zhang S, Chen X, Yan S, Zhang Y, Yin T. Decreased USP2a Expression Inhibits Trophoblast Invasion and Associates With Recurrent Miscarriage. Front Immunol 2021; 12:717370. [PMID: 34489969 PMCID: PMC8416978 DOI: 10.3389/fimmu.2021.717370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
An appropriate development of the placenta consisting of trophoblast cell migration, invasion, proliferation, and apoptosis, is essential to establishing and maintaining a successful pregnancy. Ubiquitin‐specific protease 2a (USP2a) regulates the processes of metastasis in multiple tumor cells. Yet, no known research has focused on exploring the effect of USP2a on trophoblasts and its possible mechanism in the pathogenies of recurrent miscarriage (RM). In this study, we first detected the decreased mRNA levels and the protein levels of USP2a in placental villous tissue samples from the RM patients. In vitro assays verified that overexpression of USP2a promoted human trophoblast proliferation, migration, invasion, whereas knockdown of USP2a inhibited these processes. Mechanistically, USP2a activated PI3K/Akt/GSK3β signaling pathway to promote nuclear translocation of β‐catenin and further activated epithelial-mesenchymal transition (EMT) in the trophoblasts. Moreover, transforming growth factor-beta (TGF-β) up-regulated USP2a expression in trophoblasts. Interestingly, M2 macrophage secreted TGF-β induced trophoblast migration and invasion, and an anti-TGF-β antibody alleviated this effect. Collectively, this study indicated that USP2a regulated trophoblast invasion and that abnormal USP2a expression might lead to aberrant trophoblast invasion, thus contributing to RM.
Collapse
Affiliation(s)
- Jiayu Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinli Ding
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sainan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sisi Yan
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Hossain SM, Lynch-Sutherland CF, Chatterjee A, Macaulay EC, Eccles MR. Can Immune Suppression and Epigenome Regulation in Placenta Offer Novel Insights into Cancer Immune Evasion and Immunotherapy Resistance? EPIGENOMES 2021; 5:16. [PMID: 34968365 PMCID: PMC8594685 DOI: 10.3390/epigenomes5030016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of mortality and morbidity in the developed world. Cancer progression involves genetic and epigenetic alterations, accompanied by aggressive changes, such as increased immune evasion, onset of metastasis, and drug resistance. Similar to cancer, DNA hypomethylation, immune suppression, and invasive cell behaviours are also observed in the human placenta. Mechanisms that lead to the acquisition of invasive behaviour, immune evasion, and drug and immunotherapy resistance are presently under intense investigations to improve patient outcomes. Here, we review current knowledge regarding the similarities between immune suppression and epigenome regulation, including the expression of repetitive elements (REs), endogenous retroviruses (ERVs) and transposable elements (TEs) in cells of the placenta and in cancer, which are associated with changes in immune regulation and invasiveness. We explore whether immune suppression and epigenome regulation in placenta offers novel insights into immunotherapy resistance in cancer, and we also discuss the implications and the knowledge gaps relevant to these findings, which are rapidly being accrued in these quite disparate research fields. Finally, we discuss potential linkages between TE, ERV and RE activation and expression, regarding mechanisms of immune regulation in placenta and cancer. A greater understanding of the role of immune suppression and associated epigenome regulation in placenta could help to elucidate some comparable mechanisms operating in cancer, and identify potential new therapeutic targets for treating cancer.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Chiemi F. Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Erin C. Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
13
|
Adu-Gyamfi EA, Ding YB, Wang YX. Regulation of placentation by the transforming growth factor beta superfamily†. Biol Reprod 2021; 102:18-26. [PMID: 31566220 DOI: 10.1093/biolre/ioz186] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, there is increased expression of some cytokines at the fetal-maternal interface; and the clarification of their roles in trophoblast-endometrium interactions is crucial to understanding the mechanism of placentation. This review addresses the up-to-date reported mechanisms by which the members of the transforming growth factor beta superfamily regulate trophoblast proliferation, differentiation, and invasion of the decidua, which are the main phases of placentation. The available information shows that these cytokines regulate placentation in somehow a synergistic and an antagonistic manner; and that dysregulation of their levels can lead to aberrant placentation. Nevertheless, prospective studies are needed to reconcile some conflicting reports; and identify some unknown mediators involved in the actions of these cytokines before their detailed mechanistic regulation of human placentation could be fully characterized. The TGF beta superfamily are expressed in the placenta, and regulate the process of placentation through the activation of several signaling pathways.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
14
|
Govender N, Ramdin S, Reddy R, Naicker T. Transforming growth factor-beta and liver injury in an arginine vasopressin-induced pregnant rat model. Clin Exp Reprod Med 2021; 48:124-131. [PMID: 34024085 PMCID: PMC8176156 DOI: 10.5653/cerm.2020.04035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Approximately 30% of preeclamptic pregnancies exhibit abnormal liver function tests. We assessed liver injury-associated enzyme levels and circulating transforming growth factor beta (TGF-β) levels in an arginine vasopressin (AVP)-induced pregnant Sprague-Dawley rat model. Methods Pregnant and non-pregnant Sprague-Dawley rats (n=24) received AVP (150 ng/hr) subcutaneously via mini-osmotic pumps for 18 days. Blood pressure was measured, urine samples were collected, and all animals were euthanized via isoflurane. Blood was collected to measure circulating levels of TGF-β1-3 isomers and liver injury enzymes in pregnant AVP (PAVP), pregnant saline (PS), non-pregnant AVP (NAVP), and non-pregnant saline (NS) rats. Results The PAVP group showed significantly higher systolic and diastolic blood pressure than both saline-treated groups. The weight per pup was significantly lower in the AVP-treated group than in the saline group (p<0.05). Circulating TGF-β1-3 isomer levels were significantly higher in the PAVP rats than in the NS rats. However, similar TGF-β1 and TGF-β3 levels were noted in the PS and PAVP rats, while TGF-β2 levels were significantly higher in the PAVP rats. Circulating liver-type arginase-1 and 5'-nucleotidase levels were higher in the PAVP rats than in the saline group. Conclusion This is the first study to demonstrate higher levels of TGF-β2, arginase, and 5'-nucleotidase activity in PAVP than in PS rats. AVP may cause vasoconstriction and increase peripheral resistance and blood pressure, thereby elevating TGF-β and inducing the preeclampsia-associated inflammatory response. Future studies should explore the mechanisms through which AVP dysregulates liver injury enzymes and TGF-β in pregnant rats.
Collapse
Affiliation(s)
- Nalini Govender
- Department of Basic Medical Sciences, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa
| | - Sapna Ramdin
- Department of Basic Medical Sciences, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa
| | - Rebecca Reddy
- Department of Basic Medical Sciences, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa
| | - Thajasvarie Naicker
- Discipline of Optics and Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Saygili E, Kaya E, Ilhan-Ayisigi E, Saglam-Metiner P, Alarcin E, Kazan A, Girgic E, Kim YW, Gunes K, Eren-Ozcan GG, Akakin D, Sun JY, Yesil-Celiktas O. An alginate-poly(acrylamide) hydrogel with TGF-β3 loaded nanoparticles for cartilage repair: Biodegradability, biocompatibility and protein adsorption. Int J Biol Macromol 2021; 172:381-393. [PMID: 33476613 DOI: 10.1016/j.ijbiomac.2021.01.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 02/04/2023]
Abstract
Current implantable materials are limited in terms of function as native tissue, and there is still no effective clinical treatment to restore articular impairments. Hereby, a functionalized polyacrylamide (PAAm)-alginate (Alg) Double Network (DN) hydrogel acting as an articular-like tissue is developed. These hydrogels sustain their mechanical stability under different temperature (+4 °C, 25 °C, 40 °C) and humidity conditions (60% and 75%) over 3 months. As for the functionalization, transforming growth factor beta-3 (TGF-β3) encapsulated (NPTGF-β3) and empty poly(lactide-co-glycolide) (PLGA) nanoparticles (PLGA NPs) are synthesized by using microfluidic platform, wherein the mean particle sizes are determined as 81.44 ± 9.2 nm and 126 ± 4.52 nm with very low polydispersity indexes (PDI) of 0.194 and 0.137, respectively. Functionalization process of PAAm-Alg hydrogels with ester-end PLGA NPs is confirmed by FTIR analysis, and higher viscoelasticity is obtained for functionalized hydrogels. Moreover, cartilage regeneration capability of these hydrogels is evaluated with in vitro and in vivo experiments. Compared with the PAAm-Alg hydrogels, functionalized formulations exhibit a better cell viability. Histological staining, and score distribution confirmed that proposed hydrogels significantly enhance regeneration of cartilage in rats due to stable hydrogel matrix and controlled release of TGF-β3. These findings demonstrated that PAAm-Alg hydrogels showed potential for cartilage repair and clinical application.
Collapse
Affiliation(s)
- Ecem Saygili
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Elif Kaya
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Esra Ilhan-Ayisigi
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668 Istanbul, Turkey
| | - Aslihan Kazan
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Department of Bioengineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Turkey
| | - Ezgi Girgic
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Yong-Woo Kim
- Department of Materials Science and Engineering, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute of Advanced Materials (RIAM), Seoul National University, 08826 Seoul, Republic of Korea
| | - Kasim Gunes
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Turkey
| | | | - Dilek Akakin
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Turkey
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute of Advanced Materials (RIAM), Seoul National University, 08826 Seoul, Republic of Korea
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey.
| |
Collapse
|
16
|
Razali RA, Lokanathan Y, Chowdhury SR, Yahaya NHM, Saim AB, Ruszymah BHI. Human chondrocyte-conditioned medium promotes chondrogenesis of bone marrow stem cells. ASIAN BIOMED 2020. [DOI: 10.1515/abm-2020-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Cell-based therapy for osteoarthritis requires culturing of good quality cells, especially with a chondrogenic lineage, for implantation.
Objective
To investigate the ability of chondrocyte-conditioned medium (CCM) to induced chondrogenesis.
Methods
Bone marrow mesenchymal stem cells (BMSCs) were subjected to chondrogenic induction using CCM and chondrocyte induction medium (CIM). The optimal condition for the collection of CCM was evaluated by quantifying the concentration of secreted proteins. The chondrogenic efficiency of BMSCs induced by CCM (iCCM) was evaluated using immunocytochemical analysis, Safranin-O staining, and gene expression.
Results
Protein quantification revealed that CCM obtained from cells at passage 3 at the 72 h collection point had the greatest amount of protein. Supplementation of CCM results in the aggregation of BMSCs; however, no clumping was visible as in iCIM. The expression of collagen type 2 was detected as early as day 7 for all groups except for non-induced BMSCs; however, the level of expression decreased with culture time. Similarly, all tested groups showed positive staining for Safranin-O as early as day 7. The induction of BMSCs by CCM caused the down-regulation of collagen type 1, along with the up-regulation of the collagen type 2, ACP and SOX9 genes.
Conclusion
The optimum CCM to induce BMSC into chondrocytes was collected at passage 3 after 72 h and was used in a 50:50 ratio of CCM to fresh medium.
Collapse
Affiliation(s)
- Rabiatul Adawiyah Razali
- Department of Physiology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Yogeswaran Lokanathan
- Tissue Engineering Centre, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Nor Hamdan Mohamad Yahaya
- Department of Orthopaedic and Traumatology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Aminuddin Bin Saim
- Ear, Nose and Throat Consultant Clinic, Ampang Puteri Specialist Hospital , Selangor , Malaysia
| | - Bt Hj Idrus Ruszymah
- Department of Physiology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
- Tissue Engineering Centre, Faculty of Medicine , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| |
Collapse
|
17
|
Krop J, Heidt S, Claas FHJ, Eikmans M. Regulatory T Cells in Pregnancy: It Is Not All About FoxP3. Front Immunol 2020; 11:1182. [PMID: 32655556 PMCID: PMC7324675 DOI: 10.3389/fimmu.2020.01182] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
In pregnancy, the semi-allogeneic fetus needs to be tolerated by the mother's immune system. Regulatory T cells (Tregs) play a prominent role in this process. Novel technologies allow for in-depth phenotyping of previously unidentified immune cell subsets, which has resulted in the appreciation of a vast heterogeneity of Treg subsets. Similar to other immunological events, there appears to be great diversity within the Treg population during pregnancy, both at the maternal-fetal interface as in the peripheral blood. Different Treg subsets have distinct phenotypes and various ways of functioning. Furthermore, the frequency of individual Treg subsets varies throughout gestation and is altered in aberrant pregnancies. This suggests that distinct Treg subsets play a role at different time points of gestation and that their role in maintaining healthy pregnancy is crucial, as reflected for instance by their reduced frequency in women with recurrent pregnancy loss. Since pregnancy is essential for the existence of mankind, multiple immune regulatory mechanisms and cell types are likely at play to assure successful pregnancy. Therefore, it is important to understand the complete microenvironment of the decidua, preferably in the context of the whole immune cell repertoire of the pregnant woman. So far, most studies have focused on a single mechanism or cell type, which often is the FoxP3 positive regulatory T cell when studying immune regulation. In this review, we instead focus on the contribution of FoxP3 negative Treg subsets to the decidual microenvironment and their possible role in pregnancy complications. Their phenotype, function, and effect in pregnancy are discussed.
Collapse
Affiliation(s)
- Juliette Krop
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Eikmans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
18
|
Abdulghani M, Song G, Kaur H, Walley JW, Tuteja G. Comparative Analysis of the Transcriptome and Proteome during Mouse Placental Development. J Proteome Res 2019; 18:2088-2099. [PMID: 30986076 DOI: 10.1021/acs.jproteome.8b00970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The condition of the placenta is a determinant of the short- and long-term health of the mother and the fetus. However, critical processes occurring in early placental development, such as trophoblast invasion and establishment of placental metabolism, remain poorly understood. To gain a better understanding of the genes involved in regulating these processes, we utilized a multiomics approach, incorporating transcriptome, proteome, and phosphoproteome data generated from mouse placental tissue collected at two critical developmental time points. We found that incorporating information from both the transcriptome and proteome identifies genes associated with time point-specific biological processes, unlike using the proteome alone. We further inferred genes upregulated on the basis of the proteome data but not the transcriptome data at each time point, leading us to identify 27 genes that we predict to have a role in trophoblast migration or placental metabolism. Finally, using the phosphoproteome data set, we discovered novel phosphosites that may play crucial roles in the regulation of placental transcription factors. By generating the largest proteome and phosphoproteome data sets in the developing placenta, and integrating transcriptome analysis, we uncovered novel aspects of placental gene regulation.
Collapse
Affiliation(s)
- Majd Abdulghani
- Interdepartmental Genetics and Genomics , Iowa State University , Ames , Iowa 50011-1079 , United States.,Department of Genetics, Development, and Cell Biology , Iowa State University , Ames , Iowa 50011-1079 , United States
| | - Gaoyuan Song
- Department of Plant Pathology and Microbiology , Iowa State University , Ames , Iowa 50011-1079 , United States
| | - Haninder Kaur
- Department of Genetics, Development, and Cell Biology , Iowa State University , Ames , Iowa 50011-1079 , United States
| | - Justin W Walley
- Interdepartmental Genetics and Genomics , Iowa State University , Ames , Iowa 50011-1079 , United States.,Department of Plant Pathology and Microbiology , Iowa State University , Ames , Iowa 50011-1079 , United States
| | - Geetu Tuteja
- Interdepartmental Genetics and Genomics , Iowa State University , Ames , Iowa 50011-1079 , United States.,Department of Genetics, Development, and Cell Biology , Iowa State University , Ames , Iowa 50011-1079 , United States
| |
Collapse
|
19
|
Soto SDF, Melo JOD, Marchesi GD, Lopes KL, Veras MM, Oliveira IBD, Souza RMD, de Castro I, Furukawa LNS, Saldiva PHN, Heimann JC. Exposure to fine particulate matter in the air alters placental structure and the renin-angiotensin system. PLoS One 2017; 12:e0183314. [PMID: 28820906 PMCID: PMC5562329 DOI: 10.1371/journal.pone.0183314] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Abstract
METHODS Female Wistar rats were exposed to filtered air (F) or to concentrated fine particulate matter (P) for 15 days. After mating, the rats were divided into four groups and again exposed to F or P (FF, FP, PF, PP) beginning on day 6 of pregnancy. At embryonic day 19, the placenta was collected. The placental structure, the protein and gene expression of TGFβ1, VEGF-A, and its receptor Flk-1 and RAS were evaluated by indirect ELISA and quantitative real-time PCR. RESULTS Exposure to P decreased the placental mass, size, and surface area as well as the TGFβ1, VEGF-A and Flk-1 content. In the maternal portion of the placenta, angiotensin II (AngII) and its receptors AT1 (AT1R) and AT2 (AT2R) were decreased in the PF and PP groups. In the fetal portion of the placenta, AngII in the FP, PF and PP groups and AT2R in the PF and PP groups were decreased, but AT1R was increased in the FP group. VEGF-A gene expression was lower in the PP group than in the FF group. CONCLUSIONS Exposure to pollutants before and/or during pregnancy alters some characteristics of the placenta, indicating a possible impairment of trophoblast invasion and placental angiogenesis with possible consequences for the maternal-fetal interaction, such as a limitation of fetal nutrition and growth.
Collapse
Affiliation(s)
- Sônia de Fátima Soto
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Juliana Oliveira de Melo
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Guilherme D'Aprile Marchesi
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Karen Lucasechi Lopes
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Mariana Matera Veras
- Department of Pathology / Pathology / Laboratory of Experimental Air Pollution, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Ivone Braga de Oliveira
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Regiane Machado de Souza
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Isac de Castro
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Luzia Naôko Shinohara Furukawa
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Department of Pathology / Pathology / Laboratory of Experimental Air Pollution, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Joel C Heimann
- Department of Internal Medicine / Nephrology / Laboratory of Renal Physiopathology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Brooks SA, Fry RC. Cadmium inhibits placental trophoblast cell migration via miRNA regulation of the transforming growth factor beta (TGF-β) pathway. Food Chem Toxicol 2017; 109:721-726. [PMID: 28774740 DOI: 10.1016/j.fct.2017.07.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022]
Abstract
Preeclampsia (PE), a condition during pregnancy that involves high blood pressure and proteinuria, is potentially fatal to both mother and child. PE currently has no known etiology or cure but has been tied to poor placental trophoblast cell migration. Increased levels of the toxic metal cadmium (Cd) have been associated with increased risk of developing PE, as well as miRNA-associated regulation of the transforming growth factorbeta (TGF-β) pathway. Signal reprogramming of the TGF-β pathway via epigenetic mechanisms is hypothesized to modify placental trophoblast function. In the present study we investigated the role of increased and decreased signaling of the TGF-β pathway in relation to Cd-induced reduction in cellular migration in JEG3 trophoblast cells. Furthermore, the role of a miR-26a as a molecular mediator of placental trophoblast migration was confirmed. The results demonstrate that increased expression of miR-26a and decreased signaling of the TGF-β pathway increase placental cell migration. These findings have relevance for mechanistic understanding of the underpinnings of poor placentation associated with PE.
Collapse
Affiliation(s)
- Samira A Brooks
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, 135 Dauer Drive, CB 7431, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, 135 Dauer Drive, CB 7431, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
The aberrantly expressed miR-193b-3p contributes to preeclampsia through regulating transforming growth factor-β signaling. Sci Rep 2016; 6:19910. [PMID: 26822621 PMCID: PMC4731805 DOI: 10.1038/srep19910] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Preeclampsia (PE) is a leading cause of maternal mortality worldwide. Several studies have detected some differentially expressed microRNAs in the preeclamptic placenta, but few of the identified microRNAs demonstrated consistent findings among different research studies. In this study, high-throughput microRNA sequencing (HTS) of 9 preeclamptic and 9 normal placentas was performed. Seventeen microRNAs were identified to be up-regulated, and 8 down-regulated in preeclamptic placentas. Eight differentially expressed microRNAs except one identified in our study were determined to be consistent with at least one previous study, while sixteen were newly found. We performed qRT-PCR with independent 22 preeclamptic placentas and 20 control placentas to verify the differentially expressed microRNAs, and ten microRNAs were validated. The predicted target genes of the aberrantly expressed miR-193b-3p were enriched in the following gene ontology categories: cell motility and migration, cell proliferation and angiogenesis. We also found that miR-193b-3p significantly decreased the migration and invasion of trophoblast (HTR-8/SVneo) cells and that miR-193b-3p could regulate trophoblasts migration and invasion through binding onto the 3′UTR target site of TGF-β2. In conclusion, we identified a list of differentially expressed microRNAs in PE placentas by HTS and provided preliminary evidence for the role of miR-193b-3p in the pathogenesis of preeclampsia.
Collapse
|
22
|
Lykov AP, Nikonorova YV, Bondarenko NA, Poveshchenko OV, Kim II, Poveshchenko AF, Konenkov VI. Proliferation, Migration, and Production of Nitric Oxide by Bone Marrow Multipotent Mesenchymal Stromal Cells from Wistar Rats in Hypoxia and Hyperglycemia. Bull Exp Biol Med 2015; 159:443-5. [PMID: 26388580 DOI: 10.1007/s10517-015-2986-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Indexed: 01/09/2023]
Abstract
We studied proliferation, migration, and secretion of NO by bone marrow multipotent mesenchymal stromal cells from Wistar rats during conditioning under hypoxic and hyperglycemic conditions and the effect of erythropoietin on these parameters. A stimulating effect of erythropoietin on cell proliferation under normal conditions and activation of cell proliferation under conditions of hypoxia and hyperglycemia were demonstrated. Erythropoietin abolishes suppression of cell proliferation in culture with normal glucose level under conditions of H2O2-induced hypoxia, while under conditions of hyperglycemia, inhibition of cell proliferation becomes more pronounced. Hypoxia promotes activation of cell migration along the growth factor concentration gradient and addition of erythropoietin to the nutrient medium leads to a decrease in cell migration activity. Erythropoietin stimulates NO production by cells cultured under the conditions of hypoxia and hyperglycemia.
Collapse
Affiliation(s)
- A P Lykov
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia.
| | - Yu V Nikonorova
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
| | - N A Bondarenko
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
| | - O V Poveshchenko
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
| | - I I Kim
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
| | - A F Poveshchenko
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
| | - V I Konenkov
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
| |
Collapse
|
23
|
Changes in Functional Activity of JEG-3 Trophoblast Cell Line in the Presence of Factors Secreted by Placenta. Arch Med Res 2015; 46:245-56. [PMID: 26003221 DOI: 10.1016/j.arcmed.2015.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/12/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Cells in the maternal-fetal interface secrete cytokines that regulate proliferation, migration, and trophoblast invasion during the first trimester of pregnancy and the limitation of these processes during the third trimester. The aim of the study was to evaluate the influence of factors secreted by human placenta during the first and third trimester of pregnancy on cytokine receptor expression and proliferative and migratory activity of JEG-3 trophoblast cells. METHODS The research was conducted using the explant conditioned media of placentas obtained from healthy women with elective termination of pregnancy at 9-11 weeks and placentas of women whose pregnancy progressed without complications at 38-39 weeks. Assessment of surface molecule expression was performed using FACS Canto II flow cytometer (BD, USA). The proliferative activity of JEG-3 trophoblast cells was evaluated by dyeing with crystal violet vital dye. The migration activity of JEG-3 was evaluated using 24-well insert plates with polycarbonate inserts (pore size 8 microns). RESULTS Expression of CD116, CD118, CD119, IFNγ-R2, CD120b, CD183, CD192, CD295, EGFR, and TGFβ-R2 on JEG-3 was higher when the cells were incubated in the presence of the third trimester placental factors in comparison with the first trimester placental factors. Factors secreted by the placenta during the third trimester of pregnancy had more pronounced stimulatory effect on the proliferation and migration of trophoblast in comparison with baseline levels and with the effect of the first trimester placental factors. CONCLUSIONS The findings suggest that the behavior of trophoblasts in vitro might not be representative of in vivo behavior in the absence of additional local factors that influence the trophoblast in vivo.
Collapse
|
24
|
Awad M, Koshi K, Kizaki K, Takahashi T, Hashizume K. SOLD1 is expressed in bovine trophoblast cell lines and regulates cell invasiveness. Reprod Biol Endocrinol 2014; 12:55. [PMID: 24950590 PMCID: PMC4078357 DOI: 10.1186/1477-7827-12-55] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/17/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Secreted protein of Ly-6 domain 1 (SOLD1), a secretory-type member of the Ly-6 superfamily, is expressed in both fetal and maternal tissues throughout gestation. SOLD1 mRNA is expressed in the endometrium and in trophoblast mononucleate and binucleate cells, suggesting it plays an important role not only in placental architecture at early gestation, but also in remodeling the endometrium at late gestation. Here, we investigate the expression of SOLD1 mRNA and protein in trophoblast cell lines. In addition, we examine the effect of SOLD1 on the invasive ability of trophoblast cells. METHODS We measured SOLD1 gene expression in thirteen bovine trophoblast (BT) cell lines by using quantitative reverse transcription PCR (qRT-PCR). SOLD1 protein levels were examined in two cell lines, BT-C and BT-K, by using Western blotting and immunocytochemistry. In addition, we measured the invasive activity of BT cells in the presence or absence of anti-bovine SOLD1 antibodies. RESULTS At variable levels, SOLD1 was expressed in all thirteen cell lines; however, expression remained below that of proximal fetal membrane tissue. SOLD1 protein, which was approximately 28 kDa in size, was detected in perinuclear area of the cytoplasm in BT cells. Treatment with anti-bovine SOLD1 antibody had a dose-dependent suppressive effect on the invasiveness of BT-K cell lines. CONCLUSIONS The present study is the first to investigate SOLD1 expression in vitro, in trophoblastic cell lines. Our data suggested that SOLD1 is involved in the regulation of the trophoblast invasiveness. Therefore, SOLD1 may play an active and crucial role in mediating communication at the fetomaternal interface.
Collapse
Affiliation(s)
- Mahmoud Awad
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| | - Katsuo Koshi
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Keiichiro Kizaki
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| | - Toru Takahashi
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| | - Kazuyoshi Hashizume
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| |
Collapse
|
25
|
Mehanni SS, Ibrahim NF, Hassan AR, Rashed LA. New approach of bone marrow-derived mesenchymal stem cells and human amniotic epithelial cells applications in accelerating wound healing of irradiated albino rats. Int J Stem Cells 2013; 6:45-54. [PMID: 24298373 DOI: 10.15283/ijsc.2013.6.1.45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Irradiated wound healing is a highly complex and dynamic process. The latest technology making a huge difference in this process is stem cell therapy. The goal of this study was to evaluate the use of bone marrow-derived mesenchymal stem cells (BM-MSCs) or human amniotic epithelial cells (HAECs) in the healing of irradiated wounds. METHODS AND RESULTS Forty five male albino rats were subjected to whole body 6 gray gamma radiations. One day post irradiation, full-thickness incisional wound was created in the tibial skin. The rats were randomly equally divided into three groups. The incisions of the first group (gp I) were injected intra-dermally with saline before stitching and those of both the second (gp II) and the third groups (gp III) were intradermally injected with BM-MSCs and HAECs before stitching respectively. Animals were sacrificed after the third, seventh and fourteenth days postoperative. The healing process was assessed histopathologically. CXCL-5, SDF-1 and Transforming growth factor-beta 1 (TGF-β1) expression were also detected in biopsies from all wounds. Expression of TGF-β1 in gp I was more than the other groups leading to severe inflammation, deficient healed dermis and delayed reepithelialization. SDF-1 expression was high in gp II while CXCL-5 expression was high in gp III causing accelerated wound healing. BM-MSCs showed a great effect on the quality of the dermis, while superiority of the epithelium and its appendages were achieved in HAECs group. CONCLUSIONS Using BM-MSCs and HAECs could be used safely in case of irradiated wounds.
Collapse
Affiliation(s)
- Samah S Mehanni
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Cairo University
| | | | | | | |
Collapse
|
26
|
Wang Y, Li L, Wang CC, Leung LK. Effect of zeranol on expression of apoptotic and cell cycle proteins in murine placentae. Toxicology 2013; 314:148-54. [PMID: 24120472 DOI: 10.1016/j.tox.2013.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/04/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022]
Abstract
Mycotoxins are chemicals produced by fungus and many of them are toxic to humans. Zeranol is a mycotoxin used to promote growth in cattle in North America; yet such a practice draws concern about the residual compound in meat in European countries. In the present study, the toxicity of zeranol was tested in a mouse model for reproduction. Pregnant ICR mice were given p.o. daily doses of zeranol at 0, 1, 10, 100mg/kg for 4 days (from E13.5 to E16.5). Increased rates of fetal resorption at late gestation (E17.5) and preterm birth (<E18.5) were observed in mice treated with zeranol. The apparent factors causing these perinatal conditions were subsequently investigated. Perturbation of cell death or proliferation-related proteins might deter the growth and maintenance of the placentae, and the subsequent fetal resorption and preterm birth. Placental tissue isolated from pregnant mice at E17.5 showed that the expressions of Cdk2 and 4, Cyclin D1 and Bcl-xL were reduced in zeranol-treatment groups. The downregulations might signify growth or maintenance failure in the placentae. Furthermore, reduction in the signaling proteins Erk-1/2 in the placentae could trigger the decrease in the cell cycle/apoptosis proteins. In addition, relaxin is associated with preterm labor. An increase in placental Relaxin-1 expression could also contribute to early delivery in this study. Result of the current study suggested that exposure to zeranol might introduce adverse effect in pregnancy.
Collapse
Affiliation(s)
- Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People's Republic of China; Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | |
Collapse
|
27
|
Awad M, Kizaki K, Takahashi T, Hashizume K. Dynamic expression of SOLD1 in bovine uteroplacental tissues during gestation. Placenta 2013; 34:635-41. [DOI: 10.1016/j.placenta.2013.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/08/2013] [Accepted: 05/11/2013] [Indexed: 01/22/2023]
|
28
|
Chumbley LB, Boudreaux CE, Coats KS. Aberrant placental immune parameters in the feline immunodeficiency virus (FIV)-infected cat suggest virus-induced changes in T cell function. Virol J 2013; 10:238. [PMID: 23870389 PMCID: PMC3723510 DOI: 10.1186/1743-422x-10-238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/11/2013] [Indexed: 11/12/2022] Open
Abstract
Background Immune activity during pregnancy must be tightly regulated to ensure successful pregnancy. This regulation includes the suppression of inflammatory activity that could target the semi-allogeneic fetus. Tregs are immunosuppressive; Th17 cells are pro-inflammatory. A precise balance in the two cell populations is critical to pregnancy maintenance, while dysregulation in this balance accompanies compromised pregnancy in humans and mice. FIV is known to target Tregs preferentially in the infected cat. Therefore, it may be hypothesized that FIV infection alters the placental Treg/Th17 cell balance resulting in aberrant immunomodulator expression by these cells and consequent pregnancy perturbation. Methods RNA was purified from random sections of whole placental tissues collected from both uninfected and FIV-infected queens at early pregnancy, including tissues from viable and nonviable fetuses. Real time qPCR was performed to quantify expression of intranuclear markers of Tregs (FoxP3) and Th17 cells (RORγ); cytokine products of Tregs (IL-10 and TGF-β), Th17 cells (IL-2, IL-6, and IL-17a), and macrophages (IL-1β); and the FIV gag gene. Pairwise comparisons were made to evaluate coexpression patterns between the cytokines and between the cytokines and the virus. Results Both FoxP3 and RORγ were reduced in placentas of infected animals. Neither infection status nor fetal viability affected placental expression of IL-1β. However, fetal nonviability was associated with reduced levels of all other cytokines. Infection and fetal nonviability impacted coexpression of various cytokine pairs. No obvious bias toward Treg or Th17 cells was observed. Conclusions FIV infection coupled with fetal nonviability alters expression patterns of T cell cytokines. These data suggest that functionally altered placental T cell leukocyte populations may occur in the infected queen and possibly contribute to fetal nonviability.
Collapse
Affiliation(s)
- Lyndon Bart Chumbley
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | |
Collapse
|
29
|
McDonald EA, Friedman JF, Sharma S, Acosta L, Pond-Tor S, Cheng L, White ES, Kurtis JD. Schistosoma japonicum soluble egg antigens attenuate invasion in a first trimester human placental trophoblast model. PLoS Negl Trop Dis 2013; 7:e2253. [PMID: 23755313 PMCID: PMC3675010 DOI: 10.1371/journal.pntd.0002253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
Background Schistosomiasis affects nearly 40 million women of reproductive age, and is known to elicit a pro-inflammatory signature in the placenta. We have previously shown that antigens from schistosome eggs can elicit pro-inflammatory cytokine production from trophoblast cells specifically; however, the influence of these antigens on other characteristics of trophoblast function, particularly as it pertains to placentation in early gestation, is unknown. We therefore sought to determine the impact of schistosome antigens on key characteristics of first trimester trophoblast cells, including migration and invasion. Methods First trimester HTR8/SVneo trophoblast cells were co-cultured with plasma from pregnant women with and without schistosomiasis or schistosome soluble egg antigens (SEA) and measured cytokine, cellular migration, and invasion responses. Results Exposure of HTR8 cells to SEA resulted in a pro-inflammatory, anti-invasive signature, characterized by increased pro-inflammatory cytokines (IL-6, IL-8, MCP-1) and TIMP-1. Additionally, these cells displayed 62% decreased migration and 2.7-fold decreased invasion in vitro after treatment with SEA. These results are supported by increased IL-6 and IL-8 in the culture media of HTR8 cells exposed to plasma from Schistosoma japonica infected pregnant women. Conclusions Soluble egg antigens found in circulation during schistosome infection increase pro-inflammatory cytokine production and inhibit the mobility and invasive characteristics of the first trimester HTR8/SVneo trophoblast cell line. This is the first study to assess the impact of schistosome soluble egg antigens on the behavior of an extravillous trophoblast model and suggests that schistosomiasis in the pre-pregnancy period may adversely impact placentation and the subsequent health of the mother and newborn. Approximately 40 million women of childbearing age suffer from schistosome infection globally at any given time. Multiple studies in rodent models, as well as a few reports in humans, suggest that schistosome infection results in poor pregnancy outcomes. We have previously shown that antigens released from schistosome eggs result in a pronounced pro-inflammatory response in syncytialized third trimester trophoblasts. Herein, we examine the effect of schistosome egg antigens on a first trimester trophoblast cell line, an accepted model for early placental development. Not only is the pro-inflammatory response recapitulated in this model system, but we also observed a decrease in migration and invasion of trophoblast cells after exposure to these antigens. Both migration and invasion are key aspects in early placental development, and inadequate invasion has been implicated in pregnancy-related diseases such as growth restriction and preeclampsia. This study is the first to examine the impact of schistosome antigens on early placental development, and may have implications for the subsequent health of both the pregnancy and the child.
Collapse
Affiliation(s)
- Emily A. McDonald
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, United States of America
- * E-mail:
| | - Jennifer F. Friedman
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, United States of America
- Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, United States of America
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital, Brown University Medical School, Providence, Rhode Island, United States of America
| | - Luz Acosta
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, United States of America
- Department of Immunology, Research Institute of Tropical Medicine, Manila, The Philippines
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, United States of America
| | - Ling Cheng
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, United States of America
| | - Eric S. White
- Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jonathan D. Kurtis
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, United States of America
| |
Collapse
|
30
|
Mojarrad M, Hassanzadeh-Nazarabadi M, Tafazoli N. Polymorphism of genes and implantation failure. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2013; 2:1-8. [PMID: 24551783 PMCID: PMC3920519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/03/2013] [Indexed: 10/25/2022]
Abstract
Implantation failure is the most frequent cause of pregnancy loss in couples who try to conceive, either in a natural way or using assisted reproductive techniques (ART). Identify the precise mechanisms of implantation failure can lead to identify couples at risk and also providing appropriate therapeutic options to affected couples. Despite the high prevalence of this disorder, a few causing factors are demonstrated so far. Recent studies indicate that genetic factors play an important role in the occurrence of recurrent implantation failure. Although some of these factors, such as numerical chromosomal aneuploidy are known to be causative factors, there are some other factors that solely increase susceptibility to this event. In the present review we try to list the genetic polymorphisms that are known as susceptibility factors in implantation failure.
Collapse
Affiliation(s)
- Majid Mojarrad
- Department Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Hassanzadeh-Nazarabadi
- Department Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Corresponding author: Department of Medical Genetics, School of medicine, Mashhad University of Medical Sciences, Azadi square, Mashhad, Iran…E-mail:
| | - Niaiesh Tafazoli
- Department Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Novel differential transcript expression identified by LongSAGE in the mouse endometrium during the implantation window. Mol Biol Rep 2012; 40:651-63. [DOI: 10.1007/s11033-012-2104-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/03/2012] [Indexed: 12/31/2022]
|
32
|
Soeters PB, Grimble RF. The conditional role of inflammation in pregnancy and cancer. Clin Nutr 2012; 32:460-5. [PMID: 22981258 DOI: 10.1016/j.clnu.2012.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/26/2012] [Accepted: 07/28/2012] [Indexed: 10/28/2022]
Abstract
Cancer growth is characterized by proliferation of tumor cells in conjunction with invasion of all different immune cells that also invade healing wounds. This inflammatory response is necessary for cell proliferation but a second purpose of the inflammatory process is so that a low Th1/Th2 ratio is present with overexpression of IL-10, TGF-β and IFN-γ. Down regulation of NO activity also shifts the balance between M1 and M2 macrophages. Both aspects allow the antigenous nature of the tumor to escape anti-tumor effects of the host. Support for this view comes from observations in pregnancy in which the placenta exhibits identical immune responses and downregulation of NO production to allow trophoblast cells to invade the uterine tissues without being rejected. Cell proliferation requires a metabolic set-up in which the organism produces adequate substrate for growth. This also bears the characteristics of a systemic inflammatory response delivering a similar substrate mix required for cancer and fetal growth. This arrangement is clearly beneficial in pregnancy and therefore supports the view that cancer growth is facilitated by the organism: the cancerous tumor elicits an immunological response opposing anti-tumor effects and induces the host to produce building blocks for growth.
Collapse
Affiliation(s)
- Peter B Soeters
- Department of Surgery, Maastricht University Medical Center, The Netherlands.
| | | |
Collapse
|
33
|
Losino N, Luzzani C, Solari C, Boffi J, Tisserand ML, Sevlever G, Barañao L, Guberman A. Maintenance of Murine Embryonic Stem Cells' Self-Renewal and Pluripotency with Increase in Proliferation Rate by a Bovine Granulosa Cell Line-Conditioned Medium. Stem Cells Dev 2011; 20:1439-49. [DOI: 10.1089/scd.2010.0336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Noelia Losino
- Laboratorio de Regulación de la Expresión Génica en el Crecimiento, Supervivencia y Diferenciación Celular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Luzzani
- Laboratorio de Regulación de la Expresión Génica en el Crecimiento, Supervivencia y Diferenciación Celular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudia Solari
- Laboratorio de Regulación de la Expresión Génica en el Crecimiento, Supervivencia y Diferenciación Celular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Boffi
- Laboratorio de Regulación de la Expresión Génica en el Crecimiento, Supervivencia y Diferenciación Celular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana Louis Tisserand
- Laboratorio de Regulación de la Expresión Génica en el Crecimiento, Supervivencia y Diferenciación Celular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Sevlever
- Laboratorio de Biología del Desarrollo Celular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Lino Barañao
- Laboratorio de Regulación de la Expresión Génica en el Crecimiento, Supervivencia y Diferenciación Celular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandra Guberman
- Laboratorio de Regulación de la Expresión Génica en el Crecimiento, Supervivencia y Diferenciación Celular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|