1
|
Li Z, Liu R, Liu J, Jiang Z, Ba X, Li K, Liu L. Effects of flowing water stimulation on hormone regulation during the maturation process of Conger myriaster ovaries. Front Physiol 2024; 15:1404834. [PMID: 38764859 PMCID: PMC11100330 DOI: 10.3389/fphys.2024.1404834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024] Open
Abstract
Conger eel (Conger myriaster) is an economically important species in China. Due to the complex life history of the conger eel, achieving artificial reproduction has remained elusive. This study aimed to explore the effect of water stimulation on hormonal regulation during the artificial reproduction of conger eel. The experiment was divided into four groups: A1 (no hormone injection, still water), A2 (no hormone injection, flowing water), B1 (hormone injection, still water), and B2 (hormone injection, flowing water). The flowing water group maintained a flow velocity of 0.4 ± 0.05 m/s for 12 h daily throughout the 60-day period. Steroid hormone levels in the serum and ovaries of conger eels were analyzed using UPLC-MS/MS and ELISA on the 30th and 60th days of the experiment. The relative expression levels of follicle-stimulating hormone (FSHβ) and luteinizing hormone (LHβ) in the pituitary were determined by quantitative PCR. The results showed a significantly lower gonadosomatic index (GSI) in B2 compared to B1 (p < 0.05) on the 30th day. FSH was found to act only in the early stages of ovarian development, with water stimulation significantly enhancing FSH synthesis (p < 0.05), while FSHβ gene was not expressed after hormone injection. Conversely, LH was highly expressed in late ovarian development, with flowing water stimulation significantly promoting LH synthesis (p < 0.05). Serum cortisol (COR) levels were significantly higher in the flowing water group than in the still water group (p < 0.05). Furthermore, estradiol (E2) content of B2 was significantly lower than that of B1 on the 30th and 60th day. Overall, flowing water stimulation enhanced the synthesis of FSH in early ovarian development and LH in late ovarian development, while reducing E2 accumulation in the ovaries. In this study, the effect of flowing water stimulation on hormone regulation during the artificial reproduction of conger eel was initially investigated to provide a theoretical basis for optimizing artificial reproduction techniques.
Collapse
Affiliation(s)
- Zhengcheng Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Rucong Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Jingwei Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Zhixin Jiang
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Xubing Ba
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
| | - Kang Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Liping Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
- Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Best C, Faught E, Vijayan MM, Gilmour KM. Negative feedback regulation in the hypothalamic-pituitary-interrenal axis of rainbow trout (Oncorhynchus mykiss) subjected to chronic social stress. Gen Comp Endocrinol 2023:114332. [PMID: 37301413 DOI: 10.1016/j.ygcen.2023.114332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
The formation of dominance hierarchies in pairs of juvenile rainbow trout (Oncorhynchus mykiss) results in subordinate individuals exhibiting chronically elevated plasma cortisol concentrations. Cortisol levels reflect a balance between cortisol production, which is coordinated by the hypothalamic-pituitary-interrenal (HPI) axis in teleost fish, and negative feedback regulation and hormone clearance, which act to lower cortisol levels. However, the mechanisms contributing to the longer-term elevation of cortisol levels during chronic stress are not well established in fishes. The current study aimed to determine how subordinate fish maintain elevated cortisol levels, by testing the prediction that negative feedback and clearance mechanisms are impaired by chronic social stress. Plasma cortisol clearance was unchanged by social stress based on a cortisol challenge trial, hepatic abundance of the cortisol-inactivating enzyme 11-beta hydroxysteroid dehydrogenase type 2 (11βHSD2), and tissue fate of labelled cortisol. The capacity for negative feedback regulation in terms of transcript and protein abundances of corticosteroid receptors in the preoptic area (POA) and pituitary appeared stable. However, changes in 11βHSD2 and mineralocorticoid receptor (MR) expression suggest subtle regulatory changes in the pituitary that may alter negative feedback. The chronic cortisol elevation observed during social subordination likely is driven by HPI axis activation and compounded by dysregulated negative feedback.
Collapse
Affiliation(s)
- Carol Best
- Department of Biology, University of Ottawa, Ottawa, ON Canada.
| | - Erin Faught
- Department of Biology, University of Calgary, Calgary, AB Canada
| | | | | |
Collapse
|
3
|
Kumbar J, Ganesh CB. Melanin-concentrating hormone interferes with the hypothalamic-pituitary-gonad axis in the Mozambique tilapia. Comp Biochem Physiol A Mol Integr Physiol 2021; 265:111122. [PMID: 34838935 DOI: 10.1016/j.cbpa.2021.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
This study was conducted to elucidate the influence of melanin-concentrating hormone (MCH) along the reproductive-axis in the female tilapia Oreochromis mossambicus. Administration of MCH (4 μg / 0.1 ml saline) for 22 days resulted in significantly lower gonadosomatic index compared to controls. Significant reduction in the mean numbers of follicles at different stages of development such as previtellogenic (stages I-III), vitellogenic (stage IV) and preovulatory (stage V) follicles was observed in MCH-treated fish compared with controls. On the other hand, the rate of atresia was significantly higher in follicles at stages II, III and IV in MCH-treated fish. In addition, in the pituitary gland, sparsely labelled gonadotropin releasing hormone (GnRH)-immunoreactive fibres were observed in MCH-treated fish in contrast to their intense labelling in controls. The serum level of luteinizing hormone (LH) showed significant decrease, but the serum cortisol level rose significantly following MCH treatment compared to those of controls. Collectively, these results indicate for the first time, that MCH treatment blocks follicular development during the ovarian cycle, possibly through the suppression of GnRH-LH axis in fish. The results also indicate that MCH may activate the stress-axis pathway in fish.
Collapse
Affiliation(s)
- Jyoti Kumbar
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
4
|
Thomas FSK, Higuchi Y, Ogawa S, Soga T, Parhar IS. Acute social defeat stress upregulates gonadotrophin inhibitory hormone and its receptor but not corticotropin-releasing hormone and ACTH in the Male Nile Tilapia (Oreochromis niloticus). Peptides 2021; 138:170504. [PMID: 33539873 DOI: 10.1016/j.peptides.2021.170504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
Stress impairs the hypothalamic-pituitary-gonadal (HPG) axis, probably through its influence on the hypothalamic-pituitary-adrenal (= interrenals in the teleost, HPI) axis leading to reproductive failures. In this study, we investigated the response of hypothalamic neuropeptides, gonadotropin-inhibitory hormone (GnIH), a component of the HPG axis, and corticotropin-releasing hormone (CRH) a component of the HPI axis, to acute social defeat stress in the socially hierarchical male Nile tilapia (Oreochromis niloticus). Localization of GnIH cell bodies, GnIH neuronal processes, and numbers of GnIH cells in the brain during acute social defeat stress was studied using immunohistochemistry. Furthermore, mRNA levels of GnIH and CRH in the brain together with GnIH receptor, gpr147, and adrenocorticotropic hormone (ACTH) in the pituitary were quantified in control and socially defeated fish. Our results show, the number of GnIH-immunoreactive cell bodies and GnIH mRNA levels in the brain and the levels of gpr147 mRNA in the pituitary significantly increased in socially defeated fish. However, CRH and ACTH mRNA levels did not change during social defeat stress. Further, we found glucocorticoid type 2b receptor mRNA in laser captured immunostained GnIH cells. These results show that acute social defeat stress activates GnIH biosynthesis through glucocorticoid receptors type 2b signalling but does not change the CRH and ACTH mRNA expression in the tilapia, which could lead to temporary reproductive dysfunction.
Collapse
Affiliation(s)
- Felix Suresh Kevin Thomas
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Yuki Higuchi
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Tomoko Soga
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia.
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| |
Collapse
|
5
|
Rousseau K, Prunet P, Dufour S. Special features of neuroendocrine interactions between stress and reproduction in teleosts. Gen Comp Endocrinol 2021; 300:113634. [PMID: 33045232 DOI: 10.1016/j.ygcen.2020.113634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023]
Abstract
Stress and reproduction are both essential functions for vertebrate survival, ensuring on one side adaptative responses to environmental changes and potential life threats, and on the other side production of progeny. With more than 25,000 species, teleosts constitute the largest group of extant vertebrates, and exhibit a large diversity of life cycles, environmental conditions and regulatory processes. Interactions between stress and reproduction are a growing concern both for conservation of fish biodiversity in the frame of global changes and for the development of sustainability of aquaculture including fish welfare. In teleosts, as in other vertebrates, adverse effects of stress on reproduction have been largely documented and will be shortly overviewed. Unexpectedly, stress notably via cortisol, may also facilitate reproductive function in some teleost species in relation to their peculiar life cyles and this review will provide some examples. Our review will then mainly address the neuroendocrine axes involved in the control of stress and reproduction, namely the corticotropic and gonadotropic axes, as well as their interactions. After reporting some anatomo-functional specificities of the neuroendocrine systems in teleosts, we will describe the major actors of the corticotropic and gonadotropic axes at the brain-pituitary-peripheral glands (interrenals and gonads) levels, with a special focus on the impact of teleost-specific whole genome duplication (3R) on the number of paralogs and their potential differential functions. We will finally review the current knowledge on the neuroendocrine mechanisms of the various interactions between stress and reproduction at different levels of the two axes in teleosts in a comparative and evolutionary perspective.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Prunet
- INRAE, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), Rennes, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
6
|
The stress - Reproductive axis in fish: The involvement of functional neuroanatomical systems in the brain. J Chem Neuroanat 2020; 112:101904. [PMID: 33278567 DOI: 10.1016/j.jchemneu.2020.101904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 01/26/2023]
Abstract
The neuroendocrine-stress axis of nonmammalian species is evolutionarily conserved, which makes them useful to serve as important model systems for elucidating the function of the vertebrate stress response. The involvement of hypothalamo-pituitary-adrenal (HPA) axis hormones in regulation of stress and reproduction is well described in different vertebrates. However, the stress response is a complex process, which appears to be controlled by a number of neurochemicals in association with hypothalamo-pituitary-interrenal (HPI) axis or independent of HPI axis in fish. In recent years, the participation of neurohormones other than HPI axis in regulation of stress and reproduction is gaining more attention. This review mainly focuses on the involvement of functional neuroanatomical systems such as the catecholaminergic neurotransmitter dopamine (DA) and opioid peptides in regulation of the stress-reproductive axis in fish. Occurrences of DA and opioid peptides like β-endorphin, enkephalins, dynorphin, and endomorphins have been demonstrated in fish brain, and diverse roles such as pain modulation, social behaviour and reproduction are implicated for these hormones. Neuroanatomical studies using retrograde tracing, immunohistochemical staining and lesion methods have demonstrated that the neurons originating in the preoptic region and the nucleus lateralis tuberis directly innervate the pituitary gland and, therefore, the hypophysiotrophic role of these hormones. In addition, heightened synthetic and secretory activity of the opioidergic and the dopaminergic neurons in hypothalamic areas of the brain during stress exposure suggest potentially intricate relationship with the stress-reproductive axis in fish. Current evidence in early vertebrates like fish provides a novel insight into the underlying neuroendocrine mechanisms as additional pathways along the stress-reproductive axis that seem to be conserved during the course of evolution.
Collapse
|
7
|
Parker CG, Cheung E. Metabolic control of teleost reproduction by leptin and its complements: Understanding current insights from mammals. Gen Comp Endocrinol 2020; 292:113467. [PMID: 32201232 DOI: 10.1016/j.ygcen.2020.113467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/05/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Reproduction is expensive. Hence, reproductive physiology is sensitive to an array of endogenous signals that provide information on metabolic and nutritional sufficiency. Although metabolic gating of reproductive function in mammals, as evidenced by studies demonstrating delayed puberty and perturbed fertility, has long been understood to be a function of energy sufficiency, an understanding of the endocrine regulators of this relationship have emerged only within recent decades. Peripheral signals including leptin and cortisol have long been implicated in the physiological integration of metabolism and reproduction. Recent studies have begun to explore possible roles for these two hormones in the regulation of reproduction in teleost fishes, as well as a role for leptin as a catabolic stress hormone. In this review, we briefly explore the reproductive actions of leptin and cortisol in mammals and teleost fishes and possible role of both hormones as putative modulators of the reproductive axis during stress events.
Collapse
Affiliation(s)
- Coltan G Parker
- Neuroscience Program, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, USA
| | - Eugene Cheung
- Department of Biological Sciences, David Clark Labs, 100 Brooks Avenue, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
8
|
Zhang Y, Zhang H, Wang J, Zhang X, Bu S, Liu X, Wang Q, Lin H. Molecular characterization and expression patterns of glucocorticoid receptor (GR) genes in protandrous hermaphroditic yellowtail clownfish, Amphiprion clarkii. Gene 2020; 745:144651. [PMID: 32259633 DOI: 10.1016/j.gene.2020.144651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/27/2022]
Abstract
Sexual differentiation and ovotestis development are closely associated with cortisol levels, the principal indicator of stress, via the glucocorticoid receptor (GR) in teleosts. Thus, GR is regarded as a mediator to expound the relationship between social stress and gonad development. In the present study, two gr genes (gr1 and gr2) were cloned and analyzed from a protandrous hermaphroditic teleost, the yellowtail clownfish (Amphiprion clarkii). GR1 was found to display a conserved nine-amino-acid insert, WRARQNTDG, between two zinc finger domains. The phylogenetic tree of GR showed that yellowtail clownfish GR1 and GR2 are clustered to teleost GR1 and teleost GR2 separately, and differ from tetrapod GR. The result of real-time PCR revealed that high-level gr1 was mainly distributed in the cerebellum, hypothalamus and heart. The gr2 gene was abundant in the pituitary and liver of females and nonbreeders, while gr2 was mainly detected in the medulla oblongata and middle kidney of males. Moreover, GRs can be expressed in cultured eukaryotic cells and functionally interact with dexamethasone (exogenous glucocorticoid), thereby triggering downstream signaling pathways of different potentials. GR1 and GR2 can be activated by 10 nM dexamethasone treatment in HEK-293T cells. Notably, real-time PCR analysis among three social status groups demonstrated that gr2 expression was the highest in the hypothalamus of nonbreeders, but gr1 was no difference. We speculate that social stress would increase the expression of gr2 gene expression in the hypothalamus to inhibit sexual development. These data provide evidence of social stress involving reproductive regulation, which may help to elucidate the underlying mechanism of sex differentiation and change.
Collapse
Affiliation(s)
- Yanyu Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China
| | - Hao Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China
| | - Jun Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China
| | - Xian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China
| | - Shaoyang Bu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China
| | - Xiaochun Liu
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Qian Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China.
| | - Haoran Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China; Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
9
|
Bhat SK, Ganesh CB. Domperidone treatment attenuates stress-induced suppression of reproduction in viviparous mosquitofish Gambusia affinis. JOURNAL OF FISH BIOLOGY 2020; 96:37-48. [PMID: 31648360 DOI: 10.1111/jfb.14183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to determine the effect of stress on reproduction and the possible involvement of dopaminergic systems in the reproductive stress response in the mosquitofish Gambusia affinis. Exposure of fish to aquaculture stressors (four 10 min episodes of stress, each corresponding to a different stressor such as handling, chasing, frequent netting and low water levels), for a period of 30 days caused reduction in the mean numbers of stage I-IV follicles associated with lower number of pregnant females and embryos in most of the developmental stages compared with experimental controls. Besides, increase in the intensity of labelling and the per cent area of tyrosine hydroxylase (TH; a rate-limiting enzyme in the biosynthetic pathway of catecholamines)- immunoreactive (ir) neurons was observed in the preoptic area (POA) and the nucleus preopticus (NPO) regions of the brain concomitant with reduction in the labelling of gonadotropin releasing hormone-immunoreactive (GnRH-ir) fibres in the proximal pars distalis (PPD) of the pituitary gland in stressed fish compared with experimental controls. Treatment of domperidone (DOM) caused an increase in the number of stage II and V follicles and promoted pregnancy rate concomitant with an increase in the number of embryos at various developmental stages compared with those of experimental controls. Similar treatment to stressed fish caused an increase in the number of stages I-V follicles compared with those in stress alone group. The GnRH fibres showed increased immunolabelling in stress + DOM treated fish compared with stress alone fish. On the other hand, TH-immunoreactivity in the POA and the NPO regions was reduced in stress + DOM treated fish compared with stress-alone group. These results suggest that stress inhibits follicular development and subsequent hatching success through the suppression of GnRH and that the inhibition appears to be mediated through dopamine, for the first time in a viviparous fish.
Collapse
Affiliation(s)
- Shilpa K Bhat
- Department of Studies in Zoology, Karnatak University, Dharwad, India
| | | |
Collapse
|
10
|
von Krogh K, Bjørndal GT, Nourizadeh-Lillabadi R, Ropstad E, Haug TM, Weltzien FA. Cortisol differentially affects cell viability and reproduction-related gene expression in Atlantic cod pituitary cultures dependent on stage of sexual maturation. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110517. [PMID: 31254635 DOI: 10.1016/j.cbpa.2019.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/16/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023]
Abstract
Through the action of cortisol, stress can affect reproductive biology with behavioural and physiological alterations. Using mixed sex primary pituitary cultures from Atlantic cod (Gadus morhua), the present study aimed to investigate potential direct effects of basal and stress level cortisol on the pituitary in terms of cell viability and reproduction-related gene expression at different stages of sexual maturity. Stress level of cortisol stimulated cell viability in cells derived from sexually maturing and mature fish. In cells from spent fish, high cortisol levels did not affect cell viability in terms of metabolic activity, but did stimulate viability in terms of membrane integrity. Basal cortisol levels did not affect cell viability. Ethanol, used as solvent for cortisol, decreased cell viability at all maturity stages, but did generally not affect gene expression. Genes investigated were fshb, lhb and two Gnrh receptors expressed in cod gonadotropes (gnrhr1b and gnrhr2a). Cortisol had dual effects on fshb expression; stimulating expression in cells from mature fish at stress dose, while inhibiting expression in cells from spent fish at both doses. In contrast, cortisol had no direct effect on lhb expression. While gnrhr2a transcript levels largely increased following cortisol treatment, gnrhr1b expression decreased in cells from spent fish and was unaffected at other maturity stages. These findings demonstrate that cortisol can act directly and differentially at the pituitary level in Atlantic cod and that factors facilitating these actions are dose-dependently activated and vary with level of sexual maturity.
Collapse
Affiliation(s)
- Kristine von Krogh
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway
| | - Gunnveig Toft Bjørndal
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway
| | - Erik Ropstad
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Oslo, Norway
| | - Trude M Haug
- University of Oslo, Faculty of Dentistry, Department of Oral Biology, Oslo, Norway
| | - Finn-Arne Weltzien
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Basic Science and Aquatic Medicine, Oslo, Norway.
| |
Collapse
|
11
|
'Central' Actions of Corticosteroid Signaling Suggested by Constitutive Knockout of Corticosteroid Receptors in Small Fish. Nutrients 2019; 11:nu11030611. [PMID: 30871191 PMCID: PMC6470806 DOI: 10.3390/nu11030611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/02/2019] [Accepted: 03/11/2019] [Indexed: 01/24/2023] Open
Abstract
This review highlights recent studies of the functional implications of corticosteroids in some important behaviors of model fish, which are also relevant to human nutrition homeostasis. The primary actions of corticosteroids are mediated by glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), which are transcription factors. Zebrafish and medaka models of GR- and MR-knockout are the first constitutive corticosteroid receptor-knockout animals that are viable in adulthood. Similar receptor knockouts in mice are lethal. In this review, we describe the physiological and behavioral changes following disruption of the corticosteroid receptors in these models. The GR null model has peripheral changes in nutrition metabolism that do not occur in a mutant harboring a point mutation in the GR DNA-binding domain. This suggests that these are not “intrinsic” activities of GR. On the other hand, we propose that integration of visual responses and brain behavior by corticosteroid receptors is a possible “intrinsic”/principal function potentially conserved in vertebrates.
Collapse
|
12
|
Kiilerich P, Servili A, Péron S, Valotaire C, Goardon L, Leguen I, Prunet P. Regulation of the corticosteroid signalling system in rainbow trout HPI axis during confinement stress. Gen Comp Endocrinol 2018; 258:184-193. [PMID: 28837788 DOI: 10.1016/j.ygcen.2017.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/13/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
Abstract
This study aims to shed light on corticosteroid regulation of stress in teleost fish with focus on the corticosteroid signalling system. The role of the mineralocorticoid-like hormone 11-deoxycorticosterone (DOC) in fish is still enigmatic, as is the function of the mineralocorticoid receptor, MR. Low plasma DOC levels and ubiquitous tissue distribution of MR question the physiological relevance of the mineralocorticoid-axis. Furthermore, the particular purpose of each of the three corticosteroid receptors in fish, the glucocorticoid receptors, GR1 and GR2, and the MR, is still largely unknown. Therefore we investigate the regulation of cortisol and DOC in plasma and mRNA levels of MR, GR1 and GR2 in the HPI-axis tissues (hypothalamus, pituitary and interrenal gland) during a detailed confinement stress time-course. Here we show a sustained up-regulation of plasma DOC levels during a confinement stress time-course. However, the low DOC levels compared to cortisol measured in the plasma do not favour an activity of DOC through MR receptors. Furthermore, we show differential contribution of the CRs in regulation and control of HPI axis activity following confinement stress. Judged by the variation of mRNA levels negative feedback regulation of cortisol release occurs on the level of the pituitary via MR and on the level of the interrenal gland via GR2. Finally, asa significant effect of confinement stress on CR expressions was observed in the pituitary gland, we completed this experiment by demonstrating that corticosteroid receptors (GR1, GR2 and MR) are co-expressed in the ACTH cells located in the adenohypophysis. Overall, these data suggest the involvement of these receptors in the regulation of the HPI axis activity by cortisol.
Collapse
Affiliation(s)
- Pia Kiilerich
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France.
| | - Arianna Servili
- Ifremer, Unité de Physiologie Fonctionnelle des Organismes Marins, LEMAR UMR 6539, BP 70, Plouzané 29280, France
| | - Sandrine Péron
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France
| | - Claudiane Valotaire
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France
| | - Lionel Goardon
- INRA, UE937 Pisciculture expérimentale des Monts d'Arrée, 29450 Sizun, France
| | - Isabelle Leguen
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France
| | - Patrick Prunet
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France.
| |
Collapse
|
13
|
|
14
|
Kikuchi Y, Hosono K, Yamashita J, Kawabata Y, Okubo K. Glucocorticoid receptor exhibits sexually dimorphic expression in the medaka brain. Gen Comp Endocrinol 2015; 223:47-53. [PMID: 26433060 DOI: 10.1016/j.ygcen.2015.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/25/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022]
Abstract
The differential impact of stress on brain functions of males and females has been widely observed in vertebrates. Recent evidence suggests that stress-induced glucocorticoid signaling affects sexual differentiation and sex changes in teleost fish. These facts led us to postulate that there were sex differences in glucocorticoid signaling in the teleost brain that underlie some sex differences in their physiological and behavioral traits. Here we found sexually dimorphic expression of a glucocorticoid receptor gene (gr1) in the brain of medaka fish (Oryzias latipes), with females having greater expression in several preoptic and thalamic nuclei. Further, gr1 exhibits female-biased expression in neurons of the anterior parvocellular preoptic nucleus that produce the neuropeptides vasotocin and gonadotropin-releasing hormone 1 (these neuropeptides have been implicated in the regulation of neuroendocrine and behavioral functions). These findings suggest that glucocorticoids have a greater influence on physiology and behavior mediated by these neuropeptides in females than in males, which may contribute to sex differences in the brain's response to stress.
Collapse
Affiliation(s)
- Yukiko Kikuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Kohei Hosono
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Junpei Yamashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Yukika Kawabata
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
15
|
Chabbi A, Ganesh CB. Evidence for the involvement of dopamine in stress-induced suppression of reproduction in the cichlid fish Oreochromis mossambicus. J Neuroendocrinol 2015; 27:343-56. [PMID: 25712855 DOI: 10.1111/jne.12269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 01/23/2023]
Abstract
In the present study, we examined whether stress-induced suppression of reproduction is mediated through the catecholaminergic neurotransmitter dopamine (DA) in the female cichlid fish Oreochromis mossambicus. In the first experiment, application of antibody against tyrosine hydroxylase (TH; a marker for DA) in brain sections revealed the presence of intensely stained TH immunoreactive cells in the preoptic area (POA) and nucleus preopticus (NPO) during the previtellogenic phase. These cells showed weak immunoreactivity during the vitellogenic and prespawning phases concomitant with darkly stained luteinising hormone (LH) immunoreactive content in the proximal pars distalis (PPD) of the pituitary gland and fully ripened follicles (stage V) in the ovary of control fish. However, in fish exposed to aquacultural stressors, TH secreting cells remained intensely stained in POA and NPO regions during the prespawning phase, indicating increased synthetic and secretory activity, which was reflected by a significantly higher DA content compared to controls. Increased DA activity as a result of stress was associated with a decrease in the LH immunoreactive content in the PPD and an absence of stage V follicles in the ovary. In the second experiment, administration of DA caused effects similar to those in stressed fish, whereas DA receptor antagonist domperidone (DOM) treatment significantly increased the LH content in the PPD and the number of stage V follicles in unstressed fish. On the other hand, treatment of stressed fish with DOM resulted in dark accumulations of LH immunoreactive content in the PPD accompanied by the presence of stage V follicles in the ovary. Taken together, these results suggest an additional pathway for the inhibitory effects of stress through dopaminergic neurones along the reproductive axis.
Collapse
Affiliation(s)
- A Chabbi
- Neuroendocrinology Research Lab, Department of Studies in Zoology, Karnatak University, Dharwad, Karnataka, India
| | | |
Collapse
|
16
|
A candidate of organum vasculosum of the lamina terminalis with neuronal connections to neurosecretory preoptic nucleus in eels. Cell Tissue Res 2013; 353:525-38. [DOI: 10.1007/s00441-013-1663-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 05/13/2013] [Indexed: 12/13/2022]
|
17
|
Palstra AP, Guerrero MA, de Laak G, Klein Breteler JPG, van den Thillart GEEJM. Temporal progression in migratory status and sexual maturation in European silver eels during downstream migration. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:285-96. [PMID: 21556699 PMCID: PMC3107437 DOI: 10.1007/s10695-011-9496-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 02/14/2011] [Indexed: 05/25/2023]
Abstract
The onset of downstream migration of European eels is accompanied by a cessation of feeding and the start of sexual maturation which stresses the link between metabolism and sexual maturation, also suggesting an important role for exercise. Exercise has been tested with eels in swim tunnels and was found to stimulate the onset of sexual maturation. In this study, we have investigated the interplay between migration and maturation in the field during the downstream migration of female silver eels. Temporal changes in migratory status and sexual maturation among silver eels of the upstream Rhine River system over 3 months of the migration season (August, September and October) were determined in biometrical parameters, plasma 17β-estradiol and calcium levels, oocyte histology and gonadal fat levels. Furthermore, the ecological relevant parameters age as determined by otolithometry and health aspects indicated by haematocrit, haemoglobin and swim-bladder parasite load were measured. Silver eels were estimated to be 14 years old. A strong temporal progression in migratory stage was shown over the months of downstream migration. Catches probably represented a mix of reproductive migrants and feeding migrants of which the ratio increased over time. Furthermore, this study confirmed our hypothesis linking the migratory stage to early maturation as indicated by enlargement of the eyes, oocyte growth and fat deposition in the oocytes, exactly the same changes as found induced by exercise but not ruling out environmental influences. Migrants show extensive fat uptake by the oocytes, probably stimulated by the swimming exercise. In addition, at least 83% of the silver eels in this spawning run may have suffered from negative effects of swim-bladder parasites on their swimming performance.
Collapse
Affiliation(s)
- Arjan P Palstra
- Molecular Cell Biology, Institute of Biology, Leiden University (IBL), Sylvius Laboratory, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Palstra AP, van den Thillart GEEJM. Swimming physiology of European silver eels (Anguilla anguilla L.): energetic costs and effects on sexual maturation and reproduction. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:297-322. [PMID: 20390348 PMCID: PMC2923712 DOI: 10.1007/s10695-010-9397-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/28/2010] [Indexed: 05/02/2023]
Abstract
The European eel migrates 5,000-6,000 km to the Sargasso Sea to reproduce. Because they venture into the ocean in a pre-pubertal state and reproduce after swimming for months, a strong interaction between swimming and sexual maturation is expected. Many swimming trials have been performed in 22 swim tunnels to elucidate their performance and the impact on maturation. European eels are able to swim long distances at a cost of 10-12 mg fat/km which is 4-6 times more efficient than salmonids. The total energy costs of reproduction correspond to 67% of the fat stores. During long distance swimming, the body composition stays the same showing that energy consumption calculations cannot be based on fat alone but need to be compensated for protein oxidation. The optimal swimming speed is 0.61-0.67 m s(-1), which is approximately 60% higher than the generally assumed cruise speed of 0.4 m s(-1) and implies that female eels may reach the Sargasso Sea within 3.5 months instead of the assumed 6 months. Swimming trials showed lipid deposition and oocyte growth, which are the first steps of sexual maturation. To investigate effects of oceanic migration on maturation, we simulated group-wise migration in a large swim-gutter with seawater. These trials showed suppressed gonadotropin expression and vitellogenesis in females, while in contrast continued sexual maturation was observed in silver males. The induction of lipid deposition in the oocytes and the inhibition of vitellogenesis by swimming in females suggest a natural sequence of events quite different from artificial maturation protocols.
Collapse
Affiliation(s)
- Arjan P Palstra
- Molecular Cell Biology, Institute of Biology, Leiden University (IBL), Leiden, 2333 CC, The Netherlands.
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain.
| | | |
Collapse
|
19
|
Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O. Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol 2010; 165:438-55. [PMID: 19393655 DOI: 10.1016/j.ygcen.2009.04.017] [Citation(s) in RCA: 506] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/08/2009] [Accepted: 04/17/2009] [Indexed: 11/28/2022]
Abstract
This review aims at synthesizing the most relevant information regarding the neuroendocrine circuits controlling reproduction, mainly gonadotropin release, in teleost fish. In teleosts, the pituitary receives a more or less direct innervation by neurons sending projections to the vicinity of the pituitary gonadotrophs. Among the neurotransmitters and neuropeptides released by these nerve endings are gonadotrophin-releasing hormones (GnRH) and dopamine, acting as stimulatory and inhibitory factors (in many but not all fish) on the liberation of LH and to a lesser extent that of FSH. The activity of the corresponding neurons depends on a complex interplay between external and internal factors that will ultimately influence the triggering of puberty and sexual maturation. Among these factors are sex steroids and other peripheral hormones and growth factors, but little is known regarding their targets. However, very recently a new actor has entered the field of reproductive physiology. KiSS1, first known as a tumor suppressor called metastin, and its receptor GPR54, are now central to the regulation of GnRH, and consequently LH and FSH secretion in mammals. The KiSS system is notably viewed as instrumental in integrating both environmental cues and metabolic signals and passing this information onto the reproductive axis. In fish, there are two KiSS genes, KiSS1 and KiSS2, expressed in neurons of the preoptic area and mediobasal hypothalamus. Pionneer studies indicate that KiSS and GPR54 expression seem to be activated at puberty. Although precise information as to the physiological effects of KiSS1 in fish, notably on GnRH neurons and gonadotropin release, is still limited, KiSS neurons may emerge as the "gatekeeper" of puberty and reproduction in fish as in mammals.
Collapse
Affiliation(s)
- Yonathan Zohar
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
20
|
Dufour S, Sebert ME, Weltzien FA, Rousseau K, Pasqualini C. Neuroendocrine control by dopamine of teleost reproduction. JOURNAL OF FISH BIOLOGY 2010; 76:129-160. [PMID: 20738703 DOI: 10.1111/j.1095-8649.2009.02499.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
While gonadotropin-releasing hormone (GnRH) is considered as the major hypothalamic factor controlling pituitary gonadotrophins in mammals and most other vertebrates, its stimulatory actions may be opposed by the potent inhibitory actions of dopamine (DA) in teleosts. This dual neuroendocrine control of reproduction by GnRH and DA has been demonstrated in various, but not all, adult teleosts, where DA participates in an inhibitory role in the neuroendocrine regulation of the last steps of gametogenesis (final oocyte maturation and ovulation in females and spermiation in males). This has major implications for inducing spawning in aquaculture. In addition, DA may also play an inhibitory role during the early steps of gametogenesis in some teleost species, and thus interact with GnRH in the control of puberty. Various neuroanatomical investigations have shown that DA neurones responsible for the inhibitory control of reproduction originate in a specific nucleus of the preoptic area (NPOav) and project directly to the region of the pituitary where gonadotrophic cells are located. Pharmacological studies showed that the inhibitory effects of DA on pituitary gonadotrophin production are mediated by DA-D2 type receptors. DA-D2 receptors have now been sequenced in several teleosts, and the coexistence of several DA-D2 subtypes has been demonstrated in a few species. Hypophysiotropic DA activity varies with development and reproductive cycle and probably is controlled by environmental cues as well as endogenous signals. Sex steroids have been shown to regulate dopaminergic systems in several teleost species, affecting both DA synthesis and DA-D2 receptor expression. This demonstrates that sex steroid feedbacks target DA hypophysiotropic system, as well as the other components of the brain-pituitary gonadotrophic axis, GnRH and gonadotrophins. Recent studies have revealed that melatonin modulates the activity of DA systems in some teleosts, making the melatonin-DA pathway a prominent relay between environmental cues and control of reproduction. The recruitment of DA neurons for the neuroendocrine control of reproduction provides an additional brain pathway for the integration of various internal and environmental cues. The plasticity of the DA neuroendocrine role observed in teleosts may have contributed to their large diversity of reproductive cycles.
Collapse
Affiliation(s)
- S Dufour
- Muséum National d'Histoire Naturelle, UMR Biologie des Organismes et Ecosystèmes Aquatiques" MNHN-CNRS-IRD-UPMC, 7 rue Cuvier, CP 32, 75231 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
21
|
Aluru N, Vijayan MM. Stress transcriptomics in fish: a role for genomic cortisol signaling. Gen Comp Endocrinol 2009; 164:142-50. [PMID: 19341738 DOI: 10.1016/j.ygcen.2009.03.020] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/09/2009] [Accepted: 03/23/2009] [Indexed: 01/17/2023]
Abstract
The physiological responses to stressors, including hormonal profiles and associated tissue responsiveness have been extensively studied in teleosts, but the molecular mechanisms associated with this adaptive response are not well understood. The advent of cDNA microarray technology has transformed the field of functional genomics by revealing global gene expression changes in response to stressor exposures even in non-mammalian vertebrates, including fish. A unifying response in studies related to stressor exposure is activation of the hypothalamus-pituitary-interrenal (HPI) axis in fish, leading to cortisol release into the circulation. Here we will discuss the implications of some of the gene expression changes observed in response to acute stress in fish, while highlighting a role for cortisol in this adaptive stress response. As liver is a key organ for metabolic adjustments to stressors and also is a major target for cortisol action, the genomic studies pertaining to stress and glucocorticoid regulation have focused mainly on this tissue. The studies have identified several genes that are altered transiently after an acute stressor exposure in fish. A number of these stress-responsive genes were also modulated by glucocorticoid receptor activation, suggesting that elevation in cortisol levels during stressor exposure may be a key signal for target tissue molecular programming, essential for stress adaptation. The identification of regulatory gene networks that are stress activated, and modulated by cortisol, both in hepatic and extra-hepatic tissues, including gonads, brain, immune cells and gills, will provide a mechanistic framework to characterize the multifaceted role of cortisol during stress adaptation.
Collapse
|
22
|
Milla S, Wang N, Mandiki SNM, Kestemont P. Corticosteroids: Friends or foes of teleost fish reproduction? Comp Biochem Physiol A Mol Integr Physiol 2009; 153:242-51. [PMID: 19254778 DOI: 10.1016/j.cbpa.2009.02.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 01/08/2023]
Affiliation(s)
- S Milla
- University of Namur (FUNDP), Unit of Research in Organismal Biology, Rue de Bruxelles 61, B-5000, Namur, Belgium.
| | | | | | | |
Collapse
|
23
|
Hu SY, Chen MHC, Lin YC, Lin GH, Gong HY, Yang TH, Wu JL. Cloning and functional analysis of the proximal promoter region of the three GnRH genes from the silver sea bream (Sparus sarba). Comp Biochem Physiol B Biochem Mol Biol 2008; 151:373-80. [DOI: 10.1016/j.cbpb.2008.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/14/2008] [Accepted: 06/18/2008] [Indexed: 11/24/2022]
|
24
|
Palstra AP, Schnabel D, Nieveen MC, Spaink HP, van den Thillart GE. Male silver eels mature by swimming. BMC PHYSIOLOGY 2008; 8:14. [PMID: 18616800 PMCID: PMC2474648 DOI: 10.1186/1472-6793-8-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 07/10/2008] [Indexed: 11/28/2022]
Abstract
Background If European silver eels are prevented from reproductive migration, they remain in a prepubertal stage by dopaminergic inhibition of pituitary activity. Because this inhibition is likely a requirement for an extended female growth stage, we tested if it is sex-specific by subjecting both sexes to stimulation by GnRHa (Gonadotropin-Releasing Hormone agonist) – injection or 3-months swimming in seawater. Results In contrast to females, males showed a two- to three-fold higher LHβ (luteinising hormone β subunit) – expression, a three- to five-fold higher GSI (Gonadosomatic index) and induced spermatogenesis when compared with the untreated control group. Conclusion Dopaminergic inhibition is thus not effective in males and swimming results in natural maturation, probably via GnRH-release.
Collapse
Affiliation(s)
- Arjan P Palstra
- Integrative Zoology, Institute of Biology, Leiden University (IBL), van der Klaauw Laboratory, Kaiserstraat 63, 2311 GP Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Di Bella ML, Vazzana M, Vizzini A, Parrinello N. Glucocorticoid receptor (DlGR1) is expressed in pre-larval and larval stages of the teleost fish Dicentrarchus labrax. Cell Tissue Res 2008; 333:39-47. [PMID: 18463897 PMCID: PMC2441495 DOI: 10.1007/s00441-008-0605-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 02/15/2008] [Accepted: 02/18/2008] [Indexed: 11/29/2022]
Abstract
Glucocorticoid hormone receptors (GR), members of the nuclear hormone receptor superfamily, are ligand-dependent transcription factors expressed in various tissues by binding to specific DNA sequences. Since glucocorticoids have a role in maintaining the homeostatic status in fish, we previously cloned and sequenced a GR (DlGR1) of adult Dicentrarchus labrax; we also showed mRNA expression (in situ hybridization) and tissue immunohistochemical localization of DlGR1 in several organs. This work has now been extended to the examination of the expression, tissue distribution, and cytolocalization of DlGR1 in larval developmental stages by similar methods to those used for the adult organs. The riboprobe included the DlGR1 cDNA transcriptional activation domain (1.0–1,300 nucleotide sequence) showing no significant similarity with a known second GR cDNA sequence of sea bass. The antibody was specific for an opportunely selected peptide sequence of the DlGR1 transcriptional domain. In histological sections of brain, head kidney, gills, liver, anterior intestine, and spleen cells, the riboprobe was mainly located in the cell nucleus. The antibody identified DlGR1 in the head kidney, gills, liver, and anterior intestine, mainly located in the cytosol. These results are in agreement with the receptor location in adult tissues. The greater presence of both the transcript and protein of DlGR1 in the late developmental stages suggests an increasing expression of this receptor. The cytolocalization (nuclear-cytosolic) and presumptive roles of DlGR1-containing tissues are discussed.
Collapse
Affiliation(s)
- M L Di Bella
- Laboratory of Marine Immunobiology, Department of Animal Biology, University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | | | | | | |
Collapse
|
26
|
Kitahashi T, Ogawa S, Soga T, Sakuma Y, Parhar I. Sexual maturation modulates expression of nuclear receptor types in laser-captured single cells of the cichlid (Oreochromis niloticus) pituitary. Endocrinology 2007; 148:5822-30. [PMID: 17823257 DOI: 10.1210/en.2007-0311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of steroid/thyroid hormones in the regulation of endocrine cells at the level of the pituitary has remained unclear. Therefore, using single-cell quantitative real-time PCR, we examined absolute amounts of transcripts for nuclear receptors [estrogen receptors (ERs) alpha, beta, and gamma; androgen receptors (ARs) a and b; glucocorticoid receptors (GRs) 1, 2a, and 2b; and thyroid hormone receptors (TRs) alpha1, alpha2, and beta] in pituitary cells of immature (IM) and mature (M) male tilapia, Oreochromis niloticus. In the two reproductive stages, ACTH cells expressed only ERbeta, whereas all other pituitary cell types expressed ERalpha + beta, and a subpopulation coexpressed ARa, ARb, GR1, GR2b, and TRbeta but lacked ERgamma, GR2a, TRalpha1, and TRalpha2. IM males had high percentages of LH cells (IM 46.0% vs. M 10.0%), GH cells (IM 23.3% vs. M 7.9%), and prolactin cells (IM 68.8% vs. M 6.0%) with ERbeta, and TSH cells (IM 19.2% vs. M 0.0%) and MSH cells (IM 25.6% vs. M 0.0%) with ERalpha + TRbeta. A high percentage of FSH cells in IM males expressed ERbeta (IM 46.9% vs. M 18.8%), and FSH cells in M males showed significantly high GR1 transcripts (IM 76.0 +/- 5.0 vs. M 195.0 +/- 10.7 copies per cell; P < 0.05), suggesting that FSH cells are regulated differently in the two reproductive stages. Coexpression of ERalpha + beta in high percentages of cells of the GH family (GH, IM 43.8% vs. M 14.3%; prolactin, IM 8.3% vs. M 59.7%; somatolactin, IM 22.2% vs. M 42.2%) suggests that the expression of both ERs is important for functionality. Thus, differential coexpression of genes for nuclear receptors in subpopulations of pituitary cell types suggests multiple steroid/thyroid hormone regulatory pathways at the level of the pituitary during the two reproductive stages.
Collapse
Affiliation(s)
- Takashi Kitahashi
- School of Medicine and Health Sciences, Monash University, 46150 Bandar Sunway, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
27
|
Sørensen C, Øverli Ø, Summers CH, Nilsson GE. Social Regulation of Neurogenesis in Teleosts. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:239-46. [PMID: 17914255 DOI: 10.1159/000105487] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Salmonid fishes such as the rainbow trout (Oncorhynchus mykiss) are frequently used to study behavioral and neuroendocrine effects of socially induced stress. A predictable aggressive response to territorial intrusion, a well described neuroanatomy, and many essential similarities in the stress response in fishes and other vertebrates are among the advantages of this comparative model. One conspicuous difference when compared to mammals, however, is that in teleost fish and other non-mammalian vertebrates, neurogenesis persists into adulthood to a much higher degree. Very little is known about the functional significance of individual differences in the rate of brain cell proliferation in fish, or whether structural changes in the fish brain are influenced by the social environment. In this paper we discuss the observation that brain cell proliferation is reduced in subordinate fish, focusing in particular on whether such individual variation reflects a difference in coping style or is indeed a response to social interactions.
Collapse
|
28
|
Bond H, Warne JM, Balment RJ. Effect of acute restraint on hypothalamic pro-vasotocin mRNA expression in flounder, Platichthys flesus. Gen Comp Endocrinol 2007; 153:221-7. [PMID: 17628558 DOI: 10.1016/j.ygcen.2007.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 11/30/2022]
Abstract
Arginine vasotocin (AVT) stimulates release of adenocorticotrophin hormone (ACTH) in trout. However, AVT's role in fish hypothalamic-pituitary-interrenal-axis (HPIA) is not fully understood. Here, we examined distribution of AVT and glucocorticoid receptor (GR) in the magnocellular preoptic nucleus (PM) and the AVT/cortisol response to acute restraint in flounder. The GR/AVT distribution in the PM was determined using double immunohistochemistry (IHC). Flounder were confined in nets, immersed in water for 30m, with plasma and tissue samples taken prior to, 3, 24 and 48h post-confinement. Plasma osmolality, Na(+), Cl(-) and cortisol were taken as indicators of HPIA activation. Plasma AVT was measured proVT mRNA expression in the PM was detected using in situ hybridisation (ISH) with a S35 labelled oligoprobe for homologous flounder proVT. Double IHC showed the presence of GR in AVT synthesising neurones of the PM. Plasma Na(+), Cl(-), osmolality and cortisol (1.0+/-0.9 to 183.6+/-3.1mM; p<0.001) increased significantly 3h post-restraint: recovering to control levels after 48h. Plasma AVT levels did not change. However, a concomitant increase in proVT mRNA expression in the magnocellular (PMm) and gigantocellular (PMg) neurones of the PM was observed (11.1+/-1.8 to 55.2+/-9.1% 24h post-restraint; p<0.001) and levels still remained significantly elevated at 48h (p<0.01). This suggests that PMm and PMg AVT neurones are associated with HPIA activation following acute restraint, including potential cortisol negative feedback. The extended elevation of hypothalamus proAVT mRNA expression following a single acute stressor affords a possible mechanism to moderate sensitivity of the HPIA to subsequent challenges.
Collapse
Affiliation(s)
- H Bond
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | | | |
Collapse
|
29
|
Gore AC, Attardi B, DeFranco DB. Glucocorticoid repression of the reproductive axis: effects on GnRH and gonadotropin subunit mRNA levels. Mol Cell Endocrinol 2006; 256:40-8. [PMID: 16839661 DOI: 10.1016/j.mce.2006.06.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/22/2006] [Accepted: 06/05/2006] [Indexed: 11/23/2022]
Abstract
Activation of the stress axis by glucocorticoids suppresses reproductive function in many species. Here, we performed studies to determine whether these effects are mediated at the level of the hypothalamus or pituitary or both, and to dissect the underlying molecular mechanisms, using two established rodent models. Rats were treated either chronically or acutely with glucocorticoids, and circulating gonadotropins, GnRH mRNA levels, and gonadotropin subunit mRNAs levels were measured. In model I, chronic treatment for 6 days with corticosterone (CORT) was used in adult intact male rats. CORT caused a significant decrease in serum LH but not FSH secretion compared to vehicle. Whereas pituitary LHbeta and FSHbeta mRNA levels were not affected by CORT treatment, hypothalamic GnRH mRNA was significantly decreased by 35-40%. In model II, acute blockade of the estradiol (E(2))-induced gonadotropin surge by dexamethasone (DEX) was used in 28-day-old female rats. DEX treatment resulted in substantially lower serum LH and FSH concentrations compared to vehicle, although DEX had no effect on GnRH mRNA and LHbeta mRNA levels. By contrast, FSHbeta mRNA levels were about 14-fold lower in DEX-treated females. Taken together, these results indicate that suppression of gonadotropin levels by chronic elevations in glucocorticoids/stress may be accounted for in part by suppression of GnRH mRNA levels, whereas short-term glucocorticoid treatment to block the gonadotropin surge appears to involve other mechanisms including decreased FSHbeta mRNA levels.
Collapse
Affiliation(s)
- Andrea C Gore
- Division of Pharmacology & Toxicology, College of Pharmacy, Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States.
| | | | | |
Collapse
|
30
|
Kitahashi T, Sato H, Sakuma Y, Parhar IS. Cloning and functional analysis of promoters of three GnRH genes in a cichlid. Biochem Biophys Res Commun 2005; 336:536-43. [PMID: 16139796 DOI: 10.1016/j.bbrc.2005.08.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 08/08/2005] [Indexed: 11/26/2022]
Abstract
Mechanisms regulating gonadotropin-releasing hormone (GnRH) types, a key molecule for reproductive physiology, remain unclear. In the present study, we cloned the promoters of GnRH1, GnRH2, and GnRH3 genes in the tilapia, Oreochromis niloticus; and found putative binding sites for glucocorticoid receptors, Sp1, C/EBP, GATA, and Oct-1, but not for androgen receptors in all three GnRH promoters using computer analysis. The presence of binding sites for progesterone receptors in GnRH1, estrogen receptors in GnRH1 and GnRH2, and thyroid hormone receptors in GnRH1 and GnRH3 suggests direct action of steroid hormones on GnRH types. Our observation of SOX and LINE-like sequences exclusively in GnRH1, COUP in GnRH2, and retinoid X receptors in GnRH3 suggests their role in sexual differentiation, midbrain segmentation, and visual cue integration, respectively. Thus, the characteristic binding sites for nuclear receptors and transcription factors support the notion that each GnRH type is regulated differently and has distinct physiological roles.
Collapse
Affiliation(s)
- Takashi Kitahashi
- Department of Physiology, Nippon Medical School, Sendagi, Tokyo 113-8602, Japan
| | | | | | | |
Collapse
|
31
|
Onuma T, Higa M, Ando H, Ban M, Urano A. Elevation of gene expression for salmon gonadotropin-releasing hormone in discrete brain loci of prespawning chum salmon during upstream migration. ACTA ACUST UNITED AC 2005; 63:126-45. [PMID: 15702474 DOI: 10.1002/neu.20125] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Our previous studies suggested that salmon gonadotropin-releasing hormone (sGnRH) neurons regulate both final maturation and migratory behavior in homing salmonids. Activation of sGnRH neurons can occur during upstream migration. We therefore examined expression of genes encoding the precursors of sGnRH, sGnRH-I, and sGnRH-II, in discrete forebrain loci of prespawning chum salmon, Oncorhynchus keta. Fish were captured from 1997 through 1999 along their homing pathway: coastal areas, a midway of the river, 4 km downstream of the natal hatchery, and the hatchery. Amounts of sGnRH mRNAs in fresh frozen sections including the olfactory bulb (OB), terminal nerve (TN), ventral telencephalon (VT), nucleus preopticus parvocellularis anterioris (PPa), and nucleus preopticus magnocellularis (PM) were determined by quantitative real-time polymerase chain reactions. The amounts of sGnRH-II mRNA were higher than those of sGnRH-I mRNA, while they showed similar changes during upstream migration. In the OB and TN, the amounts of sGnRH mRNAs elevated from the coast to the natal hatchery. In the VT and PPa, they elevated along with the progress of final maturation. Such elevation was also observed in the rostroventral, middle, and dorsocaudal parts of the PM. The amounts of gonadotropin IIbeta and somatolactin mRNAs in the pituitary also increased consistently with the elevation of gene expression for sGnRH. These results, in combination with lines of previous evidence, indicate that sGnRH neurons are activated in almost all the forebrain loci during the last phases of spawning migration, resulting in coordination of final gonadal maturation and migratory behavior to the spawning ground.
Collapse
Affiliation(s)
- Takeshi Onuma
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
32
|
Lee YH, Du JL, Shih YS, Jeng SR, Sun LT, Chang CF. In vivo and in vitro sex steroids stimulate seabream gonadotropin-releasing hormone content and release in the protandrous black porgy, Acanthopagrus schlegeli. Gen Comp Endocrinol 2004; 139:12-9. [PMID: 15474531 DOI: 10.1016/j.ygcen.2004.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 05/15/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
The objective of the present study was to investigate the regulation of seabream gonadotropin-releasing hormone (sbGnRH) release using in vivo and in vitro approaches in the protandrous black porgy, Acanthopagrus schlegeli. Estradiol-17beta (E2), testosterone (T), and 11-ketotestosterone (11-KT) were found to significantly stimulate the increase of sbGnRH levels in pituitary of black porgy after 5-96 h of injection. An in vitro culture system using dispersed brain neurons was also developed to investigate the effects of various steroids on sbGnRH release. Different doses (10(-6) - 10(-12) M) of E2, T, 11-KT, and cortisol were applied during 6 h experiment. KCl stimulated sbGnRH release at a dose- and time-dependent manner. The concentration of sbGnRH increased 2-fold in the highest dose of KCl treatment compared to the control. Treatments with E2, T, 11-KT and cortisol significantly stimulated the release of sbGnRH from the cultured brain neurons. The concentration of sbGnRH in medium was increased by 2-, 1.9-, 2.1-, and 4.9-fold when treated with E2, T, 11-KT, and cortisol, respectively, as compared to the respective control. Cholesterol did not have any stimulatory effects in the release of sbGnRH. The results showed that sex steroids and cortisol had direct effect on brain neuronal cells stimulating the release of sbGnRH.
Collapse
Affiliation(s)
- Yan-Horn Lee
- National Museum of Marine Biology and Aquarium, Pintung 944, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
33
|
Goos HJT, Consten D. Stress adaptation, cortisol and pubertal development in the male common carp, Cyprinus carpio. Mol Cell Endocrinol 2002; 197:105-16. [PMID: 12431803 DOI: 10.1016/s0303-7207(02)00284-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper reviews a series of recent studies on the effect of adaptation to chronic stress on pubertal development in the common carp. In pre-pubertal male common carp adaptation to temperature stress caused a retardation of testicular development. Stress-induced delay of the first wave of spermatogenesis could be prevented by treatment with a cortisol antagonist, indicating that the stress effect is mediated by cortisol. Chronically elevated cortisol levels affected all parts of the brain-pituitary-gonad (BPG)-axis. In the hypothalamus lower levels of sGnRH were observed, in the pituitary the steady state levels of FSHbeta-m RNA were decreased, while the testicular production of especially the 11-oxygenated androgens 11-ketoandrostenedione (OA) and 11keto-testosterone (11KT) was strongly diminished. OA and 11KT have been shown to promote testicular development in fish. The LH-induced androgen synthesis in vitro was strongly inhibited by cortisol and its agonist dexamethasone. Although cortisol was shown also to interfere with the synthesis of the 11-oxygenated androgens in vivo, the lower androgen levels induced by cortisol were mainly due to the reduced testicular mass. Restoration of the plasma concentrations of these androgens by implantation could not prevent the cortisol-induced retardation of testicular growth and the first wave of spermatogenesis. Therefore, it is suggested that cortisol acts directly on Sertoli cells and/or on germ cells, which is supported by the demonstration of GRs on germ cells. We have little indication that the cortisol-induced retardation of testicular development is mediated by a decreased secretion of LH, but a crucial role for FSH can not be excluded.
Collapse
Affiliation(s)
- H J Th Goos
- Research Group for Comparative Endocrinology, Graduate School for Developmental Biology, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
34
|
Abstract
This review focuses on recent research on the metabolic function of fish brain. Fish brain is isolated from the systemic circulation by a blood-brain barrier that allows the transport of glucose, monocarboxylates and amino acids. The limited information available in fishes suggests that oxidation of exogenous glucose and oxidative phosphorylation provide most of the ATP required for brain function in teleosts, whereas oxidation of ketones and amino acids occurs preferentially in elasmobranchs. In several agnathans and benthic teleosts brain glycogen levels rather than exogenous glucose may be the proximate glucose source for oxidation. In situations when glucose is in limited supply, teleost brains utilize other fuels such as lactate or ketones. Information on use of lipids and amino acids as fuels in fish brain is scarce. The main pathways of brain energy metabolism are changed by several effectors. Thus, several parameters of brain energy metabolism have been demonstrated to change post-prandially in teleostean fishes. The absence of food in teleosts elicits profound changes in brain energy metabolism (increased glycogenolysis and use of ketones) in a way similar to that demonstrated in mammals though delayed in time. Environmental factors induce changes in brain energy parameters in teleosts such as the enhancement of glycogenolysis elicited by pollutants, increased capacity for anaerobic glycolysis under hypoxia/anoxia or changes in substrate utilization elicited by adaptation to cold. Furthermore, several studies demonstrate effects of melatonin, insulin, glucagon, GLP-1, cortisol or catecholamines on energy parameters of teleost brain, although in most cases the results are quite preliminary being difficult to relate the effects of those hormones to physiological situations. The few studies performed with the different cell types available in the nervous system of fish allow us to hypothesize few functional relationships among those cells. Future research perspectives are also outlined.
Collapse
Affiliation(s)
- José L Soengas
- Laboratorio de Fisioloxía Animal, Facultade de Ciencias, Universidade de Vigo, E-36200, Vigo, Spain.
| | | |
Collapse
|
35
|
Schiml-Webb PA, Temple JL, Rissman EF. Glucocorticoids affect gonadotropin-releasing hormone immunoreactivity in musk shrew brain. Gen Comp Endocrinol 2001; 123:163-9. [PMID: 11482937 DOI: 10.1006/gcen.2001.7663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple interactions between the hypothalamic-pituitary-adrenal and the hypothalamic-pituitary-gonadal systems exist. In this study, we asked if glucocorticoid administration affected gonadotropin-releasing hormone (GnRH) immunoreactivity. We found that musk shrews treated with dexamethasone (DEX), a synthetic glucocorticoid, had more GnRH-immunoreactive (ir) cells in the forebrain than did cortisol- or control-treated animals. The effects of DEX were noted rapidly, within 15 min, after administration. These effects were observed in the forebrain as a whole and also in specific subpopulations of GnRH-ir cells located in the medial septum/diagonal band and the hypothalamus.
Collapse
Affiliation(s)
- P A Schiml-Webb
- Department of Psychology, Wright State University, Dayton, Ohio 45435, USA
| | | | | |
Collapse
|
36
|
Consten D, Lambert JG, Goos HJ. Cortisol affects testicular development in male common carp, Cyprinus carpio L., but not via an effect on LH secretion. Comp Biochem Physiol B Biochem Mol Biol 2001; 129:671-7. [PMID: 11399504 DOI: 10.1016/s1096-4959(01)00368-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous work showed that prolonged elevated cortisol levels, implicated in the stress adaptation, inhibits testicular pubertal development in male common carp, as well as an impairment of the synthesis of the 11-oxygenated androgens. This may be a direct effect of cortisol on the testis or via the gonadotropin secretion by the pituitary. The aim of the present study was to investigate whether cortisol has an effect on pituitary LH secretion. Juvenile common carp were fed with cortisol containing food pellets. Elevated cortisol levels blocked the increase in testosterone levels and pituitary LH content, but induced higher plasma LH levels at the end of puberty. The in vitro LH release capacity was correlated to the pituitary LH content. At the final stage of pubertal development, when a significant difference in pituitary LH content was observed, sGnRHa-induced LH release was also decreased. Testosterone has been shown to induce development of pituitary gonadotrophs, leading to an increase in LH content and GnRH-inducible LH release, but a decrease in plasma LH levels. We observed decreased plasma testosterone levels as a consequence of prolonged cortisol treatment. It is hypothesised that cortisol inhibits the testicular testosterone secretion and thereby, prevents LH storage. In vitro, this leads to a reduced GnRH-inducible LH release, but in vivo to increased LH plasma levels. It is very unlikely that the impaired testicular development is due to an effect of cortisol on LH secretion.
Collapse
Affiliation(s)
- D Consten
- Graduate School for Developmental Biology, Research Group for Comparative Endocrinology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands.
| | | | | |
Collapse
|
37
|
Consten D, Bogerd J, Komen J, Lambert JG, Goos HJ. Long-term cortisol treatment inhibits pubertal development in male common carp, Cyprinus carpio L. Biol Reprod 2001; 64:1063-71. [PMID: 11259251 DOI: 10.1095/biolreprod64.4.1063] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The onset and regulation of puberty is determined by functional development of the brain-pituitary-gonad (BPG) axis. Stress has been shown to interfere with reproduction and the functioning of the BPG axis. The response to chronic and severe stress may require much energy and force the organism to make adaptive choices. Energy that is normally available for processes like growth, immune response, or reproduction will be channeled into restoration of the disturbed homeostasis. Cortisol plays a key role in the homeostatic adaptation during or after stress. In the present study, immature common carp were fed with cortisol-containing food pellets covering the pubertal period. We showed that cortisol caused an inhibition of pubertal development, by affecting directly or indirectly all components of the BPG axis. The salmon GnRH content of the brain was decreased. Luteinizing hormone- and FSH-encoding mRNA levels in the pituitary and LH plasma levels were diminished by long-term cortisol treatment, as was the testicular androgen secretion. Testicular development, reflected by gonadosomatic index and the first wave of spermatogenesis, was retarded.
Collapse
Affiliation(s)
- D Consten
- Graduate School for Developmental Biology, Research Group for Comparative Endocrinology, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Carruth LL, Jones RE, Norris DO. Cell density and intracellular translocation of glucocorticoid receptor-immunoreactive neurons in the kokanee salmon (Oncorhynchus nerka kennerlyi) brain, with an emphasis on the olfactory system. Gen Comp Endocrinol 2000; 117:66-76. [PMID: 10620424 DOI: 10.1006/gcen.1999.7391] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study tested the hypothesis that neurons in olfactory regions of the kokanee salmon brain contain glucocorticoid receptors. Distribution and neuronal number of glucocorticoid receptor-like immunoreactive (GRir) neurons were identified in the kokanee salmon brain using immunohistochemistry with an antibody to GR (polyclonal rabbit anti-human, dilution 1:1500; and monoclonal mouse, dilution 5 micrograms/ml). Distribution of GRir neurons similar to the mammalian pattern was observed in the brains of sexually immature (n = 8; 4 female and 4 male) as well as spawning (n = 8; 4 female and 4 male) salmon. Olfactory-related areas containing GRir positive neuronal bodies included the internal cell layer of the olfactory bulb, ventral-lateral and lateral parts of the dorsal telencephalon (homologue of the mammalian hippocampus), ventral area of the telencephalon (homologue of the mammalian amygdala), glomerulosus complex of the thalamus, the preoptic area, and inferior lobe of the hypothalamus. The pattern of GRir neuronal distribution in sexually immature and spawning fish was similar. However, spawning fish brains, compared to sexually immature brains, exhibited a significantly greater GRir neuronal number in several olfactory regions in paired immunohistochemical runs. There also were differences in intraneuronal location of GRir in olfactory regions, with staining being predominantly cytoplasmic in sexually immature fish but nuclear in spawning fish. These results are consistent with a role for cortisol in olfactory-mediated homing in kokanee salmon. Although GRir were identified in many nonolfactory regions, the focus of this study is on GRir present in brain regions involved in olfaction.
Collapse
Affiliation(s)
- L L Carruth
- Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder 80309, USA
| | | | | |
Collapse
|