1
|
Ganeyan A, Ganesh CB. Exposure to chronic stress impedes seasonal and gonadotropin-induced ovarian recrudescence in the gecko Hemidactylus frenatus. Reprod Biol 2024; 24:100957. [PMID: 39378728 DOI: 10.1016/j.repbio.2024.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
The neuroendocrine regulation of the stress-reproductive axis in reptiles is complex due to the diverse reproductive strategies adopted by these animals. Consequently, the underlying mechanisms by which stress can affect the reproductive axis remain opaque in reptiles. In the present study, we examined the effect of stress on the seasonal and FSH-induced ovarian recrudescence during the breeding and non-breeding phases of the cycle in the tropical and subtropical house gecko Hemidactylus frenatus. During the recrudescence phase of the ovarian cycle, exposure of lizards to various stressors (handling, confinement, chasing, and noise) caused a significant increase in the percentage of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH)-immunoreactive (ir) content in the median eminence (ME) and/or pars distalis of the pituitary gland (PD), concomitant with a significant decrease in the release of gonadotropin-releasing hormone (GnRH)-ir content into the ME and PD, and number of oogonia in the germinal bed and absence of the stage IV and V (vitellogenic) follicles in the ovary compared to experimental controls. During the non-breeding phase, treatment of stressed lizards with FSH did not stimulate the development of stage IV and V follicles, in contrast to their appearance in FSH-only-treated lizards. Collectively, these findings suggest that exposure to stressors prevents the seasonal ovarian recrudescence, possibly mediated through the suppression of hypothalamic GnRH release into the ME and PD and/or directly at the level of the ovary.
Collapse
Affiliation(s)
- Ananya Ganeyan
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580003, India.
| |
Collapse
|
2
|
de Sousa BL, Chaves SN, Albuquerque E, Rodrigues J, Coimbra V, Miranda S, Caldas AL, Leite M, Dos Santos MP, Côrrea Filho RAC, Santos ADFD, Maximino C, Siqueira-Silva D. Gametogenesis and seminatural reproduction of the Amazon twospot astyanax Astyanax bimaculatus (Linnaeus, 1758) cultivated in an enriched environment. Anim Reprod Sci 2024; 267:107522. [PMID: 38901082 DOI: 10.1016/j.anireprosci.2024.107522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Environmental enrichment is used to provide well-being to the animals, such as fish, in captive conditions, mimicking their natural habitat. It may influence fish behavior, physiology, and survival. In terms of reproduction, however, the relationship between environment enrichment and successful reproduction in captivity is still poorly explored in fish species. Aiming to understand any possible benefits of structural enrichment on fish reproduction, 10-days-hatched larvae of the twospot astyanax Astyanax bimaculatus were raised for 18 weeks in tanks with different elements of structural environmental enrichment (PVC pipes, stones, and artificial plants). In the 5th month of life, those animals were hormonally induced to reproduce to assess gamete formation and offspring quality. Animals raised in a sterile-reared environment (non-enriched) showed earlier spawning than the enriched one, presenting significant quantities of Postovulatory follicle complexes (POCs) and cells in atresia in female ovaries, indicating possible reproductive dysfunction or stress, as well as a greater quantity of empty testicular lumen in males, indicating great release of sperm. On the contrary, animals cultivated in enriched environments showed gonads filled with semen in males and vitellogenic oocytes in females. Furthermore, offspring from the sterile-reared group presented significant rates of larval abnormality compared to the enriched group. In conclusion, the results of this study show that environmental enrichment can interfere with the reproduction of fish in captivity, mainly by preventing early maturation of gametes, which can result in low-quality offspring and, consequently, low production of fish species.
Collapse
Affiliation(s)
- Bianca Lima de Sousa
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Suianny Nayara Chaves
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Graduate Program in Animal Reproduction in the Amazon (ReproAmazon) of the Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, Nº 2501, Terra Firme, Belém, PA 66077-830, Brazil
| | - Eduardo Albuquerque
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Jeane Rodrigues
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Vanessa Coimbra
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Saynara Miranda
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Graduate Program in Animal Reproduction in the Amazon (ReproAmazon) of the Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, Nº 2501, Terra Firme, Belém, PA 66077-830, Brazil
| | - Ana Luiza Caldas
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Marissol Leite
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Matheus Pereira Dos Santos
- Federal Rural University of Rio de Janeiro (UFRRJ). Animal Science Graduate Programme, Km 7, Zona Rural, BR-465, s/n, Seropédica, RJ, Brazil
| | | | - Adam Dreyton Ferreira Dos Santos
- Faculdade de Sistemas de Informação, Instituto de Geociências e Engenharias (IGE), Universidade Federal do Sul e Sudeste do Pará (Unifesspa), Campus II, Marabá, PA, Brazil
| | - Caio Maximino
- Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil
| | - Diogenes Siqueira-Silva
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, Marabá, PA 68507-590, Brazil; Graduate Program in Animal Reproduction in the Amazon (ReproAmazon) of the Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, Nº 2501, Terra Firme, Belém, PA 66077-830, Brazil.
| |
Collapse
|
3
|
Li Z, Liu R, Liu J, Jiang Z, Ba X, Li K, Liu L. Effects of flowing water stimulation on hormone regulation during the maturation process of Conger myriaster ovaries. Front Physiol 2024; 15:1404834. [PMID: 38764859 PMCID: PMC11100330 DOI: 10.3389/fphys.2024.1404834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024] Open
Abstract
Conger eel (Conger myriaster) is an economically important species in China. Due to the complex life history of the conger eel, achieving artificial reproduction has remained elusive. This study aimed to explore the effect of water stimulation on hormonal regulation during the artificial reproduction of conger eel. The experiment was divided into four groups: A1 (no hormone injection, still water), A2 (no hormone injection, flowing water), B1 (hormone injection, still water), and B2 (hormone injection, flowing water). The flowing water group maintained a flow velocity of 0.4 ± 0.05 m/s for 12 h daily throughout the 60-day period. Steroid hormone levels in the serum and ovaries of conger eels were analyzed using UPLC-MS/MS and ELISA on the 30th and 60th days of the experiment. The relative expression levels of follicle-stimulating hormone (FSHβ) and luteinizing hormone (LHβ) in the pituitary were determined by quantitative PCR. The results showed a significantly lower gonadosomatic index (GSI) in B2 compared to B1 (p < 0.05) on the 30th day. FSH was found to act only in the early stages of ovarian development, with water stimulation significantly enhancing FSH synthesis (p < 0.05), while FSHβ gene was not expressed after hormone injection. Conversely, LH was highly expressed in late ovarian development, with flowing water stimulation significantly promoting LH synthesis (p < 0.05). Serum cortisol (COR) levels were significantly higher in the flowing water group than in the still water group (p < 0.05). Furthermore, estradiol (E2) content of B2 was significantly lower than that of B1 on the 30th and 60th day. Overall, flowing water stimulation enhanced the synthesis of FSH in early ovarian development and LH in late ovarian development, while reducing E2 accumulation in the ovaries. In this study, the effect of flowing water stimulation on hormone regulation during the artificial reproduction of conger eel was initially investigated to provide a theoretical basis for optimizing artificial reproduction techniques.
Collapse
Affiliation(s)
- Zhengcheng Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Rucong Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Jingwei Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Zhixin Jiang
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Xubing Ba
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Kang Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Liping Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Yeramilli V, Rizek CS, Graham J, Taylor C, Cheddadi R, Patterson S, Watts S, Martin C. Parental preconception stress in zebrafish induces long-lasting anxiety in offspring. Physiol Behav 2024; 277:114477. [PMID: 38301945 DOI: 10.1016/j.physbeh.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
The growth and function of the vertebrate brain are impacted by environmental stimuli and early life stress. Adults who experience chronic stress during early life are more likely to suffer various neurodevelopmental and health issues. However, our understanding of how these specific environmental signals at different developmental stages affect brain development is poorly understood. In this study, we investigated if stress in parents prior to conception modulates neurodevelopment in offspring. We used a chronic unpredictable stress model adapted to zebrafish, which is an increasingly popular vertebrate model in neuroscience research to investigate the effects of both maternal and paternal preconception stress on offspring behavior. We evaluated the responsiveness of three anxiety-related behavioral paradigms in zebrafish: the novel tank test, thigmotaxis, and shoaling behavior. We found larvae from stressed females exhibited anxiety-like behavior in a thigmotaxis assay. As these larvae matured into adults, they continued to exhibit anxiety-like behavior in a novel tank and shoaling behavioral assay. These studies indicate preconception stress exposure in parents can induce life-long alterations in offspring neurodevelopment. Further, these results expand the hypothesis that chronically elevated glucocorticoid signaling not only in stressed mothers, but also stressed dads can affect neurodevelopment in offspring. We propose that zebrafish may be a useful model to study the transgenerational effects of chronic stress mediated via the maternal and paternal line.
Collapse
Affiliation(s)
- Venkata Yeramilli
- Dept of Surgery, Washington University School of Medicine, Saint Louis, MO, US
| | | | - Jessica Graham
- Dept of Surgery, Washington University School of Medicine, Saint Louis, MO, US
| | - Christopher Taylor
- Dept of Biology, University of Alabama at Birmingham, Birmingham, AL, US
| | - Riadh Cheddadi
- Dept of Surgery, Washington University School of Medicine, Saint Louis, MO, US
| | - Sophie Patterson
- Dept of Biology, University of Alabama at Birmingham, Birmingham, AL, US
| | - Stephen Watts
- Dept of Biology, University of Alabama at Birmingham, Birmingham, AL, US
| | - Colin Martin
- Dept of Surgery, Washington University School of Medicine, Saint Louis, MO, US.
| |
Collapse
|
5
|
Fanjara E, Aas GH, Cao Y, Kristinova V, Saeboe Sæbø A, Stene A. Identification of cortisol metabolites with LC-MS/MS in plasma, skin mucus, bile and faeces for stress evaluation of farmed Atlantic salmon. J Steroid Biochem Mol Biol 2023; 234:106401. [PMID: 37734670 DOI: 10.1016/j.jsbmb.2023.106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
As a stress hormone, cortisol and more recently its metabolites are analysed when assessing fish stress and welfare status, although the exact identity of these metabolites is not clearly defined for the Atlantic salmon. LC-MS/MS techniques, owing to their specificity, sensitivity and ability to simultaneously identify and measure several relevant compounds, can be useful tools for this purpose. Using the guidelines provided by the European Decision no. 657/2002/EC for validation, the LC-MS/MS method presented here, can reliably identify and quantify cortisol and five of its metabolites (5β-THF, cortisone, 5β-DHE, 5β-THE and β-cortolone) in bile and faeces, and cortisol and cortisone in skin mucus and blood plasma of farmed Atlantic salmon within 15 min. Identified as the most predominant compound in faeces and bile, 5β-THE is proposed as a candidate stress biomarker when using these matrices. A decision limit (CCα) below 5 ng/mL, a detection capability (CCβ) and a limit of detection (LOD) below 10 ng/mL and a limit of quantitation (LOQ) below 30 ng/mL were typically obtained for most of the compounds. The concentrations of these compounds measured in either non-stressed or stressed fish were all above the CCα, CCβ, LOD and the LOQ of the method. The latter consequently demonstrated significant difference in cortisol metabolites concentrations between the two groups of fish. The present study further demonstrates that pooling of samples from several individuals could provide reliable results for farmed fish stress evaluation, when sample materials are insufficient in terms of quantity.
Collapse
Affiliation(s)
- E Fanjara
- Department of Biological Sciences Aalesund, Norwegian University of Science and Technology, NTNU in Aalesund, P.O. box 1517, N-6025 Aalesund, Norway; Innolipid AS, Tonningsgate 17, N-6006 Aalesund, Norway.
| | - G H Aas
- Department of Biological Sciences Aalesund, Norwegian University of Science and Technology, NTNU in Aalesund, P.O. box 1517, N-6025 Aalesund, Norway
| | - Y Cao
- Department of Biological Sciences Aalesund, Norwegian University of Science and Technology, NTNU in Aalesund, P.O. box 1517, N-6025 Aalesund, Norway
| | - V Kristinova
- Innolipid AS, Tonningsgate 17, N-6006 Aalesund, Norway
| | - A Saeboe Sæbø
- Innolipid AS, Tonningsgate 17, N-6006 Aalesund, Norway
| | - A Stene
- Department of Biological Sciences Aalesund, Norwegian University of Science and Technology, NTNU in Aalesund, P.O. box 1517, N-6025 Aalesund, Norway
| |
Collapse
|
6
|
Rodrigues J, Rosa-Silva M, Tercya H, Jesus P, Miranda S, Oliveira H, Lima B, Santos L, Maximino C, Siqueira-Silva D. Oogenesis and in vitro reproduction of the twospot astyanax Astyanax bimaculatus (Linnaeus, 1758) exposed to conspecific alarm substance. Anim Reprod Sci 2023; 253:107252. [PMID: 37209522 DOI: 10.1016/j.anireprosci.2023.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Stress situations can be essential to trigger reproduction in fish; however, it may also inhibit it. One of those situations involves the release of the conspecific alarm substance (CAS), a natural stressor, into the water by specific fish epidermal cells after a predator attack. Little is known about the effects of that substance on fish reproduction. This study aimed to evaluate the effects of CAS exposure on the oogenesis and reproduction of the twospot astyanax Astyanax bimaculatus before the hormonal induction for artificial reproduction. No macroscopic or cellular changes in the ovaries were observed for the females exposed to CAS, and the oocyte stages show all females in the same phase of maturation (Spawning Capable). Females exposed to CAS spawned 20 min before the females without exposure. On the other hand, they ovulated only once, whereas the females from the control group ovulated multiple times for approximately two hours after hormonal induction. Moreover, the precocious ovulation of the females submitted to CAS did not generate offspring, since all generated zygotes did not develop. In contrast, the control group females produced more than 11 thousand healthy larvae. Exposing the female fish to CAS during their reproductive management in captivity may reduce breeding success.
Collapse
Affiliation(s)
- Jeane Rodrigues
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Graduate Program in Animal Reproduction in the Amazon (ReproAmazon) of the Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, Nº 2501, Terra Firme, 66.077-830 Belém, PA, Brazil
| | - Maria Rosa-Silva
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Hadda Tercya
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Paulo Jesus
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Saynara Miranda
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Graduate Program in Animal Reproduction in the Amazon (ReproAmazon) of the Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, Nº 2501, Terra Firme, 66.077-830 Belém, PA, Brazil
| | - Hingrid Oliveira
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Bianca Lima
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Ludmylla Santos
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Caio Maximino
- Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil
| | - Diógenes Siqueira-Silva
- Research Group of Studies on the Reproduction of Amazon Fish (GERPA/LANEC), Biology Faculty (FACBIO), Federal University of South and Southern of Pará (Unifesspa), Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Neuroscience and Behavior Laboratory "Frederico Guilherme Graeff" (LANEC), Psychology University, Institute of Healthy and Biologics Studies, Federal University of South and Southern of Pará, Av. dos Ipês, S/N, 68507-590 Marabá, PA, Brazil; Graduate Program in Animal Reproduction in the Amazon (ReproAmazon) of the Federal Rural University of the Amazon (Ufra) and Federal University of Pará (UFPA), Av. Presidente Tancredo Neves, Nº 2501, Terra Firme, 66.077-830 Belém, PA, Brazil.
| |
Collapse
|
7
|
Callet T, Cardona E, Turonnet N, Maunas P, Larroquet L, Surget A, Corraze G, Panserat S, Marandel L. Alteration of eggs biochemical composition and progeny survival by maternal high carbohydrate nutrition in a teleost fish. Sci Rep 2022; 12:16726. [PMID: 36202919 PMCID: PMC9537176 DOI: 10.1038/s41598-022-21185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Reproductive performances, and the factors affecting them, are of major importance especially for farmed fish in the context of the development of a sustainable aquaculture. Dietary maternal lipids have been identified as a major factor affecting reproductive performances. Nevertheless, the consequences of carbohydrates have been little studied while plant-derived carbohydrates could be increasingly used in broodstock diets. To explore this issue, 2-year-old female trout were fed either a control diet that contains no carbohydrate and a high protein content (65.7%) or a diet formulated with plant-derived carbohydrates containing 32.5% carbohydrate and 42.9% protein (’HC diet’) for an entire reproductive cycle. The reproductive performances, the quality of the unfertilized eggs and the development of the progeny were carefully monitored. Although the one year HC nutrition had not impaired female growth nor spawns quality, such nutrition had increased the variability of eggs size within spawns (+ 34.0%). Moreover, the eggs produced had a modified fatty acid profile, including a significant reduction in EPA content (− 22.9%) and a significant increase in the AA/EPA ratio (+ 33.3%). The progeny were impacted by such alterations as their survival rates were significantly reduced. A lower plant-derived carbohydrate inclusion (20%) should be considered in aquafeed for female broodstock in trout.
Collapse
Affiliation(s)
- Therese Callet
- INRAE, Universite de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310, Saint-Pee-sur-Nivelle, France
| | - Emilie Cardona
- INRAE, Universite de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310, Saint-Pee-sur-Nivelle, France
| | - Nicolas Turonnet
- INRAE, Universite de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310, Saint-Pee-sur-Nivelle, France
| | - Patrick Maunas
- INRAE, Universite de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310, Saint-Pee-sur-Nivelle, France
| | - Laurence Larroquet
- INRAE, Universite de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310, Saint-Pee-sur-Nivelle, France
| | - Anne Surget
- INRAE, Universite de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310, Saint-Pee-sur-Nivelle, France
| | - Genevieve Corraze
- INRAE, Universite de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310, Saint-Pee-sur-Nivelle, France
| | - Stephane Panserat
- INRAE, Universite de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310, Saint-Pee-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, Universite de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310, Saint-Pee-sur-Nivelle, France.
| |
Collapse
|
8
|
Shinde D, Ganesh CB. Chronic exposure to aquacultural stressors affects pituitary-testis axis in the Mozambique tilapia Oreochromis mossambicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:437-448. [PMID: 35201519 DOI: 10.1007/s10695-022-01061-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Reproduction in fish is modulated by several factors that include environmental and endocrine components. The aim of this study was to elucidate the effect of aquacultural stressors along the pituitary-testis axis in a continuously breeding cichlid fish Oreochromis mossambicus. The fish (35.05 ± 2.20 g) were divided into three groups (n = 10 in each group, n = 5 in each replicate), namely initial controls (euthanized on the day of initiation of experiment), time-matched controls (kept undisturbed), and stressed fish, which were subjected to different kinds of randomized aquacultural stressors such as handling, chasing, frequent netting, and low water levels, daily for a period of 21 days. Although the gonadosomatic index and the mean numbers of spermatogonia-A and spermatogonia-B did not differ significantly among different experimental groups, significant decrease was observed in the mean numbers of primary spermatocytes, secondary spermatocytes, early spermatids, and late spermatids in fish exposed to stressors compared to those of initial controls and time-matched controls. While the diameter of the seminiferous lobule was significantly lower, the size of the lumen and the serum levels of cortisol were significantly increased in stressed fish compared with initial controls and time-matched controls. Furthermore, weak androgen receptor immunoreactivity was observed in the Sertoli cells of the testis in contrast to the strongly immunoreactive androgen receptors in initial controls and time-matched controls. Concomitant with this, there was a significant decrease in the percent area and the intensity of luteinizing hormone (LH) immunoreactive content in the proximal pars distalis (PPD) region of the pituitary gland in stressed fish compared with initial controls and time-matched controls. Overall, these results suggest that exposure to chronic aquacultural stressors causes suppression of LH synthesis in the pituitary gland concomitant with decreased androgen receptor expression and blockade of recruitment of germline cells at the meiosis stage. This inhibition appears to be mediated through the hypothalamic-pituitary-interrenal axis in the tilapia O. mossambicus.
Collapse
Affiliation(s)
- Deepak Shinde
- Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India
| | - C B Ganesh
- Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
9
|
Association study between relative expression levels of eight genes and growth rate in Hungarian common carp ( Cyprinus carpio). Saudi J Biol Sci 2022; 29:630-639. [PMID: 35002460 PMCID: PMC8716967 DOI: 10.1016/j.sjbs.2021.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022] Open
Abstract
One of the most important issues in improving the competitiveness of the fish production sector is to improve the growth rate of fish. The genetic background to this trait is at present poorly understood. In this study, we compared the relative gene expression levels of the Akt1s1, FGF, GH, IGF1, MSTN, TLR2, TLR4 and TLR5 genes in blood in groups of common carps (Cyprinus carpio), which belonged to different growth types and phenotypes. Fish were divided into groups based on growth rate (normal group: n = 6; slow group: n = 6) and phenotype (scaled group: n = 6; mirror group: n = 6). In the first 18 weeks, we measured significant differences (p < 0.05) between groups in terms of body weight and body length. Over the next 18 weeks, the fish in the slow group showed more intense development. In the same period, the slow group was characterized by lower expression levels for most genes, whereas GH and IGF1 mRNA levels were higher compared to the normal group. We found that phenotype was not a determining factor in differences of relative expression levels of the genes studied.
Collapse
|
10
|
Kang DY, Kim HC, Im JH. Reproduction and Maturation of Sea Bass, Lateolabrax japonicus, after Transportation from Net-Cages to Indoor Tanks. Dev Reprod 2021; 25:157-171. [PMID: 34950819 PMCID: PMC8670778 DOI: 10.12717/dr.2021.25.3.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/05/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
To determine whether the reproductive processes of sea bass, Lateolabrax
japonicus, proceed normally after transportation from an outdoor
net-cage into indoor tanks, we examined changes in the gonadosomatic index
(GSI), histological gonadal tissue, and plasma levels of sex hormones
(testosterone and estradiol-17ß) during their annual reproductive cycle.
We also measured maturation and spawning across two sea water salinity levels
(full and low salinity). Fecundity was estimated by the relationship between egg
number and body size in female sea bass. Monthly changes in the GSI,
histological gonadal tissues, and oocyte size showed both male and female sea
bass reach final maturation in January and February, respectively, indicating
that the spermiation of males occurs earlier than the spawning of females. The
histological results indicated that the sea bass is a multiple spawner, similar
to many marine teleosts, exhibiting group-synchronous oocyte development. Female
maturation and spawning were enhanced in lower salinity seawater
(29.6–31.0 psu) compared to that of normal salinity (34.5–35.1
psu). These results confirm that sea bass reproduction can occur successfully in
captivity and imply that fertilized eggs can be collected from February to
March. Additionally, our results show that lower salinity enhances oocyte
maturation and spawning of female sea bass.
Collapse
Affiliation(s)
- Duk-Young Kang
- Inland Fisheries Research Institute (NIFS), Geumsan 32762, Korea
| | - Hyo-Chan Kim
- Inland Fisheries Research Institute (NIFS), Geumsan 32762, Korea
| | - Jae Hyun Im
- Inland Fisheries Research Institute (NIFS), Geumsan 32762, Korea.,MLSR&C, Daegen 34523, Korea
| |
Collapse
|
11
|
Le Du-Carrée J, Boukhari R, Cachot J, Cabon J, Louboutin L, Morin T, Danion M. Generational effects of a chronic exposure to a low environmentally relevant concentration of glyphosate on rainbow trout, Oncorhynchus mykiss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149462. [PMID: 34411792 DOI: 10.1016/j.scitotenv.2021.149462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
In the past few decades, glyphosate became the most used herbicide substance worldwide. As a result, the substance is ubiquitous in surface waters. Concerns have been raised about its ecotoxicological impact, but little is known about its generational toxicity. In this study, we investigate the impact of an environmentally relevant concentration of glyphosate and its co-formulants on an F2 generation issued from exposed generations F0 and F1. Trans, inter and multigenerational toxicity of 1 μgL-1 of the active substance was evaluated on early stages of development and juvenile rainbow trout (Oncorhynchus mykiss) using different molecular, biochemical, immuno-hematologic, and biometric parameters, behavior analysis, and a viral challenge. Reproductive parameters of generation F1 were not affected. However, developmental toxicity in generation F2 due to glyphosate alone or co-formulated was observed with head size changes (e.g. head surface up to +10%), and metabolic disruptions (e.g. 35% reduction in cytochrome-c-oxidase). Moreover, larvae exposed transgenerationally to Viaglif and intergenerationally to glyphosate and Roundup presented a reduced response to light, potentially indicating altered escape behavior. Overall methylation was, however, not altered and further experiments using gene-specific DNA metylation analyses are required. After several months, biochemical parameters measured in juvenile fish were no longer impacted, only intergenerational exposure to glyphosate drastically increased the susceptibility of rainbow trout to hematopoietic necrosis virus. This result might be due to a lower antibody response in exposed fish. In conclusion, our results show that generational exposure to glyphosate induces developmental toxicity and increases viral susceptibility. Co-formulants present in glyphosate-based herbicides can modulate the toxicity of the active substance. Further investigations are required to study the specific mechanisms of transmission but our results suggest that both non-genetic mechanisms and exposure during germinal stage could be involved.
Collapse
Affiliation(s)
- Jessy Le Du-Carrée
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France; UBO University of Western Brittany, Brest, France.
| | - Rania Boukhari
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| | - Jérôme Cachot
- University of Bordeaux, UMR CNRS 5805 EPOC, Allée Geoffroy Saint Hilaire, 33 600 Pessac, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| | - Lénaïg Louboutin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Fish Virology, Immunology and Ecotoxicology Unit, 29280 Plouzané, France
| |
Collapse
|
12
|
Corriero A, Zupa R, Mylonas CC, Passantino L. Atresia of ovarian follicles in fishes, and implications and uses in aquaculture and fisheries. JOURNAL OF FISH DISEASES 2021; 44:1271-1291. [PMID: 34132409 PMCID: PMC8453499 DOI: 10.1111/jfd.13469] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 05/04/2023]
Abstract
Atresia of ovarian follicles, that is the degenerative process of germ cells and their associated somatic cells, is a complex process involving apoptosis, autophagy and heterophagy. Follicular atresia is a normal component of fish oogenesis and it is observed throughout the ovarian cycle, although it is more frequent in regressing ovaries during the postspawning period. An increased occurrence of follicular atresia above physiological rates reduces fish fecundity and even causes reproductive failure in both wild and captive-reared fish stocks, and hence, this phenomenon has a wide range of implications in applied sciences such as fisheries and aquaculture. The present article reviews the available literature on both basic and applied traits of oocyte loss by atresia, including its morpho-physiological aspects and factors that cause a supraphysiological increase of follicular atresia. Finally, the review presents the use of early follicular atresia identification in the selection process of induced spawning in aquaculture and the implications of follicular atresia in fisheries management.
Collapse
Affiliation(s)
- Aldo Corriero
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| | - Rosa Zupa
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| | - Constantinos C. Mylonas
- Institute of Marine Biology, Biotechnology and AquacultureHellenic Center for Marine ResearchCreteGreece
| | - Letizia Passantino
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| |
Collapse
|
13
|
Weber GM, Birkett J, Martin K, Dixon D, Gao G, Leeds TD, Vallejo RL, Ma H. Comparisons among rainbow trout, Oncorhynchus mykiss, populations of maternal transcript profile associated with egg viability. BMC Genomics 2021; 22:448. [PMID: 34130620 PMCID: PMC8207762 DOI: 10.1186/s12864-021-07773-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/04/2021] [Indexed: 11/29/2022] Open
Abstract
Background Transcription is arrested in the late stage oocyte and therefore the maternal transcriptome stored in the oocyte provides nearly all the mRNA required for oocyte maturation, fertilization, and early cleavage of the embryo. The transcriptome of the unfertilized egg, therefore, has potential to provide markers for predictors of egg quality and diagnosing problems with embryo production encountered by fish hatcheries. Although levels of specific transcripts have been shown to associate with measures of egg quality, these differentially expressed genes (DEGs) have not been consistent among studies. The present study compares differences in select transcripts among unfertilized rainbow trout eggs of different quality based on eyeing rate, among 2 year classes of the same line (A1, A2) and a population from a different hatchery (B). The study compared 65 transcripts previously reported to be differentially expressed with egg quality in rainbow trout. Results There were 32 transcripts identified as DEGs among the three groups by regression analysis. Group A1 had the most DEGs, 26; A2 had 15, 14 of which were shared with A1; and B had 12, 7 of which overlapped with A1 or A2. Six transcripts were found in all three groups, dcaf11, impa2, mrpl39_like, senp7, tfip11 and uchl1. Conclusions Our results confirmed maternal transcripts found to be differentially expressed between low- and high-quality eggs in one population of rainbow trout can often be found to overlap with DEGs in other populations. The transcripts differentially expressed with egg quality remain consistent among year classes of the same line. Greater similarity in dysregulated transcripts within year classes of the same line than among lines suggests patterns of transcriptome dysregulation may provide insight into causes of decreased viability within a hatchery population. Although many DEGs were identified, for each of the genes there is considerable variability in transcript abundance among eggs of similar quality and low correlations between transcript abundance and eyeing rate, making it highly improbable to predict the quality of a single batch of eggs based on transcript abundance of just a few genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07773-1.
Collapse
Affiliation(s)
- Gregory M Weber
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA.
| | - Jill Birkett
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | | | | | - Guangtu Gao
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | - Timothy D Leeds
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | - Roger L Vallejo
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | - Hao Ma
- USDA/ARS Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Ames, IA, USA
| |
Collapse
|
14
|
Du-Carrée JL, Morin T, Danion M. Impact of chronic exposure of rainbow trout, Oncorhynchus mykiss, to low doses of glyphosate or glyphosate-based herbicides. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105687. [PMID: 33264693 DOI: 10.1016/j.aquatox.2020.105687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Glyphosate is an herbicidal active substance (AS) entering in the composition of a large diversity of pesticide products (glyphosate-based herbicides; GBH) used in modern intensive agriculture. This compound has a favorable environmental safety profile but was suspected to induce deleterious effects in aquatic organisms, with a potential effect of some associated co-formulants. This study aimed to assess the impact of direct and chronic exposure to glyphosate on the health status of rainbow trout, Oncorhynchus mykiss. A total of 36 genitors were exposed daily for 10 months to a dose of glyphosate representative of environmental concentrations (around 1 μg L-1) using the AS alone or two GBHs formulations (i.e. Roundup Innovert® and Viaglif Jardin®) and findings were compared to an unexposed control group (n=12). The effects of chemical exposure on the reproductive capacities, hemato-immunologic functions, energetic metabolism, oxidative stress and specific biomarkers of exposure were analyzed over a period of 4 months covering spawning. A limited mortality between 15% and 30% specific to the spawning occurred under all conditions. No differences were observed in reproduction parameters i.e. mean weights, relative fertility and fecundity. Red blood cell count, hematocrit index, mean corpuscular volume and white blood cell counts were similar for all the sampling dates. Significant changes were observed two months before spawning with a 70% decrease of the proportion of macrophages in trout exposed to Viaglif only and a reduction of 35% of the phagocytic activity in fish exposed to the two GBHs. Trends towards lower levels of expression of tumor necrosis factor-α (between 38% and 66%) were detected one month after the spawning for all contaminated conditions but without being statistically significant. Biomarkers of exposure, i.e. acetylcholine esterase and carbonic anhydrase activities, were not impacted and none of the chemical contaminants disturbed the oxidative stress or metabolism parameters measured. These results suggest that a 10 months exposure of rainbow trout to a concentration of 1 μg L-1 of glyphosate administered using the pure active substance or two GBHs did not significantly modify their global health including during the spawning period. The immunological disturbances observed will need to be further explored because they could have a major impact in response to infectious stress.
Collapse
Affiliation(s)
- Jessy Le Du-Carrée
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France; UBO University of Western Brittany, Brest, France.
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, 29280 Plouzané, France
| |
Collapse
|
15
|
Rousseau K, Prunet P, Dufour S. Special features of neuroendocrine interactions between stress and reproduction in teleosts. Gen Comp Endocrinol 2021; 300:113634. [PMID: 33045232 DOI: 10.1016/j.ygcen.2020.113634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023]
Abstract
Stress and reproduction are both essential functions for vertebrate survival, ensuring on one side adaptative responses to environmental changes and potential life threats, and on the other side production of progeny. With more than 25,000 species, teleosts constitute the largest group of extant vertebrates, and exhibit a large diversity of life cycles, environmental conditions and regulatory processes. Interactions between stress and reproduction are a growing concern both for conservation of fish biodiversity in the frame of global changes and for the development of sustainability of aquaculture including fish welfare. In teleosts, as in other vertebrates, adverse effects of stress on reproduction have been largely documented and will be shortly overviewed. Unexpectedly, stress notably via cortisol, may also facilitate reproductive function in some teleost species in relation to their peculiar life cyles and this review will provide some examples. Our review will then mainly address the neuroendocrine axes involved in the control of stress and reproduction, namely the corticotropic and gonadotropic axes, as well as their interactions. After reporting some anatomo-functional specificities of the neuroendocrine systems in teleosts, we will describe the major actors of the corticotropic and gonadotropic axes at the brain-pituitary-peripheral glands (interrenals and gonads) levels, with a special focus on the impact of teleost-specific whole genome duplication (3R) on the number of paralogs and their potential differential functions. We will finally review the current knowledge on the neuroendocrine mechanisms of the various interactions between stress and reproduction at different levels of the two axes in teleosts in a comparative and evolutionary perspective.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Prunet
- INRAE, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), Rennes, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
16
|
Tavabe KR, Kuchaksaraei BS, Javanmardi S. Effects of ZnO nanoparticles on the Giant freshwater prawn (Macrobrachium rosenbergii, de Man, 1879): Reproductive performance, larvae development, CHH concentrations and anti-oxidative enzymes activity. Anim Reprod Sci 2020; 221:106603. [PMID: 32971351 DOI: 10.1016/j.anireprosci.2020.106603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023]
Abstract
The Giant freshwater prawn (Macrobrachium rosenbergii) breeds when in captive conditions. The eggs of a clutch are attached to the abdomen of berried females. Zinc oxide (ZnO) is one of the most important metal oxide-nanoparticles (NPs) that is widely used in various industries and is released into aquatic environments from wastewater management facilities. The present study was conducted to evaluate effects of ZnO on values for the reproductive variables: larvae development, crustacean hyperglycemic hormone (CHH) release from the X-organ into the hemolymph and anti-oxidative enzymes activity of M. rosenbergii. There were five groups including a group not treated (control), and groups treated with10, 20, 50, 100 mg/L ZnO in triplicate during a 90-day period. Results indicated that ZnO-NPs have marked effects on reproductive performance, offspring development, CHH release from the X-organ into the hemolymph and anti-oxidant enzymes activities with there being no spawning of brood-stock in the 100 mg/L ZnO group and in the prawns treated with 50 mg/L there was spawning but there was larvae mortality immediately subsequent to hatching. Also, values for viability rate of eggs, dry weight of eggs, brood-stock inter-spawn period and egg clutch somatic index (ESI) reproductive variables were affected by the NP. This NP was found to have a dose-dependent effect on CHH release from the X-organ into the hemolymph and also superoxide dismutase (SOD) and catalase activities in M. rosenbergii. The results indicate that M. rosenbergii, a freshwater decapod crustacean, is an appropriate species to study nano-material effects on reproduction in freshwater ecosystems.
Collapse
Affiliation(s)
- K Rezaei Tavabe
- Aquaculture and Fisheries Department, Natural Resources Faculty, University of Tehran, Karaj, Iran.
| | - B Samadi Kuchaksaraei
- Department of Marine Science, Faculty of Natural Resources and Environment, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - S Javanmardi
- Aquaculture and Fisheries Department, Natural Resources Faculty, University of Tehran, Karaj, Iran
| |
Collapse
|
17
|
Rahman MM, Biswas R, Gazi L, Arafat ST, Rahman MM, Asaduzzaman M, Rahman SM, Ahsan MN. Annually twice induced spawnings provide multiple benefits: Experimental evidence from an Indian major carp (
Catla catla
, Hamilton 1822). AQUACULTURE RESEARCH 2020; 51:2275-2290. [DOI: 10.1111/are.14572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 09/27/2023]
Affiliation(s)
- Md. Moshiur Rahman
- Tokyo University of Marine Science and Technology Tokyo Japan
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Ripon Biswas
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Litan Gazi
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Shaikh Tareq Arafat
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| | - Md. Mostafizur Rahman
- Department of Disaster and Human Security Management Bangladesh University of Professionals Dhaka Bangladesh
| | - Md. Asaduzzaman
- Department of Marine Bioresource Science Chattogram Veterinary and Animal Sciences University Chittagong Bangladesh
| | - Sheikh Mustafizur Rahman
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
- Fish Resources Research Center King Faisal University Hofuf Saudi Arabia
| | - Md. Nazmul Ahsan
- Fisheries and Marine Resource Technology Discipline Khulna University Khulna Bangladesh
| |
Collapse
|
18
|
Benjamin JR, Vidergar DT, Dunham JB. Thermal heterogeneity, migration, and consequences for spawning potential of female bull trout in a river-reservoir system. Ecol Evol 2020; 10:4128-4142. [PMID: 32489636 PMCID: PMC7244891 DOI: 10.1002/ece3.6184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 11/30/2022] Open
Abstract
The likelihood that fish will initiate spawning, spawn successfully, or skip spawning in a given year is conditioned in part on availability of energy reserves. We evaluated the consequences of spatial heterogeneity in thermal conditions on the energy accumulation and spawning potential of migratory bull trout (Salvelinus confluentus) in a regulated river-reservoir system. Based on existing data, we identified a portfolio of thermal exposures and migratory patterns and then estimated their influence on energy reserves of female bull trout with a bioenergetics model. Spawning by females was assumed to be possible if postspawning energy reserves equaled or exceeded 4 kJ/g. Given this assumption, results suggested up to 70% of the simulated fish could spawn each year. Fish that moved seasonally between a cold river segment and a warmer reservoir downstream had a greater growth rate and higher propensity to spawn in a given year (range: 40%-70%) compared with fish that resided solely in the cold river segment (25%-40%). On average, fish that spawned lost 30% of their energy content relative to their prespawn energy. In contrast, fish that skipped spawning accumulated, on average, 16% energy gains that could be used toward future gamete production. Skipped spawning occurred when water temperatures were relatively low or high, and if upstream migration occurred relatively late (mid-July or later) or early (early-May or earlier). Overall, our modeling effort suggests the configuration of thermal exposures, and the ability of bull trout to exploit this spatially and temporally variable thermal conditions can strongly influence energy reserves and likelihood of successful spawning.
Collapse
Affiliation(s)
- Joseph R. Benjamin
- U.S. Geological SurveyForest and Rangeland Ecosystem Science CenterBoiseIdaho
| | | | - Jason B. Dunham
- U.S. Geological SurveyForest and Rangeland Ecosystem Science CenterCorvallisOregon
| |
Collapse
|
19
|
Bhat SK, Ganesh CB. Domperidone treatment attenuates stress-induced suppression of reproduction in viviparous mosquitofish Gambusia affinis. JOURNAL OF FISH BIOLOGY 2020; 96:37-48. [PMID: 31648360 DOI: 10.1111/jfb.14183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to determine the effect of stress on reproduction and the possible involvement of dopaminergic systems in the reproductive stress response in the mosquitofish Gambusia affinis. Exposure of fish to aquaculture stressors (four 10 min episodes of stress, each corresponding to a different stressor such as handling, chasing, frequent netting and low water levels), for a period of 30 days caused reduction in the mean numbers of stage I-IV follicles associated with lower number of pregnant females and embryos in most of the developmental stages compared with experimental controls. Besides, increase in the intensity of labelling and the per cent area of tyrosine hydroxylase (TH; a rate-limiting enzyme in the biosynthetic pathway of catecholamines)- immunoreactive (ir) neurons was observed in the preoptic area (POA) and the nucleus preopticus (NPO) regions of the brain concomitant with reduction in the labelling of gonadotropin releasing hormone-immunoreactive (GnRH-ir) fibres in the proximal pars distalis (PPD) of the pituitary gland in stressed fish compared with experimental controls. Treatment of domperidone (DOM) caused an increase in the number of stage II and V follicles and promoted pregnancy rate concomitant with an increase in the number of embryos at various developmental stages compared with those of experimental controls. Similar treatment to stressed fish caused an increase in the number of stages I-V follicles compared with those in stress alone group. The GnRH fibres showed increased immunolabelling in stress + DOM treated fish compared with stress alone fish. On the other hand, TH-immunoreactivity in the POA and the NPO regions was reduced in stress + DOM treated fish compared with stress-alone group. These results suggest that stress inhibits follicular development and subsequent hatching success through the suppression of GnRH and that the inhibition appears to be mediated through dopamine, for the first time in a viviparous fish.
Collapse
Affiliation(s)
- Shilpa K Bhat
- Department of Studies in Zoology, Karnatak University, Dharwad, India
| | | |
Collapse
|
20
|
Irob K, Wagler M, Baberschke N, Meinelt T, Kloas W. Potash mining effluents induce moderate effects on histopathological and physiological endpoints of adult zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133471. [PMID: 31400679 DOI: 10.1016/j.scitotenv.2019.07.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Stress in fish can be caused by a variety of factors and has the potential to evoke stress responses leading to a reduction of physical condition and of health. The river Werra (Germany) presents a severe case of secondary salinisation caused by potash mining activities. The model organism Danio rerio was exposed to different ion-concentrations depicting current (HT) and future (LT) threshold values of the Werra, as well as to solutions with single-exceeding ions (Mg2+ + K+ (KMg), Mg2+ (Mg) and K+ (K)). After a six-week exposure period, cortisol levels, growth and weight were measured, gills and gonads were histologically analysed and mRNA expression of follicle stimulating hormone (FSH), luteinising hormone (LH), growth hormone (GH) and prolactin (PRL) were determined. Cortisol was still elevated in fish in the HT and K group, indicating moderate stress. However, gills revealed structural changes in zebrafish in all exposure groups, size of oocytes differed in the LT and K group, male FSH mRNA levels were elevated in the HT and LT group whereas PRL mRNA levels were lower in HT and LT for both, male and female fish. These results suggest that ion-stress induces moderate effects on a variety of biological parameters that mainly serve to adapt to elevated ion concentrations. For these reasons current and even future thresholds should be reconsidered, including thresholds for total as well as single ion concentrations. Future research looking at the effects on local fish species is needed, along with regular and long-term monitoring of environmental conditions, species abundance and diversity.
Collapse
Affiliation(s)
- Katja Irob
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany; Biodiversity and Theoretical Ecology, Institute of Biology, Freie Universität Berlin, Altensteinstr. 34, Berlin 14195, Germany.
| | - Marit Wagler
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany
| | - Nora Baberschke
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany
| | - Thomas Meinelt
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany
| | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, Berlin 12587, Germany; Department of Endocrinology, Institute of Biology and Albrecht Daniel Thaer-Institute, Faculty of Life Sciences, Humboldt Universität zu Berlin, Invalidenstr. 42, Berlin 10115, Germany
| |
Collapse
|
21
|
Ma H, Martin K, Dixon D, Hernandez AG, Weber GM. Transcriptome analysis of egg viability in rainbow trout, Oncorhynchus mykiss. BMC Genomics 2019; 20:319. [PMID: 31029084 PMCID: PMC6486991 DOI: 10.1186/s12864-019-5690-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022] Open
Abstract
Background Maternal transcripts are accumulated in the oocyte during oogenesis to provide for protein synthesis from oocyte maturation through early embryonic development, when nuclear transcription is silenced. The maternal mRNAs have short poly(A) tails after undergoing post-transcriptional processing necessary for stabilizing them for storage. The transcripts undergo cytoplasmic polyadenylation when they are to be translated. Transcriptome analyses comparing total mRNA and elongated poly(A) mRNA content among eggs of different quality can provide insight into molecular mechanisms affecting egg developmental competence in rainbow trout. The present study used RNA-seq to compare transcriptomes of unfertilized eggs of rainbow trout females yielding different eyeing rates, following rRNA removal and poly(A) retention for construction of the libraries. Results The percentage of embryos to reach the 32-cell stage at 24 h post fertilization was significantly correlated to family eyeing rate, indicating that inviable embryos were developmentally compromised before zygotic genome activation. RNA sequencing identified 2 differentially expressed transcripts (DETs) from total mRNA sequencing comparing females with low-quality (< 5% eyeing), medium-quality (30–50% eyeing), and high-quality (> 80% eyeing) eggs. In contrast, RNA sequencing from poly(A) captured transcripts identified 945 DETs between low- and high-quality eggs, 1012 between low- and medium-quality eggs, and only 2 between medium- and high-quality eggs. The transcripts of mitochondrial genes were enriched with polyadenylated transcript sequencing and they were significantly reduced in low-quality eggs. Similarly, mitochondrial DNA was reduced in low-quality eggs compared with medium- and high-quality eggs. The functional gene analysis classified the 945 DETs between low- and high-quality eggs into 31 functional modules, many of which were related to ribosomal and mitochondrial functions. Other modules involved transcription, translation, cell division, apoptosis, and immune responses. Conclusions Our results indicate that differences in egg quality may be derived from differences in maternal nuclear transcript activation and cytoplasmic polyadenylation before ovulation, as opposed to accumulation and storage of maternal nuclear transcripts during oogenesis. Transcriptome comparisons suggest low-quality eggs suffered from impaired oxidative phosphorylation and translation. The DETs identified in this study provide insight into developmental competence in rainbow trout eggs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5690-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Ma
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| | | | | | | | - Gregory M Weber
- USDA/ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA.
| |
Collapse
|
22
|
Ahi EP, Singh P, Lecaudey LA, Gessl W, Sturmbauer C. Maternal mRNA input of growth and stress-response-related genes in cichlids in relation to egg size and trophic specialization. EvoDevo 2018; 9:23. [PMID: 30519389 PMCID: PMC6271631 DOI: 10.1186/s13227-018-0112-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Egg size represents an important form of maternal effect determined by a complex interplay of long-term adaptation and short-term plasticity balancing egg size with brood size. Haplochromine cichlids are maternal mouthbrooders showing differential parental investment in different species, manifested in great variation in egg size, brood size and duration of maternal care. Little is known about maternally determined molecular characters of eggs in fishes and their relation to egg size and trophic specialization. Here we investigate maternal mRNA inputs of selected growth- and stress-related genes in eggs of mouthbrooding cichlid fishes adapted to different trophic niches from Lake Tanganyika, Lake Malawi, Lake Victoria and compare them to their riverine allies. RESULTS We first identified two reference genes, atf7ip and mid1ip1, to be suitable for cross-species quantification of mRNA abundance via qRT-PCR in the cichlid eggs. Using these reference genes, we found substantial variation in maternal mRNA input for a set of candidate genes related to growth and stress response across species and lakes. We observed negative correlation of mRNA abundance between two of growth hormone receptor paralogs (ghr1 and ghr2) across all haplochromine cichlid species which also differentiate the species in the two younger lakes, Malawi and Lake Victoria, from those in Lake Tanganyika and ancestral riverine species. Furthermore, we found correlations between egg size and maternal mRNA abundance of two growth-related genes igf2 and ghr2 across the haplochromine cichlids as well as distinct clustering of the species based on their trophic specialization using maternal mRNA abundance of five genes (ghr1, ghr2, igf2, gr and sgk1). CONCLUSIONS These findings indicate that variations in egg size in closely related cichlid species can be linked to differences in maternal RNA deposition of key growth-related genes. In addition, the cichlid species with contrasting trophic specialization deposit different levels of maternal mRNAs in their eggs for particular growth-related genes; however, it is unclear whether such differences contribute to differential morphogenesis at later stages of development. Our results provide first insights into this aspect of gene activation, as a basis for future studies targeting their role during ecomorphological specialization and adaptive radiation.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | | | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
23
|
Cogliati KM, Unrein JR, Stewart HA, Schreck CB, Noakes DLG. Egg size and emergence timing affect morphology and behavior in juvenile Chinook Salmon, Oncorhynchus tshawytscha. Ecol Evol 2017; 8:778-789. [PMID: 29321913 PMCID: PMC5756839 DOI: 10.1002/ece3.3670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 11/08/2022] Open
Abstract
Variation in early life history traits often leads to differentially expressed morphological and behavioral phenotypes. We investigated whether variation in egg size and emergence timing influence subsequent morphology associated with migration timing in juvenile spring Chinook Salmon, Oncorhynchus tshawytscha. Based on evidence for a positive relationship between growth rate and migration timing, we predicted that fish from small eggs and fish that emerged earlier would have similar morphology to fall migrants, while fish from large eggs and individuals that emerged later would be more similar to older spring yearling migrants. We sorted eyed embryos within females into two size categories: small and large. We collected early and late‐emerging juveniles from each egg size category. We used landmark‐based geometric morphometrics and found that egg size appears to drive morphological differences. Egg size shows evidence for an absolute rather than relative effect on body morphology. Fish from small eggs were morphologically more similar to fall migrants, while fish from large eggs were morphologically more similar to older spring yearling migrants. Previous research has shown that the body morphology of fish that prefer the surface or bottom location in a tank soon after emergence also correlates with the morphological variations between wild fall and spring migrants, respectively. We found that late‐emerging fish spent more time near the surface. Our study shows that subtle differences in early life history characteristics may correlate with a diversity of future phenotypes.
Collapse
Affiliation(s)
- Karen M Cogliati
- Department of Fisheries and Wildlife Oregon State University Corvallis OR USA
| | - Julia R Unrein
- Department of Fisheries and Wildlife Oregon State University Corvallis OR USA
| | - Heather A Stewart
- Department of Fisheries and Wildlife Oregon State University Corvallis OR USA
| | - Carl B Schreck
- U.S. Geological Survey (U.S.G.S.) Oregon Cooperative Fish and Wildlife Research Unit Oregon State University Corvallis OR USA
| | - David L G Noakes
- Department of Fisheries and Wildlife Oregon State University Corvallis OR USA.,Oregon Hatchery Research Center Alsea OR USA
| |
Collapse
|
24
|
Effects of maternal cortisol treatment on offspring size, responses to stress, and anxiety-related behavior in wild largemouth bass (Micropterus salmoides). Physiol Behav 2017; 180:15-24. [PMID: 28782525 DOI: 10.1016/j.physbeh.2017.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 01/19/2023]
Abstract
Cortisol, the main glucocorticoid stress hormone in teleost fish, is of interest as a mediator of maternal stress on offspring characteristics because it plays an organizational role during early development. The present study tested the hypothesis that maternal exposure to cortisol treatment prior to spawn affects offspring phenotype using wild largemouth bass (Micropterus salmoides). Baseline and stress-induced cortisol concentrations, body size (i.e. length and mass), and behavior (i.e. anxiety, exploration, boldness, and aggression) were assessed at different offspring life-stages and compared between offspring of control and cortisol-treated females. Cortisol administration did not affect spawning success or timing, nor were whole-body cortisol concentrations different between embryos from cortisol-treated and control females. However, maternal cortisol treatment had significant effects on offspring stress responsiveness, mass, and behavior. Compared to offspring of control females, offspring of cortisol-treated females exhibited larger mass right after hatch, and young-of-the-year mounted an attenuated cortisol response to an acute stressor, and exhibited less thigmotaxic anxiety, exploratory behavior, boldness and aggression. Thus, offspring phenotype was affected by elevated maternal cortisol levels despite the absence of a significant increase in embryo cortisol concentrations, suggesting that a mechanism other than the direct deposition of cortisol into eggs mediates effects on offspring. The results of the present raise questions about the mechanisms through which maternal stress influences offspring behavior and physiology, as well as the impacts of such phenotypic changes on offspring fitness.
Collapse
|
25
|
Hall KC, Broadhurst MK, Butcher PA, Cameron L, Rowland SJ, Millar RB. Sublethal effects of angling and release on golden perch Macquaria ambigua: implications for reproduction and fish health. JOURNAL OF FISH BIOLOGY 2017; 90:1980-1998. [PMID: 28349540 DOI: 10.1111/jfb.13282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
The present study tested the hypothesis of no delayed sublethal effects of mild angling and release on the feeding, growth, somatic condition and gonadal development of golden perch Macquaria ambigua during gametogenesis. Subsamples of adult M. ambigua (n = 17-21 of 207), originally captured from the wild and stocked into ten 0·1 ha earthen ponds, were angled and released during early and late gametogenesis. Wild samples that were concurrently collected throughout the experiment underwent rapid and synchronous gonadal development and many spawned. While no spawning occurred in the ponds, most M. ambigua underwent normal gonadal development to maturity, including the angled fish. Angled fish also fed, maintained condition and actually grew faster than non-angled captive controls. Although females that were angled during late gametogenesis more readily ingested and retained baited hooks, neither their subsequent condition nor gonadal development was significantly affected. The predominance of null results was attributed to the combined effects of the flexible reproductive strategy of M. ambigua, the benignness of mouth hooking and immediate release, and possible methodological issues arising from differential hooking success of more aggressive and resilient individuals. The findings support earlier catch-and-release research, but contrast with reports of acute reproductive effects following capture and handling for aquaculture broodstock. This discrepancy highlights the need for research to specifically address welfare questions relevant to recreational fisheries across various species and angling scenarios.
Collapse
Affiliation(s)
- K C Hall
- New South Wales Department of Primary Industries, National Marine Science Centre, PO Box 4321, Coffs Harbour, NSW, 2450, Australia
| | - M K Broadhurst
- New South Wales Department of Primary Industries, National Marine Science Centre, PO Box 4321, Coffs Harbour, NSW, 2450, Australia
| | - P A Butcher
- New South Wales Department of Primary Industries, National Marine Science Centre, PO Box 4321, Coffs Harbour, NSW, 2450, Australia
| | - L Cameron
- New South Wales Department of Primary Industries, Grafton Fisheries Centre, Private Mail Bag 2, Grafton, NSW, 2460, Australia
| | - S J Rowland
- New South Wales Department of Primary Industries, Grafton Fisheries Centre, Private Mail Bag 2, Grafton, NSW, 2460, Australia
| | - R B Millar
- Department of Statistics, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
26
|
Guida L, Awruch C, Walker TI, Reina RD. Prenatal stress from trawl capture affects mothers and neonates: a case study using the southern fiddler ray (Trygonorrhina dumerilii). Sci Rep 2017; 7:46300. [PMID: 28401959 PMCID: PMC5388872 DOI: 10.1038/srep46300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
Assessing fishing effects on chondrichthyan populations has predominantly focused on quantifying mortality rates. Consequently, sub-lethal effects of capture stress on the reproductive capacity of chondrichthyans are largely unknown. We investigated the reproductive consequences of capture on pregnant southern fiddler rays (Trygonorrhina dumerilii) collected from Swan Bay, Australia, in response to laboratory-simulated trawl capture (8 h) followed immediately by air exposure (30 min). Immediately prior to, and for up to 28 days post trawling, all females were measured for body mass (BM), sex steroid concentrations (17-β estradiol, progesterone, testosterone) and granulocyte to lymphocyte (G:L) ratio. At parturition, neonates were measured for total length (TL), BM and G:L ratio. Trawling reduced maternal BM and elevated the G:L ratio for up to 28 days. Trawling did not significantly affect any sex steroid concentrations relative to controls. Neonates from trawled mothers were significantly lower in BM and TL than control animals, and had an elevated G:L ratio. Our results show that capture of pregnant T. dumerilii can influence their reproductive potential and affect the fitness of neonates. We suggest other viviparous species are likely to be similarly affected. Sub-lethal effects of capture, particularly on reproduction, require further study to improve fisheries management and conservation of chondrichthyans.
Collapse
Affiliation(s)
- L Guida
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - C Awruch
- CESIMAR (Centro Para el Estudio de Sistemas Marinos) - CENPAT- CONICET, Puerto Madryn, Chubut U9120ACD, Argentina.,School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - T I Walker
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - R D Reina
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
27
|
Sopinka NM, Capelle PM, Semeniuk CAD, Love OP. Glucocorticoids in Fish Eggs: Variation, Interactions with the Environment, and the Potential to Shape Offspring Fitness. Physiol Biochem Zool 2016; 90:15-33. [PMID: 28051944 DOI: 10.1086/689994] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Wild and captive vertebrates face multiple stressors that all have the potential to induce chronic maternal stress (i.e., sustained, elevated plasma glucocorticoids), resulting in embryo exposure to elevated maternally derived glucocorticoids. In oviparous taxa such as fish, maternally derived glucocorticoids in eggs are known for their capacity to shape offspring phenotype. Using a variety of methodologies, scientists have quantified maternally derived levels of egg cortisol, the primary glucocorticoid in fishes, and examined the cascading effects of egg cortisol on progeny phenotype. Here we summarize and interpret the current state of knowledge on egg cortisol in fishes and the relationships linking maternal stress/state to egg cortisol and offspring phenotype/fitness. Considerable variation in levels of egg cortisol exists across species and among females within a species; this variation is hypothesized to be due to interspecific differences in reproductive life history and intraspecific differences in female condition. Outcomes of experimental studies manipulating egg cortisol vary both inter- and intraspecifically. Moreover, while exogenous elevation of egg cortisol (as a proxy for maternal stress) induces phenotypic changes commonly considered to be maladaptive (e.g., smaller offspring size), emerging work in other taxa suggests that there can be positive effects on fitness when the offspring's environment is taken into account. Investigations into (i) mechanisms by which egg cortisol elicits phenotypic change in offspring (e.g., epigenetics), (ii) maternal and offspring buffering capacity of cortisol, and (iii) factors driving natural variation in egg cortisol and how this variation affects offspring phenotype and fitness are all germane to discussions on egg glucocorticoids as signals of maternal stress.
Collapse
|
28
|
Jeffrey JD, Gilmour KM. Programming of the hypothalamic-pituitary-interrenal axis by maternal social status in zebrafish (Danio rerio). ACTA ACUST UNITED AC 2016; 219:1734-43. [PMID: 27045091 DOI: 10.1242/jeb.138826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/17/2016] [Indexed: 01/02/2023]
Abstract
The present study examined the effects of maternal social status, with subordinate status being a chronic stressor, on development and activity of the stress axis in zebrafish embryos and larvae. Female zebrafish were confined in pairs for 48 h to establish dominant/subordinate hierarchies; their offspring were reared to 144 h post-fertilization (hpf) and sampled at five time points over development. No differences were detected in maternal cortisol contribution, which is thought to be an important programmer of offspring phenotype. However, once zebrafish offspring began to synthesize cortisol de novo (48 hpf), larvae of dominant females exhibited significantly lower baseline cortisol levels than offspring of subordinate females. These lower cortisol levels may reflect reduced hypothalamic-pituitary-interrenal (HPI) axis activity, because corticotropin-releasing factor (crf) and cytochrome p450 side chain cleavage enzyme (p450scc) mRNA levels also were lower in larvae from dominant females. Moreover, baseline mRNA levels of HPI axis genes continued to be affected by maternal social status beyond 48 hpf. At 144 hpf, stress-induced cortisol levels were significantly lower in offspring of subordinate females. These results suggest programming of stress axis function in zebrafish offspring by maternal social status, emphasizing the importance of maternal environment and experience on offspring stress axis activity.
Collapse
Affiliation(s)
- Jennifer D Jeffrey
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
29
|
Faught E, Best C, Vijayan MM. Maternal stress-associated cortisol stimulation may protect embryos from cortisol excess in zebrafish. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160032. [PMID: 26998341 PMCID: PMC4785992 DOI: 10.1098/rsos.160032] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/28/2016] [Indexed: 05/16/2023]
Abstract
Abnormal embryo cortisol level causes developmental defects and poor survival in zebrafish (Danio rerio). However, no study has demonstrated that maternal stress leads to higher embryo cortisol content in zebrafish. We tested the hypothesis that maternal stress-associated elevation in cortisol levels increases embryo cortisol content in this asynchronous breeder. Zebrafish mothers were fed cortisol-spiked food for 5 days, to mimic maternal stress, followed by daily breeding for 10 days to monitor temporal embryo cortisol content. Cortisol treatment increased mean embryo yield, but the daily fecundity was variable among the groups. Embryo cortisol content was variable in both groups over a 10-day period. A transient elevation in cortisol levels was observed in the embryos from cortisol-fed mothers only on day 3, but not on subsequent days. We tested whether excess cortisol stimulates 11βHSD2 expression in ovarian follicles as a means to regulate embryo cortisol deposition. Cortisol treatment in vitro increased 11β HSD2 levels sevenfold, and this expression was regulated by actinomycin D and cycloheximide suggesting tight regulation of cortisol levels in the ovarian follicles. We hypothesize that cortisol-induced upregulation of 11βHSD2 activity in the ovarian follicles is a mechanism restricting excess cortisol incorporation into the eggs during maternal stress.
Collapse
|
30
|
|
31
|
|
32
|
A review of the potential effects of suspended sediment on fishes: potential dredging-related physiological, behavioral, and transgenerational implications. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s10669-015-9557-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Ma H, Weber GM, Hostuttler MA, Wei H, Wang L, Yao J. MicroRNA expression profiles from eggs of different qualities associated with post-ovulatory ageing in rainbow trout (Oncorhynchus mykiss). BMC Genomics 2015; 16:201. [PMID: 25885637 PMCID: PMC4374207 DOI: 10.1186/s12864-015-1400-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Egg quality is an important aspect in rainbow trout farming. Post-ovulatory aging is one of the most important factors affecting egg quality. MicroRNAs (miRNAs) are the major regulators in various biological processes and their expression profiles could serve as reliable biomarkers for various pathological and physiological conditions. The objective of this study was to identify miRNAs that are associated with egg qualities in rainbow trout using post-ovulatory aged eggs. RESULTS Egg samples from females on day 1, day 7, and day 14 post-ovulation (D1PO, D7PO and D14PO), which had the fertilization rates of 91.8%, 73.4% and less than 50%, respectively, were collected and small RNAs isolated from these samples were subjected to deep sequencing using the Illumina platform. The massive sequencing produced 27,342,477, 26,910,438 and 29,185,371 reads from the libraries of D1PO, D7PO and D14PO eggs, respectively. A three-way comparison of the miRNAs indicated that the egg samples shared 392 known and 236 novel miRNAs, and a total of 414, 481, and 470 known and 243, 298, and 296 novel miRNAs were identified from D1PO, D7PO and D14PO eggs, respectively. Four known miRNAs (omy-miR-193b-3p, omy-miR-203c-3p, omy-miR-499-5p and omy-miR-7550-3p) and two novel miRNAs (omy-miR-nov-95-5p and omy-miR-nov-112-5p) showed significantly higher expression in D1PO eggs relative to D14PO eggs as revealed by both deep sequencing and real time quantitative PCR analysis. GO analysis of the predicted target genes of these differentially expressed miRNAs revealed significantly enriched GO terms that are related to stress response, cell death, DNA damage, ATP generation, signal transduction and transcription regulation. CONCLUSIONS Results indicate that post-ovulatory ageing affects miRNA expression profiles in rainbow trout eggs, which can in turn impact egg quality. Further characterization of the differentially expressed miRNAs and their target genes may provide valuable information on the role of these miRNAs in controlling egg quality, and ultimately lead to the development of biomarkers for prediction of egg quality in rainbow trout.
Collapse
Affiliation(s)
- Hao Ma
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| | - Gregory M Weber
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, Kearneysville, WV, 25430, USA.
| | - Mark A Hostuttler
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, Kearneysville, WV, 25430, USA.
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Lei Wang
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
34
|
Li M, Christie H, Leatherland J. Modulation of GR activity does not affect the in vitro metabolism of cortisol by rainbow trout ovarian follicles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1887-1897. [PMID: 25148794 DOI: 10.1007/s10695-014-9976-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/13/2014] [Indexed: 06/03/2023]
Abstract
The goal of the study was to determine whether the metabolic clearance of cortisol from rainbow trout (Oncorhynchus mykiss) ovarian follicles is affected by the level of ovarian steroidogenesis, and whether it involves the activation of glucocorticoid receptors (GRs). Ovarian follicles were incubated in vitro; the adenylate cyclase activator, forskolin, was used to stimulate ovarian steroidogenesis, and the modulation of GR activity was brought about using GR agonists (cortisol and dexamethasone) or the GR antagonist, mifepristone (RU486). The follicles were co-incubated with [2, 4, 6, 7 (3)H] cortisol, and the tritium-labelled steroid products were separated by HPLC. In addition, the rates of expression of genes encoding for the two forms of GR (gr1 and gr2) were measured. Cortisone, cortisol sulphate, and cortisone sulphate were the major glucocorticoid products of cortisol metabolism, indicative of the action of 11β-hydroxysteroid dehydrogenase and glucocorticoid sulphotransferase in the follicular cells. There were no effects of RU486 or forskolin on the rates of [(3)H]cortisol metabolism suggesting that cortisol metabolism by ovarian follicles was independent of GR activation, and not influenced by increased activation of gonadal reproductive steroidogenesis.
Collapse
Affiliation(s)
- Mao Li
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | |
Collapse
|
35
|
Hamazaki T, Kahler E, Borba BM, Burton T. Impact of Ichthyophonus infection on spawning success of Yukon River Chinook salmon Oncorhynchus tshawytscha. DISEASES OF AQUATIC ORGANISMS 2013; 106:207-215. [PMID: 24191998 DOI: 10.3354/dao02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We examined the impacts of Ichthyophonus infection on spawning success of Yukon River Chinook salmon Oncorhynchus tshawytscha at spawning grounds of the Chena and Salcha Rivers, Alaska, USA. During the period 2005 to 2006, 1281 salmon carcasses (628 male, 652 female) were collected throughout the spawning season and from the entire spawning reaches of the Chena and Salcha Rivers. For each fish, infection status was determined by culture method and visual inspection of lesions of heart tissue as uninfected (culture negative), infected without lesions (culture positive with no visible lesions), and infected with lesions (culture positive with visible lesions), and spawning status was determined by visually inspecting the percentage of gametes remaining as full-spawned (<10%), partial-spawned (10-50%), and unspawned (>50%). Among the 3 groups, the proportion of full-spawned (i.e. spawning success) females was lower for those infected without lesions (69%) than those uninfected (87%) and infected with lesions (86%), but this did not apply to males (uninfected 42%, infected without lesions 38%, infected with lesions 41%). At the population level, the combined (infected and uninfected) proportion of female spawning success was 86%, compared to 87% when all females were assumed uninfected. These data suggest that while Ichthyophonus infection slightly reduces spawning success of infected females, its impact on the spawning population as a whole appears minimal.
Collapse
Affiliation(s)
- Toshihide Hamazaki
- Alaska Department of Fish and Game, Division of Commercial Fisheries, 333 Raspberry Road, Anchorage, Alaska 99518, USA
| | | | | | | |
Collapse
|
36
|
Li M, Leatherland JF, Woo PTK. Cortisol and dexamethasone increase the in vitro multiplication of the haemoflagellate, Cryptobia salmositica, possibly by interaction with a glucocorticoid receptor-like protein. Int J Parasitol 2012; 43:353-60. [PMID: 23262305 DOI: 10.1016/j.ijpara.2012.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 11/17/2022]
Abstract
Cryptobia salmositica is a pathogenic haemoflagellate of Pacific salmon, Oncorhynchus spp., on the west coast of North America. The in vitro multiplication of the parasite was significantly enhanced by the addition of cortisol (within a range consistent with physiological levels in salmonid fishes; 10-50 ng ml(-1)) to the culture medium (MEM supplemented with FBS). However, higher cortisol concentrations (100 and 200 ng ml(-1)) either had no enhancing effects or resulted in lower replication rates compared with the controls. The synthetic glucocorticoid, dexamethasone (Dex), also stimulated the replication of the parasite and mifepristone (RU486), a synthetic steroid that has glucocorticoid receptor (GR) antagonist properties, inhibited the stimulatory actions of both cortisol and Dex, when added to the medium at a concentration of 100 ng ml(-1) co-culture with cortisol or Dex. Furthermore, the dose-dependent effects of glucocorticoids (cortisol and Dex) on the multiplication of the haemoflagellate were correlated with the initial size of the inocula. The study revealed a novel relationship between the parasite and its host, in which the host's cortisol is used by the parasite to enhance its replication. Also, since C. salmositica responds to both native and synthetic glucocorticoids and to the GR antagonist, RU486, and exhibits a biphasic (hormetic) response to the amount of cortisol in the medium, we propose that the glucocorticoid exerts its effects via an interaction with GR-like proteins in C. salmositica that are functionally similar to those present in vertebrate cells.
Collapse
Affiliation(s)
- Mao Li
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
37
|
Li M, Christie HL, Leatherland JF. The in vitro metabolism of cortisol by ovarian follicles of rainbow trout (Oncorhynchus mykiss): comparison with ovulated oocytes and pre-hatch embryos. Reproduction 2012; 144:713-22. [DOI: 10.1530/rep-12-0354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mid-vitellogenic stage rainbow trout (Oncorhynchus mykiss) ovarian follicles (both intact and yolk free (YF)), ovulated oocytes and embryos were co-incubated with [2,4,6,7-3H]cortisol for 18 h to determine the degree and nature of the metabolism and biotransformation of the glucocorticoid. There was evidence of the conversion of cortisol to the less biologically potent glucocorticoid, cortisone, and the formation of glucocorticoid sulphates (both cortisol and cortisone) for all cell and tissue samples, suggesting the presence of 11β-hydroxysteroid dehydrogenase (11β-HSD) and glucocorticoid sulphotransferase (GST) activity at all stages; however, GST activity was particularly marked in both intact and YF ovarian follicles, suggesting an important role of follicles in limiting the exposure of oocyte to maternal cortisol. As there was no evidence of 11β-HSD or GST activity in ovarian fluid, the findings affirm that ovarian follicles (probably the thecal and granulosa cells) provide a barrier against the transfer of cortisol to the oocytes by forming sulphated steroids, whereas ovulated oocytes and early embryos have a more limited capacity to either metabolize or conjugate cortisol and are therefore more vulnerable at the post-ovulatory and early embryonic stages to increases in exposure to the glucocorticoid.
Collapse
|
38
|
Gennotte V, Sawadogo P, Milla S, Kestemont P, Mélard C, Rougeot C. Cortisol is responsible for positive and negative effects in the ovarian maturation induced by the exposure to acute stressors in Nile tilapia, Oreochromis niloticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1619-1626. [PMID: 22610261 DOI: 10.1007/s10695-012-9656-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 05/05/2012] [Indexed: 06/01/2023]
Abstract
The aim of the present study was to evaluate the effect of acute stress and cortisol injection on oocyte final maturation process in female Nile tilapia (Oreochromis niloticus). Handling followed by a prophylactic treatment (0.3 mL L(-1) H(2)O(2), 5 g L(-1) NaCl solution during 30 min) and an environmental change (transfer from a 2 m(3) fibreglass square tank to 50 L aquaria) were used as acute stressors and compared to a single cortisol injection (0.5 or 5 mg kg(-1) body weight). For both acute stress and cortisol injection (0.5 mg kg(-1) body weight), serum cortisol level was significantly increased from 2.3 to 134.1 ng mL(-1) 1 h post-stress/injection and returned to a resting basal value 24 h after the stress/injection. In fish injected with 5 mg kg(-1) body weight cortisol, mean serum cortisol level reached a peak up to 2500 ng mL(-1) 1 h after injection. 63 % of the females (mean body weight: 242 ± 4 g) submitted to the acute stress ovulated within 72 h after the stress. In the same way, cortisol injection (5 mg kg(-1) body weight) at the 10th day of the maturation cycle led to a twofold reduction of the time before ovulation compared to vehicle injected control fish. Relative and total fecundity were significantly decreased in females submitted to an acute stress or cortisol injected at 5 mg kg(-1) body weight, but not fertilization or hatching rates. In conclusion, acute stress and cortisol induction exert both positive and negative effects on the final reproductive process in O. niloticus, and cortisol is the endocrine mediator causing these changes.
Collapse
Affiliation(s)
- Vincent Gennotte
- Aquaculture Research and Education Centre (CEFRA), University of Liège, 10 Chemin de la Justice, 4500, Tihange, Belgium
| | - Philippe Sawadogo
- Direction Générale des Ressources Halieutiques, BP7010, Ouagadougou 03, Burkina Faso
| | - Sylvain Milla
- Research Unit in Environmental and Evolutive Biology (URBE), The University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
- Unité de Recherche Animal et Fonctionnalités des Produits Animaux, Université de Lorraine, 2 avenue de la Forêt de Haye, B.P. 172, 54505, Vandoeuvre-lès-Nancy, France
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutive Biology (URBE), The University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Charles Mélard
- Aquaculture Research and Education Centre (CEFRA), University of Liège, 10 Chemin de la Justice, 4500, Tihange, Belgium
| | - Carole Rougeot
- Aquaculture Research and Education Centre (CEFRA), University of Liège, 10 Chemin de la Justice, 4500, Tihange, Belgium.
| |
Collapse
|
39
|
Crespi EJ, Williams TD, Jessop TS, Delehanty B. Life history and the ecology of stress: how do glucocorticoid hormones influence life-history variation in animals? Funct Ecol 2012. [DOI: 10.1111/1365-2435.12009] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erica J. Crespi
- School of Biological Sciences; Washington State University; Box 644236; Pullman; Washington; USA
| | - Tony D. Williams
- Department of Biological Sciences; Simon Fraser University; Burnaby; British Columbia; V5A 1S6; Canada
| | - Tim S. Jessop
- Department of Zoology; University of Melbourne; Melbourne; Victoria; 3010; Australia
| | - Brendan Delehanty
- Department of Biological Sciences; Centre for the Neurobiology of Stress; University of Toronto Scarborough; Toronto; Ontario; M1C 1A4; Canada
| |
Collapse
|
40
|
Chabbi A, Ganesh CB. Stress-induced inhibition of recruitment of ovarian follicles for vitellogenic growth and interruption of spawning cycle in the fish Oreochromis mossambicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1521-1532. [PMID: 22527614 DOI: 10.1007/s10695-012-9643-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 03/31/2012] [Indexed: 05/31/2023]
Abstract
The tilapia, Oreochromis mossambicus, shows a short ovarian cycle of 24-26 days in nonmouthbrooding condition. In this study, the stripped female O. mossambicus were exposed to repeated mild acute stressors such as handling, chasing, frequent netting and low water levels daily for a period of 26 days. The follicular dynamics did not show significant difference during previtellogenic phase (day 12), whereas the mean number of stage IV (vitellogenic) follicles remained significantly lower compared with controls at the end of vitellogenic phase (day 18). The stage V (vitellogenic, preovulatory) follicles were completely absent in contrast to their presence in controls prior to spawning (day 23). The control fish spawned spontaneously after 24 days and entered mouthbrooding phase, whereas those exposed to stressors did not spawn. Furthermore, the serum levels of estradiol (E(2)) remained significantly lower concomitant with a significant increase in the serum cortisol concentration during vitellogenic and prespawning phase compared with those of the controls. The LH cells in the PPD of the pituitary gland showed weak immunoreactivity through vitellogenic and prespawning phase in fish exposed to stressors indicating the diminished secretory activity in contrast to the intensely stained ir-material in controls. The study reveals the disruptive effects of aquacultural stressors on the spawning cycle through suppression of LH and E(2) secretion along the pituitary-ovary axis. The results suggest that the ovarian stress response depends on the phase of the cycle and that the interruption of the spawning cycle is due to inhibition of recruitment of preovulatory follicles in O. mossambicus.
Collapse
Affiliation(s)
- Ambarisha Chabbi
- Department of Zoology, Karnataka University, Dharwad, 580 003, Karnataka, India
| | | |
Collapse
|
41
|
Effects of different photoperiods and handling stress on spawning and reproductive performance of pikeperch Sander lucioperca. Anim Reprod Sci 2012; 132:213-22. [DOI: 10.1016/j.anireprosci.2012.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 11/23/2022]
|
42
|
Acute Exposure to Microcystin-Producing Cyanobacterium Microcystis aeruginosa Alters Adult Zebrafish (Danio rerio) Swimming Performance Parameters. J Toxicol 2011; 2011:280304. [PMID: 22253623 PMCID: PMC3255310 DOI: 10.1155/2011/280304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/15/2011] [Accepted: 09/22/2011] [Indexed: 01/22/2023] Open
Abstract
Microcystins (MCs) are toxins produced by cyanobacteria (blue-green algae), primarily Microcystis aeruginosa, forming water blooms worldwide. When an organism is exposed to environmental perturbations, alterations in normal behavioral patterns occur. Behavioral repertoire represents the consequence of a diversity of physiological and biochemical alterations. In this study, we assessed behavioral patterns and whole-body cortisol levels of adult zebrafish (Danio rerio) exposed to cell culture of the microcystin-producing cyanobacterium M. aeruginosa (MC-LR, strain RST9501). MC-LR exposure (100 μg/L) decreased by 63% the distance traveled and increased threefold the immobility time when compared to the control group. Interestingly, no significant alterations in the number of line crossings were found at the same MC-LR concentration and time of exposure. When animals were exposed to 50 and 100 μg/L, MC-LR promoted a significant increase (around 93%) in the time spent in the bottom portion of the tank, suggesting an anxiogenic effect. The results also showed that none of the MC-LR concentrations tested promoted significant alterations in absolute turn angle, path efficiency, social behavior, or whole-body cortisol level. These findings indicate that behavior is susceptible to MC-LR exposure and provide evidence for a better understanding of the ecological consequences of toxic algal blooms.
Collapse
|
43
|
Åberg Andersson M, Silva PIM, Steffensen JF, Höglund E. Effects of maternal stress coping style on offspring characteristics in rainbow trout (Oncorhynchus mykiss). Horm Behav 2011; 60:699-705. [PMID: 21983227 DOI: 10.1016/j.yhbeh.2011.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/14/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
Maternal size, age, and allostatic load influence offspring size, development, and survival. Some of these effects have been attributed to the release of glucocorticoids, and individual variation in these stress hormones is related to a number of traits. Correlated traits are often clustered and used to define the proactive and reactive stress coping styles. Although stress coping styles have been identified in a number of animal groups, little is known about the coupling between stress coping style and offspring characteristics. In the present study, plasma cortisol levels in ovulated mothers and cortisol levels in non-fertilized eggs from two rainbow trout (Oncorhynchus mykiss) strains selected for high (HR) and low (LR) post-stress plasma cortisol levels were compared. Offspring characteristics such as egg size, larval growth, and energy reserves also were compared between the two strains. Maternal plasma and egg cortisol levels were correlated, but no difference between the HR and LR strains was detected in either parameter. LR females produced larger eggs, and larvae with larger yolk sacs compared to HR females, however no differences in larval body size (excluding the yolk) was detected between strains. Considering that the HR and LR strains have a number of correlated behavioral and physiological traits that resemble the reactive and proactive stress coping styles, respectively, the results suggest that proactive mothers invest more energy into their offspring, producing larvae with larger energy reserves. It is possible that larger energy reserves in proactive larvae support the energy requirement for establishing and defending territory in salmonid fish. Furthermore, in the present study we found a positive relationship between mother plasma cortisol and egg cortisol; however neither mother plasma cortisol nor egg cortisol differed between strains. These results indicate that cortisol endowment from the mother to the offspring plays a minor role in the transfer of the behavioral and physiological traits which separates these strains.
Collapse
Affiliation(s)
- M Åberg Andersson
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, PO Box 101, DK-9850 Hirtshals, Denmark.
| | | | | | | |
Collapse
|
44
|
Corriero A, Zupa R, Bello G, Mylonas CC, Deflorio M, Genovese S, Basilone G, Buscaino G, Buffa G, Pousis C, De Metrio G, Santamaria N. Evidence that severe acute stress and starvation induce rapid atresia of ovarian vitellogenic follicles in Atlantic bluefin tuna, Thunnus thynnus (L.) (Osteichthyes: Scombridae). JOURNAL OF FISH DISEASES 2011; 34:853-60. [PMID: 21988357 DOI: 10.1111/j.1365-2761.2011.01303.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The effects of different stressors on the atretic degeneration of ovarian vitellogenic follicles, as well as on the ovarian mass, were examined in female Atlantic bluefin tuna, Thunnus thynnus (L.), from the Mediterranean Sea. The stressors taken into consideration were short-term starvation (up to 14 days), long-term cage rearing (1 year) and crowding-induced severe panic frenzy. Wild-caught individuals were used as a control group. Fish subjected to either severe panic frenzy or starvation exhibited a decrease in gonad mass and had significantly higher intensity of α atresia in the vitellogenic follicles (means: 78% and 58%, respectively; range: 36-100%) than either wild or long-term caged individuals (means: 32% and 30%, respectively; range: 19-44%). The extensive atresia in fish stressed by severe panic frenzy was observed as early as 24 h after the stressing event. The present study represents the first evidence of the extreme susceptibility of Atlantic bluefin tuna to severe acute stress during vitellogenesis; it also shows that starvation is associated with progressive reabsorption of vitellogenic oocytes.
Collapse
Affiliation(s)
- A Corriero
- Department of Animal Production, University of Bari Aldo Moro, Valenzano (BA), Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mileva VR, Gilmour KM, Balshine S. Effects of maternal stress on egg characteristics in a cooperatively breeding fish. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:22-9. [DOI: 10.1016/j.cbpa.2010.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/13/2010] [Accepted: 08/15/2010] [Indexed: 11/25/2022]
|
46
|
Giesing ER, Suski CD, Warner RE, Bell AM. Female sticklebacks transfer information via eggs: effects of maternal experience with predators on offspring. Proc Biol Sci 2010; 278:1753-9. [PMID: 21068041 DOI: 10.1098/rspb.2010.1819] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
There is growing evidence that maternal experience influences offspring via non-genetic mechanisms. When female three-spined sticklebacks (Gasterosteus aculeatus) were exposed to the threat of predation, they produced larger eggs with higher cortisol content, which consumed more oxygen shortly after fertilization compared with a control group. As juveniles, the offspring of predator-exposed mothers exhibited tighter shoaling behaviour, an antipredator defence. We did not detect an effect of maternal exposure to predation risk on the somatic growth of fry. Altogether, we found that exposure to an ecologically relevant stressor during egg formation had several long-lasting consequences for offspring, some of which might be mediated by exposure to maternally derived cortisol. These results support the hypothesis that female sticklebacks might influence the development, growth and behaviour of their offspring via eggs to match their future environment.
Collapse
Affiliation(s)
- Eric R Giesing
- Natural Resources and Environmental Sciences, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
47
|
Pousis C, De Giorgi C, Mylonas CC, Bridges CR, Zupa R, Vassallo-Agius R, de la Gándara F, Dileo C, De Metrio G, Corriero A. Comparative study of liver vitellogenin gene expression and oocyte yolk accumulation in wild and captive Atlantic bluefin tuna (Thunnus thynnus L.). Anim Reprod Sci 2010; 123:98-105. [PMID: 21093994 DOI: 10.1016/j.anireprosci.2010.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 09/16/2010] [Accepted: 10/05/2010] [Indexed: 10/19/2022]
Abstract
The sequence of vitellogenin A (VgA) and vitellogenin B (VgB) cDNAs in Atlantic bluefin tuna (Thunnus thynnus L.) were determined, and vitellogenin expression levels in the liver and oocyte yolk accumulation were compared in wild and captive-reared individuals. Liver and ovary samples were taken from 31 individuals reared experimentally in three commercial Atlantic bluefin tuna fattening sites in the Mediterranean Sea and from 33 wild individuals caught by commercial traps during the fish's migration towards their Mediterranean spawning grounds. The total length of VgA cDNA was 5585 nucleotides and that of VgB was 5267 nucleotides. The identity and similarity between deduced amino acid sequences of VgA and VgB were 60% and 78%, respectively. The Atlantic bluefin tuna VgA and VgB amino acid sequences have high similarities with those of other teleost fishes. Relative levels of VgA and VgB mRNAs were low in April, increased significantly during the reproductive period in May and June, and declined in July. There was a trend towards higher relative levels of VgA and VgB mRNAs in captive fish compared to wild individuals during the reproductive period. The surface occupied by eosinophilic yolk granules in fully vitellogenic oocytes, as well as the frequency of oocytes in late vitellogenesis, was significantly higher in captive compared to wild individuals. The study suggests that the experimental conditions under which Atlantic bluefin tuna individuals were reared allowed the occurrence of normal vitellogenesis, based on gene expression of VgA and VgB in the liver and yolk accumulation in the oocytes. The higher yolk accumulation and frequency of vitellogenic oocytes observed in the ovaries of captive fish suggest that improvements in feeding practices may result in an improved vitellogenic process.
Collapse
Affiliation(s)
- C Pousis
- University of Bari, Department of Animal Health and Well-being, per Casamassima Km 3, Valenzano (BA), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bobe J, Labbé C. Egg and sperm quality in fish. Gen Comp Endocrinol 2010; 165:535-48. [PMID: 19272390 DOI: 10.1016/j.ygcen.2009.02.011] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/16/2009] [Accepted: 02/20/2009] [Indexed: 12/19/2022]
Abstract
Fish egg quality can be defined as the ability of the egg to be fertilized and subsequently develop into a normal embryo. Similarly, sperm quality can be defined as its ability to successfully fertilize an egg and subsequently allow the development of a normal embryo. In the wild or under aquaculture conditions, the quality of fish gametes can be highly variable and is under the influence of a significant number of external factors or broodstock management practices. For these reasons, the topic of gamete quality has received increasing attention. Despite the significant efforts made towards a better understanding of the factors involved in the control of gamete quality, the picture is far from being complete and the control of gamete quality remains an issue in the aquaculture industry. Some of the factors responsible for the observed variability of gamete quality remain largely unknown or poorly understood. In addition very little is known about the cellular and molecular mechanisms involved in the control of egg and sperm quality. In the present review, the molecular and cellular characteristics of fish gametes are presented with a special interest for the mechanisms that could participate in the regulation of gamete quality. Then, after defining egg and sperm quality, and how can it can be accurately estimated or predicted, we provide an overview of the main factors that can impact gamete quality in teleosts.
Collapse
Affiliation(s)
- Julien Bobe
- INRA, UR1037 SCRIBE, IFR140, Ouest-Genopole, F-35000 Rennes, France.
| | | |
Collapse
|
49
|
Schreck CB. Stress and fish reproduction: the roles of allostasis and hormesis. Gen Comp Endocrinol 2010; 165:549-56. [PMID: 19596332 DOI: 10.1016/j.ygcen.2009.07.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 06/02/2009] [Accepted: 07/03/2009] [Indexed: 11/22/2022]
Abstract
This paper is a review of the effects of stress on reproduction in fishes. I hope to further the development of the concepts of allostasis and hormesis as relevant to understanding reproduction in general and in fish in particular. The main contentions I derive in this review are the following: Stressors affect fish reproduction in a variety of ways depending on the nature and severity of the stressor. The effects are transduced through a hormonal cascade initiated by perception of the stressor and involving the hypothalamus-pituitary-interrenal axis, the catecholamines, and also cytokines. Mounting a stress response and resisting a stressor is an energetically costly process, including costs associated with allostasis, attempting to reset homeostatic norms. Responses in emergency situations (e.g., being chased by a predator or a net) can be different from those where fish can cope (e.g., being in a more crowded environment) with a stressor, but both situations involve energy re-budgeting. Emergency responses happen in concert with the onset of energy limitations (e.g., the fish may not eat), while coping with allostatic overload can happen in a more energy-rich environment (e.g., the fish can continue to eat). Low levels of stress may have a positive effect on reproductive processes while greater stress has negative effects on fish reproduction. The concept of hormesis is a useful way to think about the effect of stressors on fish reproduction since responses can be nonmonotonal, often biphasic.
Collapse
Affiliation(s)
- Carl B Schreck
- Oregon Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
50
|
Leatherland JF, Li M, Barkataki S. Stressors, glucocorticoids and ovarian function in teleosts. JOURNAL OF FISH BIOLOGY 2010; 76:86-111. [PMID: 20738701 DOI: 10.1111/j.1095-8649.2009.02514.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The purpose of this overview is to re-examine the postulated direct and indirect actions of glucocorticoids on ovarian function in teleosts. The re-examination is undertaken in light of recent advances in the understanding of the stress response itself, the mode of action of the hypothalamus-pituitary gland-ovarian (HPO) axis, the mechanisms of control of oestrogen-dependent hepatic vitellogenin (VtG) secretion and the apparent roles of corticotrophin-releasing hormone (CRH) and CRH-related factors in the regulation of feeding activity. Many of the results of different studies, particularly whole-animal studies, are conflicting, and little is known as to whether the hormone acts directly on various components of the HPO axis or indirectly by virtue of redirection of energy resources away from ovarian growth to provide a source of metabolic resources for other organ systems involved in the physiological stress response. In vitro studies provide some new insights into the direct actions of glucocorticoid on hepatic VtG synthesis and ovarian follicle steroidogenesis, but even here, in some studies the cellular sites of action of these hormones is not altogether clear. The overview emphasizes the complexity of the stress response, the complexity of the regulation of glucocorticoid-dependent gene expression and the extensive interactive nature of the HPO with other hypothalamus-pituitary gland-peripheral endocrine gland axes, such as the thyroid (HPT), 'somatic' (GH-IGF) and interrenal tissue (HPI) axes.
Collapse
Affiliation(s)
- J F Leatherland
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | |
Collapse
|