1
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2024; 104:101306. [PMID: 39433211 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Tang S, Yang J, Xiao B, Wang Y, Lei Y, Lai D, Qiu Q. Aberrant Lipid Metabolism and Complement Activation in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:20. [PMID: 39405051 PMCID: PMC11482642 DOI: 10.1167/iovs.65.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Age-related macular degeneration (AMD) stands as a leading cause of severe visual impairment and blindness among the elderly globally. As a multifactorial disease, AMD's pathogenesis is influenced by genetic, environmental, and age-related factors, with lipid metabolism abnormalities and complement system dysregulation playing critical roles. This review delves into recent advancements in understanding the intricate interaction between these two crucial pathways, highlighting their contribution to the disease's progression through chronic inflammation, drusen formation, and retinal pigment epithelium dysfunction. Importantly, emerging evidence points to dysregulated lipid profiles, particularly alterations in high-density lipoprotein levels, oxidized lipid deposits, and intracellular lipofuscin accumulation, as exacerbating factors that enhance complement activation and subsequently amplify tissue damage in AMD. Furthermore, genetic studies have revealed significant associations between AMD and specific genes involved in lipid transport and complement regulation, shedding light on disease susceptibility and underlying mechanisms. The review further explores the clinical implications of these findings, advocating for a novel therapeutic approach that integrates lipid metabolism modulators with complement inhibitors. By concurrently targeting these pathways, the dual-targeted approach holds promise in significantly improving outcomes for AMD patients, heralding a new horizon in AMD management and treatment.
Collapse
Affiliation(s)
- Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Bingqing Xiao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
3
|
Finzi A, Ottoboni S, Cellini M, Corcioni B, Gaudiano C, Fontana L. Color Doppler Imaging, Endothelin-1, Corneal Biomechanics and Scleral Rigidity in Asymmetric Age-Related Macular Degeneration. Clin Ophthalmol 2024; 18:2583-2591. [PMID: 39281979 PMCID: PMC11401527 DOI: 10.2147/opth.s479225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose Age-related macular degeneration (AMD) presents a multifaceted etiopathogenesis involving ischemic, inflammatory, and genetic components. This study investigates the correlation between ocular hemodynamics, scleral rigidity (SR), and plasma endothelin-1 (ET1) levels in treatment-naive patients with asymmetrical AMD. Patients and Methods This study included 20 treatment-naive patients (12 females and 8 males) with an average age of 76.4 ± 3.7 years, who presented with AMD with neovascular membrane formation (nAMD) in one eye, and intermediate grade 2 AMD (iAMD) in the other eye. The control group consisted of 20 healthy subjects (13 females and 7 males) with a mean age of 74.7 ± 3.9 years. All patients and healthy controls underwent color Doppler imaging (i) of the ophthalmic artery (OA), short posterior ciliary arteries (SPCAs), and central retinal artery (CRA); Plasma ET-1 levels were measured for all patients and healthy subjects. Corneal biomechanics were assessed using an Ocular Response Analyzer and two indices were obtained: corneal hysteresis (CH) and corneal resistance factor (CRF). Results Results showed reduced blood flow velocities and increased resistance indices in AMD eyes, particularly affecting the short posterior ciliary arteries. According to mechanical theory, ARMD eyes exhibited elevated scleral rigidity and corneal resistance factor compared to controls, with a notable rise in SR in neovascular AMD (nAMD) eyes. As per the chronic subacute inflammation theory, plasma ET-1 levels were significantly higher in AMD patients, correlating with abnormal SPCAs blood flow and increased resistance indices. Conclusion Findings suggest a multifactorial etiology of AMD involving an increase of ET-1 plasma levels with biomechanic damages of corneal and scleral tissue in nAMD.
Collapse
Affiliation(s)
- Alessandro Finzi
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Simone Ottoboni
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mauro Cellini
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Beniamino Corcioni
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Caterina Gaudiano
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luigi Fontana
- Ophthalmology Unit, Department of Experimental, Diagnostic and Specialty Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Wagner N, Tsai T, Reinehr S, Theile J, Dick HB, Joachim SC. Retinal debris triggers cytotoxic damage in cocultivated primary porcine RPE cells. Front Neurosci 2024; 18:1401571. [PMID: 39114482 PMCID: PMC11303199 DOI: 10.3389/fnins.2024.1401571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction One of the most common causes of vision loss in the elderly population worldwide is age-related macular degeneration (AMD). Subsequently, the number of people affected by AMD is estimated to reach approximately 288 million by the year 2040. The aim of this study was to develop an ex vivo model that simulates various aspects of the complex AMD pathogenesis. Methods For this purpose, primary porcine retinal pigment epithelial cells (ppRPE) were isolated and cultured. One group was exposed to medium containing sodium iodate (NaIO3) to induce degeneration. The others were exposed to different supplemented media, such as bovine serum albumin (BSA), homogenized porcine retinas (HPR), or rod outer segments (ROOS) for eight days to promote retinal deposits. Then, these ppRPE cells were cocultured with porcine neuroretina explants for another eight days. To assess the viability of ppRPE cells, live/dead assay was performed at the end of the study. The positive RPE65 and ZO1 area was evaluated by immunocytochemistry and the expression of RLBP1, RPE65, and TJP1 was analyzed by RT-qPCR. Additionally, drusen (APOE), inflammation (ITGAM, IL6, IL8, NLRP3, TNF), oxidative stress (NFE2L2, SOD1, SOD2), and hypoxia (HIF1A) markers were investigated. The concentration of the inflammatory cytokines IL-6 and IL-8 was determined in medium supernatants from day 16 and 24 via ELISA. Results Live/dead assay suggests that especially exposure to NaIO3 and HPR induced damage to ppRPE cells, leading in a significant ppRPE cell loss. All supplemented media resulted in decreased RPE-characteristic markers (RPE65; ZO-1) and gene expression like RLBP1 and RPE65 in the cultured ppRPE cells. Besides, some inflammatory, oxidative as well as hypoxic stress markers were altered in ppRPE cells cultivated with NaIO3. The application of HPR induced an enhanced APOE expression. Pre-exposure of the ppRPE cells led to a diminished number of cones in all supplemented media groups compared to controls. Discussion Overall, this novel coculture model represents an interesting initial approach to incorporating deposits into coculture to mimic AMD pathogenesis. Nevertheless, the effects of the media used need to be investigated in further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Niksirat H, Siino V, Steinbach C, Levander F. The quantification of zebrafish ocular-associated proteins provides hints for sex-biased visual impairments and perception. Heliyon 2024; 10:e33057. [PMID: 38994070 PMCID: PMC11238053 DOI: 10.1016/j.heliyon.2024.e33057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Biochemical differences between sexes can also be seen in non-sexual organs and may affect organ functions and susceptibility to diseases. It has been shown that there are sex-biased visual perceptions and impairments. Abundance differences of eye proteins could provide explanations for some of these. Exploration of the ocular proteome was performed to find sex-based protein abundance differences in zebrafish Danio rerio. A label-free protein quantification workflow using high-resolution mass spectrometry was employed to find proteins with significant differences between the sexes. In total, 3740 unique master proteins were identified and quantified, and 49 proteins showed significant abundance differences between the eyes of male and female zebrafish. Those proteins belong to lipoproteins, immune system, blood coagulation, antioxidants, iron and heme-binding proteins, ion channels, pumps and exchangers, neuronal and photoreceptor proteins, and the cytoskeleton. An extensive literature review provided clues for the possible links between the sex-biased level of proteins and visual perception and impairments. In conclusion, sexual dimorphism at the protein level was discovered for the first time in the eye of zebrafish and should be accounted for in ophthalmological studies. Data are available via ProteomeXchange with identifier PXD033338.
Collapse
Affiliation(s)
- Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Tavares J, Caravaca-Fontán F, Praga M. Apolipoprotein E in dense deposits: a parting of the ways in C3 glomerulopathy. Clin Kidney J 2024; 17:sfae161. [PMID: 38915437 PMCID: PMC11194478 DOI: 10.1093/ckj/sfae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 06/26/2024] Open
Affiliation(s)
- Joana Tavares
- Department of Nephrology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | | | - Manuel Praga
- Department of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
7
|
Voichanski S, Bousquet E, Abraham N, Santina A, Mafi M, Fossataro C, Sadda S, Sarraf D. En Face Optical Coherence Tomography Illustrates the Trizonal Distribution of Drusen and Subretinal Drusenoid Deposits in the Macula. Am J Ophthalmol 2024; 261:187-198. [PMID: 38218515 DOI: 10.1016/j.ajo.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
PURPOSE To analyze the topographic distribution of macular drusen and subretinal drusenoid deposits (SDDs) using single-capture en face spectral domain optical coherence tomography (SD-OCT) imaging. DESIGN Retrospective case series. METHODS Analysis of 33 eyes of 20 patients with evidence of SDDs. Structural en face OCT images were reconstructed using a 40-µm-thick slab positioned from 48 to 88 µm above the Bruch membrane. The Early Treatment of Diabetic Retinopathy Study (ETDRS) grid and a rod/cone density map were overlaid on the en face OCT images, and the distribution of different subtypes of SDDs and macular drusen were assessed. RESULTS A total of 31 eyes (94%) showed a trizonal distribution pattern of drusen and SDDs. Whereas small to large drusen tended to aggregate in the central circle, dot SDDs predominated in the inner ring and the inner portion of the outer ring of the ETDRS grid and ribbon SDDs localized to the outer ring and outside the ETDRS grid. Of note, drusen colocalized to the region of greatest cone density, whereas ribbon SDDs colocalized to the area of greatest rod density. The dot SDDs mapped to the intermediate region with mixed rod and cone representation. CONCLUSION Dot and ribbon subtypes of SDDs and macular drusen show a characteristic trizonal distribution. The locations of these lesions colocalize according to the different densities of the cones and rods in the retina and may reflect varying pathophysiological activities of these photoreceptor subtypes.
Collapse
Affiliation(s)
- Shilo Voichanski
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA; Vitreoretinal Division, Ophthalmology Department, Shaare Zedek Medical Center (S.V.), Jerusalem, Israel
| | - Elodie Bousquet
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA; University of Paris Cité; Department of Ophthalmology, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris (E.B.), Paris, France
| | - Neda Abraham
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA
| | - Ahmad Santina
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA
| | - Mostafa Mafi
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA
| | - Claudia Fossataro
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA; Ophthalmology Unit, Catholic University of the Sacred Heart (C.F.), Rome, Italy; Ophthalmology Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS (C.F.), Rome, Italy
| | - SriniVas Sadda
- Doheny Eye Institute, Department of Ophthalmology, University of California Los Angeles (S.S.), Los Angeles, California, USA
| | - David Sarraf
- Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, University of California Los Angeles, David Geffen School of Medicine at UCLA (S.V., E.B., N.A., A.S., M.M., C.F., D.S.), Los Angeles, California, USA; Greater Los Angeles VA Healthcare Center (D.S.), Los Angeles, California, USA.
| |
Collapse
|
8
|
Madden B, Singh RD, Haas M, Palma LMP, Sharma A, Vargas MJ, Gross L, Negron V, Nate T, Charlesworth MC, Theis JD, Nasr SH, Nath KA, Fervenza FC, Sethi S. Apolipoprotein E is enriched in dense deposits and is a marker for dense deposit disease in C3 glomerulopathy. Kidney Int 2024; 105:1077-1087. [PMID: 38447879 DOI: 10.1016/j.kint.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
C3 glomerulopathy (C3G) is a rare disease resulting from dysregulation of the alternative pathway of complement. C3G includes C3 glomerulonephritis (C3GN) and dense deposit disease (DDD), both of which are characterized by bright glomerular C3 staining on immunofluorescence studies. However, on electron microscopy (EM), DDD is characterized by dense osmiophilic mesangial and intramembranous deposits along the glomerular basement membranes (GBM), while the deposits of C3GN are not dense. Why the deposits appear dense in DDD and not in C3GN is not known. We performed laser microdissection (LCM) of glomeruli followed by mass spectrometry (MS) in 12 cases each of DDD, C3GN, and pretransplant kidney control biopsies. LCM/MS showed marked accumulation of complement proteins C3, C5, C6, C7, C8, C9 and complement regulating proteins CFHR5, CFHR1, and CFH in C3GN and DDD compared to controls. C3, CFH and CFHR proteins were comparable in C3GN and DDD. Yet, there were significant differences. First, there was a six-to-nine-fold increase of C5-9 in DDD compared to C3GN. Secondly, an unexpected finding was a nine-fold increase in apolipoprotein E (ApoE) in DDD compared to C3GN. Most importantly, immunohistochemical and confocal staining for ApoE mirrored the dense deposit staining in the GBM in DDD but not in C3GN or control cases. Validation studies using 31 C3G cases confirmed the diagnosis of C3GN and DDD in 80.6 % based on ApoE staining. Overall, there is a higher burden of terminal complement pathway proteins in DDD compared to C3GN. Thus, our study shows that dense deposits in DDD are enriched with ApoE compared to C3GN and control cases. Hence, ApoE staining may be used as an adjunct to EM for the diagnosis of DDD and might be valuable when EM is not available.
Collapse
Affiliation(s)
- Benjamin Madden
- Mayo Clinic Proteomics Core, Mayo Clinic, Rochester, Minnesota, USA
| | - Raman Deep Singh
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark Haas
- Department of Pathology & Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lilian M P Palma
- Pediatric Nephrology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Alok Sharma
- Department of Renal Pathology & Electron Microscopy, Dr Lal Path Labs, New Delhi, India
| | - Maria J Vargas
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - LouAnn Gross
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vivian Negron
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Torell Nate
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Jason D Theis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samih H Nasr
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Fernando C Fervenza
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
9
|
Ban N, Shinojima A, Negishi K, Kurihara T. Drusen in AMD from the Perspective of Cholesterol Metabolism and Hypoxic Response. J Clin Med 2024; 13:2608. [PMID: 38731137 PMCID: PMC11084323 DOI: 10.3390/jcm13092608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Drusen are one of the most characteristic pathologies of precursor lesion of age-related macular degeneration (AMD). Drusen comprise a yellowish white substance that accumulates typically under the retinal pigment epithelium (RPE), and their constituents are lipids, complement, amyloid, crystallin, and others. In the past, many researchers have focused on drusen and tried to elucidate the pathophysiology of AMD because they believed that disease progression from early AMD to advanced AMD might be based on drusen or drusen might cause AMD. In fact, it is well established that drusen are the hallmark of precursor lesion of AMD and a major risk factor for AMD progression mainly based on their size and number. However, the existence of advanced AMD without drusen has long been recognized. For example, polypoidal choroidal vasculopathy (PCV), which comprises the majority of AMD cases in Asians, often lacks drusen. Thus, there is the possibility that drusen might be no more than a biomarker of AMD and not a cause of AMD. Now is the time to reconsider the relationship between AMD and drusen. In this review, we focus on early AMD pathogenesis based on basic research from the perspective of cholesterol metabolism and hypoxic response in the retina, and we discuss the role of drusen.
Collapse
Affiliation(s)
- Norimitsu Ban
- Laboratory of Aging and Retinal Biology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
| | - Ari Shinojima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan; (A.S.); (K.N.)
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
10
|
Hansman D, Ma Y, Thomas D, Smith J, Casson R, Peet D. Metabolic reprogramming of the retinal pigment epithelium by cytokines associated with age-related macular degeneration. Biosci Rep 2024; 44:BSR20231904. [PMID: 38567515 PMCID: PMC11043024 DOI: 10.1042/bsr20231904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024] Open
Abstract
The complex metabolic relationship between the retinal pigment epithelium (RPE) and photoreceptors is essential for maintaining retinal health. Recent evidence indicates the RPE acts as an adjacent lactate sink, suppressing glycolysis in the epithelium in order to maximize glycolysis in the photoreceptors. Dysregulated metabolism within the RPE has been implicated in the pathogenesis of age-related macular degeneration (AMD), a leading cause of vision loss. In the present study, we investigate the effects of four cytokines associated with AMD, TNFα, TGF-β2, IL-6, and IL-1β, as well as a cocktail containing all four cytokines, on RPE metabolism using ARPE-19 cells, primary human RPE cells, and ex vivo rat eyecups. Strikingly, we found cytokine-specific changes in numerous metabolic markers including lactate production, glucose consumption, extracellular acidification rate, and oxygen consumption rate accompanied by increases in total mitochondrial volume and ATP production. Together, all four cytokines could potently override the constitutive suppression of glycolysis in the RPE, through a mechanism independent of PI3K/AKT, MEK/ERK, or NF-κB. Finally, we observed changes in glycolytic gene expression with cytokine treatment, including in lactate dehydrogenase subunit and glucose transporter expression. Our findings provide new insights into the metabolic changes in the RPE under inflammatory conditions and highlight potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- David S. Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Yuefang Ma
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Daniel Thomas
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Robert J. Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J. Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
11
|
Yoon BW, Lee Y, Seo JH. Potential Causal Association between C-Reactive Protein Levels in Age-Related Macular Degeneration: A Two-Sample Mendelian Randomization Study. Biomedicines 2024; 12:807. [PMID: 38672162 PMCID: PMC11047998 DOI: 10.3390/biomedicines12040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Researchers have proposed a possible correlation between age-related macular degeneration (AMD) and inflammation or C-reactive protein (CRP) levels. We investigated the potential causal relationship between CRP levels and AMD. Single-nucleotide polymorphisms (SNPs) associated with CRP exposure were selected as the instrumental variables (IVs) with significance (p < 5 × 10-8) from the genome-wide association study (GWAS) meta-analysis data of Biobank Japan and the UK Biobank. GWAS data for AMD were obtained from 11 International AMD Genomics Consortium studies. An evaluation of causal estimates, utilizing the inverse-variance-weighted (IVW), weighted-median, MR-Egger, MR-Pleiotropy-Residual-Sum, and Outlier tests, was conducted in a two-sample Mendelian randomization (MR) study. We observed significant causal associations between CRP levels and AMD (odds ratio [OR] = 1.13, 95% CI = [1.02-1.24], and p = 0.014 in IVW; OR = 1.18, 95% CI = [1.00-1.38], and p = 0.044 in weight median; OR = 1.31, 95% CI = [1.13-1.52], and p < 0.001 in MR-Egger). The causal relationship between CRP and AMD warrants further research to address the significance of inflammation as a risk factor for AMD.
Collapse
Affiliation(s)
- Byung Woo Yoon
- Department of Internal Medicine, Chung-Ang University Gwangmyung Hospital, Gwangmyung 14353, Republic of Korea;
- College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young Lee
- Department of Applied Statistics, Chung-Ang University, Seoul 06974, Republic of Korea;
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea
| |
Collapse
|
12
|
Giralt L, Figueras-Roca M, Eguileor BDL, Romero B, Zarranz-Ventura J, Alforja S, Santiago F, Bolaños J, Lozano F, Dotti-Boada M, Sala-Puigdollers A, Dura P, Izquierdo-Serra J, Valero O, Adan A, Fonollosa A, Molins B. C-reactive protein-complement factor H axis as a biomarker of activity in early and intermediate age-related macular degeneration. Front Immunol 2024; 15:1330913. [PMID: 38633250 PMCID: PMC11021604 DOI: 10.3389/fimmu.2024.1330913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose To determine and compare the serum levels of complement Factor H (FH), monomeric C-Reactive Protein (mCRP) and pentameric C-Reactive protein (pCRP) in patients with age-related macular degeneration (AMD) and to correlate them with clinical, structural and functional parameters. Methods Cross-sectional observational study. One hundred thirty-nine individuals (88 patients and 51 healthy controls) from two referral centers were included and classified into three groups: early or intermediate AMD (n=33), advanced AMD (n=55), and age and sex matched healthy controls (n=51). Serum levels of FH, mCRP, and pCRP were determined and correlated with clinical and imaging parameters. Results Patients with intermediate AMD presented FH levels significantly lower than controls [186.5 (72.1-931.8) µg/mL vs 415.2 (106.1-1962.2) µg/mL; p=0.039] and FH levels <200 µg/mL were associated with the presence of drusen and pigmentary changes in the fundoscopy (p=0.002). While no differences were observed in pCRP and mCRP levels, and mCRP was only detected in less than 15% of the included participants, women had a significantly higher detection rate of mCRP than men (21.0% vs. 3.8%, p=0.045). In addition, the ratio mCRP/FH (log) was significantly lower in the control group compared to intermediate AMD (p=0.031). Visual acuity (p<0.001), macular volume (p<0.001), and foveal thickness (p=0.034) were significantly lower in the advanced AMD group, and choroidal thickness was significantly lower in advanced AMD compared to early/intermediate AMD (p=0.023). Conclusion Intermediate AMD was associated in our cohort with decreased serum FH levels together with increased serum mCRP/FH ratio. All these objective serum biomarkers may suggest an underlying systemic inflammatory process in early/intermediate AMD patients.
Collapse
Affiliation(s)
- Lena Giralt
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Department of Ophthalmology, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
| | - Marc Figueras-Roca
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Beatriz De Luis Eguileor
- Department of Ophthalmology, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
| | - Barbara Romero
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
| | - Javier Zarranz-Ventura
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Socorro Alforja
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Francisca Santiago
- Servei d’Immunologia, Centre de Diagnostic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain
| | - Jennifer Bolaños
- Servei d’Immunologia, Centre de Diagnostic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain
| | - Francisco Lozano
- Servei d’Immunologia, Centre de Diagnostic Biomèdic, Hospital Clínic Barcelona, Barcelona, Spain
- Group of Immunoreceptors of the Innate and Adaptive Systems, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Marina Dotti-Boada
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
| | - Anna Sala-Puigdollers
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Paula Dura
- Department of Ophthalmology, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
| | | | - Oliver Valero
- Servei d’Estadística, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alfredo Adan
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic, Barcelona, Spain
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Alex Fonollosa
- Department of Ophthalmology, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, University of the Basque Country, Barakaldo, Spain
- Department of Retina, Instituto Oftalmológico Bilbao, Bilbao, Spain
| | - Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
13
|
Gopinath T, Shin K, Tian Y, Im W, Struppe J, Perrone B, Hassan A, Marassi FM. Solid-state NMR MAS CryoProbe enables structural studies of human blood protein vitronectin bound to hydroxyapatite. J Struct Biol 2024; 216:108061. [PMID: 38185342 PMCID: PMC10939839 DOI: 10.1016/j.jsb.2024.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The low sensitivity of nuclear magnetic resonance (NMR) is a major bottleneck for studying biomolecular structures of complex biomolecular assemblies. Cryogenically cooled probe technology overcomes the sensitivity limitations enabling NMR applications to challenging biomolecular systems. Here we describe solid-state NMR studies of the human blood protein vitronectin (Vn) bound to hydroxyapatite (HAP), the mineralized form of calcium phosphate, using a CryoProbe designed for magic angle spinning (MAS) experiments. Vn is a major blood protein that regulates many different physiological and pathological processes. The high sensitivity of the CryoProbe enabled us to acquire three-dimensional solid-state NMR spectra for sequential assignment and characterization of site-specific water-protein interactions that provide initial insights into the organization of the Vn-HAP complex. Vn associates with HAP in various pathological settings, including macular degeneration eyes and Alzheimer's disease brains. The ability to probe these assemblies at atomic detail paves the way for understanding their formation.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kyungsoo Shin
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ye Tian
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, PA 18015, USA
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA 01821, USA
| | | | - Alia Hassan
- Bruker Switzerland AG, Fallanden, Switzerland
| | - Francesca M Marassi
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
14
|
Greferath U, Fletcher E, Savige J, Mack HG. Drusen and Other Retinal Findings in People With IgA Glomerulonephritis. Am J Ophthalmol 2024; 257:247-253. [PMID: 37757996 DOI: 10.1016/j.ajo.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE Retinal drusen have been described in people with IgA nephropathy. We examined the frequency of drusen in IgA nephropathy and compared their location and composition with those for drusen in age-related macular degeneration. DESIGN Immunohistological case series of eyes of patients with IgA nephropathy, and a comparison eye with age-related macular degeneration. METHODS Donor eyes from 4 individuals (3 male, 1 female, aged 40-80 years) with biopsy-proven IgA nephropathy and kidney failure were examined for the presence of drusen, and location and composition using antibodies for vitronectin, IgA, IgM, IgG, C3, and C1q. Results were compared with those for drusen in macular degeneration without IgA nephropathy. RESULTS All 4 donors had sparse, subretinal pigment epithelium drusen of 55-65 mm diameter that stained for vitronectin but not for IgA or complement. All donors had retinal capillaries and choriocapillaris staining for IgA. The youngest donor (female, 40) had rare deposits in the outer nuclear layer that stained for IgA, but not for vitronectin. The oldest donor (male, 82) had large cystlike spaces in the inner nuclear and plexiform layers, and smaller cysts in the outer nuclear layer, with no staining for IgA or complement. CONCLUSIONS Retinal drusen are uncommon in IgA nephropathy, even with kidney failure. Drusen in IgA nephropathy resemble drusen found in age-related macular degeneration. IgA-staining deposits in the outer nuclear layer were likely due to systemic deposition of IgA and complement activation. The nature of cystic spaces is unknown. Further analysis of the retinas of people with glomerulonephritis is recommended.
Collapse
Affiliation(s)
- Ursula Greferath
- University of Melbourne, Parkville, Victoria, Australia (U.G., E.F., J.S., H.G.M.)
| | - Erica Fletcher
- University of Melbourne, Parkville, Victoria, Australia (U.G., E.F., J.S., H.G.M.)
| | - Judy Savige
- University of Melbourne, Parkville, Victoria, Australia (U.G., E.F., J.S., H.G.M.)
| | - Heather G Mack
- University of Melbourne, Parkville, Victoria, Australia (U.G., E.F., J.S., H.G.M.).
| |
Collapse
|
15
|
Tolentino MJ, Tolentino AJ, Tolentino EM, Krishnan A, Genead MA. Sialic Acid Mimetic Microglial Sialic Acid-Binding Immunoglobulin-like Lectin Agonism: Potential to Restore Retinal Homeostasis and Regain Visual Function in Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2023; 16:1735. [PMID: 38139861 PMCID: PMC10747662 DOI: 10.3390/ph16121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Age-related macular degeneration (AMD), a leading cause of visual loss and dysfunction worldwide, is a disease initiated by genetic polymorphisms that impair the negative regulation of complement. Proteomic investigation points to altered glycosylation and loss of Siglec-mediated glyco-immune checkpoint parainflammatory and inflammatory homeostasis as the main determinant for the vision impairing complications of macular degeneration. The effect of altered glycosylation on microglial maintained retinal para-inflammatory homeostasis and eventual recruitment and polarization of peripheral blood monocyte-derived macrophages (PBMDMs) into the retina can explain the phenotypic variability seen in this clinically heterogenous disease. Restoring glyco-immune checkpoint control with a sialic acid mimetic agonist targeting microglial/macrophage Siglecs to regain retinal para-inflammatory and inflammatory homeostasis is a promising therapeutic that could halt the progression of and improve visual function in all stages of macular degeneration.
Collapse
Affiliation(s)
- Michael J. Tolentino
- Department of Ophthalmology, University of Central Florida College of Medicine, Orlando, FL 32827, USA
- Department of Ophthalmology, Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | - Andrew J. Tolentino
- Department of Biology, University of California Berkeley, Berkeley, CA 94720, USA;
| | | | - Anitha Krishnan
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | | |
Collapse
|
16
|
Sharma P, Shareef I, Kalaw FGP, Kako RN, Lin A, Alex V, Nudleman E, Walker EH, Borooah S. Prevalence of peripheral retinal findings in retinal patients using ultra-widefield pseudocolor fundus imaging. Sci Rep 2023; 13:20515. [PMID: 37993580 PMCID: PMC10665364 DOI: 10.1038/s41598-023-47761-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023] Open
Abstract
Ultra-widefield retinal imaging is increasingly used in ophthalmology and optometry practices to image patients identifying peripheral abnormalities. However, the clinical relevance of these peripheral retinal abnormalities is unclear. This cross-sectional study aims to firstly validate a new grading system, secondly, assess the prevalence of peripheral retinal abnormalities in retinal patients, and finally understand how peripheral findings may associate with retinal disease. Ultra-widefield pseudocolor fundus images were taken from the eyes of clinic patients. Demographic data and clinical diagnosis for each patient was noted. The grading system was validated using masked retinal specialists. Logistic regression identified associations between retinal disease and peripheral retinal findings. Using the grading system, inter-observer agreement was 76.1% with Cohen's Kappa coefficient 0.542 (p < 0.0001) and the test-retest agreement was 95.1% with Kappa 0.677(p < 0.0001). 971 images were included, with 625 eyes (64.4%) having peripheral abnormalities. Peripheral drusen was the most common abnormality (n = 221, 22.76%) and correlated with age-related macular degeneration (p < 0.001). Novel correlations were also identified between diabetic retinopathy and retinal pigmentation as well as pigmentary degeneration. This study provides a validated system for identifying peripheral abnormalities and adds to literature highlighting peripheral retinal associations with retinal disease which would benefit from further study.
Collapse
Affiliation(s)
- Paripoorna Sharma
- University of California San Diego, La Jolla, USA
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92093, USA
| | - Ihab Shareef
- University of California San Diego, La Jolla, USA
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92093, USA
| | - Fritz Gerald P Kalaw
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92093, USA
| | - Rasha Nabil Kako
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92093, USA
| | - Andrew Lin
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92093, USA
| | - Varsha Alex
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92093, USA
| | - Eric Nudleman
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92093, USA
| | | | - Shyamanga Borooah
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
17
|
Droho S, Voigt AP, Sterling JK, Rajesh A, Chan KS, Cuda CM, Perlman H, Lavine JA. NR4A1 deletion promotes pro-angiogenic polarization of macrophages derived from classical monocytes in a mouse model of neovascular age-related macular degeneration. J Neuroinflammation 2023; 20:238. [PMID: 37858232 PMCID: PMC10588116 DOI: 10.1186/s12974-023-02928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Neovascular age-related macular degeneration causes vision loss from destructive angiogenesis, termed choroidal neovascularization (CNV). Cx3cr1-/- mice display alterations in non-classical monocytes and microglia with increased CNV size, suggesting that non-classical monocytes may inhibit CNV formation. NR4A1 is a transcription factor that is necessary for maturation of non-classical monocytes from classical monocytes. While Nr4a1-/- mice are deficient in non-classical monocytes, results are confounded by macrophage hyper-activation. Nr4a1se2/se2 mice lack a transcriptional activator, resulting in non-classical monocyte loss without macrophage hyper-activation. MAIN BODY We subjected Nr4a1-/- and Nr4a1se2/se2 mice to the laser-induced CNV model and performed multi-parameter flow cytometry. We found that both models lack non-classical monocytes, but only Nr4a1-/- mice displayed increased CNV area. Additionally, CD11c+ macrophages were increased in Nr4a1-/- mice. Single-cell transcriptomic analysis uncovered that CD11c+ macrophages were enriched from Nr4a1-/- mice and expressed a pro-angiogenic transcriptomic profile that was disparate from prior reports of macrophage hyper-activation. CONCLUSIONS These results suggest that non-classical monocytes are dispensable during CNV, and NR4A1 deficiency results in increased recruitment of pro-angiogenic macrophages.
Collapse
Affiliation(s)
- Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Andrew P Voigt
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jacob K Sterling
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Amrita Rajesh
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kyle S Chan
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Carla M Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
18
|
Ferreira PA. Nucleocytoplasmic transport at the crossroads of proteostasis, neurodegeneration and neuroprotection. FEBS Lett 2023; 597:2567-2589. [PMID: 37597509 DOI: 10.1002/1873-3468.14722] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
Nucleocytoplasmic transport comprises the multistep assembly, transport, and disassembly of protein and RNA cargoes entering and exiting nuclear pores. Accruing evidence supports that impairments to nucleocytoplasmic transport are a hallmark of neurodegenerative diseases. These impairments cause dysregulations in nucleocytoplasmic partitioning and proteostasis of nuclear transport receptors and client substrates that promote intracellular deposits - another hallmark of neurodegeneration. Disturbances in liquid-liquid phase separation (LLPS) between dense and dilute phases of biomolecules implicated in nucleocytoplasmic transport promote micrometer-scale coacervates, leading to proteinaceous aggregates. This Review provides historical and emerging principles of LLPS at the interface of nucleocytoplasmic transport, proteostasis, aging and noxious insults, whose dysregulations promote intracellular aggregates. E3 SUMO-protein ligase Ranbp2 constitutes the cytoplasmic filaments of nuclear pores, where it acts as a molecular hub for rate-limiting steps of nucleocytoplasmic transport. A vignette is provided on the roles of Ranbp2 in nucleocytoplasmic transport and at the intersection of proteostasis in the survival of photoreceptor and motor neurons under homeostatic and pathophysiological environments. Current unmet clinical needs are highlighted, including therapeutics aiming to manipulate aggregation-dissolution models of purported neurotoxicity in neurodegeneration.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Department of Ophthalmology, Department of Pathology, Duke University Medical Center, NC, Durham, USA
| |
Collapse
|
19
|
Shome I, Thathapudi NC, Aramati BMR, Kowtharapu BS, Jangamreddy JR. Stages, pathogenesis, clinical management and advancements in therapies of age-related macular degeneration. Int Ophthalmol 2023; 43:3891-3909. [PMID: 37347455 DOI: 10.1007/s10792-023-02767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Age-related macular degeneration (AMD) is a retinal degenerative disorder prevalent in the elderly population, which leads to the loss of central vision. The disease progression can be managed, if not prevented, either by blocking neovascularization ("wet" form of AMD) or by preserving retinal pigment epithelium and photoreceptor cells ("dry" form of AMD). Although current therapeutic modalities are moderately successful in delaying the progression and management of the disease, advances over the past years in regenerative medicine using iPSC, embryonic stem cells, advanced materials (including nanomaterials) and organ bio-printing show great prospects in restoring vision and efficient management of either forms of AMD. This review focuses on the molecular mechanism of the disease, model systems (both cellular and animal) used in studying AMD, the list of various regenerative therapies and the current treatments available. The article also highlights on the recent clinical trials using regenerative therapies and management of the disease.
Collapse
Affiliation(s)
- Ishita Shome
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Neethi C Thathapudi
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Ophthalmology and Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada
| | - Bindu Madhav Reddy Aramati
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Bhavani S Kowtharapu
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jaganmohan R Jangamreddy
- UR Advanced Therapeutics Private Limited, ASPIRE-BioNest, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
20
|
Zhang Y, Huang J, Liang Y, Huang J, Fu Y, Chen N, Lu B, Zhao C. Clearance of lipid droplets by chimeric autophagy-tethering compound ameliorates the age-related macular degeneration phenotype in mice lacking APOE. Autophagy 2023; 19:2668-2681. [PMID: 37266932 PMCID: PMC10472852 DOI: 10.1080/15548627.2023.2220540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among the elderly, and there is currently no clinical treatment targeting the primary impairment of AMD. The earliest clinical hallmark of AMD is drusen, which are yellowish spots mainly composed of lipid droplets (LDs) accumulated under the retinal pigment epithelium (RPE). However, the potential pathogenic role of this excessive LD accumulation in AMD is yet to be determined, partially due to a lack of chemical tools to manipulate LDs specifically. Here, we employed our recently developed Lipid Droplets·AuTophagy Tethering Compounds (LD∙ATTECs) to degrade LDs and to evaluate its consequence on the AMD-like phenotypes in apoe-/- (apolipoprotein E; B6/JGpt-Apoeem1Cd82/Gpt) mouse model. apoe-/- mice fed with high-fat diet (apoe-/--HFD) exhibited excessive LD accumulation in the retina, particularly with AMD-like phenotypes including RPE degeneration, Bruch's membrane (BrM) thickening, drusen-like deposits, and photoreceptor dysfunction. LD·ATTEC treatment significantly cleared LDs in RPE/choroidal tissues without perturbing lipid synthesis-related proteins and rescued RPE degeneration and photoreceptor dysfunction in apoe-/--HFD mice. This observation implied a causal relationship between LD accumulation and AMD-relevant phenotypes. Mechanically, the apoe-/--HFD mice exhibited elevated oxidative stress and inflammatory signals, both of which were mitigated by the LD·ATTEC treatment. Collectively, this study demonstrated that LD accumulation was a trigger for the process of AMD and provided entry points for the treatment of the initial insult of AMD by degrading LDs.Abbreviations: AMD: age-related macular degeneration; APOE: apolipoprotein E; ATTECs: autophagy-tethering compounds; BODIPY: boron-dipyrromethene; BrM: Bruch's membrane; ERG: electroretinogram; HFD: high-fat diet; LD·ATTECs: Lipid Droplets·AuTophagy Tethering Compounds; LDs: lipid droplets; OA: oleic acid; OPL: outer plexiform layer; ROS: reactive oxygen species; RPE: retinal pigment epithelium.
Collapse
Affiliation(s)
- Yuelu Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Jiancheng Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yu Liang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Jiaqiu Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
- Department of Ophthalmology, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yuhua Fu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ningxie Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Gross C, Guérin LP, Socol BG, Germain L, Guérin SL. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int J Mol Sci 2023; 24:13182. [PMID: 37685987 PMCID: PMC10488069 DOI: 10.3390/ijms241713182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | | | - Bianca G. Socol
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
22
|
Anisetti B, Stewart MW, Eggenberger ER, Shourav MMI, Youssef H, Elkhair A, Ertekin-Taner N, Meschia JF, Lin MP. Age-related macular degeneration is associated with probable cerebral amyloid angiopathy: A case-control study. J Stroke Cerebrovasc Dis 2023; 32:107244. [PMID: 37422928 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a common retinal degenerative disorder among older individuals. Amyloid deposits, a hallmark of cerebral amyloid angiopathy (CAA), may be involved in the pathogenesis of AMD. Since amyloid deposits may contribute to the development of both AMD and CAA, we hypothesized that patients with AMD have a higher prevalence of CAA. OBJECTIVE To compare the prevalence of CAA in patients with or without AMD matched for age. METHODS We conducted a cross-sectional, 1:1 age-matched, case-control study of patients ≥40 years of age at the Mayo Clinic who had undergone both retinal optical coherence tomography and brain MRI from 2011 to 2015. Primary dependent variables were probable CAA, superficial siderosis, and lobar and deep cerebral microbleeds (CMBs). The relationship between AMD and CAA was assessed using multivariable logistic regression and was compared across AMD severity (none vs early vs late AMD). RESULTS Our analysis included 256 age-matched pairs (AMD 126, no AMD 130). Of those with AMD, 79 (30.9%) had early AMD and 47 (19.4%) had late AMD. The mean age was 75±9 years, and there was no significant difference in vascular risk factors between groups. Patients with AMD had a higher prevalence of CAA (16.7% vs 10.0%, p=0.116) and superficial siderosis (15.1% vs 6.2%, p=0.020), but not deep CMB (5.2% vs 6.2%, p=0.426), compared to those without AMD. After adjusting for covariates, having late AMD was associated with increased odds of CAA (OR 2.83, 95% CI 1.10-7.27, p=0.031) and superficial siderosis (OR 3.40, 95%CI 1.20-9.65, p=0.022), but not deep CMB (OR 0.7, 95%CI 0.14-3.51, p=0.669). CONCLUSIONS AMD was associated with CAA and superficial siderosis but not deep CMB, consistent with the hypothesis that amyloid deposits play a role in the development of AMD. Prospective studies are needed to determine if features of AMD may serve as biomarkers for the early diagnosis of CAA.
Collapse
Affiliation(s)
- Bhrugun Anisetti
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Michael W Stewart
- Department of Ophthalmology, Mayo Clinic, Jacksonville, FL, United States
| | - Eric R Eggenberger
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States; Department of Ophthalmology, Mayo Clinic, Jacksonville, FL, United States
| | - Md Manjurul I Shourav
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Hossam Youssef
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Ahamed Elkhair
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Nilufer Ertekin-Taner
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - James F Meschia
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States
| | - Michelle P Lin
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL 32224, United States.
| |
Collapse
|
23
|
Wąż P, Zorena K, Murawska A, Bielińska-Wąż D. Classification Maps: A New Mathematical Tool Supporting the Diagnosis of Age-Related Macular Degeneration. J Pers Med 2023; 13:1074. [PMID: 37511686 PMCID: PMC10381320 DOI: 10.3390/jpm13071074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE A new diagnostic graphical tool-classification maps-supporting the detection of Age-Related Macular Degeneration (AMD) has been constructed. METHODS The classification maps are constructed using the ordinal regression model. In the ordinal regression model, the ordinal variable (the dependent variable) is the degree of the advancement of AMD. The other variables, such as CRT (Central Retinal Thickness), GCC (Ganglion Cell Complex), MPOD (Macular Pigment Optical Density), ETDRS (Early Treatment Diabetic Retinopathy Study), Snellen and Age have also been used in the analysis and are represented on the axes of the maps. RESULTS Here, 132 eyes were examined and classified to the AMD advancement level according to the four-point Age-Related Eye Disease Scale (AREDS): AREDS 1, AREDS 2, AREDS 3 and AREDS 4. These data were used for the creation of two-dimensional classification maps for each of the four stages of AMD. CONCLUSIONS The maps allow us to perform the classification of the patient's eyes to particular stages of AMD. The pairs of the variables represented on the axes of the maps can be treated as diagnostic identifiers necessary for the classification to particular stages of AMD.
Collapse
Affiliation(s)
- Piotr Wąż
- Department of Nuclear Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Anna Murawska
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Dorota Bielińska-Wąż
- Department of Radiological Informatics and Statistics, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
24
|
Wang H, Ramshekar A, Cung T, Wallace-Carrete C, Zaugg C, Nguyen J, Stoddard GJ, Hartnett ME. 7-Ketocholesterol Promotes Retinal Pigment Epithelium Senescence and Fibrosis of Choroidal Neovascularization via IQGAP1 Phosphorylation-Dependent Signaling. Int J Mol Sci 2023; 24:10276. [PMID: 37373423 PMCID: PMC10299509 DOI: 10.3390/ijms241210276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Accumulation of 7-ketocholesterol (7KC) occurs in age-related macular degeneration (AMD) and was found previously to promote fibrosis, an untreatable cause of vision loss, partly through induction of endothelial-mesenchymal transition. To address the hypothesis that 7KC causes mesenchymal transition of retinal pigment epithelial cells (RPE), we exposed human primary RPE (hRPE) to 7KC or a control. 7KC-treated hRPE did not manifest increased mesenchymal markers, but instead maintained RPE-specific proteins and exhibited signs of senescence with increased serine phosphorylation of histone H3, serine/threonine phosphorylation of mammalian target of rapamycin (p-mTOR), p16 and p21, β-galactosidase labeling, and reduced LaminB1, suggesting senescence. The cells also developed senescence-associated secretory phenotype (SASP) determined by increased IL-1β, IL-6, and VEGF through mTOR-mediated NF-κB signaling, and reduced barrier integrity that was restored by the mTOR inhibitor, rapamycin. 7KC-induced p21, VEGF, and IL-1β were inhibited by an inhibitor of protein kinase C. The kinase regulates IQGAP1 serine phosphorylation. Furthermore, after 7KC injection and laser-induced injury, mice with an IQGAP1 serine 1441-point mutation had significantly reduced fibrosis compared to littermate control mice. Our results provide evidence that age-related accumulation of 7KC in drusen mediates senescence and SASP in RPE, and IQGAP1 serine phosphorylation is important in causing fibrosis in AMD.
Collapse
Affiliation(s)
- Haibo Wang
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
- Department of Pathology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Aniket Ramshekar
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Thaonhi Cung
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Chris Wallace-Carrete
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Chandler Zaugg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Jasmine Nguyen
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Gregory J. Stoddard
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA;
| | - M. Elizabeth Hartnett
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
- Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
25
|
Busch C, Rau S, Sekulic A, Perie L, Huber C, Gehrke M, Joussen AM, Zipfel PF, Wildner G, Skerka C, Strauß O. Increased plasma level of terminal complement complex in AMD patients: potential functional consequences for RPE cells. Front Immunol 2023; 14:1200725. [PMID: 37359546 PMCID: PMC10287163 DOI: 10.3389/fimmu.2023.1200725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Purpose Polymorphisms in complement genes are risk-associated for age-related macular degeneration (AMD). Functional analysis revealed a common deficiency to control the alternative complement pathway by risk-associated gene polymorphisms. Thus, we investigated the levels of terminal complement complex (TCC) in the plasma of wet AMD patients with defined genotypes and the impact of the complement activation of their plasma on second-messenger signaling, gene expression, and cytokine/chemokine secretion in retinal pigment epithelium (RPE) cells. Design Collection of plasma from patients with wet AMD (n = 87: 62% female and 38% male; median age 77 years) and controls (n = 86: 39% female and 61% male; median age 58 years), grouped for risk factor smoking and genetic risk alleles CFH 402HH and ARMS2 rs3750846, determination of TCC levels in the plasma, in vitro analysis on RPE function during exposure to patients' or control plasma as a complement source. Methods Genotyping, measurement of TCC concentrations, ARPE-19 cell culture, Ca2+ imaging, gene expression by qPCR, secretion by multiplex bead analysis of cell culture supernatants. Main outcome measures TCC concentration in plasma, intracellular free Ca2+, relative mRNA levels, cytokine secretion. Results TCC levels in the plasma of AMD patients were five times higher than in non-AMD controls but did not differ in plasma from carriers of the two risk alleles. Complement-evoked Ca2+ elevations in RPE cells differed between patients and controls with a significant correlation between TCC levels and peak amplitudes. Comparing the Ca2+ signals, only between the plasma of smokers and non-smokers, as well as heterozygous (CFH 402YH) and CFH 402HH patients, revealed differences in the late phase. Pre-stimulation with complement patients' plasma led to sensitization for complement reactions by RPE cells. Gene expression for surface molecules protective against TCC and pro-inflammatory cytokines increased after exposure to patients' plasma. Patients' plasma stimulated the secretion of pro-inflammatory cytokines in the RPE. Conclusion TCC levels were higher in AMD patients but did not depend on genetic risk factors. The Ca2+ responses to patients' plasma as second-messenger represent a shift of RPE cells to a pro-inflammatory phenotype and protection against TCC. We conclude a substantial role of high TCC plasma levels in AMD pathology.
Collapse
Affiliation(s)
- Catharina Busch
- Department of Ophthalmology, University Hospital Leipzig, Leipzig, Germany
| | - Saskia Rau
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Andjela Sekulic
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Luce Perie
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Christian Huber
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Miranda Gehrke
- Section of Immunobiology, Department of Ophthalmology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Antonia M. Joussen
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | - Gerhild Wildner
- Section of Immunobiology, Department of Ophthalmology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität, Berlin Institute of Health, Humboldt-University, Berlin, Germany
| |
Collapse
|
26
|
Piri N, Kaplan HJ. Role of Complement in the Onset of Age-Related Macular Degeneration. Biomolecules 2023; 13:biom13050832. [PMID: 37238702 DOI: 10.3390/biom13050832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive degenerative disease of the central retina and the leading cause of severe loss of central vision in people over age 50. Patients gradually lose central visual acuity, compromising their ability to read, write, drive, and recognize faces, all of which greatly impact daily life activities. Quality of life is significantly affected in these patients, and there are worse levels of depression as a result. AMD is a complex, multifactorial disease in which age and genetics, as well as environmental factors, all play a role in its development and progression. The mechanism by which these risk factors interact and converge towards AMD are not fully understood, and therefore, drug discovery is challenging, with no successful therapeutic attempt to prevent the development of this disease. In this review, we describe the pathophysiology of AMD and review the role of complement, which is a major risk factor in the development of AMD.
Collapse
Affiliation(s)
- Niloofar Piri
- Department of Ophthalmology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Henry J Kaplan
- Departments of Ophthalmology and Biochemistry & Molecular Biology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| |
Collapse
|
27
|
Kovács-Valasek A, Rák T, Pöstyéni E, Csutak A, Gábriel R. Three Major Causes of Metabolic Retinal Degenerations and Three Ways to Avoid Them. Int J Mol Sci 2023; 24:ijms24108728. [PMID: 37240082 DOI: 10.3390/ijms24108728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
An imbalance of homeostasis in the retina leads to neuron loss and this eventually results in a deterioration of vision. If the stress threshold is exceeded, different protective/survival mechanisms are activated. Numerous key molecular actors contribute to prevalent metabolically induced retinal diseases-the three major challenges are age-related alterations, diabetic retinopathy and glaucoma. These diseases have complex dysregulation of glucose-, lipid-, amino acid or purine metabolism. In this review, we summarize current knowledge on possible ways of preventing or circumventing retinal degeneration by available methods. We intend to provide a unified background, common prevention and treatment rationale for these disorders and identify the mechanisms through which these actions protect the retina. We suggest a role for herbal medicines, internal neuroprotective substances and synthetic drugs targeting four processes: parainflammation and/or glial cell activation, ischemia and related reactive oxygen species and vascular endothelial growth factor accumulation, apoptosis and/or autophagy of nerve cells and an elevation of ocular perfusion pressure and/or intraocular pressure. We conclude that in order to achieve substantial preventive or therapeutic effects, at least two of the mentioned pathways should be targeted synergistically. A repositioning of some drugs is considered to use them for the cure of the other related conditions.
Collapse
Affiliation(s)
- Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Tibor Rák
- Department of Ophthalmology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Robert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
28
|
Edmonds R, Steffen V, Honigberg LA, Chang MC. The Role of the Complement Pathway in Clinical Progression of Geographic Atrophy: Analysis of the Phase 3 Chroma and Spectri Trials. OPHTHALMOLOGY SCIENCE 2023. [DOI: 10.1016/j.xops.2023.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
29
|
Hu X, Zhang B, Li X, Li M, Wang Y, Dan H, Zhou J, Wei Y, Ge K, Li P, Song Z. The application and progression of CRISPR/Cas9 technology in ophthalmological diseases. Eye (Lond) 2023; 37:607-617. [PMID: 35915232 PMCID: PMC9998618 DOI: 10.1038/s41433-022-02169-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/07/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) system is an adaptive immune defence system that has gradually evolved in bacteria and archaea to combat invading viruses and exogenous DNA. Advances in technology have enabled researchers to enhance their understanding of the immune process in vivo and its potential for use in genome editing. Thus far, applications of CRISPR/Cas9 genome editing technology in ophthalmology have included gene therapy for corneal dystrophy, glaucoma, congenital cataract, Leber's congenital amaurosis, retinitis pigmentosa, Usher syndrome, fundus neovascular disease, proliferative vitreoretinopathy, retinoblastoma and other eye diseases. Additionally, the combination of CRISPR/Cas9 genome editing technology with adeno-associated virus vector and inducible pluripotent stem cells provides further therapeutic avenues for the treatment of eye diseases. Nonetheless, many challenges remain in the development of clinically feasible retinal genome editing therapy. This review discusses the development, as well as mechanism of CRISPR/Cas9 and its applications and challenges in gene therapy for eye diseases.
Collapse
Affiliation(s)
- Xumeng Hu
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Beibei Zhang
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Xiaoli Li
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Miao Li
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yange Wang
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Handong Dan
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jiamu Zhou
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yuanmeng Wei
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Keke Ge
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Pan Li
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zongming Song
- Henan Eye Hospital, Henan Eye Institution, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
30
|
García-Montalvo IA, Matías-Pérez D, Hernández-Bautista E, Pérez-Campos E. Inclusion of carotenoids in dietary habits as an alternative to prevent age-related macular degeneration. Front Nutr 2023; 9:1063517. [PMID: 36698471 PMCID: PMC9868752 DOI: 10.3389/fnut.2022.1063517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Affiliation(s)
- Iván Antonio García-Montalvo
- Division of Graduate Studies and Research, National Institute of Technology of Mexico/Technological Institute of Oaxaca, Oaxaca, Mexico
| | - Diana Matías-Pérez
- Division of Graduate Studies and Research, National Institute of Technology of Mexico/Technological Institute of Oaxaca, Oaxaca, Mexico
| | - Emilio Hernández-Bautista
- Division of Graduate Studies and Research, National Institute of Technology of Mexico/Technological Institute of Oaxaca, Oaxaca, Mexico
| | - Eduardo Pérez-Campos
- Division of Graduate Studies and Research, National Institute of Technology of Mexico/Technological Institute of Oaxaca, Oaxaca, Mexico
| |
Collapse
|
31
|
Ascunce K, Dhodapkar RM, Huang D, Hafler BP. Innate immune biology in age-related macular degeneration. Front Cell Dev Biol 2023; 11:1118524. [PMID: 36926522 PMCID: PMC10011475 DOI: 10.3389/fcell.2023.1118524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Age-related macular degeneration (AMD) is a neurodegenerative disease and a leading cause of irreversible vision loss in the developed world. While not classically described as an inflammatory disease, a growing body of evidence has implicated several components of the innate immune system in the pathophysiology of age-related macular degeneration. In particular, complement activation, microglial involvement, and blood-retinal-barrier disruption have been shown to play key roles in disease progression, and subsequent vision loss. This review discusses the role of the innate immune system in age-related macular degeneration as well as recent developments in single-cell transcriptomics that help advance the understanding and treatment of age-related macular degeneration. We also explore the several potential therapeutic targets for age-related macular degeneration in the context of innate immune activation.
Collapse
Affiliation(s)
- Karina Ascunce
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Rahul M Dhodapkar
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, California
| | - Deven Huang
- Choate Rosemary Hall, Wallingford, CT, United States
| | - Brian P Hafler
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, United States.,Department of Pathology, Yale University, New Haven, CT, United States
| |
Collapse
|
32
|
Biasella F, Plössl K, Baird PN, Weber BHF. The extracellular microenvironment in immune dysregulation and inflammation in retinal disorders. Front Immunol 2023; 14:1147037. [PMID: 36936905 PMCID: PMC10014728 DOI: 10.3389/fimmu.2023.1147037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) as well as genetically complex retinal phenotypes represent a heterogenous group of ocular diseases, both on account of their phenotypic and genotypic characteristics. Therefore, overlaps in clinical features often complicate or even impede their correct clinical diagnosis. Deciphering the molecular basis of retinal diseases has not only aided in their disease classification but also helped in our understanding of how different molecular pathologies may share common pathomechanisms. In particular, these relate to dysregulation of two key processes that contribute to cellular integrity, namely extracellular matrix (ECM) homeostasis and inflammation. Pathological changes in the ECM of Bruch's membrane have been described in both monogenic IRDs, such as Sorsby fundus dystrophy (SFD) and Doyne honeycomb retinal dystrophy (DHRD), as well as in the genetically complex age-related macular degeneration (AMD) or diabetic retinopathy (DR). Additionally, complement system dysfunction and distorted immune regulation may also represent a common connection between some IRDs and complex retinal degenerations. Through highlighting such overlaps in molecular pathology, this review aims to illuminate how inflammatory processes and ECM homeostasis are linked in the healthy retina and how their interplay may be disturbed in aging as well as in disease.
Collapse
Affiliation(s)
- Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Paul N. Baird
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Surgery, Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| |
Collapse
|
33
|
Armento A, Merle DA, Ueffing M. The Noncanonical Role of Complement Factor H in Retinal Pigment Epithelium (RPE) Cells and Implications for Age-Related Macular Degeneration (AMD). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:9-13. [PMID: 37440007 DOI: 10.1007/978-3-031-27681-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Age-related macular degeneration (AMD) is a complex degenerative disease of the retina. Dysfunction of the retinal pigment epithelium (RPE) occurs in early stages of AMD, and progressive RPE atrophy leads to photoreceptor death and visual impairments that ultimately manifest as geographic atrophy (GA), one of the late-stage forms of AMD. AMD is caused by a combination of risk factors including aging, lifestyle choices, and genetic predisposition. A gene variant in the complement factor H gene (CFH) that leads to the Y402H polymorphism in the factor H protein (FH) confers the second highest risk for the development and progression of AMD. FH is a major negative regulator of the alternative pathway of the complement system, and the FH Y402H variant leads to increased complement activation, which is detectable in AMD patients. For this reason, various therapeutic approaches targeting the complement system have been developed, however, so far with very limited or no efficacy. Interestingly, recent studies suggest roles for FH beyond complement regulation. Here, we will discuss the noncanonical functions of FH in RPE cells and highlight the potential implications of those functions for future therapeutic approaches.
Collapse
Affiliation(s)
- Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| | - David Adrian Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
de Jong S, Tang J, Clark SJ. Age-related macular degeneration: A disease of extracellular complement amplification. Immunol Rev 2023; 313:279-297. [PMID: 36223117 DOI: 10.1111/imr.13145] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Age-related macular degeneration (AMD) is a major cause of vision impairment in the Western World, and with the aging world population, its incidence is increasing. As of today, for the majority of patients, no treatment exists. Multiple genetic and biochemical studies have shown a strong association with components in the complement system and AMD, and evidence suggests a major role of remodeling of the extracellular matrix underlying the outer blood/retinal barrier. As part of the innate immune system, the complement cascade acts as a first-line defense against pathogens, and upon activation, its amplification loop ensures a strong, rapid, and sustained response. Excessive activation, however, can lead to host tissue damage and cause complement-associated diseases like AMD. AMD patients present with aberrant activation of the alternative pathway, especially in ocular tissues but also on a systemic level. Here, we review the latest findings of complement activation in AMD, and we will discuss in vivo observations made in human tissue, cellular models, the potential synergy of different AMD-associated pathways, and conclude on current clinical trials and the future outlook.
Collapse
Affiliation(s)
- Sarah de Jong
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jiaqi Tang
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Simon J Clark
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
35
|
Lundstrom K, Hromić-Jahjefendić A, Bilajac E, Aljabali AAA, Baralić K, Sabri NA, Shehata EM, Raslan M, Ferreira ACBH, Orlandi L, Serrano-Aroca Á, Tambuwala MM, Uversky VN, Azevedo V, Alzahrani KJ, Alsharif KF, Halawani IF, Alzahrani FM, Redwan EM, Barh D. COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 associated comorbidity. Cell Signal 2023; 101:110495. [PMID: 36252792 PMCID: PMC9568271 DOI: 10.1016/j.cellsig.2022.110495] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has been the focus of research the past two years. The major breakthrough was made by discovering pathways related to SARS-CoV-2 infection through cellular interaction by angiotensin-converting enzyme (ACE2) and cytokine storm. The presence of ACE2 in lungs, intestines, cardiovascular tissues, brain, kidneys, liver, and eyes shows that SARS-CoV-2 may have targeted these organs to further activate intracellular signalling pathways that lead to cytokine release syndrome. It has also been reported that SARS-CoV-2 can hijack coatomer protein-I (COPI) for S protein retrograde trafficking to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), which, in turn, acts as the assembly site for viral progeny. In infected cells, the newly synthesized S protein in endoplasmic reticulum (ER) is transported first to the Golgi body, and then from the Golgi body to the ERGIC compartment resulting in the formation of specific a motif at the C-terminal end. This review summarizes major events of SARS-CoV-2 infection route, immune response following host-cell infection as an important factor for disease outcome, as well as comorbidity issues of various tissues and organs arising due to COVID-19. Investigations on alterations of host-cell machinery and viral interactions with multiple intracellular signaling pathways could represent a major factor in more effective disease management.
Collapse
Affiliation(s)
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Esma Bilajac
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan.
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Nagwa A Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11865, Egypt.
| | - Eslam M Shehata
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Mohamed Raslan
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt.
| | - Ana Cláudia B H Ferreira
- Campinas State University, Campinas, São Paulo, Brazil; University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Lidiane Orlandi
- University Center of Lavras (UNILAVRAS), Lavras, Minas Gerais, Brazil.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain.
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Khalaf F Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, India.
| |
Collapse
|
36
|
Gibson BG, Cox TE, Marchbank KJ. Contribution of animal models to the mechanistic understanding of Alternative Pathway and Amplification Loop (AP/AL)-driven Complement-mediated Diseases. Immunol Rev 2023; 313:194-216. [PMID: 36203396 PMCID: PMC10092198 DOI: 10.1111/imr.13141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review aimed to capture the key findings that animal models have provided around the role of the alternative pathway and amplification loop (AP/AL) in disease. Animal models, particularly mouse models, have been incredibly useful to define the role of complement and the alternative pathway in health and disease; for instance, the use of cobra venom factor and depletion of C3 provided the initial insight that complement was essential to generate an appropriate adaptive immune response. The development of knockout mice have further underlined the importance of the AP/AL in disease, with the FH knockout mouse paving the way for the first anti-complement drugs. The impact from the development of FB, properdin, and C3 knockout mice closely follows this in terms of mechanistic understanding in disease. Indeed, our current understanding that complement plays a role in most conditions at one level or another is rooted in many of these in vivo studies. That C3, in particular, has roles beyond the obvious in innate and adaptive immunity, normal physiology, and cellular functions, with or without other recognized AP components, we would argue, only extends the reach of this arm of the complement system. Humanized mouse models also continue to play their part. Here, we argue that the animal models developed over the last few decades have truly helped define the role of the AP/AL in disease.
Collapse
Affiliation(s)
- Beth G. Gibson
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Thomas E. Cox
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| | - Kevin J. Marchbank
- Complement Therapeutics Research Group and Newcastle University Translational and Clinical Research InstituteFaculty of Medical ScienceNewcastle‐upon‐TyneUK
- National Renal Complement Therapeutics CentreaHUS ServiceNewcastle upon TyneUK
| |
Collapse
|
37
|
Murenu E, Gerhardt MJ, Biel M, Michalakis S. More than meets the eye: The role of microglia in healthy and diseased retina. Front Immunol 2022; 13:1006897. [PMID: 36524119 PMCID: PMC9745050 DOI: 10.3389/fimmu.2022.1006897] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia are the main resident immune cells of the nervous system and as such they are involved in multiple roles ranging from tissue homeostasis to response to insults and circuit refinement. While most knowledge about microglia comes from brain studies, some mechanisms have been confirmed for microglia cells in the retina, the light-sensing compartment of the eye responsible for initial processing of visual information. However, several key pieces of this puzzle are still unaccounted for, as the characterization of retinal microglia has long been hindered by the reduced population size within the retina as well as the previous lack of technologies enabling single-cell analyses. Accumulating evidence indicates that the same cell type may harbor a high degree of transcriptional, morphological and functional differences depending on its location within the central nervous system. Thus, studying the roles and signatures adopted specifically by microglia in the retina has become increasingly important. Here, we review the current understanding of retinal microglia cells in physiology and in disease, with particular emphasis on newly discovered mechanisms and future research directions.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| | | | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| |
Collapse
|
38
|
Yednock T, Fong DS, Lad EM. C1q and the classical complement cascade in geographic atrophy secondary to age-related macular degeneration. Int J Retina Vitreous 2022; 8:79. [PMID: 36348407 PMCID: PMC9641935 DOI: 10.1186/s40942-022-00431-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Geographic atrophy (GA) secondary to age-related macular degeneration (AMD) is a retinal neurodegenerative disorder. Human genetic data support the complement system as a key component of pathogenesis in AMD, which has been further supported by pre-clinical and recent clinical studies. However, the involvement of the different complement pathways (classical, lectin, alternative), and thus the optimal complement inhibition target, has yet to be fully defined. There is evidence that C1q, the initiating molecule of the classical pathway, is a key driver of complement activity in AMD. C1q is expressed locally by infiltrating phagocytic cells and C1q-activating ligands are present at disease onset and continue to accumulate with disease progression. The accumulation of C1q on photoreceptor synapses with age and disease is consistent with its role in synapse elimination and neurodegeneration that has been observed in other neurodegenerative disorders. Furthermore, genetic deletion of C1q, local pharmacologic inhibition within the eye, or genetic deletion of downstream C4 prevents photoreceptor cell damage in mouse models. Hence, targeting the classical pathway in GA could provide a more specific therapeutic approach with potential for favorable efficacy and safety.
Collapse
Affiliation(s)
- Ted Yednock
- Annexon Biosciences, 1400 Sierra Point Parkway Building C, 2nd Floor, Brisbane, CA, 94005, USA
| | - Donald S Fong
- Annexon Biosciences, 1400 Sierra Point Parkway Building C, 2nd Floor, Brisbane, CA, 94005, USA.
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, 2351 Erwin Rd, Durham, NC, 27705, USA
| |
Collapse
|
39
|
Wong JHC, Ma JYW, Jobling AI, Brandli A, Greferath U, Fletcher EL, Vessey KA. Exploring the pathogenesis of age-related macular degeneration: A review of the interplay between retinal pigment epithelium dysfunction and the innate immune system. Front Neurosci 2022; 16:1009599. [PMID: 36408381 PMCID: PMC9670140 DOI: 10.3389/fnins.2022.1009599] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the older population. Classical hallmarks of early and intermediate AMD are accumulation of drusen, a waste deposit formed under the retina, and pigmentary abnormalities in the retinal pigment epithelium (RPE). When the disease progresses into late AMD, vision is affected due to death of the RPE and the light-sensitive photoreceptors. The RPE is essential to the health of the retina as it forms the outer blood retinal barrier, which establishes ocular immune regulation, and provides support for the photoreceptors. Due to its unique anatomical position, the RPE can communicate with the retinal environment and the systemic immune environment. In AMD, RPE dysfunction and the accumulation of drusen drive the infiltration of retinal and systemic innate immune cells into the outer retina. While recruited endogenous or systemic mononuclear phagocytes (MPs) contribute to the removal of noxious debris, the accumulation of MPs can also result in chronic inflammation and contribute to AMD progression. In addition, direct communication and indirect molecular signaling between MPs and the RPE may promote RPE cell death, choroidal neovascularization and fibrotic scarring that occur in late AMD. In this review, we explore how the RPE and innate immune cells maintain retinal homeostasis, and detail how RPE dysfunction and aberrant immune cell recruitment contribute to AMD pathogenesis. Evidence from AMD patients will be discussed in conjunction with data from preclinical models, to shed light on future therapeutic targets for the treatment of AMD.
Collapse
|
40
|
Harraka P, Wightman T, Akom S, Sandhu K, Colville D, Catran A, Langsford D, Pianta T, Barit D, Ierino F, Skene A, Mack H, Savige J. Increased retinal drusen in IgA glomerulonephritis are further evidence for complement activation in disease pathogenesis. Sci Rep 2022; 12:18301. [PMID: 36316518 PMCID: PMC9622730 DOI: 10.1038/s41598-022-21386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/27/2022] [Indexed: 12/31/2022] Open
Abstract
Drusen are retinal deposits comprising cell debris, immune material and complement that are characteristic of macular degeneration but also found in glomerulonephritis. This was a pilot cross-sectional study to determine how often drusen occurred in IgA glomerulonephritis and their clinical significance. Study participants underwent non-mydriatic retinal photography, and their deidentified retinal images were examined for drusen by two trained graders, who compared central drusen counts, counts ≥ 10 and drusen size with those of matched controls. The cohort comprised 122 individuals with IgA glomerulonephritis including 89 males (73%), 49 individuals (40%) of East Asian or Southern European ancestry, with an overall median age of 54 years (34-64), and median disease duration of 9 years (4-17). Thirty-nine (33%) had an eGFR < 60 ml/min/1.73 m2 and 72 had previously reached kidney failure (61%). Overall mean drusen counts were higher in IgA glomerulonephritis (9 ± 27) than controls (2 ± 7, p < 0.001). Central counts ≥ 10 were also more common (OR = 3.31 (1.42-7.73, p = 0.006), and were associated with longer disease duration (p = 0.03) but not kidney failure (p = 0.31). Larger drusen were associated with more mesangial IgA staining (p = 0.004). Increased drusen counts were also present in IgA glomerulonephritis secondary to Crohn's disease but not with Henoch-Schonlein purpura. The finding of retinal drusen in IgA glomerulonephritis is consistent with complement activation and represents a model for better understanding glomerular immune deposition and a supporting argument for treatment with anti-complement therapies.
Collapse
Affiliation(s)
- P. Harraka
- grid.1008.90000 0001 2179 088XDepartment of Medicine, Northern Health, The University of Melbourne, Parkville, VIC 3050 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, Melbourne Health, The University of Melbourne, Parkville, VIC 3050 Australia
| | - Tony Wightman
- grid.1008.90000 0001 2179 088XDepartment of Medicine, Northern Health, The University of Melbourne, Parkville, VIC 3050 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, Melbourne Health, The University of Melbourne, Parkville, VIC 3050 Australia
| | - Sarah Akom
- grid.1008.90000 0001 2179 088XDepartment of Medicine, Northern Health, The University of Melbourne, Parkville, VIC 3050 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, Melbourne Health, The University of Melbourne, Parkville, VIC 3050 Australia
| | - Kieran Sandhu
- grid.1008.90000 0001 2179 088XDepartment of Medicine, Northern Health, The University of Melbourne, Parkville, VIC 3050 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, Melbourne Health, The University of Melbourne, Parkville, VIC 3050 Australia
| | - Deb Colville
- grid.1008.90000 0001 2179 088XDepartment of Medicine, Northern Health, The University of Melbourne, Parkville, VIC 3050 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, Melbourne Health, The University of Melbourne, Parkville, VIC 3050 Australia
| | - Andrew Catran
- grid.1008.90000 0001 2179 088XDepartment of Medicine, Northern Health, The University of Melbourne, Parkville, VIC 3050 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, Melbourne Health, The University of Melbourne, Parkville, VIC 3050 Australia
| | - David Langsford
- grid.1008.90000 0001 2179 088XDepartment of Medicine, Northern Health, The University of Melbourne, Parkville, VIC 3050 Australia
| | - Timothy Pianta
- grid.1008.90000 0001 2179 088XDepartment of Medicine, Northern Health, The University of Melbourne, Parkville, VIC 3050 Australia
| | - David Barit
- grid.1008.90000 0001 2179 088XDepartment of Medicine, Northern Health, The University of Melbourne, Parkville, VIC 3050 Australia
| | - Frank Ierino
- grid.1008.90000 0001 2179 088XDepartment of Nephrology, Austin Health, The University of Melbourne, Parkville, VIC 3050 Australia
| | - Alison Skene
- grid.1008.90000 0001 2179 088XDepartment of Pathology, Austin Health, The University of Melbourne, Parkville, VIC 3050 Australia
| | - Heather Mack
- grid.410670.40000 0004 0625 8539The University of Melbourne Department of Ophthalmology, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002 Australia
| | - Judy Savige
- grid.1008.90000 0001 2179 088XDepartment of Medicine, Northern Health, The University of Melbourne, Parkville, VIC 3050 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, Melbourne Health, The University of Melbourne, Parkville, VIC 3050 Australia
| |
Collapse
|
41
|
Tian Y, Shin K, Aleshin AE, Im W, Marassi FM. Calcium-induced environmental adaptability of the blood protein vitronectin. Biophys J 2022; 121:3896-3906. [PMID: 36056555 PMCID: PMC9674982 DOI: 10.1016/j.bpj.2022.08.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
The adaptability of proteins to their work environments is fundamental for cellular life. Here, we describe how the hemopexin-like domain of the multifunctional blood glycoprotein vitronectin binds Ca2+ to adapt to excursions of temperature and shear stress. Using X-ray crystallography, molecular dynamics simulations, NMR, and differential scanning fluorimetry, we describe how Ca2+ and its flexible hydration shell enable the protein to perform conformational changes that relay beyond the calcium-binding site and alter the number of polar contacts to enhance conformational stability. By means of mutagenesis, we identify key residues that cooperate with Ca2+ to promote protein stability, and we show that calcium association confers protection against shear stress, a property that is advantageous for proteins that circulate in the vasculature, like vitronectin.
Collapse
Affiliation(s)
- Ye Tian
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Kyungsoo Shin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | | | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
42
|
Role of Vitronectin and Its Receptors in Neuronal Function and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms232012387. [PMID: 36293243 PMCID: PMC9604229 DOI: 10.3390/ijms232012387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Vitronectin (VTN), a multifunctional glycoprotein with various physiological functions, exists in plasma and the extracellular matrix. It is known to be involved in the cell attachment, spreading and migration through binding to the integrin receptor, mainly via the RGD sequence. VTN is also widely used in the maintenance and expansion of pluripotent stem cells, but its effects go beyond that. Recent evidence shows more functions of VTN in the nervous system as it participates in neural differentiation, neuronutrition and neurogenesis, as well as in regulating axon size, supporting and guiding neurite extension. Furthermore, VTN was proved to play a key role in protecting the brain as it can reduce the permeability of the blood-brain barrier by interacting with integrin receptors in vascular endothelial cells. Moreover, evidence suggests that VTN is associated with neurodegenerative diseases, such as Alzheimer's disease, but its function has not been fully understood. This review summarizes the functions of VTN and its receptors in neurons and describes the role of VTN in the blood-brain barrier and neurodegenerative diseases.
Collapse
|
43
|
Matulevičiūtė I, Sidaraitė A, Tatarūnas V, Veikutienė A, Dobilienė O, Žaliūnienė D. Retinal and Choroidal Thinning—A Predictor of Coronary Artery Occlusion? Diagnostics (Basel) 2022; 12:diagnostics12082016. [PMID: 36010366 PMCID: PMC9407460 DOI: 10.3390/diagnostics12082016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction. Optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) allowed visualization of retina and choroid to nearly the capillary level; however, the relationship between systemic macrovascular status and retinal microvascular changes is not yet known well. Aim. Our purpose was to assess the impact of retinal optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA) parameters on prediction of coronary heart disease (CHD) in acute myocardial infarction (MI) and chronic three vessel disease (3VD) groups. Methods. This observational study included 184 patients—26 in 3VD, 76 in MI and 82 in healthy participants groups. Radial scans of the macula and OCTA scans of the central macula (superficial (SCP) and deep (DCP) capillary plexuses) were performed on all participants. All participants underwent coronary angiography. Results. Patients in MI groups showed decreased parafoveal total retinal thickness as well as GCL+ retinal thickness. Outer circle total retinal thickness and GCL+ retinal thickness were lowest in the 3VD group. The MI group had thinner, while 3VD the thinnest, choroid. A decrease in choroidal thickness and vascular density could predict 3VD. Conclusions. A decrease in retinal and choroidal thickness as well as decreased vascular density in the central retinal region may predict coronary artery disease. OCT and OCTA could be a significant, safe, and noninvasive tool for the prediction of coronary artery disease.
Collapse
Affiliation(s)
- Indrė Matulevičiūtė
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-655-06381
| | - Agnė Sidaraitė
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vacis Tatarūnas
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Audronė Veikutienė
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Olivija Dobilienė
- Department of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Dalia Žaliūnienė
- Department of Ophthalmology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
44
|
Tolentino MJ, Tolentino AJ. Investigational drugs in clinical trials for macular degeneration. Expert Opin Investig Drugs 2022; 31:1067-1085. [PMID: 35962560 DOI: 10.1080/13543784.2022.2113375] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Intravitreal anti-vascular endothelial growth factor (VEGF) injections for exudative age-related macular degeneration (eAMD) are effective and safe but require frequent injections and have nonresponding patients. Geographic atrophy/dry AMD (gaAMD) remains an unmet medical need . New therapies are needed to address this leading cause of blindness in the increasing aged population. AREAS COVERED This paper reviews the pathogenesis of macular degeneration, current and failed therapeutics, therapies undergoing clinical trials and a rationale for why certain AMD therapies may succeed or fail . EXPERT OPINION VEGF- inhibitors reduce both vascular leakage and neovascularization. Experimental therapies that only address neovascularization or leakage will unlikely supplant anti-VEGF therapies. The most promising future therapies for eAMD, are those that target, more potently inhibit and have a more sustained effect on the VEGF pathway such as KSI-301, RGX-314, CLS-AX, EYEP-1901, OTX-TKI. GaAMD is a phenotype of phagocytic retinal cell loss. Inhibiting phagocytic activity of retinal microglial/macrophages at the border of GA and reducing complement derived activators of microglial/macrophage is the most promising strategy. Complement inhibitors (Pegcetacoplan and Avacincaptad pegol) will likely obtain FDA approval but will serve to pave the way for combined complement and direct phagocytic inhibitors such as AVD-104.
Collapse
Affiliation(s)
- Michael J Tolentino
- University of Central Florida, FL, USA.,Blue Ocean Clinical Research, Lakeland, FL, USA.,Aviceda Therapeutics, Cambridge, MA, USA
| | | |
Collapse
|
45
|
Crowley MA, Garland DL, Sellner H, Banks A, Fan L, Rejtar T, Buchanan N, Delgado O, Xu YY, Jose S, Adams CM, Mogi M, Wang K, Bigelow CE, Poor S, Anderson K, Jaffee BD, Prasanna G, Grosskreutz C, Fernandez-Godino R, Pierce EA, Dryja TP, Liao SM. Complement factor B is critical for sub-RPE deposit accumulation in a model of Doyne honeycomb retinal dystrophy with features of age-related macular degeneration. Hum Mol Genet 2022; 32:204-217. [PMID: 35943778 PMCID: PMC9840207 DOI: 10.1093/hmg/ddac187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 01/19/2023] Open
Abstract
EFEMP1 R345W is a dominant mutation causing Doyne honeycomb retinal dystrophy/malattia leventinese (DHRD/ML), a rare blinding disease with clinical pathology similar to age-related macular degeneration (AMD). Aged Efemp1 R345W/R345W knock-in mice (Efemp1ki/ki) develop microscopic deposits on the basal side of retinal pigment epithelial cells (RPE), an early feature in DHRD/ML and AMD. Here, we assessed the role of alternative complement pathway component factor B (FB) in the formation of these deposits. RNA-seq analysis of the posterior eyecups revealed increased unfolded protein response, decreased mitochondrial function in the neural retina (by 3 months of age) and increased inflammatory pathways in both neural retina and posterior eyecups (at 17 months of age) of Efemp1ki/ki mice compared with wild-type littermate controls. Proteomics analysis of eye lysates confirmed similar dysregulated pathways as detected by RNA-seq. Complement activation was increased in aged Efemp1ki/ki eyes with an approximately 2-fold elevation of complement breakdown products iC3b and Ba (P < 0.05). Deletion of the Cfb gene in female Efemp1ki/ki mice partially normalized the above dysregulated biological pathway changes and oral dosing of a small molecule FB inhibitor from 10 to 12 months of age reduced sub-RPE deposits by 65% (P = 0.029). In contrast, male Efemp1ki/ki mice had fewer sub-RPE deposits than age-matched females, no elevation of ocular complement activation and no effect of FB inhibition on sub-RPE deposits. The effects of FB deletion or inhibition on Efemp1ki/ki mice supports systemic inhibition of the alternative complement pathway as a potential treatment of dry AMD and DHRD/ML.
Collapse
Affiliation(s)
- Maura A Crowley
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Donita L Garland
- Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Holger Sellner
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Angela Banks
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Lin Fan
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Tomas Rejtar
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Natasha Buchanan
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Omar Delgado
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Yong Yao Xu
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Sandra Jose
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Christopher M Adams
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Muneto Mogi
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Karen Wang
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Chad E Bigelow
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Stephen Poor
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | | | - Bruce D Jaffee
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Ganesh Prasanna
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Cynthia Grosskreutz
- Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA 02319, USA
| | - Rosario Fernandez-Godino
- Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Eric A Pierce
- Ocular Genomics Institute at Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | | | - Sha-Mei Liao
- To whom correspondence should be addressed at: Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA 02139, USA. Tel: +1-(617)871-4004; Fax: +1-(617)871-5748;
| |
Collapse
|
46
|
Hachana S, Larrivée B. TGF-β Superfamily Signaling in the Eye: Implications for Ocular Pathologies. Cells 2022; 11:2336. [PMID: 35954181 PMCID: PMC9367584 DOI: 10.3390/cells11152336] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The TGF-β signaling pathway plays a crucial role in several key aspects of development and tissue homeostasis. TGF-β ligands and their mediators have been shown to be important regulators of ocular physiology and their dysregulation has been described in several eye pathologies. TGF-β signaling participates in regulating several key developmental processes in the eye, including angiogenesis and neurogenesis. Inadequate TGF-β signaling has been associated with defective angiogenesis, vascular barrier function, unfavorable inflammatory responses, and tissue fibrosis. In addition, experimental models of corneal neovascularization, diabetic retinopathy, proliferative vitreoretinopathy, glaucoma, or corneal injury suggest that aberrant TGF-β signaling may contribute to the pathological features of these conditions, showing the potential of modulating TGF-β signaling to treat eye diseases. This review highlights the key roles of TGF-β family members in ocular physiology and in eye diseases, and reviews approaches targeting the TGF-β signaling as potential treatment options.
Collapse
Affiliation(s)
- Soumaya Hachana
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
47
|
CCL2, CCR2 Gene Variants and CCL2, CCR2 Serum Levels Association with Age-Related Macular Degeneration. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071038. [PMID: 35888126 PMCID: PMC9322437 DOI: 10.3390/life12071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
Background: Age-related macular degeneration (AMD) is the most common cause of progressive and irreversible blindness in developed countries. Although the pathogenesis is not fully understood, AMD is a multifactorial pathology with an accumulation of inflammatory components and macrophages and a strong genetic predisposition. Our purpose was to investigate the association between early AMD and CCL2 (rs1024611, rs4586, rs2857656) and CCR2 (rs1799865) single nucleotide polymorphisms (SNPs) and CCL2, CCR2 serum levels in a Lithuanian population. Methods: The study included 310 patients with early AMD and 384 healthy subjects. Genotyping of CCL2 rs1024611, rs4586, rs2857656, and CCR2 rs1799865 was performed using a real-time polymerase chain reaction method, while CCL2 and CCR2 chemokines serum concentrations were analyzed using an enzyme-linked immunosorbent assay. Results: We found that the G allele at CCL2 rs1024611 was more prevalent in the early AMD group than in controls (29.2% vs. 24.1%, p = 0.032). Similarly, the C allele in CCL2 rs2857656 is more common in the early AMD group than in controls (29.2% vs. 24.2%, p = 0.037). Binomial logistic regression revealed that each G allele in rs1024611 was associated with 1.3-fold increased odds of developing early AMD under the additive model (OR = 1.322; 95% CI: 1.032–1.697, p = 0.027) as was each C allele in rs2857656 under the additive model (OR = 1.314; 95% CI: 1.025–1.684, p = 0.031). Haplotype analysis revealed that the C-A-G haplotype of CCL2 SNPs was associated with 35% decreased odds of early AMD development. Further analysis showed elevated CCL2 serum levels in the group with early AMD compared to controls (median (IQR): 1181.6 (522.6) pg/mL vs. 879.9 (494.4) pg/mL, p = 0.013); however, there were no differences between CCR2 serum levels within groups. Conclusions: We found the associations between minor alleles at CCL2 rs1024611 and rs2857656, elevated CCL2 serum levels, and early AMD development.
Collapse
|
48
|
Shughoury A, Sevgi DD, Ciulla TA. Molecular Genetic Mechanisms in Age-Related Macular Degeneration. Genes (Basel) 2022; 13:1233. [PMID: 35886016 PMCID: PMC9316037 DOI: 10.3390/genes13071233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is among the leading causes of irreversible blindness worldwide. In addition to environmental risk factors, such as tobacco use and diet, genetic background has long been established as a major risk factor for the development of AMD. However, our ability to predict disease risk and personalize treatment remains limited by our nascent understanding of the molecular mechanisms underlying AMD pathogenesis. Research into the molecular genetics of AMD over the past two decades has uncovered 52 independent gene variants and 34 independent loci that are implicated in the development of AMD, accounting for over half of the genetic risk. This research has helped delineate at least five major pathways that may be disrupted in the pathogenesis of AMD: the complement system, extracellular matrix remodeling, lipid metabolism, angiogenesis, and oxidative stress response. This review surveys our current understanding of each of these disease mechanisms, in turn, along with their associated pathogenic gene variants. Continued research into the molecular genetics of AMD holds great promise for the development of precision-targeted, personalized therapies that bring us closer to a cure for this debilitating disease.
Collapse
Affiliation(s)
- Aumer Shughoury
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
| | - Duriye Damla Sevgi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
| | - Thomas A. Ciulla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.); (D.D.S.)
- Clearside Biomedical, Inc., Alpharetta, GA 30005, USA
- Midwest Eye Institute, Indianapolis, IN 46290, USA
| |
Collapse
|
49
|
Retinal drusen counts are increased in inflammatory bowel disease, and with longer disease duration, more complications and associated IgA glomerulonephritis. Sci Rep 2022; 12:11744. [PMID: 35817816 PMCID: PMC9273621 DOI: 10.1038/s41598-022-15232-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Retinal drusen are deposits of inflammatory proteins that are found in macular degeneration and glomerulonephritis and result, in part, from complement activation. This was a cross-sectional observational study of individuals with inflammatory bowel disease (IBD) recruited from a Gastroenterology clinic who underwent non-mydriatic retinal photography. Deidentified images were examined for drusen, and drusen counts and size were compared with matched controls, and examined for clinical associations. The cohort with IBD comprised 19 individuals with ulcerative colitis, 41 with Crohn's disease and three with indeterminate colitis, including 34 males (54%) and an overall median age of 48 (IQR 23) years. Their median IBD duration was 7 (IQR 10) years, median CRP level was 7 (IQR 14) mg/L, and 28 (44%) had complications (fistula, stricture, bowel resection etc.), while 28 with Crohn's disease (68%) had colonic involvement. Drusen counts were higher in IBD than controls (12 ± 34, 3 ± 8 respectively, p = 0.04). Counts ≥ 10 were also more common (14, 22%, and 4, 6%, p = 0.02, OR 4.21, 95%CI 1.30 to 13.63), and associated with longer disease duration (p = 0.01, OR 1.06, 95%CI 1.00 to 1.13), an increased likelihood of complications (p = 0.003, OR 6.90, 95%CI 1.69 to 28.15) and higher CRP levels at recruitment (p = 0.008, OR1.02, 95%CI 1.00 to 1.05). Increased retinal drusen were found in all four individuals with Crohn's disease and IgA glomerulonephritis. IBD and drusen may share pathogenetic mechanisms and underlying risk factors such as complement activation.
Collapse
|
50
|
Wilson MR, Satapathy S, Jeong S, Fini ME. Clusterin, other extracellular chaperones, and eye disease. Prog Retin Eye Res 2022; 89:101032. [PMID: 34896599 PMCID: PMC9184305 DOI: 10.1016/j.preteyeres.2021.101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Proteostasis refers to all the processes that maintain the correct expression level, location, folding and turnover of proteins, essential to organismal survival. Both inside cells and in body fluids, molecular chaperones play key roles in maintaining proteostasis. In this article, we focus on clusterin, the first-recognized extracellular mammalian chaperone, and its role in diseases of the eye. Clusterin binds to and inhibits the aggregation of proteins that are misfolded due to mutations or stresses, clears these aggregating proteins from extracellular spaces, and facilitates their degradation. Clusterin exhibits three main homeostatic activities: proteostasis, cytoprotection, and anti-inflammation. The so-called "protein misfolding diseases" are caused by aggregation of misfolded proteins that accumulate pathologically as deposits in tissues; we discuss several such diseases that occur in the eye. Clusterin is typically found in these deposits, which is interpreted to mean that its capacity as a molecular chaperone to maintain proteostasis is overwhelmed in the disease state. Nevertheless, the role of clusterin in diseases involving such deposits needs to be better defined before therapeutic approaches can be entertained. A more straightforward case can be made for therapeutic use of clusterin based on its proteostatic role as a proteinase inhibitor, as well as its cytoprotective and anti-inflammatory properties. It is likely that clusterin works together in this way with other extracellular chaperones to protect the eye from disease, and we discuss several examples. We end this article by predicting future steps that may lead to development of clusterin as a biological drug.
Collapse
Affiliation(s)
- Mark R Wilson
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong; Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, New South Wales, 2522, Australia.
| | - Sandeep Satapathy
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong; Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, New South Wales, 2522, Australia.
| | - Shinwu Jeong
- USC Roski Eye Institute and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 1333 San Pablo Street., Los Angeles, CA, 90033, USA.
| | - M Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine; Program in Pharmacology & Drug Development, Graduate School of Biomedical Sciences, Tufts University, 800 Washington St, Boston, MA, 02111, USA.
| |
Collapse
|