1
|
Vlaming-van Eijk LE, Bulthuis MLC, van der Gun BTF, Wold KI, Veloo ACM, Vincenti González MF, de Borst MH, den Dunnen WFA, Hillebrands JL, van Goor H, Tami A, Bourgonje AR. Systemic oxidative stress associates with the development of post-COVID-19 syndrome in non-hospitalized individuals. Redox Biol 2024; 76:103310. [PMID: 39163767 PMCID: PMC11381883 DOI: 10.1016/j.redox.2024.103310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Post-COVID-19 syndrome (PCS) remains a major health issue worldwide, while its pathophysiology is still poorly understood. Systemic oxidative stress (OS) may be involved in PCS, which is reflected by lower circulating free thiols (R-SH, sulfhydryl groups), as they are receptive to rapid oxidation by reactive species. This study aimed to investigate the longitudinal dynamics of serum R-SH after SARS-CoV-2 infection and its association with the development of PCS in individuals with mild COVID-19. METHODS Baseline serum R-SH concentrations were measured and compared between 135 non-hospitalized COVID-19 subjects and 82 healthy controls (HC). In COVID-19 subjects, serum R-SH concentrations were longitudinally measured during the acute disease phase (up to 3 weeks) and at 3, 6, and 12 months of follow-up, and their associations with relevant clinical parameters were investigated, including the development of PCS. RESULTS Baseline albumin-adjusted serum R-SH were significantly reduced in non-hospitalized COVID-19 subjects as compared to HC (p = 0.041), reflecting systemic OS. In mild COVID-19 subjects, trajectories of albumin-adjusted serum R-SH levels over a course of 12 months were longitudinally associated with the future presence of PCS 18 months after initial infection (b = -9.48, p = 0.023). CONCLUSION Non-hospitalized individuals with COVID-19 show evidence of systemic oxidative stress, which is longitudinally associated with the development of PCS. Our results provide a rationale for future studies to further investigate the value of R-SH as a monitoring biomarker and a potential therapeutic target in the development of PCS.
Collapse
Affiliation(s)
- Larissa E Vlaming-van Eijk
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Marian L C Bulthuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Bernardina T F van der Gun
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Karin I Wold
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Alida C M Veloo
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - María F Vincenti González
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Martin H de Borst
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Division of Nephrology, Groningen, the Netherlands
| | - Wilfred F A den Dunnen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Harry van Goor
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Adriana Tami
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, the Netherlands
| | - Arno R Bourgonje
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
2
|
Decker NS, Johnson T, Le Cornet C, Behrens S, Obi N, Kaaks R, Chang-Claude J, Fortner RT. Associations between lifestyle, health, and clinical characteristics and circulating oxysterols and cholesterol precursors in women diagnosed with breast cancer: a cross-sectional study. Sci Rep 2024; 14:4977. [PMID: 38424253 PMCID: PMC10904394 DOI: 10.1038/s41598-024-55316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Despite increasing evidence that cholesterol precursors and oxysterols, oxidized cholesterol metabolites, play a role in numerous pathological processes and diseases including breast cancer, little is known about correlates of these sterols in women with breast cancer. In this study, 2282 women with breast cancer and blood draw post diagnosis were included and cross-sectional associations between circulating levels of 15 sterols/oxysterols and (a) lifestyle, anthropometric, reproductive characteristics, (b) comorbidities and medication use, and (c) breast cancer tumor and treatment characteristics were calculated using generalized linear models. Obesity was strongly associated with circulating levels of 7-dehydrocholesterol (DC) (body mass index ≥ 30 vs. 18.5-24.9 kg/m2: 51.7% difference) and 7-ketocholesterol (KC) (40.0% difference). After adjustment for BMI, comorbidities such as cardiovascular disease were associated with higher levels of 7-DC (26.1% difference) and lower levels of desmosterol (- 16.4% difference). Breast cancer tumor characteristics including hormone receptor status, tumor stage, and endocrine therapy were associated with lanosterol, 24-DHLan, 7b-HC, and THC (e.g., THC; tumor stage IIIa vs. I: 36.9% difference). Weaker associations were observed for lifestyle characteristics and for any of the other oxysterols. The findings of this study suggest that cholesterol precursors are strongly associated with metabolic factors, while oxysterols are associated with breast cancer tumor characteristics, warranting further investigation into the role of cholesterol precursors and oxysterols in women with breast cancer and other populations.
Collapse
Affiliation(s)
- Nina Sophia Decker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charlotte Le Cornet
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Occupational and Maritime Medicine Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renée Turzanski Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
3
|
Yammine A, Ghzaiel I, Pires V, Zarrouk A, Kharoubi O, Greige-Gerges H, Auezova L, Lizard G, Vejux A. Cytoprotective effects of α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol on 7-ketocholesterol - Induced oxiapoptophagy: Major roles of PI3-K / PDK-1 / Akt signaling pathway and glutathione peroxidase activity in cell rescue. Curr Res Toxicol 2024; 6:100153. [PMID: 38379847 PMCID: PMC10877125 DOI: 10.1016/j.crtox.2024.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
On murine N2a cells, 7-ketocholesterol induced an oxiapotophagic mode of cell death characterized by oxidative stress (reactive oxygen species overproduction on whole cells and at the mitochondrial level; lipid peroxidation), apoptosis induction (caspase-9, -3 and -7 cleavage, PARP degradation) and autophagy (increased ratio LC3-II / LC3-I). Oxidative stress was strongly attenuated by diphenyleneiodonium chloride which inhibits NAD(P)H oxidase. Mitochondrial and peroxisomal morphological and functional changes were also observed. Down regulation of PDK1 / Akt signaling pathways as well as of GSK3 / Mcl-1 and Nrf2 pathways were simultaneously observed in 7-ketocholesterol-induced oxiapoptophagy. These events were prevented by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol. The inhibition of the cytoprotection by LY-294002, a PI3-K inhibitor, demonstrated an essential role of PI3-K in cell rescue. The rupture of oxidative stress in 7-ketocholesterol-induced oxiapoptophagy was also associated with important modifications of glutathione peroxidase, superoxide dismutase and catalase activities as well as of glutathione peroxidase-1, superoxide dismutase-1 and catalase level and expression. These events were also counteracted by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol. The inhibition of the cytoprotection by mercaptosuccinic acid, a glutathione peroxidase inhibitor, showed an essential role of this enzyme in cell rescue. Altogether, our data support that the reactivation of PI3-K and glutathione peroxidase activities by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol are essential to prevent 7KC-induced oxiapoptophagy.
Collapse
Affiliation(s)
- Aline Yammine
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Imen Ghzaiel
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Vivien Pires
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Amira Zarrouk
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Omar Kharoubi
- University Oran 1 ABB: Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, Oran, Algeria
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Lizette Auezova
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Fanar, Jdeidet P.O. Box 90656, Lebanon
| | - Gérard Lizard
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
| | - Anne Vejux
- Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270 / Inserm, University of Bourgogne, 21000 Dijon, France
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| |
Collapse
|
4
|
Shi Q, Zhan T, Bi X, Ye BC, Qi N. Cholesterol-autoxidation metabolites in host defense against infectious diseases. Eur J Immunol 2023; 53:e2350501. [PMID: 37369622 DOI: 10.1002/eji.202350501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Cholesterol plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized to oxysterols by enzymatic or nonenzymatic ways. Nonenzymatic cholesterol metabolites, also called cholesterol-autoxidation metabolites, are formed dependent on the oxidation of reactive oxygen species (ROS) such as OH• or reactive nitrogen species, such as ONOO- . Cholesterol-autoxidation metabolites are abundantly produced in diseases such as inflammatory bowel disease and atherosclerosis, which are associated with oxidative stress. Recent studies have shown that cholesterol-autoxidation metabolites can further regulate the immune system. Here, we review the literature and summarize how cholesterol-autoxidation metabolites, such as 25-hydroxycholesterol (25-OHC), 7α/β-OHC, and 7-ketocholesterol, deal with the occurrence and development of infectious diseases through pattern recognition receptors, inflammasomes, ROS production, nuclear receptors, G-protein-coupled receptor 183, and lipid availability. In addition, we include the research regarding the roles of these metabolites in COVID-19 infection and discuss our viewpoints on the future research directions.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tingzhu Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Nan Qi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Department of Basic Research, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Ghzaiel I, Nury T, Zarrouk A, Vejux A, Lizard G. Oxiapoptophagy in Age-Related Diseases. Comment on Ouyang et al. 7-Ketocholesterol Induces Oxiapoptophagy and Inhibits Osteogenic Differentiation in MC3T3-E1 Cells. Cells 2022, 11, 2882. Cells 2022; 11:cells11223612. [PMID: 36429041 PMCID: PMC9688161 DOI: 10.3390/cells11223612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Due to the increase in life span and life expectancy, which can, however, be more or less pronounced depending on the economic, social and cultural context [...].
Collapse
Affiliation(s)
- Imen Ghzaiel
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Faculty of Sciences of Tunis, University Tunis-El Manar, Tunis 2092, Tunisia
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia
- Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France
- Correspondence: ; Tel.: +33-3-80-39-62-56
| |
Collapse
|
6
|
Iciek M, Bilska-Wilkosz A, Kozdrowicki M, Górny M. Reactive Sulfur Compounds in the Fight against COVID-19. Antioxidants (Basel) 2022; 11:antiox11061053. [PMID: 35739949 PMCID: PMC9220020 DOI: 10.3390/antiox11061053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The SARS-CoV-2 coronavirus pandemic outbreak in 2019 resulted in the need to search for an effective and safe strategy for treating infected patients, relieving symptoms, and preventing severe disease. SARS-CoV-2 is an RNA virus that can cause acute respiratory failure and thrombosis, as well as impair circulatory system function. Permanent damage to the heart muscle or other cardiovascular disorders may occur during or after the infection. The severe course of the disease is associated with the release of large amounts of pro-inflammatory cytokines. Due to their documented anti-inflammatory, antioxidant, and antiviral effects, reactive sulfur compounds, including hydrogen sulfide (H2S), lipoic acid (LA), N-acetylcysteine (NAC), glutathione (GSH), and some other lesser-known sulfur compounds, have attracted the interest of scientists for the treatment and prevention of the adverse effects of diseases caused by SARS-CoV-2. This article reviews current knowledge about various endogenous or exogenous reactive sulfur compounds and discusses the possibility, or in some cases the results, of their use in the treatment or prophylaxis of COVID-19.
Collapse
|
7
|
Ravi S, Duraisamy P, Krishnan M, Martin LC, Manikandan B, Raman T, Sundaram J, Arumugam M, Ramar M. An insight on 7- ketocholesterol mediated inflammation in atherosclerosis and potential therapeutics. Steroids 2021; 172:108854. [PMID: 33930389 DOI: 10.1016/j.steroids.2021.108854] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022]
Abstract
7-ketocholesterol, a toxic oxidative product of oxysterol is a causative agent of several diseases and disabilities concomitant to aging including cardiovascular diseases like atherosclerosis. Auto-oxidation of cholesterol esters present in low-density lipoprotein (LDL) deposits lead to the formation of oxidized LDL (Ox-LDL) along with its byproducts, namely 7KCh. It is predominantly found in atherosclerotic plaque and also found to be more atherogenic than cholesterol by being cytotoxic, interfering with cellular homeostasis. This makes it a serious threat by being the foremost cause of morbidity and mortality worldwide and is likely to become more serious during forth coming years. It involves in mediating inflammatory mechanisms characterized by the advancement of fibroatheroma plaques. The atherosclerotic lesion is composed of Ox-LDL along with fibrotic mass consisting of immune cells and molecules. Macrophages being the specialized phagocytic cells, contribute to removal of detrimental contents of the lesion along with accumulated lipids leading to alteration of its biology and functionality due to its plasticity. Here, we have explored the known as well as proposed mechanisms involved with 7KCh associated atherogenesis along with potential therapeutic strategies for targeting 7KCh as a diagnostic and target in medicine.
Collapse
Affiliation(s)
- Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Livya C Martin
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilakanni's College for Women, Chennai 600015, India
| | - Thiagarajan Raman
- Department of Advanced Zoology and Biotechnology, Ramakrishna Mission Vivekananda College, Mylapore, Chennai 600004, India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Munusamy Arumugam
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
8
|
Nury T, Yammine A, Ghzaiel I, Sassi K, Zarrouk A, Brahmi F, Samadi M, Rup-Jacques S, Vervandier-Fasseur D, Pais de Barros J, Bergas V, Ghosh S, Majeed M, Pande A, Atanasov A, Hammami S, Hammami M, Mackrill J, Nasser B, Andreoletti P, Cherkaoui-Malki M, Vejux A, Lizard G. Attenuation of 7-ketocholesterol- and 7β-hydroxycholesterol-induced oxiapoptophagy by nutrients, synthetic molecules and oils: Potential for the prevention of age-related diseases. Ageing Res Rev 2021; 68:101324. [PMID: 33774195 DOI: 10.1016/j.arr.2021.101324] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Age-related diseases for which there are no effective treatments include cardiovascular diseases; neurodegenerative diseases such as Alzheimer's disease; eye disorders such as cataract and age-related macular degeneration; and, more recently, Severe Acute Respiratory Syndrome (SARS-CoV-2). These diseases are associated with plasma and/or tissue increases in cholesterol derivatives mainly formed by auto-oxidation: 7-ketocholesterol, also known as 7-oxo-cholesterol, and 7β-hydroxycholesterol. The formation of these oxysterols can be considered as a consequence of mitochondrial and peroxisomal dysfunction, leading to increased in oxidative stress, which is accentuated with age. 7-ketocholesterol and 7β-hydroxycholesterol cause a specific form of cytotoxic activity defined as oxiapoptophagy, including oxidative stress and induction of death by apoptosis associated with autophagic criteria. Oxiaptophagy is associated with organelle dysfunction and in particular with mitochondrial and peroxisomal alterations involved in the induction of cell death and in the rupture of redox balance. As the criteria characterizing 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity are often simultaneously observed in major age-related diseases (cardiovascular diseases, age-related macular degeneration, Alzheimer's disease) the involvement of these oxysterols in the pathophysiology of the latter seems increasingly likely. It is therefore important to better understand the signalling pathways associated with the toxicity of 7-ketocholesterol and 7β-hydroxycholesterol in order to identify pharmacological targets, nutrients and synthetic molecules attenuating or inhibiting the cytotoxic activities of these oxysterols. Numerous natural cytoprotective compounds have been identified: vitamins, fatty acids, polyphenols, terpenes, vegetal pigments, antioxidants, mixtures of compounds (oils, plant extracts) and bacterial enzymes. However, few synthetic molecules are able to prevent 7-ketocholesterol- and/or 7β-hydroxycholesterol-induced cytotoxicity: dimethyl fumarate, monomethyl fumarate, the tyrosine kinase inhibitor AG126, memantine, simvastatine, Trolox, dimethylsufoxide, mangafodipir and mitochondrial permeability transition pore (MPTP) inhibitors. The effectiveness of these compounds, several of which are already in use in humans, makes it possible to consider using them for the treatment of certain age-related diseases associated with increased plasma and/or tissue levels of 7-ketocholesterol and/or 7β-hydroxycholesterol.
Collapse
|
9
|
Nury T, Zarrouk A, Yammine A, Mackrill JJ, Vejux A, Lizard G. Oxiapoptophagy: A type of cell death induced by some oxysterols. Br J Pharmacol 2020; 178:3115-3123. [PMID: 32579703 DOI: 10.1111/bph.15173] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Oxysterols are oxidized forms of cholesterol generated from cholesterol by auto-oxidation, enzymatic processes, or both. Some of them (7-ketocholesterol, 7β-hydroxycholesterol and 24(S)-hydroxycholesterol), when used at cytotoxic concentrations on different cell types from different species (mesenchymal bone marrow cells, monocytic cells and nerve cells), induce a type of cell death associated with OXIdative stress and several characteristics of APOPTOsis and autoPHAGY, defined as oxiapoptophagy. Oxidative stress is associated with overproduction of ROS, increased antioxidant enzyme activities, lipid peroxidation and protein carbonylation. Apoptosis is associated with activation of the mitochondrial pathway, opening of the mitochondrial permeability pore, loss of mitochondrial membrane potential, caspase-3 activation, PARP degradation, nuclear condensation and/or fragmentation. Autophagy is characterized by autophagic vacuoles revealed by monodansylcadaverine staining and transmission electron microscopy, plus increased ratio of LC-3II/LC-3I. In addition, morphological, topographical and functional changes of the peroxisome are observed. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Thomas Nury
- Team "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" EA 7270/Inserm, University Bourgogne Franche-Comté, Dijon, France
| | - Amira Zarrouk
- Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia.,Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Aline Yammine
- Team "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" EA 7270/Inserm, University Bourgogne Franche-Comté, Dijon, France.,Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - John J Mackrill
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Anne Vejux
- Team "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" EA 7270/Inserm, University Bourgogne Franche-Comté, Dijon, France
| | - Gérard Lizard
- Team "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" EA 7270/Inserm, University Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
10
|
Paz JL, Levy D, Oliveira BA, de Melo TC, de Freitas FA, Reichert CO, Rodrigues A, Pereira J, Bydlowski SP. 7-Ketocholesterol Promotes Oxiapoptophagy in Bone Marrow Mesenchymal Stem Cell from Patients with Acute Myeloid Leukemia. Cells 2019; 8:E482. [PMID: 31117185 PMCID: PMC6562391 DOI: 10.3390/cells8050482] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
7-Ketocholesterol (7-KC) is a cholesterol oxidation product with several biological functions. 7-KC has the capacity to cause cell death depending on the concentration and specific cell type. Mesenchymal stem cells (MSCs) are multipotent cells with the ability to differentiate into various types of cells, such as osteoblasts and adipocytes, among others. MSCs contribute to the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases, such as leukemia, to a yet unknown extent. Here, we describe the effect of 7-KC on the death of bone marrow MSCs from patients with acute myeloid leukemia (LMSCs). LMSCs were less susceptible to the death-promoting effect of 7-KC than other cell types. 7-KC exposure triggered the extrinsic pathway of apoptosis with an increase in activated caspase-8 and caspase-3 activity. Mechanisms other than caspase-dependent pathways were involved. 7-KC increased ROS generation by LMSCs, which was related to decreased cell viability. 7-KC also led to disruption of the cytoskeleton of LMSCs, increased the number of cells in S phase, and decreased the number of cells in the G1/S transition. Autophagosome accumulation was also observed. 7-KC downregulated the SHh protein in LMSCs but did not change the expression of SMO. In conclusion, oxiapoptophagy (OXIdative stress + APOPTOsis + autophagy) seems to be activated by 7-KC in LMSCs. More studies are needed to better understand the role of 7-KC in the death of LMSCs and the possible effects on the SHh pathway.
Collapse
Affiliation(s)
- Jessica Liliane Paz
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Debora Levy
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Beatriz Araujo Oliveira
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Thatiana Correia de Melo
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Fabio Alessandro de Freitas
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Cadiele Oliana Reichert
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Alessandro Rodrigues
- Departmento de Ciencias Exactas e da Terra, Universidade Federal de Sao Paulo, Diadema 09972-270, SP, Brazil.
| | - Juliana Pereira
- Center of Innovation and Translational Medicine, Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Sergio Paulo Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
- Center of Innovation and Translational Medicine, Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
- National Institute of Science and Technology for Regenerative Medicine (INCT Regenera), CNPq, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
11
|
Levy D, de Melo TC, Oliveira BA, Paz JL, de Freitas FA, Reichert CO, Rodrigues A, Bydlowski SP. 7-Ketocholesterol and cholestane-triol increase expression of SMO and LXRα signaling pathways in a human breast cancer cell line. Biochem Biophys Rep 2018; 19:100604. [PMID: 31463370 PMCID: PMC6709374 DOI: 10.1016/j.bbrep.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Oxysterols are 27-carbon oxidation products of cholesterol metabolism. Oxysterols possess several biological actions, including the promotion of cell death. Here, we examined the ability of 7-ketocholesterol (7-KC), cholestane-3β-5α-6β-triol (triol), and a mixture of 5α-cholestane-3β,6β-diol and 5α-cholestane-3β,6α-diol (diol) to promote cell death in a human breast cancer cell line (MDA-MB-231). We determined cell viability, after 24-h incubation with oxysterols. These oxysterols promoted apoptosis. At least part of the observed effects promoted by 7-KC and triol arose from an increase in the expression of the sonic hedgehog pathway mediator, smoothened. However, this increased expression was apparently independent of sonic hedgehog expression, which did not change. Moreover, these oxysterols led to increased expression of LXRα, which is involved in cellular cholesterol efflux, and the ATP-binding cassette transporters, ABCA1 and ABCG1. Diols did not affect these pathways. These results suggested that the sonic hedgehog and LXRα pathways might be involved in the apoptotic process promoted by 7-KC and triol.
Collapse
Affiliation(s)
- Debora Levy
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Thatiana Correa de Melo
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Beatriz A. Oliveira
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Jessica L. Paz
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Fabio A. de Freitas
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | - Cadiele O. Reichert
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | | | - Sergio P. Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Instituto Nacional de Ciencia e Tecnologia em Medicina Regenerativa (INCT-Regenera), CNPq, Brazil
- Correspondence to: Department of Hematology, Faculdade de Medicina, Universidade de Sao Paulo, Av.Dr. Enéas de Carvalho Aguiar,155, 1st floor, room 43, 05403-000 São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Evaluation of Antioxidant, Anti-Inflammatory and Cytoprotective Properties of Ethanolic Mint Extracts from Algeria on 7-Ketocholesterol-Treated Murine RAW 264.7 Macrophages. Antioxidants (Basel) 2018; 7:antiox7120184. [PMID: 30563252 PMCID: PMC6315783 DOI: 10.3390/antiox7120184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/21/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
The present study consisted in evaluating the antioxidant, anti-inflammatory and cytoprotective properties of ethanolic extracts from three mint species (Mentha spicata L. (MS), Mentha pulegium L. (MP) and Mentha rotundifolia (L.) Huds (MR)) with biochemical methods on murine RAW 264.7 macrophages (a transformed macrophage cell line isolated from ascites of BALB/c mice infected by the Abelson leukemia virus). The total phenolic, flavonoid and carotenoid contents were determined with spectrophotometric methods. The antioxidant activities were quantified with the Kit Radicaux Libres (KRLTM), the ferric reducing antioxidant power (FRAP) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. The MS extract showed the highest total phenolic content, and the highest antioxidant capacity, while the MR extract showed the lowest total phenolic content and the lowest antioxidant capacity. The cytoprotective and anti-inflammatory activities of the extracts were quantified on murine RAW 264.7 macrophages treated with 7-ketocholesterol (7KC; 20 µg/mL: 50 µM) associated or not for 24 h and 48 h with ethanolic mint extracts used at different concentrations (25, 50, 100, 200 and 400 µg/mL). Under treatment with 7KC, an important inhibition of cell growth was revealed with the crystal violet test. This side effect was strongly attenuated in a dose dependent manner with the different ethanolic mint extracts, mainly at 48 h. The most important cytoprotective effect was observed with the MS extract. In addition, the effects of ethanolic mint extracts on cytokine secretion (Interleukin (IL)-6, IL-10, Monocyte Chemoattractant Protein (MCP)-1, Interferon (IFN)-ϒ, Tumor necrosis factor (TNF)-α) were determined at 24 h on lipopolysaccharide (LPS, 0.2 µg/mL)-, 7KC (20 µg/mL)- and (7KC + LPS)-treated RAW 264.7 cells. Complex effects of mint extracts were observed on cytokine secretion. However, comparatively to LPS-treated cells, all the extracts strongly reduce IL-6 secretion and two of them (MP and MR) also decrease MCP-1 and TNF-α secretion. However, no anti-inflammatory effects were observed on 7KC- and (7KC + LPS)-treated cells. Altogether, these data bring new evidences on the potential benefits (especially antioxidant and cytoprotective properties) of Algerian mint on human health.
Collapse
|
13
|
Oxysterols selectively promote short-term apoptosis in tumor cell lines. Biochem Biophys Res Commun 2018; 505:1043-1049. [DOI: 10.1016/j.bbrc.2018.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
|
14
|
Brahmi F, Vejux A, Sghaier R, Zarrouk A, Nury T, Meddeb W, Rezig L, Namsi A, Sassi K, Yammine A, Badreddine I, Vervandier-Fasseur D, Madani K, Boulekbache-Makhlouf L, Nasser B, Lizard G. Prevention of 7-ketocholesterol-induced side effects by natural compounds. Crit Rev Food Sci Nutr 2018; 59:3179-3198. [DOI: 10.1080/10408398.2018.1491828] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fatiha Brahmi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| | - Randa Sghaier
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab-NAFS ‘Nutrition - Functional Food & Vascular Health’, LR12ES05, Université de Monastir, Monastir, Tunisia
- Faculty of Medicine, Lab. Biochemistry, Sousse, Tunisia
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition - Functional Food & Vascular Health’, LR12ES05, Université de Monastir, Monastir, Tunisia
- Faculty of Medicine, Lab. Biochemistry, Sousse, Tunisia
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| | - Wiem Meddeb
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- LMMA/IPEST, Faculty of Science, University of Carthage, Bizerte, Tunisia
| | - Leila Rezig
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- ESIAT, Lab. Conservation et Valorisation des Aliments, Tunis, Tunisia
| | - Amira Namsi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- University Tunis El Manar, Faculty of Science of Tunis, Laboratory of Functional Neurophysiology and Pathology, Tunis, Tunisia
| | - Khouloud Sassi
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. Onco-Hematology, Faculty de Medicine of Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Aline Yammine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Bioactive Molecules Research Lab, Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Iham Badreddine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
- Lab. ‘Valorisation des Ressources Naturelles et Environnement’, Université Ibn Zohr, Taroudant, Morocco
| | | | - Khodir Madani
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Lila Boulekbache-Makhlouf
- Lab. Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Boubker Nasser
- Lab. Neuroscience and Biochemistry, Université Hassan 1er, Settat, Morocco
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, Lab. Bio-PeroxIL, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
15
|
Sruthi S, Maurizi L, Nury T, Sallem F, Boudon J, Riedinger J, Millot N, Bouyer F, Lizard G. Cellular interactions of functionalized superparamagnetic iron oxide nanoparticles on oligodendrocytes without detrimental side effects: Cell death induction, oxidative stress and inflammation. Colloids Surf B Biointerfaces 2018; 170:454-462. [DOI: 10.1016/j.colsurfb.2018.06.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 02/02/2023]
|
16
|
Zarrouk A, Ben Salem Y, Hafsa J, Sghaier R, Charfeddine B, Limem K, Hammami M, Majdoub H. 7β-hydroxycholesterol-induced cell death, oxidative stress, and fatty acid metabolism dysfunctions attenuated with sea urchin egg oil. Biochimie 2018; 153:210-219. [PMID: 30003930 DOI: 10.1016/j.biochi.2018.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022]
Abstract
Some oxysterols resulting either from enzymatic oxidation or autoxidation of cholesterol are associated with age-related diseases including neurodegenerative diseases. Among these oxysterols, 7β-hydroxycholesterol (7β-OHC) is often found at increased levels in patients. It is therefore important to identify molecules or mixtures of molecules to prevent 7β-OHC-induced side effects. Consequently, murine oligodendrocytes (158N) were cultured in the absence or presence of 7β-OHC (20 μg/mL, 24 h) with or without a natural oil extracted from sea urchin (Paracentrotus lividus) eggs known for its biological activity. Firstly, the chemical composition of this oil was determined using 31P NMR and GC-MS. Secondly, this oil was used to reduce 7β-OHC-induced side effects. To this end, the oil (160 μg/mL) was added to the culture medium of 158N cells 2 h before 7β-OHC. The effects of 7β-OHC with or without the oil on cell viability were studied with the MTT test. Photometric methods were used to analyze antioxidant enzyme activities, superoxide dismutase (SOD) and glutathione peroxidase (GPx), as well as the generation of lipid peroxidation products (malondialdehyde (MDA), conjugated dienes (CDs)) and protein oxidation product (carbonylated proteins (CPs)). Gas chromatography was used to determine the fatty acid profile. With 7β-OHC, an induction of cell death associated with oxidative stress (alteration of GPx and SOD activities) was observed; an overproduction of lipid peroxidation products (MDA and CDs) and CPs was also revealed. Sea urchin egg oil attenuated 7β-OHC-induced cytotoxicity: 7β-OHC-induced cell death was reduced, GPx and SOD activities were normalized, and lower levels of MDA, CDs and CPs were produced. In addition, whereas a disturbed fatty acid profile was observed with 7β-OHC, similar fatty acid profiles were found in control cells and in cells cultured with 7β-OHC associated with sea urchin egg oil. These data demonstrate the protective activities of sea urchin egg oil against 7β-OHC-induced side effects on 158N cells, supporting the concept that this oil may have benefits in the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amira Zarrouk
- University of Monastir, LR12ES05, Lab-NAFS Nutrition - Functional Food & Vascular Health, Monastir, Tunisia; University of Sousse, Faculty of Medicine Sousse, Tunisia.
| | - Yosra Ben Salem
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Monastir, Tunisia
| | - Jawhar Hafsa
- University of Sousse, Faculty of Medicine Sousse, Tunisia
| | - Randa Sghaier
- University of Sousse, Faculty of Medicine Sousse, Tunisia; Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270, Univ. Bourgogne Franche Comté, INSERM, Dijon, Tunisia
| | | | - Khalifa Limem
- University of Sousse, Faculty of Medicine Sousse, Tunisia
| | - Mohamed Hammami
- University of Monastir, LR12ES05, Lab-NAFS Nutrition - Functional Food & Vascular Health, Monastir, Tunisia
| | - Hatem Majdoub
- Laboratoire des Interfaces et des Matériaux Avancés (LIMA), Faculté des Sciences de Monastir, Université de Monastir, Monastir, Tunisia
| |
Collapse
|
17
|
Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis 2017; 16:188. [PMID: 28969682 PMCID: PMC5625595 DOI: 10.1186/s12944-017-0579-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/22/2017] [Indexed: 01/22/2023] Open
Abstract
Due to the fact that one of the main causes of worldwide deaths are directly related to atherosclerosis, scientists are constantly looking for atherosclerotic factors, in an attempt to reduce prevalence of this disease. The most important known pro-atherosclerotic factors include: elevated levels of LDL, low HDL levels, obesity and overweight, diabetes, family history of coronary heart disease and cigarette smoking. Since finding oxidized forms of cholesterol – oxysterols – in lesion in the arteries, it has also been presumed they possess pro-atherosclerotic properties. The formation of oxysterols in the atherosclerosis lesions, as a result of LDL oxidation due to the inflammatory response of cells to mechanical stress, is confirmed. However, it is still unknown, what exactly oxysterols cause in connection with atherosclerosis, after gaining entry to the human body e.g., with food containing high amounts of cholesterol, after being heated. The in vivo studies should provide data to finally prove or disprove the thesis regarding the pro-atherosclerotic prosperities of oxysterols, yet despite dozens of available in vivo research some studies confirm such properties, other disprove them. In this article we present the current knowledge about the mechanism of formation of atherosclerotic lesions and we summarize available data on in vivo studies, which investigated whether oxysterols have properties to cause the formation and accelerate the progress of the disease. Additionally we will try to discuss why such different results were obtained in all in vivo studies.
Collapse
|
18
|
Gargiulo S, Testa G, Gamba P, Staurenghi E, Poli G, Leonarduzzi G. Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization. Free Radic Biol Med 2017; 111:140-150. [PMID: 28057601 DOI: 10.1016/j.freeradbiomed.2016.12.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 12/31/2022]
Abstract
A growing bulk of evidence suggests that cholesterol oxidation products, known as oxysterols, and 4-hydroxy-2-nonenal (HNE), the major proatherogenic components of oxidized low density lipoproteins (oxLDLs), significantly contribute to atherosclerotic plaque progression and destabilization, with eventual plaque rupture. These oxidized lipids are involved in various key steps of this complex process, mainly thanks to their ability to induce inflammation, oxidative stress, and apoptosis. This review summarizes the current knowledge of the effects induced by these compounds on vascular cells, after their accumulation in the arterial wall and in the atherosclerotic plaque.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
19
|
Silva SF, Levy D, Ruiz JLM, de Melo TC, Isaac C, Fidelis ML, Rodrigues A, Bydlowski SP. Oxysterols in adipose tissue-derived mesenchymal stem cell proliferation and death. J Steroid Biochem Mol Biol 2017; 169:164-175. [PMID: 27133385 DOI: 10.1016/j.jsbmb.2016.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 11/26/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells characterized by self-renewal and cellular differentiation capabilities. Oxysterols comprise a very heterogeneous group derived from cholesterol through enzymatic and non-enzymatic oxidation. Potent effects in cell death processes, including cytoxicity and apoptosis induction, were described in several cell lines. Very little is known about the effects of oxysterols in MSCs. 7-ketocholesterol (7-KC), one of the most important oxysterols, was shown to be cytotoxic to human adipose tissue-derived MSCs. Here, we describe the short-term (24h) cytotoxic effects of cholestan-3α-5β-6α-triol, 3,5 cholestan-7-one, (3α-5β-6α)- cholestane-3,6-diol, 7-oxocholest-5-en-3β-yl acetate, and 5β-6β epoxy-cholesterol, on MSCs derived from human adipose tissue. MSCs were isolated from adipose tissue obtained from three young, healthy women. Oxysterols, with the exception of 3,5 cholestan-7-one and 7-oxocholest-5-en-3β-yl acetate, led to a complex mode of cell death that include apoptosis, necrosis and autophagy, depending on the type of oxysterol and concentration, being cholestan-3α-5β-6α-triol the most effective. Inhibition of proliferation was also promoted by these oxysterols, but no changes in cell cycle were observed.
Collapse
Affiliation(s)
- Suelen Feitoza Silva
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo School of Medicine, Av.Dr.Enéas de Carvalho Aguiar, 155, 1st floor, room 43, 05403-000, São Paulo/SP, Brazil
| | - Débora Levy
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo School of Medicine, Av.Dr.Enéas de Carvalho Aguiar, 155, 1st floor, room 43, 05403-000, São Paulo/SP, Brazil
| | - Jorge Luis Maria Ruiz
- Federal University of Latin American Integration-UNILA, Life and Nature Science Institute, Av. Tarquinio Joslin dos Santos, 1000, Sala 105, CEP: 85870-901, Foz do Iguacu, Parana/PR, Brazil
| | - Thatiana Correa de Melo
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo School of Medicine, Av.Dr.Enéas de Carvalho Aguiar, 155, 1st floor, room 43, 05403-000, São Paulo/SP, Brazil
| | - Cesar Isaac
- Cell Culture and Wound Healing Research Laboratory, Division of Plastic Surgery, Hospital das Clínicas, University of São Paulo Medical School, Av. Dr. Arnaldo, 455, 1st floor, 05403-000, São Paulo/SP, Brazil
| | - Maíra Luísa Fidelis
- Department of Earth and Exact Sciences, Federal University of São Paulo, São Paulo/SP, Brazil
| | - Alessandro Rodrigues
- Department of Earth and Exact Sciences, Federal University of São Paulo, São Paulo/SP, Brazil
| | - Sérgio Paulo Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo School of Medicine, Av.Dr.Enéas de Carvalho Aguiar, 155, 1st floor, room 43, 05403-000, São Paulo/SP, Brazil.
| |
Collapse
|
20
|
O'sullivan AJ, O'callaghan YC, O'brien NM. Differential Effects of Mixtures of Cholesterol Oxidation Products on Bovine Aortic Endothelial Cells and Human Monocytic U937 Cells. Int J Toxicol 2016; 24:173-9. [PMID: 16040570 DOI: 10.1080/10915810590952951] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cholesterol oxidation products or oxysterols are of interest due to their hypothesized role in the development of atherosclerosis. The objective of the present study was to assess the cytotoxic effects of mixtures of oxysterols: 25-hydroxycholesterol (25-OHC), 7 β-hydroxycholesterol (7 β-OHC), and cholesterol-5 β,6 β-epoxide ( β-epox) on two cell types associated with the atherosclerotic process, bovine aortic endothelial (BAE) cells and human monocytic U937 cells. Cells were exposed to 25-OHC, 7 β-OHC, or β-epox, or equimolar mixtures (30 μM) of 25-OHC and 7 β-OHC, 25-OHC and β-epox, or 7 β-OHC and β-epox for 48 h. Cell viability was assessed using the fluorescein diacetate/ethidium bromide (FDA/ EtBr) assay and nuclear morphology following staining with Hoechst 33342. 25-OHC was the least toxic of the oxysterols and did not induce apoptosis in either cell line. Both 7 β-OHC and β-epox treatments were cytotoxic and induced apoptosis in the cells. Cotreatment with 25-OHC did not alter the toxicity of 7 β-OHC and β-epox in U937 cells but did decrease the percentage apoptotic cell death. In contrast, in the BAE cells cotreatment with 25-OHC had a slight protective effect on 7 β-OHC and β-epox–induced toxicities and a marked decrease in apoptotic cell death. The 7 β-OHC and β-epox mixture induced a significant increase in apoptotic cell death in U937 cells but decreased this mode of cell death in the BAE cells. The effects of oxysterols on glutathione levels also differed between the cells with changes noted in U937 and not in BAE cells. Results demonstrate interactive effects when oxysterols are studied as mixtures rather than single compounds in vitro.
Collapse
Affiliation(s)
- Aaron J O'sullivan
- Department of Food and Nutritional Sciences, University College Cork, Ireland
| | | | | |
Collapse
|
21
|
Ryan L, O'Callaghan YC, O'Brien NM. Involvement of Calcium in 7β-Hydroxycholesterol and Cholesterol-5β,6β-Epoxide-Induced Apoptosis. Int J Toxicol 2016; 25:35-9. [PMID: 16510355 DOI: 10.1080/10915810500488387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL) is believed to play a central role in the development of atherosclerosis. The induction of apoptosis in cells of the arterial wall is a critical event in the development of atheroma. 7β-Hydroxycholesterol (7 β-OH) and cholesterol-5 β,6 β-epoxide ( β-epoxide) are components of oxLDL and have previously been shown to be potent inducers of apoptosis. The exact mechanism through which these oxysterols induce apoptosis remains to be fully elucidated. A perturbation of intra-cellular calcium homeostasis has been found to trigger apoptosis in many experimental systems. The aim of the present study was to determine the involvement of calcium signaling in 7 β-OH and β-epoxide–induced apoptosis. To this end, the authors employed the calcium channel blockers verapamil and nifedipine and inhibitors of calpain activation, ALLM and ALLN. Verapamil protected against the decrease in viability induced by 7 β-OH whereas nifedipine had a protective effect in both 7 β-OH and β-epoxide–treated cells, though these compounds did not restore viability to control levels. Verapamil, nifedipine, and ALLM prevented apoptosis induced by β-epoxide. None of the compounds employed in the current study protected against 7 β-OH–induced apoptosis. Our results implicate calcium signaling in the apoptotic pathway induced by β-epoxide and also highlight differences between apoptosis induced by 7 β-OH and β-epoxide.
Collapse
Affiliation(s)
- L Ryan
- Department of Food and Nutritional Sciences, University College Cork, Ireland
| | | | | |
Collapse
|
22
|
Gargiulo S, Gamba P, Testa G, Leonarduzzi G, Poli G. The role of oxysterols in vascular ageing. J Physiol 2016; 594:2095-113. [PMID: 26648329 DOI: 10.1113/jp271168] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/06/2015] [Indexed: 12/24/2022] Open
Abstract
The ageing endothelium progressively loses its remarkable and crucial ability to maintain homeostasis of the vasculature, as it acquires a proinflammatory phenotype. Cellular and structural changes gradually accumulate in the blood vessels, and markedly in artery walls. Most changes in aged arteries are comparable to those occurring during the atherogenic process, the latter being more marked: pro-oxidant and proinflammatory molecules, mainly deriving from or triggered by oxidized low density lipoproteins (oxLDLs), are undoubtedly a major driving force of this process. Oxysterols, quantitatively relevant components of oxLDLs, are likely candidate molecules in the pathogenesis of vascular ageing, because of their marked pro-oxidant, proinflammatory and proapoptotic properties. An increasing bulk of experimental data point to the contribution of a variety of oxysterols of pathophysiological interest, also in the age-related genesis of endothelium dysfunction, intimal thickening due to lipid accumulation, and smooth muscle cell migration and arterial stiffness due to increasing collagen deposition and calcification. This review provides an updated analysis of the molecular mechanisms whereby oxysterols accumulating in the wall of ageing blood vessels may 'activate' endothelial and monocytic cells, through expression of an inflammatory phenotype, and 'convince' smooth muscle cells to proliferate, migrate and, above all, to act as fibroblast-like cells.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| |
Collapse
|
23
|
Alba G, Reyes-Quiróz ME, Sáenz J, Geniz I, Jiménez J, Martín-Nieto J, Pintado E, Sobrino F, Santa-María C. 7-Keto-cholesterol and 25-hydroxy-1 cholesterol rapidly enhance ROS production in human neutrophils. Eur J Nutr 2015; 55:2485-2492. [DOI: 10.1007/s00394-015-1142-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
24
|
Zarrouk A, Nury T, Samadi M, O'Callaghan Y, Hammami M, O'Brien NM, Lizard G, Mackrill JJ. Effects of cholesterol oxides on cell death induction and calcium increase in human neuronal cells (SK-N-BE) and evaluation of the protective effects of docosahexaenoic acid (DHA; C22:6 n-3). Steroids 2015; 99:238-47. [PMID: 25656786 DOI: 10.1016/j.steroids.2015.01.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Some oxysterols are associated with neurodegenerative diseases. Their lipotoxicity is characterized by an oxidative stress and induction of apoptosis. To evaluate the capacity of these molecules to trigger cellular modifications involved in neurodegeneration, human neuronal cells SK-N-BE were treated with 7-ketocholesterol, 7α- and 7β-hydroxycholesterol, 6α- and 6β-hydroxycholesterol, 4α- and 4β-hydroxycholesterol, 24(S)-hydroxycholesterol and 27-hydroxycholesterol (50-100μM, 24h) without or with docosahexaenoic acid (50μM). The effects of these compounds on mitochondrial activity, cell growth, production of reactive oxygen species (ROS) and superoxide anions (O2(-)), catalase and superoxide dismutase activities were determined. The ability of the oxysterols to induce increases in Ca(2+) was measured after 10min and 24h of treatment using fura-2 videomicroscopy and Von Kossa staining, respectively. Cholesterol, 7-ketocholesterol, 7β-hydroxycholesterol, and 24(S)-hydroxycholesterol (100μM) induced mitochondrial dysfunction, cell growth inhibition, ROS overproduction and cell death. A slight increase in the percentage of cells with condensed and/or fragmented nuclei, characteristic of apoptotic cells, was detected. With 27-hydroxycholesterol, a marked increase of O2(-) was observed. Increases in intracellular Ca(2+) were only found with 7-ketocholesterol, 7β-hydroxycholesterol, 24(S)-hydroxycholesterol and 27-hydroxycholesterol. Pre-treatment with docosahexaenoic acid showed some protective effects depending on the oxysterol considered. According to the present data, 7-ketocholesterol, 7β-hydroxycholesterol, 24(S)-hydroxycholesterol and 27-hydroxycholesterol could favor neurodegeneration by their abilities to induce mitochondrial dysfunctions, oxidative stress and/or cell death associated or not with increases in cytosolic calcium levels.
Collapse
Affiliation(s)
- Amira Zarrouk
- Team 'Biochemistry of Peroxisome, Inflammation and Lipid Metabolism' EA 7270, University of Bourgogne - Franche Comté, INSERM, Dijon, France; University of Monastir, Faculté de Médecine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, Tunisia; School of Food and Nutritional Sciences, University College Cork, Cork, Ireland; Department of Physiology, University College Cork, BioSciences Institute, College Road, Cork, Ireland.
| | - Thomas Nury
- Team 'Biochemistry of Peroxisome, Inflammation and Lipid Metabolism' EA 7270, University of Bourgogne - Franche Comté, INSERM, Dijon, France
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Département de Chimie, University of Lorraine, Metz, France
| | - Yvonne O'Callaghan
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Mohamed Hammami
- University of Monastir, Faculté de Médecine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, Tunisia
| | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Gérard Lizard
- Team 'Biochemistry of Peroxisome, Inflammation and Lipid Metabolism' EA 7270, University of Bourgogne - Franche Comté, INSERM, Dijon, France
| | - John J Mackrill
- Department of Physiology, University College Cork, BioSciences Institute, College Road, Cork, Ireland
| |
Collapse
|
25
|
Nury T, Zarrouk A, Mackrill JJ, Samadi M, Durand P, Riedinger JM, Doria M, Vejux A, Limagne E, Delmas D, Prost M, Moreau T, Hammami M, Delage-Mourroux R, O'Brien NM, Lizard G. Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7β-hydroxycholesterol-, or 24(S)-hydroxycholesterol: Protective effects of α-tocopherol and docosahexaenoic acid (DHA; C22:6 n-3). Steroids 2015; 99:194-203. [PMID: 25683890 DOI: 10.1016/j.steroids.2015.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/23/2015] [Accepted: 02/03/2015] [Indexed: 11/30/2022]
Abstract
In demyelinating or non-demyelinating neurodegenerative diseases, increased levels of 7-ketocholesterol (7KC), 7β-hydroxycholesterol (7β-OHC) and 24(S)-hydroxycholesterol (24S-OHC) can be observed in brain lesions. In 158N murine oligodendrocytes, 7KC triggers a complex mode of cell death defined as oxiapoptophagy, involving simultaneous oxidative stress, apoptosis and autophagy. In these cells, 7KC as well as 7β-OHC and 24S-OHC induce a decrease of cell proliferation evaluated by phase contrast microscopy, an alteration of mitochondrial activity quantified with the MTT test, an overproduction of reactive oxygen species revealed by staining with dihydroethidium and dihydrorhodamine 123, caspase-3 activation, PARP degradation, reduced expression of Bcl-2, and condensation and/or fragmentation of the nuclei which are typical criteria of oxidative stress and apoptosis. Moreover, 7KC, 7β-OHC and 24S-OHC promote conversion of microtubule-associated protein light chain 3 (LC3-I) to LC3-II which is a characteristic of autophagy. Consequently, 7β-OHC and 24S-OHC, similarly to 7KC, can be considered as potent inducers of oxiapoptophagy. Furthermore, the different cytotoxic effects associated with 7KC, 7β-OHC and 24S-OHC-induced oxiapoptophagy are attenuated by vitamin E (VitE, α-tocopherol) and DHA which enhances VitE protective effects. In 158N murine oligodendrocytes, our data support the concept that oxiapoptophagy, which can be inhibited by VitE and DHA, could be a particular mode of cell death elicited by cytotoxic oxysterols.
Collapse
Affiliation(s)
- Thomas Nury
- Team 'Biochemistry of Peroxisome, Inflammation and Lipid Metabolism' EA 7270/University of Bourgogne-Franche Comté/INSERM, Dijon, France
| | - Amira Zarrouk
- Team 'Biochemistry of Peroxisome, Inflammation and Lipid Metabolism' EA 7270/University of Bourgogne-Franche Comté/INSERM, Dijon, France; University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, Tunisia; Department of Physiology, University College Cork, BioSciences Institute, Cork, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - John J Mackrill
- Department of Physiology, University College Cork, BioSciences Institute, Cork, Ireland
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Département de Chimie, Université de Lorraine, Metz, France
| | | | - Jean-Marc Riedinger
- Centre de Lutte Contre le Cancer GF Leclerc, Laboratoire de Biologie Médicale, Dijon, France
| | - Margaux Doria
- Team 'Biochemistry of Peroxisome, Inflammation and Lipid Metabolism' EA 7270/University of Bourgogne-Franche Comté/INSERM, Dijon, France
| | - Anne Vejux
- Team 'Biochemistry of Peroxisome, Inflammation and Lipid Metabolism' EA 7270/University of Bourgogne-Franche Comté/INSERM, Dijon, France
| | - Emeric Limagne
- Centre de Recherche INSERM U866 - 'Lipids, Nutrition, Cancer', Dijon, France
| | - Dominique Delmas
- Centre de Recherche INSERM U866 - 'Lipids, Nutrition, Cancer', Dijon, France
| | | | | | - Mohamed Hammami
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', Monastir, Tunisia
| | - Régis Delage-Mourroux
- UFR Sciences et Techniques EA3922/SFR IBCT FED 4234, University of Bourgogne-Franche Comté, Besançon, France
| | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Gérard Lizard
- Team 'Biochemistry of Peroxisome, Inflammation and Lipid Metabolism' EA 7270/University of Bourgogne-Franche Comté/INSERM, Dijon, France.
| |
Collapse
|
26
|
Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 2014; 16:193-217. [PMID: 25547488 PMCID: PMC4307243 DOI: 10.3390/ijms16010193] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse pathophysiological conditions, including inflammation, neurodegenerative diseases and cancer. Accumulating evidence indicates that oxidative damage to biomolecules including lipids, proteins and DNA, contributes to these diseases. Previous studies suggest roles of lipid peroxidation and oxysterols in the development of neurodegenerative diseases and inflammation-related cancer. Our recent studies identifying and characterizing carbonylated proteins reveal oxidative damage to heat shock proteins in neurodegenerative disease models and inflammation-related cancer, suggesting dysfunction in their antioxidative properties. In neurodegenerative diseases, DNA damage may not only play a role in the induction of apoptosis, but also may inhibit cellular division via telomere shortening. Immunohistochemical analyses showed co-localization of oxidative/nitrative DNA lesions and stemness markers in the cells of inflammation-related cancers. Here, we review oxidative stress and its significant roles in neurodegenerative diseases and cancer.
Collapse
|
27
|
Lizard G. Highlight on transient activation of red/ox-dependent survival signals involving MEK/ERK and PI3/Akt signaling pathways in 27-hydroxycholesterol treated-U937 Human monocytic cells: commentary on "Survival signaling elicited by 27-hydroxycholesterol through the combined modulation of cellular redox state and ERK/Akt phosphorylation," by Beyza Vurusaner et al. Free Radic Biol Med 2014; 77:386-7. [PMID: 25236738 DOI: 10.1016/j.freeradbiomed.2014.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Gérard Lizard
- Université de Bourgogne, Laboratoire Bio-PeroxIL "Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique" (EA7270)/INSERM, 6 Bd Gabriel, Dijon, F-21000, France.
| |
Collapse
|
28
|
Boumhras M, Ouafik S, Nury T, Gresti J, Athias A, Ragot K, Nasser B, Cherkaoui-Malki M, Lizard G. Determination of heavy metal content and lipid profiles in mussel extracts from two sites on the moroccan atlantic coast and evaluation of their biological activities on MIN6 pancreatic cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:1245-1261. [PMID: 23450722 DOI: 10.1002/tox.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 06/01/2023]
Abstract
Mussels may concentrate pollutants, with possibly significant side effects on human health. Therefore, mussels (Mytilus galloprovincialis) from two sites of the Moroccan Atlantic coast (Jorf Lasfar [JL], an industrial site, and Oualidia [OL], a vegetable-growing area), were subjected to biochemical analyses to quantify the presence of heavy metals (Cd, Cr, and Pb) and to establish the lipid profile: fatty acid, cholesterol, oxysterol, phytosterol and phospholipid content. In addition, mussel lipid extracts known to accumulate numerous toxic components were tested on murine pancreatic β-cells (MIN6), and their biological activities were measured with various flow cytometric and biochemical methods to determine their impacts on cell death induction, organelle dysfunctions (mitochondria, lysosomes, and peroxisomes), oxidative stress and insulin secretion. The characteristics of JL and OL lipid extracts were compared with those of commercially available mussels from Spain (SP) used for human consumption. OL and JL contained heavy metals, high amounts of phospholipids, and high levels of oxysterols; the [(unsaturated fatty acids)/(saturated fatty acids)] ratio, which can be considered a sign of environmental stress leading to lipid peroxidation, was low. On MIN6 cells, JL and OL lipid extracts were able to trigger cell death. This event was associated with overproduction of H2 O2 , increased catalase activity, a decreased GSH level, lipid peroxidation and stimulation of insulin secretion. These effects were not observed with SP lipid extracts. These data suggest that some components from OL and JL lipid extracts might predispose to pancreatic dysfunctions. Epidemiological studies would be needed to assess the global risk on human health and the metabolic disease incidence in a context of regular seafood consumption from the OL and JL areas.
Collapse
Affiliation(s)
- M Boumhras
- Equipe 'Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique' (EA 7270) / Université de Bourgogne / INSERM, Dijon, France; Laboratoire de Biochimie et Neurosciences, Equipe de Toxicologie Appliquée, Université Hassan 1er, Faculté des Sciences et Techniques, Settat, Maroc
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Role of soluble adenylyl cyclase in cell death and growth. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2646-55. [PMID: 25010002 DOI: 10.1016/j.bbadis.2014.06.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/13/2022]
Abstract
cAMP signaling is an evolutionarily conserved intracellular communication system controlling numerous cellular functions. Until recently, transmembrane adenylyl cyclase (tmAC) was considered the major source for cAMP in the cell, and the role of cAMP signaling was therefore attributed exclusively to the activity of this family of enzymes. However, increasing evidence demonstrates the role of an alternative, intracellular source of cAMP produced by type 10 soluble adenylyl cyclase (sAC). In contrast to tmAC, sAC produces cAMP in various intracellular microdomains close to specific cAMP targets, e.g., in nucleus and mitochondria. Ongoing research demonstrates involvement of sAC in diverse physiological and pathological processes. The present review is focused on the role of cAMP signaling, particularly that of sAC, in cell death and growth. Although the contributions of sAC to the regulation of these cellular functions have only recently been discovered, current data suggest that sAC plays key roles in mitochondrial bioenergetics and the mitochondrial apoptosis pathway, as well as cell proliferation and development. Furthermore, recent reports suggest the importance of sAC in several pathologies associated with apoptosis as well as in oncogenesis. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
|
30
|
O’Callaghan Y, McCarthy FO, O’Brien NM. Recent advances in Phytosterol Oxidation Products. Biochem Biophys Res Commun 2014; 446:786-91. [DOI: 10.1016/j.bbrc.2014.01.148] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 02/02/2023]
|
31
|
Levy D, Ruiz JLM, Celestino AT, Silva SF, Ferreira AK, Isaac C, Bydlowski SP. Short-term effects of 7-ketocholesterol on human adipose tissue mesenchymal stem cells in vitro. Biochem Biophys Res Commun 2014; 446:720-5. [PMID: 24491549 DOI: 10.1016/j.bbrc.2014.01.132] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 01/27/2023]
Abstract
Oxysterols comprise a very heterogeneous group derived from cholesterol through enzymatic and non-enzymatic oxidation. Among them, 7-ketocholesterol (7-KC) is one of the most important. It has potent effects in cell death processes, including cytoxicity and apoptosis induction. Mesenchymal stem cells (MSCs) are multipotent cells characterized by self-renewal and cellular differentiation capabilities. Very little is known about the effects of oxysterols in MSCs. Here, we describe the short-term cytotoxic effect of 7-ketocholesterol on MSCs derived from human adipose tissue. MSCs were isolated from adipose tissue obtained from two young, healthy women. After 24 h incubation with 7-KC, mitochondrial hyperpolarization was observed, followed by a slight increase in the level of apoptosis and changes in actin organization. Finally, the IC50 of 7-KC was higher in these cells than has been observed or described in other normal or cancer cell lines.
Collapse
Affiliation(s)
- Débora Levy
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo School of Medicine, Av. Dr. Enéas de Carvalho Aguiar,155, 1st Floor, Room 43, 05403-000 São Paulo, SP, Brazil
| | - Jorge Luis Maria Ruiz
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo School of Medicine, Av. Dr. Enéas de Carvalho Aguiar,155, 1st Floor, Room 43, 05403-000 São Paulo, SP, Brazil
| | - Andrea Turbuck Celestino
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo School of Medicine, Av. Dr. Enéas de Carvalho Aguiar,155, 1st Floor, Room 43, 05403-000 São Paulo, SP, Brazil
| | - Suelen Feitoza Silva
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo School of Medicine, Av. Dr. Enéas de Carvalho Aguiar,155, 1st Floor, Room 43, 05403-000 São Paulo, SP, Brazil
| | - Adilson Kleber Ferreira
- Departament of Immunology, Laboratory of Tumor Immunology, Institute of Biomedical Science, University of Sao Paulo, Av. Prof. Lineu Prestes, 1730-Room 254, 05508-900 São Paulo, SP, Brazil
| | - Cesar Isaac
- Cell Culture and Wound Healing Research Laboratory, Division of Plastic Surgery, University of São Paulo, Av. Dr. Arnaldo, 455, 1st Floor, 05403-000 São Paulo, SP, Brazil
| | - Sérgio Paulo Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), University of São Paulo School of Medicine, Av. Dr. Enéas de Carvalho Aguiar,155, 1st Floor, Room 43, 05403-000 São Paulo, SP, Brazil.
| |
Collapse
|
32
|
Zong Y, Gao J, Feng H, Cheng B, Zhang X. Toxicity of 7-ketocholesterol on lethality, growth, reproduction, and germline apoptosis in the nematode Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:716-723. [PMID: 24786678 DOI: 10.1080/15287394.2014.888693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
7-Ketocholesterol is one of the most abundant cholesterol oxides, and is known to be cytotoxic to various types of cultured mammalian cells; however, little is known regarding its effects in vivo. With the use of the nematode Caenorhabditis elegans as model organism, in vivo toxicity of 7-ketocholesterol was investigated. The aim of the study was to examine the effects on life span, as well as short-term effects on reproduction, thermotolerance, germline apoptosis, and reactive oxygen species (ROS) generation resulting from C. elegans exposure to 7-ketocholesterol at concentrations ranging from 0 to 200 μg/ml. Results indicated that 7-ketocholesterol reduced reproductive capacity, shortened the life span in a concentration-dependent manner, and impaired thermotolerance of the adult nematode. 7-Ketocholesterol also induced germline apoptotic cell death and increased ROS generation in adult worms. Thus, the model organism C. elegans is recommended for assessment of the safety and bioactivity of cholesterol oxides.
Collapse
Affiliation(s)
- Yunfeng Zong
- a School of Life Sciences , Anhui Agricultural University , Hefei , P. R. China
| | | | | | | | | |
Collapse
|
33
|
Serviddio G, Blonda M, Bellanti F, Villani R, Iuliano L, Vendemiale G. Oxysterols and redox signaling in the pathogenesis of non-alcoholic fatty liver disease. Free Radic Res 2013; 47:881-93. [PMID: 24000796 DOI: 10.3109/10715762.2013.835048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxysterols are oxidized species of cholesterol coming from exogenous (e.g. dietary) and endogenous (in vivo) sources. They play critical roles in normal physiologic functions such as regulation of cellular cholesterol homeostasis. Most of biological effects are mediated by interaction with nuclear receptor LXRα, highly expressed in the liver as well as in many other tissues. Such interaction participates in the regulation of whole-body cholesterol metabolism, by acting as "lipid sensors". Moreover, it seems that oxysterols are also suspected to play key roles in several pathologies, including cardiovascular and inflammatory disease, cancer, and neurodegeneration. Growing evidence suggests that oxysterols may contribute to liver injury in non-alcoholic fatty liver disease. The present review focuses on the current status of knowledge on oxysterols' biological role, with an emphasis on LXR signaling and oxysterols' physiopathological relevance in NAFLD, suggesting new pharmacological development that needs to be addressed in the near future.
Collapse
Affiliation(s)
- G Serviddio
- C.U.R.E. Centre for Liver Diseases Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia , Italy
| | | | | | | | | | | |
Collapse
|
34
|
Gardi NL, Deshpande TU, Kamble SC, Budhe SR, Bapat SA. Discrete molecular classes of ovarian cancer suggestive of unique mechanisms of transformation and metastases. Clin Cancer Res 2013; 20:87-99. [PMID: 24132919 DOI: 10.1158/1078-0432.ccr-13-2063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor heterogeneity and subsistence of high-grade serous ovarian adenocarcinoma (HGSC) classes can be speculated from clinical incidences suggesting passive tumor dissemination versus active invasion and metastases. EXPERIMENTAL DESIGN We explored this theme toward tumor classification through two approaches of gene expression pattern clustering: (i) derivation of a core set of metastases-associated genes and (ii) resolution of independent weighted correlation networks. Further identification of appropriate cell and xenograft models was carried out for resolution of class-specific biologic functions. RESULTS Both clustering approaches achieved resolution of three distinct tumor classes, two of which validated in other datasets. Networks of enriched gene modules defined biologic functions of quiescence, cell division-differentiation-lineage commitment, immune evasion, and cross-talk with niche factors. Although deviant from normal homeostatic mechanisms, these class-specific profiles are not totally random. Preliminary validation of these suggests that Class 1 tumors survive, metastasize in an epithelial-mesenchymal transition (EMT)-independent manner, and are associated with a p53 signature, aberrant differentiation, DNA damage, and genetic instability. These features supported by association of cell-specific markers, including PAX8, PEG3, and TCF21, led to the speculation of their origin being the fimbrial fallopian tube epithelium. On the other hand, Class 2 tumors activate extracellular matrix-EMT-driven invasion programs (Slug, SPARC, FN1, THBS2 expression), IFN signaling, and immune evasion, which are prospectively suggestive of ovarian surface epithelium associated wound healing mechanisms. Further validation of these etiologies could define a new therapeutic framework for disease management.
Collapse
Affiliation(s)
- Nilesh L Gardi
- Authors' Affiliation: National Centre for Cell Science, NCCS Complex, Pune University Campus, Pune 411 007, Maharashtra, India
| | | | | | | | | |
Collapse
|
35
|
Ragot K, Mackrill JJ, Zarrouk A, Nury T, Aires V, Jacquin A, Athias A, Barros JPPD, Véjux A, Riedinger JM, Delmas D, Lizard G. Absence of correlation between oxysterol accumulation in lipid raft microdomains, calcium increase, and apoptosis induction on 158N murine oligodendrocytes. Biochem Pharmacol 2013; 86:67-79. [DOI: 10.1016/j.bcp.2013.02.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
|
36
|
Appukuttan A, Kasseckert SA, Kumar S, Reusch HP, Ladilov Y. Oxysterol-induced apoptosis of smooth muscle cells is under the control of a soluble adenylyl cyclase. Cardiovasc Res 2013; 99:734-42. [PMID: 23729662 DOI: 10.1093/cvr/cvt137] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Apoptosis of vascular smooth muscle cells (VSMC) in advanced atherosclerotic plaques is an important cause of plaque instability. Oxysterols have been suggested as important inducers of apoptosis in VSMC, but the precise mechanism is still poorly understood. Here we aimed to analyse the role of the soluble adenylyl cyclase (sAC). METHODS AND RESULTS VSMC derived from rat aorta were treated with either 25-hydroxycholesterol or 7-ketocholesterol for 24 h. Apoptosis was detected by TUNEL staining and caspases cleavage. Oxysterols treatment led to the activation of the mitochondrial pathway of apoptosis (cytochrome c release and caspase-9 cleavage) and mitochondrial ROS formation, which were suppressed by the pharmacological inhibition or knockdown of sAC. Scavenging ROS with N-acetyl-l-cysteine prevented oxysterol-induced apoptosis. Analyses of the downstream pathway suggest that protein kinase A (PKA)-dependent phosphorylation and the mitochondrial translocation of the pro-apoptotic protein Bax is a key link between sAC and oxysterol-induced ROS formation and apoptosis. To distinguish between intra-mitochondrial and extra-mitochondrial/cytosolic sAC pools, sAC was overexpressed in mitochondria or in the cytosol. sAC expression in the cytosol, but not in mitochondria, significantly promoted apoptosis and ROS formation during oxysterol treatment. CONCLUSION These results suggest that the sAC/PKA axis plays a key role in the oxysterol-induced apoptosis of VSMC by controlling mitochondrial Bax translocation and ROS formation and that cytosolic sAC, rather than the mitochondrial pool, is involved in the apoptotic mechanism.
Collapse
|
37
|
Paradis S, Leoni V, Caccia C, Berdeaux A, Morin D. Cardioprotection by the TSPO ligand 4'-chlorodiazepam is associated with inhibition of mitochondrial accumulation of cholesterol at reperfusion. Cardiovasc Res 2013; 98:420-7. [PMID: 23554458 DOI: 10.1093/cvr/cvt079] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIMS The translocator protein (TSPO) is located on the outer mitochondrial membrane where it is responsible for the uptake of cholesterol into mitochondria of steroidogenic organs. TSPO is also present in the heart where its role remains uncertain. We recently showed that TSPO ligands reduced infarct size and improved mitochondrial functions after ischaemia-reperfusion. This study, thus, sought to determine whether cholesterol could play a role in the cardioprotective effect of TSPO ligands. METHODS AND RESULTS In a model of 30 min coronary occlusion/15 min reperfusion in Wistar rat, we showed that reperfusion induced lipid peroxidation as demonstrated by the increase in conjugated diene and thiobarbituric acid reactive substance formation and altered mitochondrial function (decrease in oxidative phosphorylation and increase in the sensitivity of mitochondrial permeability transition pore opening) in ex-vivo isolated mitochondria. This was associated with an increase in mitochondrial cholesterol uptake (89.5 ± 12.2 vs. 39.9 ± 3.51 nmol/mg protein in controls, P < 0.01) and a subsequent strong generation of auto-oxidized oxysterols, i.e. 7α- and 7β-hydroxycholesterol, 7-ketocholesterol, cholesterol-5α,6α-epoxide, and 5β,6β-epoxide (+173, +149, +165, +165, and +193% vs. controls, respectively; P < 0.01). Administration of the selective TSPO ligand 4'-chlorodiazepam inhibited oxidative stress, improved mitochondrial function, and abolished both mitochondrial cholesterol accumulation and oxysterol production. This was also observed with the new TSPO ligand TRO40303. CONCLUSION These data suggest that 4'-chlorodiazepam inhibits oxidative stress and oxysterol formation by reducing the accumulation of cholesterol in the mitochondrial matrix at reperfusion and prevents mitochondrial injury. This new and original mechanism may contribute to the cardioprotective properties of TSPO ligands.
Collapse
Affiliation(s)
- Stéphanie Paradis
- INSERM, U955, Equipe 3, 8 rue du Général Sarrail, Créteil Cedex 94000, France
| | | | | | | | | |
Collapse
|
38
|
Synthesis and assessment of the relative toxicity of the oxidised derivatives of campesterol and dihydrobrassicasterol in U937 and HepG2 cells. Biochimie 2013; 95:496-503. [DOI: 10.1016/j.biochi.2012.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/18/2012] [Indexed: 11/22/2022]
|
39
|
Phytochemical indicaxanthin suppresses 7-ketocholesterol-induced THP-1 cell apoptosis by preventing cytosolic Ca(2+) increase and oxidative stress. Br J Nutr 2012; 110:230-40. [PMID: 23228674 DOI: 10.1017/s000711451200493x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
7-Ketocholesterol (7-KC)-induced apoptosis of macrophages is considered a key event in the development of human atheromas. In the present study, the effect of indicaxanthin (Ind), a bioactive pigment from cactus pear fruit, on 7-KC-induced apoptosis of human monocyte/macrophage THP-1 cells was investigated. A pathophysiological condition was simulated by using amounts of 7-KC that can be reached in human atheromatous plaque. Ind was assayed within a micromolar concentration range, consistent with its plasma level after dietary supplementation with cactus pear fruit. Pro-apoptotic effects of 7-KC were assessed by cell cycle arrest, exposure of phosphatidylserine at the plasma membrane, variation of nuclear morphology, decrease of mitochondrial trans-membrane potential, activation of Bcl-2 antagonist of cell death and poly(ADP-ribose) polymerase-1 cleavage. Kinetic measurements within 24 h showed early formation of intracellular reactive oxygen species over basal levels, preceding NADPH oxidase-4 (NOX-4) over-expression and elevation of cytosolic Ca²⁺, with progressive depletion of total thiols. 7-KC-dependent activation of the redox-sensitive NF-κB was observed. Co-incubation of 2·5 μm of Ind completely prevented 7-KC-induced pro-apoptotic events. The effects of Ind may be ascribed to inhibition of NOX-4 basal activity and over-expression, inhibition of NF-κB activation, maintaining cell redox balance and Ca homeostasis, with prevention of mitochondrial damage and consequently apoptosis. The findings suggest that Ind, a highly bioavailable dietary phytochemical, may exert protective effects against atherogenetic toxicity of 7-KC at a concentration of nutritional interest.
Collapse
|
40
|
Acilan C, Serhatli M, Kacar O, Adiguzel Z, Tuncer A, Hayran M, Baysal K. Smooth muscle cells isolated from thoracic aortic aneurysms exhibit increased genomic damage, but similar tendency for apoptosis. DNA Cell Biol 2012; 31:1523-34. [PMID: 22871164 DOI: 10.1089/dna.2012.1644] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aortic aneurysms (AA) are characterized by structural deterioration leading to progressive dilation. During the development of AA, two key structural changes are pronounced, one being degradation of extracellular matrix and the other loss of smooth muscle cells (SMCs) through apoptosis. Reactive oxygen species (ROS) are produced above physiological levels in dilated (aneurismal) part of the aorta compared to the nondilated part and they are known to be associated with both the extracellular matrix degradation and the loss of SMCs. In this study, we hypothesized that aneurismal SMCs are more prone to apoptosis and that at least some cells undergo apoptosis due to elevated ROS in the aortic wall. To test this hypothesis, we first isolated SMCs from thoracic aneurismal tissue and compared their apoptotic tendency with normal SMCs in response to H(2)O(2), oxidized sterol, or UV treatment. Exposed cells exhibited morphological changes characteristic of apoptosis, such as cell shrinkage, membrane blebbing, chromatin condensation, and DNA fragmentation. Terminal deoxynucleotidyl transferased UTP nick end labeling (TUNEL) further confirmed the fragmentation of nuclear DNA in these cells. Vascular SMCs were analyzed for their micronuclei (MN) and binucleate (BN) frequency as indicators of genomic abnormality. These data were then compared to patient parameters, including age, gender, hypertension, or aortic diameter for existing correlations. While the tendency for apoptosis was not significantly different compared to normal cells, both the %MN and %BN were higher in aneurismal SMCs. The data suggest that there is increased DNA damage in TAA samples, which might play a pivotal role in disease development.
Collapse
Affiliation(s)
- Ceyda Acilan
- TUBITAK Marmara Research Center, Genetic Engineering and Biotechnology Institute, Kocaeli, Turkey.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kenny O, O'Callaghan Y, O'Connell NM, McCarthy FO, Maguire AR, O'Brien NM. Oxidized derivatives of dihydrobrassicasterol: cytotoxic and apoptotic potential in U937 and HepG2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5952-5961. [PMID: 22594485 DOI: 10.1021/jf204737e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The ability of phytosterol compounds to reduce plasma serum cholesterol levels in humans is well investigated. However, phytosterols are structurally similar to cholesterol with a double bond at the C5-6 position and are therefore susceptible to oxidation. Much research has been carried out on the biological effects of cholesterol oxidation products (COPs) in vitro. In contrast, there is less known about phytosterol oxidation products (POPs). From previous studies, it is apparent that oxidized derivatives of the phytosterols, β-sitosterol and stigmasterol, are cytotoxic in vitro but are less potent than their COP counterparts. In the present study, the cytotoxic and apoptotic potential of oxidized derivatives of dihydrobrassicasterol (DHB) including 5α,6α-epoxyergostan-3β-ol (α-epoxide), 5β,6β-epoxyergostan-3β-ol (β-epoxide), ergost-5-en-7-on-3β-ol (7-keto), ergost-5-ene-3β,7β-diol (7-β-OH), and ergostane-3β,5α,6β-triol (triol) were evaluated in the U937 and HepG2 cell lines. In general, 7-keto, 7-β-OH, and triol derivatives had a significant cytotoxic impact on U937 and HepG2 cells. The oxides appear to be more toxic toward U937 cells. In line with previous findings, the POPs investigated in this study were less potent than the equivalent COPs. The results add to the body of data on the toxicity of individual POPs.
Collapse
Affiliation(s)
- Olivia Kenny
- School of Food and Nutritional Sciences, ‡Department of Chemistry, Analytical and Biological Chemistry Research Facility, and §School of Pharmacy, Analytical and Biological Chemistry Research Facility, University College Cork , Cork, Ireland
| | | | | | | | | | | |
Collapse
|
42
|
Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J, Tabas I. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 2012; 15:545-53. [PMID: 22445600 PMCID: PMC3322248 DOI: 10.1016/j.cmet.2012.01.022] [Citation(s) in RCA: 484] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 11/16/2011] [Accepted: 01/26/2012] [Indexed: 01/22/2023]
Abstract
In advanced atherosclerosis, macrophage apoptosis coupled with defective phagocytic clearance of the apoptotic cells (efferocytosis) promotes plaque necrosis, which precipitates acute atherothrombotic cardiovascular events. Oxidative and endoplasmic reticulum (ER) stress in macrophages are important causes of advanced lesional macrophage apoptosis. We now show that proapoptotic oxidative/ER stress inducers trigger another stress reaction in macrophages, autophagy. Inhibition of autophagy by silencing ATG5 or other autophagy mediators enhances apoptosis and NADPH oxidase-mediated oxidative stress while at the same time rendering the apoptotic cells less well recognized by efferocytes. Most importantly, macrophage ATG5 deficiency in fat-fed Ldlr(-/-) mice increases apoptosis and oxidative stress in advanced lesional macrophages, promotes plaque necrosis, and worsens lesional efferocytosis. These findings reveal a protective process in oxidatively stressed macrophages relevant to plaque necrosis, suggesting a mechanism-based strategy to therapeutically suppress atherosclerosis progression and its clinical sequelae.
Collapse
Affiliation(s)
- Xianghai Liao
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
7-Ketocholesterol is Not Cytotoxic to U937 Cells When Incorporated into Acetylated Low Density Lipoprotein. Lipids 2011; 47:239-47. [DOI: 10.1007/s11745-011-3634-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 11/07/2011] [Indexed: 01/17/2023]
|
44
|
Jusakul A, Loilome W, Namwat N, Haigh WG, Kuver R, Dechakhamphu S, Sukontawarin P, Pinlaor S, Lee SP, Yongvanit P. Liver fluke-induced hepatic oxysterols stimulate DNA damage and apoptosis in cultured human cholangiocytes. Mutat Res 2011; 731:48-57. [PMID: 22044627 DOI: 10.1016/j.mrfmmm.2011.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 10/12/2011] [Accepted: 10/18/2011] [Indexed: 12/12/2022]
Abstract
Oxysterols are cholesterol oxidation products that are generated by enzymatic reactions through cytochrome P450 family enzymes or by non-enzymatic reactions involving reactive oxygen and nitrogen species. Oxysterols have been identified in bile in the setting of chronic inflammation, suggesting that biliary epithelial cells are chronically exposed to these compounds in certain clinical settings. We hypothesized that biliary oxysterols resulting from liver fluke infection participate in cholangiocarcinogenesis. Using gas chromatography/mass spectrometry, we identified oxysterols in livers from hamsters infected with Opisthorchis viverrini that develop cholangiocarcinoma. Five oxysterols were found: 7-keto-cholesta-3,5-diene (7KD), 3-keto-cholest-4-ene (3K4), 3-keto-cholest-7-ene (3K7), 3-keto-cholesta-4,6-diene (3KD), and cholestan-3β,5α,6β-triol (Triol). Triol and 3K4 were found at significantly higher levels in the livers of hamsters with O. viverrini-induced cholangiocarcinoma. We therefore investigated the effects of Triol and 3K4 on induction of cholangiocarcinogenesis using an in vitro human cholangiocyte culture model. Triol- and 3K4-treated cells underwent apoptosis. Western blot analysis showed significantly increased levels of Bax and decreased levels of Bcl-2 in these cells. Increased cytochrome c release from mitochondria was found following treatment with Triol and 3K4. Triol and 3K4 also induced formation of the DNA adducts 1,N(6)-etheno-2'-deoxyadenosine, 3,N(4)-etheno-2'-deoxycytidine and 8-oxo-7,8-dihydro-2'-deoxyguanosine in cholangiocytes. The data suggest that Triol and 3K4 cause DNA damage via oxidative stress. Chronic liver fluke infection increases production of the oxysterols Triol and 3K4 in the setting of chronic inflammation in the biliary system. These oxysterols induce apoptosis and DNA damage in cholangiocytes. Insufficient and impaired DNA repair of such mutated cells may enhance clonal expansion and further drive the change in cellular phenotype from normal to malignant.
Collapse
Affiliation(s)
- Apinya Jusakul
- Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Clarion L, Schindler M, de Weille J, Lolmède K, Laroche-Clary A, Uro-Coste E, Robert J, Mersel M, Bakalara N. 7β-Hydroxycholesterol-induced energy stress leads to sequential opposing signaling responses and to death of C6 glioblastoma cells. Biochem Pharmacol 2011; 83:37-46. [PMID: 21983033 DOI: 10.1016/j.bcp.2011.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 11/25/2022]
Abstract
7β-Hydroxycholesterol cytotoxicity has been shown in vivo and in vitro to be dependent on the accumulation of its esters. We show in our study, using a detergent-free raft preparation and LC/MS lipid content analysis, that membrane microdomains isolated from 7β-hydroxycholesterol-treated C6 cells have a reduced cholesterol: cholesterol ester ratio and accumulate 7keto-hydroxycholesterol, 7β-hydroxycholesterol and 7β-hydroxycholesterol esters. These modifications in lipid content are accompanied by a redistribution of flotillin-1 in the lipid rafts. Transient increases of AMPK phosphorylation and mitochondrial activity during the first 12 h of 7β-hydroxycholesterol treatment indicate that C6 cells undergo energy stress and increase oxidative phosphorylation. Even so, ATP levels are maintained during 15 h until glucose uptake decreases. The cell's answers to raft modifications and energy stress are sequential activations of different signaling pathways such as ERK, AMPK and PI3K/Akt. These pathways, known to be activated under energy stress conditions, are transiently activated at 6 h (ERK, AMPK) and 12 h (Akt) of treatment respectively suggesting a shift from cell survival to cell proliferation. The persistence of 7β-hydroxycholesterol-induced stress led after 24 h to P38 activation, loss of GSK3β activation and to cell death. Finally we demonstrate that the observed signaling responses depend on 7β-hydroxycholesterol esterification, confirming that esterification of 7β-hydroxycholesterol is essential for cytotoxicity.
Collapse
|
46
|
Ganguly A, Banerjee K, Chakraborty P, Das S, Sarkar A, Hazra A, Banerjee M, Maity A, Chatterjee M, Mondal NB, Choudhuri SK. Overcoming multidrug resistance (MDR) in cancer in vitro and in vivo by a quinoline derivative. Biomed Pharmacother 2011; 65:387-94. [DOI: 10.1016/j.biopha.2011.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 04/23/2011] [Indexed: 01/09/2023] Open
|
47
|
Orsó E, Grandl M, Schmitz G. Oxidized LDL-induced endolysosomal phospholipidosis and enzymatically modified LDL-induced foam cell formation determine specific lipid species modulation in human macrophages. Chem Phys Lipids 2011; 164:479-87. [DOI: 10.1016/j.chemphyslip.2011.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 01/01/2023]
|
48
|
Ragot K, Delmas D, Athias A, Nury T, Baarine M, Lizard G. α-Tocopherol impairs 7-ketocholesterol-induced caspase-3-dependent apoptosis involving GSK-3 activation and Mcl-1 degradation on 158N murine oligodendrocytes. Chem Phys Lipids 2011; 164:469-78. [PMID: 21575614 DOI: 10.1016/j.chemphyslip.2011.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/30/2022]
Abstract
In important and severe neurodegenerative pathologies, 7-ketocholesterol, mainly resulting from cholesterol autoxidation, may contribute to dys- or demyelination processes. On various cell types, 7-ketocholesterol has often been shown to induce a complex mode of cell death by apoptosis associated with phospholipidosis. On 158N murine oligodendrocytes treated with 7-ketocholesterol (20 μg/mL corresponding to 50 μM, 24-48 h), the induction of a mode of cell death by apoptosis characterised by the occurrence of cells with condensed and/or fragmented nuclei, caspase activation (including caspase-3) and internucleosomal DNA fragmentation was observed. It was associated with a loss of transmembrane mitochondrial potential (ΔΨm) measured with JC-1, with a dephosphorylation of Akt and GSK3 (especially GSK3β), and with degradation of Mcl-1. With α-tocopherol (400 μM), which was capable of counteracting 7-ketocholesterol-induced apoptosis, Akt and GSK3β dephosphorylation were inhibited as well as Mcl-1 degradation. These data underline that the potential protective effects of α-tocopherol against 7-ketocholesterol-induced apoptosis do not depend on the cell line considered, and that the cascade of events (Akt/GSK3β/Mcl-1) constitutes a link between 7-ketocholesterol-induced cytoplasmic membrane dysfunctions and mitochondrial depolarisation leading to apoptosis.
Collapse
Affiliation(s)
- Kévin Ragot
- Centre de Recherche INSERM 866 (Lipides, Nutrition, Cancer)-Equipe Biochimie Métabolique et Nutritionnelle, Université de Bourgogne, Dijon, France
| | | | | | | | | | | |
Collapse
|
49
|
Sishi BJ, Engelbrecht AM. Tumor necrosis factor alpha (TNF-α) inactivates the PI3-kinase/PKB pathway and induces atrophy and apoptosis in L6 myotubes. Cytokine 2011; 54:173-84. [DOI: 10.1016/j.cyto.2011.01.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/15/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
|
50
|
Mackrill JJ. Oxysterols and calcium signal transduction. Chem Phys Lipids 2011; 164:488-95. [PMID: 21513705 DOI: 10.1016/j.chemphyslip.2011.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Ionised calcium (Ca(2+)) is a key second messenger, regulating almost every cellular process from cell death to muscle contraction. Cytosolic levels of this ion can be increased via gating of channel proteins located in the plasma membrane, endoplasmic reticulum and other membrane-delimited organelles. Ca(2+) can be removed from cells by extrusion across the plasma membrane, uptake into organelles and buffering by anionic components. Ca(2+) channels and extrusion mechanisms work in concert to generate diverse spatiotemporal patterns of this second messenger, the distinct profiles of which determine different cellular outcomes. Increases in cytoplasmic Ca(2+) concentration are one of the most rapid cellular responses upon exposure to certain oxysterol congeners or to oxidised low-density lipoprotein, occurring within seconds of addition and preceding increases in levels of reactive oxygen species, or changes in gene expression. Furthermore, exposure of cells to oxysterols for periods of hours to days modulates Ca(2+) signal transduction, with these longer-term alterations in cellular Ca(2+) homeostasis potentially underlying pathological events within atherosclerotic lesions, such as hyporeactivity to vasoconstrictors observed in vascular smooth muscle, or ER stress-induced cell death in macrophages. Despite their candidate roles in physiology and disease, little is known about the molecular mechanisms that couple changes in oxysterol concentrations to alterations in Ca(2+) signalling. This review examines the ways in which oxysterols could influence Ca(2+) signal transduction and the potential roles of this in health and disease.
Collapse
Affiliation(s)
- John J Mackrill
- Department of Physiology, University College Cork, Cork, Ireland.
| |
Collapse
|