1
|
Michalaki E, Chin R, Jeong K, Qi Z, Liebman LN, González-Vargas Y, Echeverri ES, Paunovska K, Muramatsu H, Pardi N, Tamburini BJ, Jakus Z, Dahlman JE, Dixon JB. Lymphatic endothelial cell-targeting lipid nanoparticles delivering VEGFC mRNA improve lymphatic function after injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605343. [PMID: 39131391 PMCID: PMC11312618 DOI: 10.1101/2024.07.31.605343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Dysfunction of the lymphatic system following injury, disease, or cancer treatment can lead to lymphedema, a debilitating condition with no cure. Advances in targeted therapy have shown promise for treating diseases where conventional therapies have been ineffective and lymphatic vessels have recently emerged as a new therapeutic target. Lipid nanoparticles (LNPs) have emerged as a promising strategy for tissue specific delivery of nucleic acids. Currently, there are no approaches to target LNPs to lymphatic endothelial cells, although it is well established that intradermal (ID) injection of nanoparticles will drain to lymphatics with remarkable efficiency. To design an LNP that would effectively deliver mRNA to LEC after ID delivery, we screened a library of 150 LNPs loaded with a reporter mRNA, for both self-assembly and delivery in vivo to lymphatic endothelial cells (LECs). We identified and validated several LNP formulations optimized for high LEC uptake when administered ID and compared their efficacy for delivery of functional mRNA with that of free mRNA and mRNA delivered with a commercially available MC3-based LNP (Onpattro™). The lead LEC-specific LNP was then loaded with VEGFC mRNA to test the therapeutic advantage of the LEC-specific LNP (namely, LNP7) for treating a mouse tail lymphatic injury model. A single dose of VEGFC mRNA delivered via LNP7 resulted in enhanced LEC proliferation at the site of injury, and an increase in lymphatic function up to 14-days post-surgery. Our results suggest a therapeutic potential of VEGFC mRNA lymphatic-specific targeted delivery in alleviating lymphatic dysfunction observed during lymphatic injury and could provide a promising approach for targeted, transient lymphangiogenic therapy.
Collapse
Affiliation(s)
- Eleftheria Michalaki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology; Atlanta, GA, USA
| | - Rachel Chin
- Department of Biology, Georgia Institute of Technology; Atlanta, GA, USA
| | - Kiyoung Jeong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - Zhiming Qi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - Lauren N. Liebman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - Yarelis González-Vargas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Beth Jiron Tamburini
- University of Colorado School of Medicine, Department of Medicine, Aurora, CO, USA
| | - Zoltan Jakus
- Semmelweis University School of Medicine, Department of Physiology, Budapest, Hungary
| | - James E. Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - J. Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology; Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology; Atlanta, GA, USA
| |
Collapse
|
2
|
Arroyo-Ataz G, Yagüe AC, Breda JC, Mazzilli SA, Jones D. Transcriptional, developmental, and functional parallels of lymphatic and venous smooth muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604042. [PMID: 39091770 PMCID: PMC11291064 DOI: 10.1101/2024.07.18.604042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Lymphatic muscle cells (LMCs) are indispensable for lymphatic vessel contraction and their aberrant recruitment or absence is associated with both primary and secondary lymphedema. Despite their critical role in lymphatic vessel function, the transcriptomic and developmental basis that confer the unique contractile properties to LMCs are largely undefined. In this study, we employed single-cell RNA sequencing (scRNAseq), lineage tracing and in vivo imaging to investigate the basis for the hybrid cardiomyocyte and blood vascular smooth muscle cell (SMC) characteristics that have been described for LMCs. Using scRNAseq, the transcriptomes of LMC and venous SMCs from the murine hindlimb exhibited more similarities than differences, although both were markedly distinct from that of arteriole SMCs in the same tissue. Functionally, both lymphatic vessels and blood vessels in the murine hindlimb displayed pulsatile contractility. However, despite expressing genes that overlap with the venous SMC transcriptome, through lineage tracing we show that LMCs do not originate from Myh11+ SMC progenitors. Previous studies have shown that LMCs express cardiac-related genes, whereas in our study we found that arteriole SMCs, but not LMCs, expressed cardiac-related genes. Through lineage tracing, we demonstrate that a subpopulation of LMCs and SMCs originate from WT1+ mesodermal progenitors, which are known to give rise to SMCs. LMCs, however, do not derive from Nkx2.5+ cardiomyocyte progenitors. Overall, our findings suggest that venous SMCs and LMCs and may derive from a related mesodermal progenitor and adopt a similar gene expression program that enable their contractile properties.
Collapse
Affiliation(s)
- Guillermo Arroyo-Ataz
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| | - Alejandra Carrasco Yagüe
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| | - Julia C. Breda
- Department of Medicine, Division of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, 75 E. Newton Street, Boston, Massachusetts 02118, USA
| | - Sarah A. Mazzilli
- Department of Medicine, Division of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, 75 E. Newton Street, Boston, Massachusetts 02118, USA
| | - Dennis Jones
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| |
Collapse
|
3
|
Esteves AR, Munoz-Pinto MF, Nunes-Costa D, Candeias E, Silva DF, Magalhães JD, Pereira-Santos AR, Ferreira IL, Alarico S, Tiago I, Empadinhas N, Cardoso SM. Footprints of a microbial toxin from the gut microbiome to mesencephalic mitochondria. Gut 2023; 72:73-89. [PMID: 34836918 PMCID: PMC9763194 DOI: 10.1136/gutjnl-2021-326023] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/28/2021] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Idiopathic Parkinson's disease (PD) is characterised by alpha-synuclein (aSyn) aggregation and death of dopaminergic neurons in the midbrain. Recent evidence posits that PD may initiate in the gut by microbes or their toxins that promote chronic gut inflammation that will ultimately impact the brain. In this work, we sought to demonstrate that the effects of the microbial toxin β-N-methylamino-L-alanine (BMAA) in the gut may trigger some PD cases, which is especially worrying as this toxin is present in certain foods but not routinely monitored by public health authorities. DESIGN To test the hypothesis, we treated wild-type mice, primary neuronal cultures, cell lines and isolated mitochondria with BMAA, and analysed its impact on gut microbiota composition, barrier permeability, inflammation and aSyn aggregation as well as in brain inflammation, dopaminergic neuronal loss and motor behaviour. To further examine the key role of mitochondria, we also determined the specific effects of BMAA on mitochondrial function and on inflammasome activation. RESULTS BMAA induced extensive depletion of segmented filamentous bacteria (SFB) that regulate gut immunity, thus triggering gut dysbiosis, immune cell migration, increased intestinal inflammation, loss of barrier integrity and caudo-rostral progression of aSyn. Additionally, BMAA induced in vitro and in vivo mitochondrial dysfunction with cardiolipin exposure and consequent activation of neuronal innate immunity. These events primed neuroinflammation, dopaminergic neuronal loss and motor deficits. CONCLUSION Taken together, our results demonstrate that chronic exposure to dietary BMAA can trigger a chain of events that recapitulate the evolution of the PD pathology from the gut to the brain, which is consistent with 'gut-first' PD.
Collapse
Affiliation(s)
- A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Mário F Munoz-Pinto
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniela Nunes-Costa
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,PDBEB–Ph.D. Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,PDBEB–Ph.D. Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Diana F Silva
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - João D Magalhães
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,PDBEB–Ph.D. Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,PDBEB–Ph.D. Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - I Luisa Ferreira
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Susana Alarico
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal,IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Igor Tiago
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal .,IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal .,Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Behl T, Madaan P, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Demystifying the Neuroprotective Role of Neuropeptides in Parkinson's Disease: A Newfangled and Eloquent Therapeutic Perspective. Int J Mol Sci 2022; 23:4565. [PMID: 35562956 PMCID: PMC9099669 DOI: 10.3390/ijms23094565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) refers to one of the eminently grievous, preponderant, tortuous nerve-cell-devastating ailments that markedly impacts the dopaminergic (DArgic) nerve cells of the midbrain region, namely the substantia nigra pars compacta (SN-PC). Even though the exact etiopathology of the ailment is yet indefinite, the existing corroborations have suggested that aging, genetic predisposition, and environmental toxins tremendously influence the PD advancement. Additionally, pathophysiological mechanisms entailed in PD advancement encompass the clumping of α-synuclein inside the lewy bodies (LBs) and lewy neurites, oxidative stress, apoptosis, neuronal-inflammation, and abnormalities in the operation of mitochondria, autophagy lysosomal pathway (ALP), and ubiquitin-proteasome system (UPS). The ongoing therapeutic approaches can merely mitigate the PD-associated manifestations, but until now, no therapeutic candidate has been depicted to fully arrest the disease advancement. Neuropeptides (NPs) are little, protein-comprehending additional messenger substances that are typically produced and liberated by nerve cells within the entire nervous system. Numerous NPs, for instance, substance P (SP), ghrelin, neuropeptide Y (NPY), neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), nesfatin-1, and somatostatin, have been displayed to exhibit consequential neuroprotection in both in vivo and in vitro PD models via suppressing apoptosis, cytotoxicity, oxidative stress, inflammation, autophagy, neuronal toxicity, microglia stimulation, attenuating disease-associated manifestations, and stimulating chondriosomal bioenergetics. The current scrutiny is an effort to illuminate the neuroprotective action of NPs in various PD-experiencing models. The authors carried out a methodical inspection of the published work procured through reputable online portals like PubMed, MEDLINE, EMBASE, and Frontier, by employing specific keywords in the subject of our article. Additionally, the manuscript concentrates on representing the pathways concerned in bringing neuroprotective action of NPs in PD. In sum, NPs exert substantial neuroprotection through regulating paramount pathways indulged in PD advancement, and consequently, might be a newfangled and eloquent perspective in PD therapy.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Piyush Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
5
|
Zhao Y, Peng HB. Roles of tyrosine kinases and phosphatases in the formation and dispersal of acetylcholine receptor clusters. Neurosci Lett 2020; 733:135054. [PMID: 32428606 DOI: 10.1016/j.neulet.2020.135054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
The formation of acetylcholine receptor (AChR) clusters at the postsynaptic muscle membrane in response to motor innervation is a key event in the development of the neuromuscular junction. The synaptic AChR clustering process is initiated by motor axon-released agrin, which activates a tyrosine kinase-based signaling pathway to cause AChR aggregation. In cultured muscle cells, AChR clustering is elicited by diverse nonneural signals, and this process is also mediated by tyrosine kinases. Conversely, the formation of new AChR clusters induced by innervation or nonneural stimuli is unfailingly associated with the dispersal of pre-existing AChR clusters, and this process is mediated by tyrosine phosphatases. In this review, we address how local kinase activation leads to global phosphatase action in muscle. More specifically, we discuss the roles of Src kinase and the SH2 domain-containing tyrosine phosphatase Shp-2 in establishing a regenerative mechanism to propagate the AChR cluster dispersing signal extrasynaptically and in defining the boundary of cluster formation subsynaptically.
Collapse
Affiliation(s)
- Yang Zhao
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region.
| | - H Benjamin Peng
- Division of Life Science, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region; College of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC.
| |
Collapse
|
6
|
Jiang C, Hopfner F, Katsikoudi A, Hein R, Catli C, Evetts S, Huang Y, Wang H, Ryder JW, Kuhlenbaeumer G, Deuschl G, Padovani A, Berg D, Borroni B, Hu MT, Davis JJ, Tofaris GK. Serum neuronal exosomes predict and differentiate Parkinson's disease from atypical parkinsonism. J Neurol Neurosurg Psychiatry 2020; 91:720-729. [PMID: 32273329 PMCID: PMC7361010 DOI: 10.1136/jnnp-2019-322588] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Parkinson's disease is characterised neuropathologically by α-synuclein aggregation. Currently, there is no blood test to predict the underlying pathology or distinguish Parkinson's from atypical parkinsonian syndromes. We assessed the clinical utility of serum neuronal exosomes as biomarkers across the spectrum of Parkinson's disease, multiple system atrophy and other proteinopathies. METHODS We performed a cross-sectional study of 664 serum samples from the Oxford, Kiel and Brescia cohorts consisting of individuals with rapid eye movement sleep behavioural disorder, Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, frontotemporal dementia, progressive supranuclear palsy, corticobasal syndrome and controls. Longitudinal samples were analysed from Parkinson's and control individuals. We developed poly(carboxybetaine-methacrylate) coated beads to isolate L1 cell adhesion molecule (L1CAM)-positive extracellular vesicles with characteristics of exosomes and used mass spectrometry or multiplexed electrochemiluminescence to measure exosomal proteins. RESULTS Mean neuron-derived exosomal α-synuclein was increased by twofold in prodromal and clinical Parkinson's disease when compared with multiple system atrophy, controls or other neurodegenerative diseases. With 314 subjects in the training group and 105 in the validation group, exosomal α-synuclein exhibited a consistent performance (AUC=0.86) in separating clinical Parkinson's disease from controls across populations. Exosomal clusterin was elevated in subjects with non-α-synuclein proteinopathies. Combined neuron-derived exosomal α-synuclein and clusterin measurement predicted Parkinson's disease from other proteinopathies with AUC=0.98 and from multiple system atrophy with AUC=0.94. Longitudinal sample analysis showed that exosomal α-synuclein remains stably elevated with Parkinson's disease progression. CONCLUSIONS Increased α-synuclein egress in serum neuronal exosomes precedes the diagnosis of Parkinson's disease, persists with disease progression and in combination with clusterin predicts and differentiates Parkinson's disease from atypical parkinsonism.
Collapse
Affiliation(s)
- Cheng Jiang
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Franziska Hopfner
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Antigoni Katsikoudi
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Robert Hein
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - Candan Catli
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - Samuel Evetts
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Oxford Parkinson's Disease Centre, Oxford, United Kingdom
| | - Yongzhi Huang
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Hong Wang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - John W Ryder
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Guenther Deuschl
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, Neurology Unit, University of Brescia, Brescia, Italy
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Oxford Parkinson's Disease Centre, Oxford, United Kingdom
| | - Jason J Davis
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
7
|
Grizzi F, Fiorino S, Qehajaj D, Fornelli A, Russo C, de Biase D, Masetti M, Mastrangelo L, Zanello M, Lombardi R, Domanico A, Accogli E, Tura A, Mirandola L, Chiriva-Internati M, Bresalier RS, Jovine E, Leandri P, Di Tommaso L. Computer-aided assessment of the extra-cellular matrix during pancreatic carcinogenesis: a pilot study. J Transl Med 2019; 17:61. [PMID: 30819202 PMCID: PMC6393991 DOI: 10.1186/s12967-019-1817-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/21/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A hallmark of pancreatic ductal adenocarcinoma is the desmoplastic reaction, but its impact on the tumor behavior remains controversial. Our aim was to introduce a computer -aided method to precisely quantify the amount of pancreatic collagenic extra-cellular matrix, its spatial distribution pattern, and the degradation process. METHODS A series of normal, inflammatory and neoplastic pancreatic ductal adenocarcinoma formalin-fixed and paraffin-embedded Sirius red stained sections were automatically digitized and analyzed using a computer-aided method. RESULTS We found a progressive increase of pancreatic collagenic extra-cellular matrix from normal to the inflammatory and pancreatic ductal adenocarcinoma. The two-dimensional fractal dimension showed a significant difference in the collagenic extra-cellular matrix spatial complexity between normal versus inflammatory and pancreatic ductal adenocarcinoma. A significant difference when comparing the number of cycles necessary to degrade the pancreatic collagenic extra-cellular matrix in normal versus inflammatory and pancreatic ductal adenocarcinoma was also found. The difference between inflammatory and pancreatic ductal adenocarcinoma was also significant. Furthermore, the mean velocity of collagenic extra-cellular matrix degradation was found to be faster in inflammatory and pancreatic ductal adenocarcinoma than in normal. CONCLUSION These findings demonstrate that inflammatory and pancreatic ductal adenocarcinomas are characterized by an increased amount of pancreatic collagenic extra-cellular matrix and by changes in their spatial complexity and degradation. Our study defines new features about the pancreatic collagenic extra-cellular matrix, and represents a basis for further investigations into the clinical behavior of pancreatic ductal adenocarcinoma and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center—IRCCS, Rozzano, Milan, Italy
- Humanitas University, Rozzano, Milan, Italy
- Histology Core, Humanitas Clinical and Research Center—IRCCS, Rozzano, Milan, Italy
| | - Sirio Fiorino
- Internal Medicine Unit, Maggiore Hospital, Bologna, Italy
| | - Dorina Qehajaj
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center—IRCCS, Rozzano, Milan, Italy
| | - Adele Fornelli
- Anatomic Pathology Service, Maggiore Hospital, Bologna, Italy
| | - Carlo Russo
- “Michele Rodriguez” Foundation-Institute for Quantitative Measures in Medicine, Milan, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | | | | | | - Andrea Domanico
- Ultrasound Center Internal Medicine A, Maggiore Hospital, Bologna, Italy
| | - Esterita Accogli
- Ultrasound Center Internal Medicine A, Maggiore Hospital, Bologna, Italy
| | | | | | - Maurizio Chiriva-Internati
- Kiromic Biopharma, Inc., Houston, TX USA
- Department of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer, Houston, TX USA
| | - Robert S. Bresalier
- Department of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer, Houston, TX USA
| | - Elio Jovine
- Surgery Unit, Maggiore Hospital, Bologna, Italy
| | - Paolo Leandri
- Internal Medicine Unit, Maggiore Hospital, Bologna, Italy
| | - Luca Di Tommaso
- Humanitas University, Rozzano, Milan, Italy
- Department of Pathology, Humanitas Clinical and Research Center—IRCCS, Rozzano, Milano, Italy
| |
Collapse
|
8
|
Feldman JL, Kam K. Facing the challenge of mammalian neural microcircuits: taking a few breaths may help. J Physiol 2015; 593:3-23. [PMID: 25556783 DOI: 10.1113/jphysiol.2014.277632] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/01/2014] [Indexed: 12/27/2022] Open
Abstract
Breathing in mammals is a seemingly straightforward behaviour controlled by the brain. A brainstem nucleus called the preBötzinger Complex sits at the core of the neural circuit generating respiratory rhythm. Despite the discovery of this microcircuit almost 25 years ago, the mechanisms controlling breathing remain elusive. Given the apparent simplicity and well-defined nature of regulatory breathing behaviour, the identification of much of the circuitry, and the ability to study breathing in vitro as well as in vivo, many neuroscientists and physiologists are surprised that respiratory rhythm generation is still not well understood. Our view is that conventional rhythmogenic mechanisms involving pacemakers, inhibition or bursting are problematic and that simplifying assumptions commonly made for many vertebrate neural circuits ignore consequential detail. We propose that novel emergent mechanisms govern the generation of respiratory rhythm. That a mammalian function as basic as rhythm generation arises from complex and dynamic molecular, synaptic and neuronal interactions within a diverse neural microcircuit highlights the challenges in understanding neural control of mammalian behaviours, many (considerably) more elaborate than breathing. We suggest that the neural circuit controlling breathing is inimitably tractable and may inspire general strategies for elucidating other neural microcircuits.
Collapse
Affiliation(s)
- Jack L Feldman
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA
| | | |
Collapse
|
9
|
Brigandt I. Systems biology and the integration of mechanistic explanation and mathematical explanation. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2013; 44:477-492. [PMID: 23863399 DOI: 10.1016/j.shpsc.2013.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 06/02/2023]
Abstract
The paper discusses how systems biology is working toward complex accounts that integrate explanation in terms of mechanisms and explanation by mathematical models-which some philosophers have viewed as rival models of explanation. Systems biology is an integrative approach, and it strongly relies on mathematical modeling. Philosophical accounts of mechanisms capture integrative in the sense of multilevel and multifield explanations, yet accounts of mechanistic explanation (as the analysis of a whole in terms of its structural parts and their qualitative interactions) have failed to address how a mathematical model could contribute to such explanations. I discuss how mathematical equations can be explanatorily relevant. Several cases from systems biology are discussed to illustrate the interplay between mechanistic research and mathematical modeling, and I point to questions about qualitative phenomena (rather than the explanation of quantitative details), where quantitative models are still indispensable to the explanation. Systems biology shows that a broader philosophical conception of mechanisms is needed, which takes into account functional-dynamical aspects, interaction in complex networks with feedback loops, system-wide functional properties such as distributed functionality and robustness, and a mechanism's ability to respond to perturbations (beyond its actual operation). I offer general conclusions for philosophical accounts of explanation.
Collapse
Affiliation(s)
- Ingo Brigandt
- Department of Philosophy, University of Alberta, 2-40 Assiniboia Hall, Edmonton, AB T6G2E7, Canada.
| |
Collapse
|
10
|
Abstract
Systems biology, with its associated technologies of proteomics, genomics, and metabolomics, is driving the evolution of our understanding of cardiovascular physiology. Rather than studying individual molecules or even single reactions, a systems approach allows integration of orthogonal data sets from distinct tiers of biological data, including gene, RNA, protein, metabolite, and other component networks. Together these networks give rise to emergent properties of cellular function, and it is their reprogramming that causes disease. We present 5 observations regarding how systems biology is guiding a revisiting of the central dogma: (1) It deemphasizes the unidirectional flow of information from genes to proteins; (2) it reveals the role of modules of molecules as opposed to individual proteins acting in isolation; (3) it enables discovery of novel emergent properties; (4) it demonstrates the importance of networks in biology; and (5) it adds new dimensionality to the study of biological systems.
Collapse
Affiliation(s)
- Sarah Franklin
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
11
|
Kavoussi B. Chinese medicine: a cognitive and epistemological review*. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 4:293-8. [PMID: 17965759 PMCID: PMC1978236 DOI: 10.1093/ecam/nem005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 01/11/2007] [Indexed: 11/12/2022]
Abstract
In spite of the common belief that Chinese natural philosophy and medicine have a unique frame of reference completely foreign to the West, this article argues that they in fact have significant cognitive and epistemic similarities with certain esoteric health beliefs of pre-Christian Europe. From the standpoint of Cognitive Science, Chinese Medicine appears as a proto-scientific system of health observances and practices based on a symptomological classification of disease using two elementary dynamical-processes pattern categorization schemas: a hierarchical and combinatorial inhibiting-activating model (Yin-Yang), and a non-hierarchical and associative five-parameter semantic network (5-Elements/Agents). The concept-map of the five-parameter model amounts to a pentagram, a commonly found geomantic and spell casting sigil in a number of pre-Christian health and safety beliefs in Europe, to include the Pythagorean cult of Hygieia, and the Old Religion of Northern Europe. This non-hierarchical pattern-recognition archetype/prototype was hypothetically added to the pre-existing hierarchical one to form a hybrid nosology that can accommodate for a change in disease perceptions. The selection of five parameters rather than another number might be due to a numerological association between the integer five, the golden ratio, the geometry of the pentagram and the belief in health and wholeness arising from cosmic or divine harmony. In any case, this body of purely empirical knowledge is nowadays widely flourishing in the US and in Europe as an alternative to Western Medicine and with the claim of being a unique, independent and comprehensive medical system, when in reality it is structurally-and perhaps historically-related to the health and safety beliefs of pre-Christian Europe; and without the prospect for an epistemological rupture, it will remain built upon rudimentary cognitive modalities, ancient metaphysics, and a symptomological view of disease.
Collapse
Affiliation(s)
- Ben Kavoussi
- Medicus Research LLC, Northridge, CA and Southern California University of Health Sciences, Whittier, CA, USA.
| |
Collapse
|
12
|
Saetzler K, Sonnenschein C, Soto AM. Systems biology beyond networks: generating order from disorder through self-organization. Semin Cancer Biol 2011; 21:165-74. [PMID: 21569848 DOI: 10.1016/j.semcancer.2011.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 04/26/2011] [Indexed: 12/26/2022]
Abstract
Erwin Schrödinger pointed out in his 1944 book "What is Life" that one defining attribute of biological systems seems to be their tendency to generate order from disorder defying the second law of thermodynamics. Almost parallel to his findings, the science of complex systems was founded based on observations on physical and chemical systems showing that inanimate matter can exhibit complex structures although their interacting parts follow simple rules. This is explained by a process known as self-organization and it is now widely accepted that multi-cellular biological organisms are themselves self-organizing complex systems in which the relations among their parts are dynamic, contextual and interdependent. In order to fully understand such systems, we are required to computationally and mathematically model their interactions as promulgated in systems biology. The preponderance of network models in the practice of systems biology inspired by a reductionist, bottom-up view, seems to neglect, however, the importance of bidirectional interactions across spatial scales and domains. This approach introduces a shortcoming that may hinder research on emergent phenomena such as those of tissue morphogenesis and related diseases, such as cancer. Another hindrance of current modeling attempts is that those systems operate in a parameter space that seems far removed from biological reality. This misperception calls for more tightly coupled mathematical and computational models to biological experiments by creating and designing biological model systems that are accessible to a wide range of experimental manipulations. In this way, a comprehensive understanding of fundamental processes in normal development or of aberrations, like cancer, will be generated.
Collapse
Affiliation(s)
- K Saetzler
- School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom.
| | | | | |
Collapse
|
13
|
Calmettes G, Deschodt-Arsac V, Gouspillou G, Miraux S, Muller B, Franconi JM, Thiaudiere E, Diolez P. Improved energy supply regulation in chronic hypoxic mouse counteracts hypoxia-induced altered cardiac energetics. PLoS One 2010; 5:e9306. [PMID: 20174637 PMCID: PMC2823784 DOI: 10.1371/journal.pone.0009306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/30/2010] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Hypoxic states of the cardiovacular system are undoubtedly associated with the most frequent diseases of modern time. Therefore, understanding hypoxic resistance encountered after physiological adaptation such as chronic hypoxia, is crucial to better deal with hypoxic insult. In this study, we examine the role of energetic modifications induced by chronic hypoxia (CH) in the higher tolerance to oxygen deprivation. METHODOLOGY/PRINCIPAL FINDINGS Swiss mice were exposed to a simulated altitude of 5500 m in a barochamber for 21 days. Isolated perfused hearts were used to study the effects of a decreased oxygen concentration in the perfusate on contractile performance (RPP) and phosphocreatine (PCr) concentration (assessed by (31)P-NMR), and to describe the integrated changes in cardiac energetics regulation by using Modular Control Analysis (MoCA). Oxygen reduction induced a concomitant decrease in RPP (-46%) and in [PCr] (-23%) in Control hearts while CH hearts energetics was unchanged. MoCA demonstrated that this adaptation to hypoxia is the direct consequence of the higher responsiveness (elasticity) of ATP production of CH hearts compared with Controls (-1.88+/-0.38 vs -0.89+/-0.41, p<0.01) measured under low oxygen perfusion. This higher elasticity induces an improved response of energy supply to cellular energy demand. The result is the conservation of a healthy control pattern of contraction in CH hearts, whereas Control hearts are severely controlled by energy supply. CONCLUSIONS/SIGNIFICANCE As suggested by the present study, the mechanisms responsible for this increase in elasticity and the consequent improved ability of CH heart metabolism to respond to oxygen deprivation could participate to limit the damages induced by hypoxia.
Collapse
Affiliation(s)
- Guillaume Calmettes
- Laboratoire de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS Université Bordeaux 2, Bordeaux, France
| | - Véronique Deschodt-Arsac
- Laboratoire de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS Université Bordeaux 2, Bordeaux, France
| | - Gilles Gouspillou
- Laboratoire de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS Université Bordeaux 2, Bordeaux, France
| | - Sylvain Miraux
- Laboratoire de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS Université Bordeaux 2, Bordeaux, France
| | - Bernard Muller
- Laboratoire de Pharmacologie, INSERM U885, Université Bordeaux 2, Bordeaux, France
| | - Jean-Michel Franconi
- Laboratoire de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS Université Bordeaux 2, Bordeaux, France
| | - Eric Thiaudiere
- Laboratoire de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS Université Bordeaux 2, Bordeaux, France
| | - Philippe Diolez
- Laboratoire de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS Université Bordeaux 2, Bordeaux, France
| |
Collapse
|
14
|
Lusis AJ, Weiss JN. Cardiovascular networks: systems-based approaches to cardiovascular disease. Circulation 2010; 121:157-70. [PMID: 20048233 DOI: 10.1161/circulationaha.108.847699] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Aldons J Lusis
- Department of Medicine/Division of Cardiology, BH-307 CHS, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA.
| | | |
Collapse
|
15
|
Frutos R, Viari A, Vachiéry N, Boyer F, Lefrançois T, Martinez D. Emergence and potential of high-throughput and integrative approaches in pathology. Ann N Y Acad Sci 2009; 1149:62-5. [PMID: 19120175 DOI: 10.1196/annals.1428.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In recent years a major revolution has occurred in the analysis and understanding of pathogenesis and host-pathogens/parasite interactions. This revolution has been achieved through the emergence of the high-throughput integrative approaches used in the "omics" fields-such as genomics, transcriptomics, proteomics, interactomics, and metabolomics. The novelty of these approaches has resulted from the development of high-throughput apparatus, assisted by the increasing power and software of computers that allow for high-speed, multifactorial simultaneous analysis of numerous samples. This level of integration allows for in-depth analysis of mechanisms, pace, and patterns of the evolution and adaptation of pathogens. This evolution from linear to multifactorial approaches has opened new ways of creating and characterizing new vaccines, diagnostic candidates, and drug targets.
Collapse
Affiliation(s)
- Roger Frutos
- Cirad, TA A-15/G, Campus International de Baillarguet, Montpellier, France
| | | | | | | | | | | |
Collapse
|
16
|
Hayashi H, Shiferaw Y, Sato D, Nihei M, Lin SF, Chen PS, Garfinkel A, Weiss JN, Qu Z. Dynamic origin of spatially discordant alternans in cardiac tissue. Biophys J 2006; 92:448-60. [PMID: 17071663 PMCID: PMC1751420 DOI: 10.1529/biophysj.106.091009] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alternans, a condition in which there is a beat-to-beat alternation in the electromechanical response of a periodically stimulated cardiac cell, has been linked to the genesis of life-threatening ventricular arrhythmias. Optical mapping of membrane voltage (V(m)) and intracellular calcium (Ca(i)) on the surface of animal hearts reveals complex spatial patterns of alternans. In particular, spatially discordant alternans has been observed in which regions with a large-small-large action potential duration (APD) alternate out-of-phase adjacent to regions of small-large-small APD. However, the underlying mechanisms that lead to the initiation of discordant alternans and govern its spatiotemporal properties are not well understood. Using mathematical modeling, we show that dynamic changes in the spatial distribution of discordant alternans can be used to pinpoint the underlying mechanisms. Optical mapping of V(m) and Ca(i) in paced rabbit hearts revealed that spatially discordant alternans induced by rapid pacing exhibits properties consistent with a purely dynamical mechanism as shown in theoretical studies. Our results support the viewpoint that spatially discordant alternans in the heart can be formed via a dynamical pattern formation process which does not require tissue heterogeneity.
Collapse
Affiliation(s)
- Hideki Hayashi
- Division of Cardiology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cavalli A, Carloni P, Recanatini M. Target-Related Applications of First Principles Quantum Chemical Methods in Drug Design. Chem Rev 2006; 106:3497-519. [PMID: 16967914 DOI: 10.1021/cr050579p] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Cavalli
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | | | | |
Collapse
|
18
|
Jelić S, Cupić Z, Kolar-Anić L. Mathematical modeling of the hypothalamic-pituitary-adrenal system activity. Math Biosci 2005; 197:173-87. [PMID: 16112688 DOI: 10.1016/j.mbs.2005.06.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 05/24/2005] [Accepted: 06/30/2005] [Indexed: 12/22/2022]
Abstract
Mathematical modeling has proven to be valuable in understanding of the complex biological systems dynamics. In the present report we have developed an initial model of the hypothalamic-pituitary-adrenal system self-regulatory activity. A four-dimensional non-linear differential equation model of the hormone secretion was formulated and used to analyze plasma cortisol levels in humans. The aim of this work was to explore in greater detail the role of this system in normal, homeostatic, conditions, since it is the first and unavoidable step in further understanding of the role of this complex neuroendocrine system in pathophysiological conditions. Neither the underlying mechanisms nor the physiological significance of this system are fully understood yet.
Collapse
Affiliation(s)
- Smiljana Jelić
- Department of Theoretical Physics and Physics of Condensed Matter 020/2, Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, Serbia and Montenegro.
| | | | | |
Collapse
|
19
|
Madhavan R, Peng HB. Molecular regulation of postsynaptic differentiation at the neuromuscular junction. IUBMB Life 2005; 57:719-30. [PMID: 16511964 DOI: 10.1080/15216540500338739] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The neuromuscular junction (NMJ) is a synapse that develops between a motor neuron and a muscle fiber. A defining feature of NMJ development in vertebrates is the re-distribution of muscle acetylcholine (ACh) receptors (AChRs) following innervation, which generates high-density AChR clusters at the postsynaptic membrane and disperses aneural AChR clusters formed in muscle before innervation. This process in vivo requires MuSK, a muscle-specific receptor tyrosine kinase that triggers AChR re-distribution when activated; rapsyn, a muscle protein that binds and clusters AChRs; agrin, a nerve-secreted heparan-sulfate proteoglycan that activates MuSK; and ACh, a neurotransmitter that stimulates muscle and also disperses aneural AChR clusters. Moreover, in cultured muscle cells, several additional muscle- and nerve-derived molecules induce, mediate or participate in AChR clustering and dispersal. In this review we discuss how regulation of AChR re-distribution by multiple factors ensures aggregation of AChRs exclusively at NMJs.
Collapse
Affiliation(s)
- Raghavan Madhavan
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | | |
Collapse
|
20
|
Grizzi F, Russo C, Colombo P, Franceschini B, Frezza EE, Cobos E, Chiriva-Internati M. Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension. BMC Cancer 2005; 5:14. [PMID: 15701176 PMCID: PMC549205 DOI: 10.1186/1471-2407-5-14] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 02/08/2005] [Indexed: 01/16/2023] Open
Abstract
Background Modeling the complex development and growth of tumor angiogenesis using mathematics and biological data is a burgeoning area of cancer research. Architectural complexity is the main feature of every anatomical system, including organs, tissues, cells and sub-cellular entities. The vascular system is a complex network whose geometrical characteristics cannot be properly defined using the principles of Euclidean geometry, which is only capable of interpreting regular and smooth objects that are almost impossible to find in Nature. However, fractal geometry is a more powerful means of quantifying the spatial complexity of real objects. Methods This paper introduces the surface fractal dimension (Ds) as a numerical index of the two-dimensional (2-D) geometrical complexity of tumor vascular networks, and their behavior during computer-simulated changes in vessel density and distribution. Results We show that Ds significantly depends on the number of vessels and their pattern of distribution. This demonstrates that the quantitative evaluation of the 2-D geometrical complexity of tumor vascular systems can be useful not only to measure its complex architecture, but also to model its development and growth. Conclusions Studying the fractal properties of neovascularity induces reflections upon the real significance of the complex form of branched anatomical structures, in an attempt to define more appropriate methods of describing them quantitatively. This knowledge can be used to predict the aggressiveness of malignant tumors and design compounds that can halt the process of angiogenesis and influence tumor growth.
Collapse
Affiliation(s)
- Fabio Grizzi
- Scientific Direction, Istituto Clinico Humanitas, Via Manzoni 56 – 20089 Rozzano, Milan, Italy
- "Michele Rodriguez" Foundation-Institute for Quantitative Measures in Medicine, Via Ludovico Di Breme 79 – 20100 Milan Italy
| | - Carlo Russo
- Scientific Direction, Istituto Clinico Humanitas, Via Manzoni 56 – 20089 Rozzano, Milan, Italy
- "Michele Rodriguez" Foundation-Institute for Quantitative Measures in Medicine, Via Ludovico Di Breme 79 – 20100 Milan Italy
| | - Piergiuseppe Colombo
- Department of Pathology, Istituto Clinico Humanitas, Via Manzoni 56 – 20089 Rozzano, Milan, Italy
| | - Barbara Franceschini
- Scientific Direction, Istituto Clinico Humanitas, Via Manzoni 56 – 20089 Rozzano, Milan, Italy
- "Michele Rodriguez" Foundation-Institute for Quantitative Measures in Medicine, Via Ludovico Di Breme 79 – 20100 Milan Italy
| | - Eldo E Frezza
- Department of Surgery, Texas Tech University Health Science Center and the Southwest Cancer Treatment and Research Center, 79430 Lubbock, Texas, USA
| | - Everardo Cobos
- Department of Internal Medicine, Texas Tech University Health Science Center and the Southwest Cancer Treatment and Research Center, 79430 Lubbock, Texas, USA
| | - Maurizio Chiriva-Internati
- Department of Microbiology and Immunology, Texas Tech University Health Science Center and the Southwest Cancer Treatment and Research Center, 79430 Lubbock, Texas, USA
| |
Collapse
|
21
|
Chesney RW. American Pediatric Society Presidential Address 2003: the failure of Ockham's razor in 21st century pediatrics. Pediatr Res 2004; 55:903-7. [PMID: 15028840 DOI: 10.1203/01.pdr.0000125256.53953.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Russell W Chesney
- University of Tennessee Health Science Center, Department of Pediatrics, Le Bonheur Children's Medical Center, 50 N. Dunlap, Room 306-307, Memphis, TN 38103, USA.
| |
Collapse
|
22
|
|