1
|
Saha S, Müller D, Clark AG. Mechanosensory feedback loops during chronic inflammation. Front Cell Dev Biol 2023; 11:1225677. [PMID: 37492225 PMCID: PMC10365287 DOI: 10.3389/fcell.2023.1225677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Epithelial tissues are crucial to maintaining healthy organization and compartmentalization in various organs and act as a first line of defense against infection in barrier organs such as the skin, lungs and intestine. Disruption or injury to these barriers can lead to infiltration of resident or foreign microbes, initiating local inflammation. One often overlooked aspect of this response is local changes in tissue mechanics during inflammation. In this mini-review, we summarize known molecular mechanisms linking disruption of epithelial barrier function to mechanical changes in epithelial tissues. We consider direct mechanisms, such as changes in the secretion of extracellular matrix (ECM)-modulating enzymes by immune cells as well as indirect mechanisms including local activation of fibroblasts. We discuss how these mechanical changes can modulate local immune cell activity and inflammation and perturb epithelial homeostasis, further dysregulating epithelial barrier function. We propose that this two-way relationship between loss of barrier function and altered tissue mechanics can lead to a positive feedback loop that further perpetuates inflammation. We discuss this cycle in the context of several chronic inflammatory diseases, including inflammatory bowel disease (IBD), liver disease and cancer, and we present the modulation of tissue mechanics as a new framework for combating chronic inflammation.
Collapse
Affiliation(s)
- Sarbari Saha
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Germany
| | - Dafne Müller
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
| | - Andrew G. Clark
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Germany
| |
Collapse
|
2
|
Wong ZY, Nee E, Coles M, Buckley CD. Why does understanding the biology of fibroblasts in immunity really matter? PLoS Biol 2023; 21:e3001954. [PMID: 36745597 PMCID: PMC9901782 DOI: 10.1371/journal.pbio.3001954] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fibroblasts are known for their ability to make and modify the extracellular matrix. However, there is more to them than meets the eye. It is now clear that they help define tissue microenvironments and support immune responses in organs. As technology advances, we have started to uncover the secrets of fibroblasts. In this Essay, we present fibroblasts as not only the builders and renovators of tissue environments but also the rheostat cells for immune circuits. Although they perform location-specific functions, they do not have badges of fixed identity. Instead, they display a spectrum of functional states and can swing between these states depending on the needs of the organ. As fibroblasts participate in a range of activities both in health and disease, finding the key factors that alter their development and functional states will be an important goal to restore homeostasis in maladapted tissues.
Collapse
Affiliation(s)
- Zhi Yi Wong
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Eloise Nee
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Mark Coles
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
3
|
Meng F, Shen C, Yang L, Ni C, Huang J, Lin K, Cao Z, Xu S, Cui W, Wang X, Zhou B, Xiong C, Wang J, Zhao B. Mechanical stretching boosts expansion and regeneration of intestinal organoids through fueling stem cell self-renewal. CELL REGENERATION 2022; 11:39. [DOI: 10.1186/s13619-022-00137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022]
Abstract
AbstractIntestinal organoids, derived from intestinal stem cell self-organization, recapitulate the tissue structures and behaviors of the intestinal epithelium, which hold great potential for the study of developmental biology, disease modeling, and regenerative medicine. The intestinal epithelium is exposed to dynamic mechanical forces which exert profound effects on gut development. However, the conventional intestinal organoid culture system neglects the key role of mechanical microenvironments but relies solely on biological factors. Here, we show that adding cyclic stretch to intestinal organoid cultures remarkably up-regulates the signature gene expression and proliferation of intestinal stem cells. Furthermore, mechanical stretching stimulates the expansion of SOX9+ progenitors by activating the Wnt/β-Catenin signaling. These data demonstrate that the incorporation of mechanical stretch boosts the stemness of intestinal stem cells, thus benefiting organoid growth. Our findings have provided a way to optimize an organoid generation system through understanding cross-talk between biological and mechanical factors, paving the way for the application of mechanical forces in organoid-based models.
Collapse
|
4
|
Oncel S, Basson MD. Gut homeostasis, injury, and healing: New therapeutic targets. World J Gastroenterol 2022; 28:1725-1750. [PMID: 35633906 PMCID: PMC9099196 DOI: 10.3748/wjg.v28.i17.1725] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/12/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
The integrity of the gastrointestinal mucosa plays a crucial role in gut homeostasis, which depends upon the balance between mucosal injury by destructive factors and healing via protective factors. The persistence of noxious agents such as acid, pepsin, nonsteroidal anti-inflammatory drugs, or Helicobacter pylori breaks down the mucosal barrier and injury occurs. Depending upon the size and site of the wound, it is healed by complex and overlapping processes involving membrane resealing, cell spreading, purse-string contraction, restitution, differentiation, angiogenesis, and vasculogenesis, each modulated by extracellular regulators. Unfortunately, the gut does not always heal, leading to such pathology as peptic ulcers or inflammatory bowel disease. Currently available therapeutics such as proton pump inhibitors, histamine-2 receptor antagonists, sucralfate, 5-aminosalicylate, antibiotics, corticosteroids, and immunosuppressants all attempt to minimize or reduce injury to the gastrointestinal tract. More recent studies have focused on improving mucosal defense or directly promoting mucosal repair. Many investigations have sought to enhance mucosal defense by stimulating mucus secretion, mucosal blood flow, or tight junction function. Conversely, new attempts to directly promote mucosal repair target proteins that modulate cytoskeleton dynamics such as tubulin, talin, Ehm2, filamin-a, gelsolin, and flightless I or that proteins regulate focal adhesions dynamics such as focal adhesion kinase. This article summarizes the pathobiology of gastrointestinal mucosal healing and reviews potential new therapeutic targets.
Collapse
Affiliation(s)
- Sema Oncel
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Marc D Basson
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Surgery, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| |
Collapse
|
5
|
Fang G, Lu H, Al-Nakashli R, Chapman R, Zhang Y, Ju LA, Lin G, Stenzel MH, Jin D. Enabling peristalsis of human colon tumor organoids on microfluidic chips. Biofabrication 2021; 14. [PMID: 34638112 DOI: 10.1088/1758-5090/ac2ef9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/12/2021] [Indexed: 11/12/2022]
Abstract
Peristalsis in the digestive tract is crucial to maintain physiological functions. It remains challenging to mimic the peristaltic microenvironment in gastrointestinal organoid culture. Here, we present a method to model the peristalsis for human colon tumor organoids on a microfluidic chip. The chip contains hundreds of lateral microwells and a surrounding pressure channel. Human colon tumor organoids growing in the microwell were cyclically contracted by pressure channel, mimicking thein vivomechano-stimulus by intestinal muscles. The chip allows the control of peristalsis amplitude and rhythm and the high throughput culture of organoids simultaneously. By applying 8% amplitude with 8 ∼ 10 times min-1, we observed the enhanced expression of Lgr5 and Ki67. Moreover, ellipticine-loaded polymeric micelles showed reduced uptake in the organoids under peristalsis and resulted in compromised anti-tumor efficacy. The results indicate the importance of mechanical stimuli mimicking the physiological environment when usingin vitromodels to evaluate nanoparticles. This work provides a method for attaining more reliable and representative organoids models in nanomedicine.
Collapse
Affiliation(s)
- Guocheng Fang
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway Ultimo, Sydney, NSW 2007, Australia
| | - Hongxu Lu
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway Ultimo, Sydney, NSW 2007, Australia
| | - Russul Al-Nakashli
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Robert Chapman
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yingqi Zhang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, Sydney, NSW 2008, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, Sydney, NSW 2008, Australia
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway Ultimo, Sydney, NSW 2007, Australia
| | - Martina H Stenzel
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway Ultimo, Sydney, NSW 2007, Australia.,UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
| |
Collapse
|
6
|
Hinman SS, Huling J, Wang Y, Wang H, Bretherton RC, DeForest CA, Allbritton NL. Magnetically-propelled fecal surrogates for modeling the impact of solid-induced shear forces on primary colonic epithelial cells. Biomaterials 2021; 276:121059. [PMID: 34412014 PMCID: PMC8405591 DOI: 10.1016/j.biomaterials.2021.121059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022]
Abstract
The colonic epithelium is continuously exposed to an array of biological and mechanical stimuli as its luminal contents are guided over the epithelial surface through regulated smooth muscle contraction. In this report, the propulsion of solid fecal contents over the colonic epithelium is recapitulated through noninvasive actuation of magnetic agarose hydrogels over primary intestinal epithelial cultures, in contrast to the vast majority of platforms that apply shear forces through liquid microflow. Software-controlled magnetic stepper motors enable experimental control over the frequency and velocity of these events to match in vivo propulsive contractions, while the integration of standardized well plate spacing facilitates rapid integration into existing assay pipelines. The application of these solid-induced shear forces did not deleteriously affect cell monolayer surface coverage, viability, or transepithelial electrical resistance unless the device parameters were raised to a 50× greater contraction frequency and 4× greater fecal velocity than those observed in healthy humans. At a frequency and velocity that is consistent with average human colonic motility, differentiation of the epithelial cells into absorptive and goblet cell phenotypes was not affected. Protein secretion was modulated with a two-fold increase in luminal mucin-2 secretion and a significant reduction in basal interleukin-8 secretion. F-actin, zonula occludens-1, and E-cadherin were each present in their proper basolateral locations, similar to those of static control cultures. While cellular height was unaffected by magnetic agarose propulsion, several alterations in lateral morphology were observed including decreased circularity and compactness, and an increase in major axis length, which align with surface epithelial cell morphologies observed in vivo and may represent early markers of luminal exfoliation. This platform will be of widespread utility for the investigation of fecal propulsive forces on intestinal physiology, shedding light on how the colonic epithelium responds to mechanical cues.
Collapse
Affiliation(s)
- Samuel S Hinman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jennifer Huling
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina State University, Raleigh, NC, USA
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hao Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ross C Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Cole A DeForest
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Abstract
There is a growing interest in understanding tissue organization, homeostasis, and inflammation. However, despite an abundance of data, the organizing principles of tissue biology remain poorly defined. Here, we present a perspective on tissue organization based on the relationships between cell types and the functions that they perform. We provide a formal definition of tissue homeostasis as a collection of circuits that regulate specific variables within the tissue environment, and we describe how the functional organization of tissues allows for the maintenance of both tissue and systemic homeostasis. This leads to a natural definition of inflammation as a response to deviations from homeostasis that cannot be reversed by homeostatic mechanisms alone. We describe how inflammatory signals act on the same cellular functions involved in normal tissue organization and homeostasis in order to coordinate emergency responses to perturbations and ultimately return the system to a homeostatic state. Finally, we consider the hierarchy of homeostatic and inflammatory circuits and the implications for the development of inflammatory diseases.
Collapse
Affiliation(s)
- Matthew L. Meizlish
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Ruth A. Franklin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Current affiliation: Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xu Zhou
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Current affiliation: Division of Gastroenterology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
8
|
Agarwal T, Onesto V, Lamboni L, Ansari A, Maiti TK, Makvandi P, Vosough M, Yang G. Engineering biomimetic intestinal topological features in 3D tissue models: retrospects and prospects. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00120-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Wang J, Clark DL, Jacobi SK, Velleman SG. Supplementation of vitamin E and omega-3 fatty acids during the early posthatch period on intestinal morphology and gene expression differentiation in broilers. Poult Sci 2020; 100:100954. [PMID: 33518304 PMCID: PMC7936210 DOI: 10.1016/j.psj.2020.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early posthatch nutrition is important for gut health. Vitamin E (VE) and omega-3 (n-3) fatty acids can improve gut health through antioxidative and anti-inflammatory effects. The objective of this study was to identify the effects of VE, n-3 fatty acids, and combination of both during the starter phase (0–10 d) or grower phase (11–24 d) on intestinal morphology and expression of genes associated with gut health. A total of 210 Ross 708 broilers were randomly assigned into 7 treatments with 10 replicates of 3 birds each. The control group was fed a corn–soybean meal–basal diet during the entire study (0–58 d). Supplementation of VE (200 IU/kg), n-3 fatty acids (n-6/n-3 ratio of 3.2:1), and combination of both were fed during the starter phase (0–10 d) or grower phase (11–24 d). All of the broilers were harvested at 58 d of age. Villus height, crypt depth, villus width, distance between villi, and number of intraepithelial lymphocytes were obtained. Expression of 21 genes was measured using NanoString analysis. Expression of solute carrier family 15 member 1 (P = 0.01) associated with peptide transport and mucin 2 (P = 0.03) related with intestinal mucus barrier was increased in the broilers supplemented with n-3 fatty acids in the grower diet compared with the control. Expression of solute carrier family 7 member 1 associated with amino acid transport was decreased in the group supplemented with n-3 fatty acids during the starter phase compared with the group supplemented with n-3 fatty acids (P = 0.01) or VE and n-3 fatty acids during the grower phase (P = 0.03). These data suggest that VE and n-3 fatty acids supplemented during the grower phase have a positive effect on improving nutrient transport with n-3 fatty acids supplementation in the grower diet showing the most beneficial effect. These findings can be used in the development of nutritional management strategies to improve broiler growth performance and meat quality.
Collapse
Affiliation(s)
- Ji Wang
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA
| | - Daniel L Clark
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA
| | - Sheila K Jacobi
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University, Wooster OH 44691, USA.
| |
Collapse
|
10
|
Chaturvedi LS, Wang Q, More SK, Vomhof-DeKrey EE, Basson MD. Schlafen 12 mediates the effects of butyrate and repetitive mechanical deformation on intestinal epithelial differentiation in human Caco-2 intestinal epithelial cells. Hum Cell 2019; 32:240-250. [PMID: 30875077 DOI: 10.1007/s13577-019-00247-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Intestinal epithelial differentiation may be stimulated by diverse pathways including luminal short-chain fatty acids and repetitive mechanical deformation engendered by villous motility and peristalsis. Schlafen 12 (SLFN12) is a cytosolic protein that stimulates sucrase-isomaltase (SI) expression. We hypothesized that two disparate differentiating stimuli, butyrate and repetitive deformation, would each stimulate SLFN12 expression in human Caco-2 intestinal epithelial cells and that increased SLFN12 expression would contribute to the differentiating activity of the human Caco-2 intestinal epithelial cells. We stimulated Caco-2 cells with 1-2 mM butyrate or repetitive mechanical deformation at 10 cycles/min at an average 10% strain, and measured SLFN12 and SI expression by qRT-PCR. Sodium butyrate enhanced SLFN12 expression at both 1 mM and 2 mM although SI expression was only significantly increased at 2 mM. Repetitive deformation induced by cyclic mechanical strain also significantly increased both SLFN12 and SI gene expression. Reducing SLFN12 by siRNA decreased basal, deformation-stimulated, and butyrate-stimulated SLFN12 levels, compared to control cells treated with non-targeting siRNA, although both deformation and butyrate were still able to stimulate SLFN12 expression in siRNA-treated cells compared to control cells treated with the same siRNA. This attenuation of the increase in SLFN12 expression in response to mechanical strain or butyrate was accompanied by parallel attenuation of SI expression. Butyrate stimulated SI-promoter activity, and reducing SLFN12 by siRNA attenuated butyrate-induced SI-promoter activity. These data suggest that SLFN12 mediates at least in part the stimulation by both butyrate and repetitive mechanical deformation of sucrase-isomaltase, a late stage differentiation marker in human intestinal epithelial cells.
Collapse
Affiliation(s)
- Lakshmi S Chaturvedi
- Departments of Surgery, Pathology, and Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA.,Currently at Departments of Pharmaceutical Sciences and Biomedical Sciences-College of Pharmacy, Departments of Basic Sciences and Surgery-College of Medicine, California Northstate University, Elk Grove, CA, 95757, USA
| | - Qinggang Wang
- Departments of Surgery, Pathology, and Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA
| | - Shyam K More
- Departments of Surgery, Pathology, and Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA
| | - Emilie E Vomhof-DeKrey
- Departments of Surgery, Pathology, and Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA
| | - Marc D Basson
- Departments of Surgery, Pathology, and Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA.
| |
Collapse
|
11
|
Pardo-Saganta A, Calvo IA, Saez B, Prosper F. Role of the Extracellular Matrix in Stem Cell Maintenance. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-0149-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Jang M, Koh I, Lee JE, Lim JY, Cheong JH, Kim P. Increased extracellular matrix density disrupts E-cadherin/β-catenin complex in gastric cancer cells. Biomater Sci 2018; 6:2704-2713. [PMID: 30151505 DOI: 10.1039/c8bm00843d] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During gastric cancer (GC) progression, increased extracellular matrix (ECM) deposition, notably collagen type I, correlates with an overall increase in expression of the mesenchymal phenotype. In GC tissue, the intestinal epithelium exhibits impaired cell-cell adhesion and enhanced cell-ECM adhesion. The alteration of intercellular integrity is one of tumorigenesis feature including tumor invasion and metastasis. Using a density-varying ECM, we studied the effect of ECM density on both intercellular- and ECM-interactions according to alterations of ECM-mediated signaling. A dense collagen matrix increases integrin-mediated cell-ECM interactions with phosphorylated FAK and ERK signaling in human gastric adenocarcinoma cells (AGS, MKN74), which regulates GC proliferation and the chemotherapeutic response. In addition, GC cells exhibited a disrupted membranous E-cadherin/β-catenin complex and, remarkably, showed cytoplasmic or nucleic localization of β-catenin in response to collagen density. Furthermore, we found that membranous E-cadherin/β-catenin complex could be recovered by inhibiting the phosphorylation of FAK, which in turn influences the chemotherapeutic effect. These results provide insight into how matrix density differentially regulates cancer cell phenotype and may have significant implications for the design of biomaterials with appropriate physical properties for in vitro tumor models.
Collapse
Affiliation(s)
- Minjeong Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | | | | | | | | | | |
Collapse
|
13
|
Costello CM, Phillipsen MB, Hartmanis LM, Kwasnica MA, Chen V, Hackam D, Chang MW, Bentley WE, March JC. Microscale Bioreactors for in situ characterization of GI epithelial cell physiology. Sci Rep 2017; 7:12515. [PMID: 28970586 PMCID: PMC5624909 DOI: 10.1038/s41598-017-12984-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/14/2017] [Indexed: 02/08/2023] Open
Abstract
The development of in vitro artificial small intestines that realistically mimic in vivo systems will enable vast improvement of our understanding of the human gut and its impact on human health. Synthetic in vitro models can control specific parameters, including (but not limited to) cell types, fluid flow, nutrient profiles and gaseous exchange. They are also “open” systems, enabling access to chemical and physiological information. In this work, we demonstrate the importance of gut surface topography and fluid flow dynamics which are shown to impact epithelial cell growth, proliferation and intestinal cell function. We have constructed a small intestinal bioreactor using 3-D printing and polymeric scaffolds that mimic the 3-D topography of the intestine and its fluid flow. Our results indicate that TEER measurements, which are typically high in static 2-D Transwell apparatuses, is lower in the presence of liquid sheer and 3-D topography compared to a flat scaffold and static conditions. There was also increased cell proliferation and discovered localized regions of elevated apoptosis, specifically at the tips of the villi, where there is highest sheer. Similarly, glucose was actively transported (as opposed to passive) and at higher rates under flow.
Collapse
Affiliation(s)
- Cait M Costello
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Mikkel B Phillipsen
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Leonard M Hartmanis
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Marek A Kwasnica
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Victor Chen
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - David Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, USA
| | - Matthew W Chang
- Department of Biochemistry, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - William E Bentley
- Institute for Biomedical Devices, University of Maryland, Maryland, USA
| | - John C March
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA.
| |
Collapse
|
14
|
Yu H, Hasan NM, In JG, Estes MK, Kovbasnjuk O, Zachos NC, Donowitz M. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology. Annu Rev Physiol 2017; 79:291-312. [PMID: 28192061 PMCID: PMC5549102 DOI: 10.1146/annurev-physiol-021115-105211] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.
Collapse
Affiliation(s)
- Huimin Yu
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Nesrin M Hasan
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Julie G In
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
15
|
Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Ettayebi K, Blutt SE, Hyser JM, Zeng XL, Crawford SE, Broughman JR, Estes MK, Donowitz M. Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp Biol Med (Maywood) 2014; 239:1124-34. [PMID: 24719375 DOI: 10.1177/1535370214529398] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Currently, 9 out of 10 experimental drugs fail in clinical studies. This has caused a 40% plunge in the number of drugs approved by the US Food and Drug Administration (FDA) since 2005. It has been suggested that the mechanistic differences between human diseases modeled in animals (mostly rodents) and the pathophysiology of human diseases might be one of the critical factors that contribute to drug failure in clinical trials. Rapid progress in the field of human stem cell technology has allowed the in-vitro recreation of human tissue that should complement and expand upon the limitations of cell and animal models currently used to study human diseases and drug toxicity. Recent success in the identification and isolation of human intestinal epithelial stem cells (Lgr5(+)) from the small intestine and colon has led to culture of functional intestinal epithelial units termed organoids or enteroids. Intestinal enteroids are comprised of all four types of normal epithelial cells and develop a crypt-villus differentiation axis. They demonstrate major intestinal physiologic functions, including Na(+) absorption and Cl(-) secretion. This review discusses the recent progress in establishing human enteroids as a model of infectious diarrheal diseases such as cholera, rotavirus, and enterohemorrhagic Escherichia coli, and use of the enteroids to determine ways to correct the diarrhea-induced ion transport abnormalities via drug therapy.
Collapse
Affiliation(s)
- Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie In
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Broughman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Nishida M, Murata K, Kanamaru Y, Yabe T. Pectin of Prunus domestica L. alters sulfated structure of cell-surface heparan sulfate in differentiated Caco-2 cells through stimulation of heparan sulfate 6-O-endosulfatase-2. Biosci Biotechnol Biochem 2014; 78:635-43. [DOI: 10.1080/09168451.2014.891937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Although previous reports have suggested that pectin induces morphological changes of the small intestine in vivo, the molecular mechanisms have not been elucidated. As heparan sulfate plays important roles in development of the small intestine, to verify the involvement of heparan sulfate (HS) in the pectin-induced morphological changes of the small intestine, the effects of pectin from Prunus domestica L. on cell-surface HS were investigated using differentiated Caco-2 cells. Disaccharide compositional analysis revealed that sulfated structures of HS were markedly changed by pectin administration. Real-time RT-PCR showed that pectin upregulated human HS 6-O-endosulfatase-2 (HSulf-2) expression and markedly inhibited HSulf-1 expression. Furthermore, inhibition analysis suggested that pretreatment with fibronectin III1C fragment, RGD peptide, and ERK1/2 inhibitor suppressed pectin-induced HSulf-2 expression. These observations indicate that pectin induced the expression of HSulf-2 through the interaction with fibronectin, α5β1 integrin, and ERK1/2, thereby regulating the sulfated structure of HS on differentiated Caco-2 cells.
Collapse
Affiliation(s)
- Mitsutaka Nishida
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Kazuma Murata
- Department of Applied Life Science, Graduate School of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yoshihiro Kanamaru
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- Department of Applied Life Science, Graduate School of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tomio Yabe
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
- Department of Applied Life Science, Graduate School of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
17
|
Measurement of cationic and intracellular modulation of integrin binding affinity by AFM-based nanorobot. Biophys J 2014; 105:40-7. [PMID: 23823222 DOI: 10.1016/j.bpj.2013.05.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/12/2013] [Accepted: 05/30/2013] [Indexed: 11/23/2022] Open
Abstract
Integrins are dynamic transmembrane cation-dependent heterodimers that both anchor cells in position and transduce signals into and out of cells. We used an atomic force microscope (AFM)-based nanorobotic system to measure integrin-binding forces in intact human intestinal epithelial Caco-2 cells. The AFM-based nanorobot enables human-directed, high-accuracy probe positioning and site-specific investigations. Functionalizing the AFM probe with an arginine-glycine-aspartate (RGD)-containing sequence (consensus binding sequence for integrins) allowed us to detect a series of peptide-cell membrane interactions with a median binding force of 115.1 ± 4.9 pN that were not detected in control interactions. Chelating divalent cations from the culture medium abolished these interactions, as did inhibiting intracellular focal adhesion kinase (FAK) using Y15. Adding 1 mM Mg(2+) to the medium caused a rightward shift in the force-binding curve. Adding 1 mM Ca(2+) virtually abolished the RGD-membrane specific interactions and blocked the Mg(2+) effects. Cell adhesion assays demonstrated parallel effects of divalent cations and the FAK inhibitor on cell adhesion. These results demonstrate direct modulation of integrin-binding affinity by both divalent cations and intracellular signal inhibition. Additionally, three binding states (nonspecific, specific inactivated, and specific activated) were delineated from affinity measurements. Although other research has assumed that this process of integrin conformational change causes altered ligand binding, in this work we directly measured these three states in individual integrins in a physiologically based study.
Collapse
|
18
|
Brennan KM, Samuel RS, Graugnard TA, Xiao R, Cantor AH, Pescatore AJ. Organic trace mineral levels in the first 96-h post-hatch impact growth performance and intestinal gene expression in broiler chicks. Biol Trace Elem Res 2013; 156:166-74. [PMID: 24078312 DOI: 10.1007/s12011-013-9813-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/02/2013] [Indexed: 01/06/2023]
Abstract
Alterations in nutrient intake in the avian neonatal posthatch period can impact development, performance, and metabolism in adulthood. Very little is known about how mineral levels during the post-hatch period affect or “program” gene expression patterns later in life. The objective of this study was to determine the effect of post-hatch (0 to 96 h) dietary mineral supplementation on performance, tissue mineral content, and intestinal gene expression profiles in 21-day-old broiler chicks. One-day-old chicks were randomly assigned to one of two treatment groups consisting of N (organic Zn, Cu, and Mn provided at 100 % of recommendations (National Research Council 1994)) and/or L (organic Zn, Cu, and Mn provided at 20 % of recommendations (National Research Council 1994)) diets fed in two intervals (days 1–4, days 5–21) as follows: (1)N–Lor (2)L–L. Performance parameters did not differ between treatments except that body weight gain was greater (P < 0.05) in L–L birds than N–L birds over the experimental period. Bone mineral content was similar for both treatments at day 21. Intestinal gene expression profiling was examined using the Affymetrix GeneChip Chicken genome array. Ingenuity pathway analysis revealed differences in gene expression profiles between N and L treatments at day 5. At day 21, profiles were unique between N–L and L–L, suggesting that the diet fed until day 4 had an impact on gene expression patterns at day 21 even when birds were fed the same diets day 5–day 21. In this study, we demonstrated that diets fed for the 96 h post-hatch had long-term effects on gene expression, providing unique information as to why post-hatch diets are so important for the longterm bird health and productivity.
Collapse
|
19
|
Shaw D, Gohil K, Basson MD. Intestinal mucosal atrophy and adaptation. World J Gastroenterol 2012; 18:6357-75. [PMID: 23197881 PMCID: PMC3508630 DOI: 10.3748/wjg.v18.i44.6357] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/06/2012] [Accepted: 11/14/2012] [Indexed: 02/06/2023] Open
Abstract
Mucosal adaptation is an essential process in gut homeostasis. The intestinal mucosa adapts to a range of pathological conditions including starvation, short-gut syndrome, obesity, and bariatric surgery. Broadly, these adaptive functions can be grouped into proliferation and differentiation. These are influenced by diverse interactions with hormonal, immune, dietary, nervous, and mechanical stimuli. It seems likely that clinical outcomes can be improved by manipulating the physiology of adaptation. This review will summarize current understanding of the basic science surrounding adaptation, delineate the wide range of potential targets for therapeutic intervention, and discuss how these might be incorporated into an overall treatment plan. Deeper insight into the physiologic basis of adaptation will identify further targets for intervention to improve clinical outcomes.
Collapse
|
20
|
Kovalenko PL, Flanigan TL, Chaturvedi L, Basson MD. Influence of defunctionalization and mechanical forces on intestinal epithelial wound healing. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1134-43. [PMID: 22997197 PMCID: PMC3517654 DOI: 10.1152/ajpgi.00321.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The influence on mucosal healing of luminal nutrient flow and the forces it creates are poorly understood. We hypothesized that altered deformation and extracellular pressure mediate, in part, the effects of defunctionalization on mucosal healing. We created patent or partially obstructing defunctionalizing jejunal Roux-en-Y anastomoses in rats to investigate mucosal healing in the absence or presence of luminal nutrient flow and measured luminal pressures to document partial obstruction. We used serosal acetic acid to induce ulcers in the proximal, distal, and defunctionalized intestinal segments. After 3 days, we assessed ulcer area, proliferation, and phosphorylated ERK. In vitro, we measured proliferation and migration in Caco-2 and IEC-6 intestinal epithelial cells subjected to cyclic strain, increased extracellular pressure, or strain and pressure together. Defunctionalization of intestine without obstruction reduced phosphorylated ERK, slowed ulcer healing, and inhibited mucosal proliferation. This outcome was blocked by PD-98059. Partial obstruction delayed ulcer healing but stimulated proliferation independently of ERK. In vitro, strain increased Caco-2 and IEC-6 proliferation and reduced migration across collagen but reduced proliferation and increased migration across fibronectin. In contrast, increased pressure and the combination of pressure and strain increased proliferation and reduced migration independently of substrate. PD-98059 reduced basal migration but increased migration under pressure. These results suggest that loss of the repetitive distension may decrease mucosal healing in defunctionalized bowel, while increased luminal pressure above anastomoses or in spastic bowel disease could further inhibit mucosal healing, despite peristaltic repetitive strain. ERK may mediate the effects of repetitive deformation but not the effects of pressure.
Collapse
Affiliation(s)
- Pavlo L. Kovalenko
- 1Department of Surgery, Michigan State University, Lansing, Michigan; and
| | - Thomas L. Flanigan
- 2Research Service, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
| | - Lakshmi Chaturvedi
- 1Department of Surgery, Michigan State University, Lansing, Michigan; and ,2Research Service, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
| | - Marc D. Basson
- 1Department of Surgery, Michigan State University, Lansing, Michigan; and ,2Research Service, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
| |
Collapse
|
21
|
RGD-Dependent Epithelial Cell-Matrix Interactions in the Human Intestinal Crypt. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:248759. [PMID: 22988499 PMCID: PMC3440950 DOI: 10.1155/2012/248759] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/05/2012] [Accepted: 07/22/2012] [Indexed: 01/09/2023]
Abstract
Interactions between the extracellular matrix (ECM) and integrin receptors trigger structural and functional bonds between the cell microenvironment and the cytoskeleton. Such connections are essential for adhesion structure integrity and are key players in regulating transduction of specific intracellular signals, which in turn regulate the organization of the cell microenvironment and, consequently, cell function. The RGD peptide-dependent integrins represent a key subgroup of ECM receptors involved in the maintenance of epithelial homeostasis. Here we review recent findings on RGD-dependent ECM-integrin interactions and their roles in human intestinal epithelial crypt cells.
Collapse
|
22
|
Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. LAB ON A CHIP 2012; 12:2165-74. [PMID: 22434367 DOI: 10.1039/c2lc40074j] [Citation(s) in RCA: 1082] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Development of an in vitro living cell-based model of the intestine that mimics the mechanical, structural, absorptive, transport and pathophysiological properties of the human gut along with its crucial microbial symbionts could accelerate pharmaceutical development, and potentially replace animal testing. Here, we describe a biomimetic 'human gut-on-a-chip' microdevice composed of two microfluidic channels separated by a porous flexible membrane coated with extracellular matrix (ECM) and lined by human intestinal epithelial (Caco-2) cells that mimics the complex structure and physiology of living intestine. The gut microenvironment is recreated by flowing fluid at a low rate (30 μL h(-1)) producing low shear stress (0.02 dyne cm(-2)) over the microchannels, and by exerting cyclic strain (10%; 0.15 Hz) that mimics physiological peristaltic motions. Under these conditions, a columnar epithelium develops that polarizes rapidly, spontaneously grows into folds that recapitulate the structure of intestinal villi, and forms a high integrity barrier to small molecules that better mimics whole intestine than cells in cultured in static Transwell models. In addition, a normal intestinal microbe (Lactobacillus rhamnosus GG) can be successfully co-cultured for extended periods (>1 week) on the luminal surface of the cultured epithelium without compromising epithelial cell viability, and this actually improves barrier function as previously observed in humans. Thus, this gut-on-a-chip recapitulates multiple dynamic physical and functional features of human intestine that are critical for its function within a controlled microfluidic environment that is amenable for transport, absorption, and toxicity studies, and hence it should have great value for drug testing as well as development of novel intestinal disease models.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
23
|
Pejchal J, Novotný J, Mařák V, Österreicher J, Tichý A, Vávrová J, Šinkorová Z, Zárybnická L, Novotná E, Chládek J, Babicová A, Kubelková K, Kuča K. Activation of p38 MAPK and expression of TGF-β1 in rat colon enterocytes after whole body γ-irradiation. Int J Radiat Biol 2012; 88:348-58. [DOI: 10.3109/09553002.2012.654044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Agha R, Ogawa R, Pietramaggiori G, Orgill DP. A Review of the Role of Mechanical Forces in Cutaneous Wound Healing. J Surg Res 2011; 171:700-8. [DOI: 10.1016/j.jss.2011.07.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 06/17/2011] [Accepted: 07/07/2011] [Indexed: 12/14/2022]
|
25
|
Provenzano PP, Keely PJ. Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci 2011; 124:1195-205. [PMID: 21444750 DOI: 10.1242/jcs.067009] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The notion that cell shape and spreading can regulate cell proliferation has evolved over several years, but only recently has this been linked to forces from within and upon the cell. This emerging area of mechanical signaling is proving to be wide-spread and important for all cell types. The microenvironment that surrounds cells provides a complex spectrum of different, simultaneously active, biochemical, structural and mechanical stimuli. In this milieu, cells probe the stiffness of their microenvironment by pulling on the extracellular matrix (ECM) and/or adjacent cells. This process is dependent on transcellular cell-ECM or cell-cell adhesions, as well as cell contractility mediated by Rho GTPases, to provide a functional linkage through which forces are transmitted through the cytoskeleton by intracellular force-generating proteins. This Commentary covers recent advances in the underlying mechanisms that control cell proliferation by mechanical signaling, with an emphasis on the role of 3D microenvironments and in vivo extracellular matrices. Moreover, as there is much recent interest in the tumor-stromal interaction, we will pay particular attention to exciting new data describing the role of mechanical signaling in the progression of breast cancer.
Collapse
Affiliation(s)
- Paolo P Provenzano
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | |
Collapse
|
26
|
Chaturvedi LS, Marsh HM, Basson MD. Role of RhoA and its effectors ROCK and mDia1 in the modulation of deformation-induced FAK, ERK, p38, and MLC motogenic signals in human Caco-2 intestinal epithelial cells. Am J Physiol Cell Physiol 2011; 301:C1224-38. [PMID: 21849669 DOI: 10.1152/ajpcell.00518.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Repetitive deformation enhances intestinal epithelial migration across tissue fibronectin. We evaluated the contribution of RhoA and its effectors Rho-associated kinase (ROK/ROCK) and mammalian diaphanous formins (mDia1) to deformation-induced intestinal epithelial motility across fibronectin and the responsible focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), p38, and myosin light chain (MLC) signaling. We reduced RhoA, ROCK1, ROCK2, and mDia1 by smart-pool double-stranded short-interfering RNAs (siRNA) and pharmacologically inhibited RhoA, ROCK, and FAK in human Caco-2 intestinal epithelial monolayers on fibronectin-coated membranes subjected to 10% repetitive deformation at 10 cycles/min. Migration was measured by wound closure. Stimulation of migration by deformation was prevented by exoenzyme C3, Y27632, or selective RhoA, ROCK1, and ROCK2 or mDia1 siRNAs. RhoA, ROCK inhibition, or RhoA, ROCK1, ROCK2, mDia1, and FAK reduction by siRNA blocked deformation-induced nuclear ERK phosphorylation without preventing ERK phosphorylation in the cytoplasmic protein fraction. Furthermore, RhoA, ROCK inhibition or RhoA, ROCK1, ROCK2, and mDia1 reduction by siRNA also blocked strain-induced FAK-Tyr(925), p38, and MLC phosphorylation. These results suggest that RhoA, ROCK, mDia1, FAK, ERK, p38, and MLC all mediate the stimulation of intestinal epithelial migration by repetitive deformation. This pathway may be an important target for interventions to promote mechanotransduced mucosal healing during inflammation.
Collapse
|
27
|
Amor MBEH, Yacoubi MT, Sakli SEK, Lahouar L, Bakhrouf A, Quershi HA, Achour L. Effect of olive oil and barley diets on the caecal mucosa histomorphology. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2011. [DOI: 10.1007/s12349-010-0042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Li N, Li Q, Zhou XD, Kolosov VP, Perelman JM. Chronic mechanical stress induces mucin 5AC expression in human bronchial epithelial cells through ERK dependent pathways. Mol Biol Rep 2011; 39:1019-28. [PMID: 21556755 DOI: 10.1007/s11033-011-0827-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 05/03/2011] [Indexed: 11/24/2022]
Abstract
Mucus hypersecretion is a common pathological change in chronic inflammatory diseases of the airway. These conditions are usually accompanied by chronic mechanical stress due to airway constriction. Our objective was to study the molecular mechanisms and physical effects of chronic mechanical stress on mucin 5AC (MUC5AC) expression in airway epithelial cells. We exposed normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface to different degrees of chronic compressive mechanical stress (10, 20, 30 cmH(2)O) for 7 days(1 h per day). MUC5AC protein content was detected by enzyme-linked immunosorbent assay (ELISA). MUC5AC mRNA expression was detected by reverse transcription PCR (RT-PCR) and real-time PCR. The effects of chronic mechanical stress on phosphorylated ERK1/2 (p-ERK1/2), phosphorylated JNK (p-JNK), phosphorylated P38 (p-P38), and phosphorylation of FAK at Tyr397 (p-FAK-Y397), were assessed by Western blot. We also assessed the impact of, an EGFR kinase inhibitor (AG1478), an ERK kinase inhibitor (PD-98059), and short interfering RNA (siRNA) targeted to FAK. We found that transcriptional and protein expression levels of MUC5AC were elevated significantly in the 30 cmH(2)O compressive stress group. p-ERK1/2 increased significantly in response to compressive stress and PD-98059 could attenuated stress-induced MUC5AC expression. p-FAK-Y397 increased significantly in response to compressive stress and FAK siRNA attenuated stress-induced ERK activation strongly. AG1478 attenuated stress-induced ERK activation and MUC5AC expression significantly, but incompletely. Combination of FAK siRNA and AG1478 led to complete attenuation of ERK activation and MUC5AC expression. These results suggest that chronic mechanical stress can enhance MUC5AC expression in human bronchial epithelial cells through the ERK signal transduction pathway. Both FAK and EGFR mediate the mitogenic response induced by mechanical stress in human bronchial epithelial cells through an ERK signaling cascade.
Collapse
Affiliation(s)
- Na Li
- Division of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, No.74, Linjiang Road, Chongqing 400010, China
| | | | | | | | | |
Collapse
|
29
|
Gayer CP, Craig DH, Flanigan TL, Reed TD, Cress DE, Basson MD. ERK regulates strain-induced migration and proliferation from different subcellular locations. J Cell Biochem 2010; 109:711-25. [PMID: 20069571 DOI: 10.1002/jcb.22450] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Repetitive deformation like that engendered by peristalsis or villous motility stimulates intestinal epithelial proliferation on collagenous substrates and motility across fibronectin, each requiring ERK. We hypothesized that ERK acts differently at different intracellular sites. We stably transfected Caco-2 cells with ERK decoy expression vectors that permit ERK activation but interfere with its downstream signaling. Targeting sequences constrained the decoy inside or outside the nucleus. We assayed proliferation by cell counting and migration by circular wound closure with or without 10% repetitive deformation at 10 cycles/min. Confocal microscopy confirmed localization of the fusion proteins. Inhibition of phosphorylation of cytoplasmic RSK or nuclear Elk confirmed functionality. Both the nuclear-localized and cytosolic-localized ERK decoys prevented deformation-induced proliferation on collagen. Deformation-induced migration on fibronectin was prevented by constraining the decoy in the nucleus but not in the cytosol. Like the nuclear-localized ERK decoy, a Sef-overexpressing adenovirus that sequesters ERK in the cytoplasm also blocked the motogenic and mitogenic effects of strain. Inhibiting RSK or reducing Elk ablated both the mitogenic and motogenic effects of strain. RSK isoform reduction revealed isoform specificity. These results suggest that ERK must translocate to the nucleus to stimulate cell motility while ERK must act in both the cytosol and the nucleus to stimulate proliferation in response to strain. Selectively targeting ERK within different subcellular compartments may modulate or replace physical force effects on the intestinal mucosa to maintain the intestinal mucosal barrier in settings when peristalsis or villous motility are altered and fibronectin is deposited into injured tissue.
Collapse
|
30
|
Yuan L, Yu Y, Sanders MA, Majumdar APN, Basson MD. Schlafen 3 induction by cyclic strain regulates intestinal epithelial differentiation. Am J Physiol Gastrointest Liver Physiol 2010; 298:G994-G1003. [PMID: 20299602 PMCID: PMC4865113 DOI: 10.1152/ajpgi.00517.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal epithelium is subjected to repetitive deformation during normal gut function by peristalsis and villous motility. In vitro, cyclic strain promotes intestinal epithelial proliferation and induces an absorptive phenotype characterized by increased dipeptidyl dipeptidase (DPPIV) expression. Schlafen 3 is a novel gene recently associated with cellular differentiation. We sought to evaluate whether Schlafen 3 mediates the effects of strain on the differentiation of intestinal epithelial cell (IEC)-6 in the absence or presence of cyclic strain. Strain increased Schlafen 3 mRNA and protein. In cells transfected with a control-nontargeting siRNA, strain increased DPPIV-specific activity. However, Schlafen 3 reduction by siRNA decreased basal DPPIV and prevented any stimulation of DPPIV activity by strain. Schlafen 3 reduction also prevented DPPIV induction by sodium butyrate (1 mM) or transforming growth factor (TGF)-beta (0.1 ng/ml), two unrelated differentiating stimuli. However, Schlafen-3 reduction by siRNA did not prevent the mitogenic effect of strain or that of EGF. Blocking Src and phosphatidyl inositol (PI3)-kinase prevented strain induction of Schlafen 3, but Schlafen 3 induction required activation of p38 but not ERK. These results suggest that cyclic strain induces an absorptive phenotype characterized by increased DPPIV activity via Src-, p38-, and PI3-kinase-dependent induction of Schlafen 3 in rat IEC-6 cells on collagen, whereas Schlafen 3 may also be a key factor in the induction of intestinal epithelial differentiation by other stimuli such as sodium butyrate or TGF-beta. The induction of Schlafen 3 or its human homologs may modulate intestinal epithelial differentiation and preserve the gut mucosa during normal gut function.
Collapse
Affiliation(s)
- Lisi Yuan
- 1Department of Surgery, Michigan State University, Lansing; ,2Research Service, John. D. Dingell VA Medical Center, and ,Departments of 3Anatomy and Cell Biology and
| | - Yingjie Yu
- 2Research Service, John. D. Dingell VA Medical Center, and ,4Internal Medicine, Wayne State University, Detroit, Michigan
| | | | - Adhip P. N. Majumdar
- 2Research Service, John. D. Dingell VA Medical Center, and ,4Internal Medicine, Wayne State University, Detroit, Michigan
| | - Marc D. Basson
- 1Department of Surgery, Michigan State University, Lansing; ,2Research Service, John. D. Dingell VA Medical Center, and ,Departments of 3Anatomy and Cell Biology and
| |
Collapse
|
31
|
Parenteral and enteral feeding in preterm piglets differently affects extracellular matrix proteins, enterocyte proliferation and apoptosis in the small intestine. Br J Nutr 2010; 104:989-97. [DOI: 10.1017/s0007114510001613] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The preterm intestine is immature and responds differently to total parenteral nutrition (TPN) and enteral nutrition, compared with the term intestine. We hypothesised that in preterms, diet composition and feeding route affect mucosal morphology, enterocyte mitosis and apoptosis, and the distribution of laminin-1, fibronectin and collagen IV (extracellular matrix proteins (ECMP)). Preterm piglets (93·5 % of gestation) were delivered via caesarean section and birth weight-matched allocated to one of the four experimental groups: the piglets were either euthanised immediately after delivery, after 3 d of TPN or after 2 d enteral feeding with colostrum or milk formula, following 3 d of TPN. We combined immunohistochemistry, image analysis and stereological measurements to describe the intestinal mucosal layer. No significant changes occurred after 3 d of TPN. Feeding colostrum or milk replacer for 2 d after TPN was associated with an increased crypt depth. Only enteral feeding with colostrum resulted in an increased villus height and mitotic index. Neither TPN nor enteral feeding changed the distribution pattern of ECMP or the occurrence of bifid crypts. The immature distribution pattern of ECMP in TPN-fed piglets, coupled with unchanged enterocyte mitosis and apoptosis indices, illustrates that feeding preterm pigs 3 d TPN does not lead to mucosal atrophy. Despite the invariable distribution of ECMP, colostrum was associated with crypt hyperplasia resulting in an increased villus height. These data illustrate that some mechanisms regulating cell turnover are immature in preterms and may in part explain the abnormal gut responses to TPN and enteral feeding in prematurely born pigs.
Collapse
|
32
|
Gagné D, Groulx JF, Benoit YD, Basora N, Herring E, Vachon PH, Beaulieu JF. Integrin-linked kinase regulates migration and proliferation of human intestinal cells under a fibronectin-dependent mechanism. J Cell Physiol 2009; 222:387-400. [PMID: 19885839 PMCID: PMC2814089 DOI: 10.1002/jcp.21963] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Integrin-linked kinase (ILK) plays a role in integrin signaling-mediated extracellular matrix (ECM)–cell interactions and also acts as a scaffold protein in functional focal adhesion points. In the present study, we investigated the expression and roles of ILK in human intestinal epithelial cells (IECs) in vivo and in vitro. Herein, we report that ILK and its scaffold-function interacting partners, PINCH-1, α-parvin, and β-parvin, are expressed according to a decreasing gradient from the bottom of the crypt (proliferative/undifferentiated) compartment to the tip of the villus (non-proliferative/differentiated) compartment, closely following the expression pattern of the ECM/basement membrane component fibronectin. The siRNA knockdown of ILK in human IECs caused a loss of PINCH-1, α-parvin, and β-parvin expression, along with a significant decrease in cell proliferation via a loss of cyclin D1 and an increase in p27 and hypophosphorylated pRb expression levels. ILK knockdown severely affected cell spreading, migration, and restitution abilities, which were shown to be directly related to a decrease in fibronectin deposition. All ILK knockdown-induced defects were rescued with exogenously deposited fibronectin. Altogether, our results indicate that ILK performs crucial roles in the control of human intestinal cell and crypt–villus axis homeostasis—especially with regard to basement membrane fibronectin deposition—as well as cell proliferation, spreading, and migration. J. Cell. Physiol. 222: 387–400, 2010. © 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- David Gagné
- CIHR Team on the Digestive Epithelium, Département d'Anatomie et de Biologie Cellulaire, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Integrin alpha8beta1 regulates adhesion, migration and proliferation of human intestinal crypt cells via a predominant RhoA/ROCK-dependent mechanism. Biol Cell 2009; 101:695-708. [PMID: 19527220 PMCID: PMC2782361 DOI: 10.1042/bc20090060] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background. Integrins are transmembrane αβ heterodimer receptors that function as structural and functional bridges between the cytoskeleton and ECM (extracellular matrix) molecules. The RGD (arginine-glycine-aspartate tripeptide motif)-dependent integrin α8β1 has been shown to be involved in various cell functions in neuronal and mesenchymal-derived cell types. Its role in epithelial cells remains unknown. Results. Integrin α8β1 was found to be expressed in the crypt cell population of the human intestine but was absent from differentiating and mature epithelial cells of the villus. The function of α8β1 in epithelial crypt cells was investigated at the cellular level using normal HIECs (human intestinal epithelial cells). Specific knockdown of α8 subunit expression using an shRNA (small-hairpin RNA) approach showed that α8β1 plays important roles in RGD-dependent cell adhesion, migration and proliferation via a RhoA/ROCK (Rho-associated kinase)-dependent mechanism as demonstrated by active RhoA quantification and pharmacological inhibition of ROCK. Moreover, loss of α8β1, through RhoA/ROCK, impairs FA (focal adhesion) complex integrity as demonstrated by faulty vinculin recruitment. Conclusions. Integrin α8β1 is expressed in epithelial cells. In intestinal crypt cells, α8β1 is closely involved in the regulation of adhesion, migration and cell proliferation via a predominant RhoA/ROCK-dependent mechanism. These results suggest an important role for this integrin in intestinal crypt cell homoeostasis.
Collapse
|
34
|
Gayer CP, Basson MD. The effects of mechanical forces on intestinal physiology and pathology. Cell Signal 2009; 21:1237-44. [PMID: 19249356 PMCID: PMC2715958 DOI: 10.1016/j.cellsig.2009.02.011] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 02/17/2009] [Indexed: 12/18/2022]
Abstract
The epithelial and non-epithelial cells of the intestinal wall experience a myriad of physical forces including strain, shear, and villous motility during normal gut function. Pathologic conditions alter these forces, leading to changes in the biology of these cells. The responses of intestinal epithelial cells to forces vary with both the applied force and the extracellular matrix proteins with which the cells interact, with differing effects on proliferation, differentiation, and motility, and the regulation of these effects involves similar but distinctly different signal transduction mechanisms. Although normal epithelial cells respond to mechanical forces, malignant gastrointestinal epithelial cells also respond to forces, most notably by increased cell adhesion, a critical step in tumor metastasis. This review will focus on the phenomenon of mechanical forces influencing cell biology and the mechanisms by which the gut responds these forces in both the normal as well as pathophysiologic states when forces are altered. Although more is known about epithelial responses to force, information regarding mechanosensitivity of vascular, neural, and endocrine cells within the gut wall will also be discussed, as will, the mechanism by which forces can regulate epithelial tumor cell adhesion.
Collapse
|
35
|
Szymczak P, Janovjak H. Periodic forces trigger a complex mechanical response in ubiquitin. J Mol Biol 2009; 390:443-56. [PMID: 19426737 DOI: 10.1016/j.jmb.2009.04.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 01/12/2023]
Abstract
Mechanical forces govern physiological processes in all living organisms. Many cellular forces, for example, those generated in cyclic conformational changes of biological machines, have repetitive components. In apparent contrast, little is known about how dynamic protein structures respond to periodic mechanical information. Ubiquitin is a small protein found in all eukaryotes. We developed molecular dynamics simulations to unfold single and multimeric ubiquitins with periodic forces. By using a coarse-grained representation, we were able to model forces with periods about 2 orders of magnitude longer than the protein's relaxation time. We found that even a moderate periodic force weakened the protein and shifted its unfolding pathways in a frequency- and amplitude-dependent manner. A complex dynamic response with secondary structure refolding and an increasing importance of local interactions was revealed. Importantly, repetitive forces with broadly distributed frequencies elicited very similar molecular responses compared to fixed-frequency forces. When testing the influence of pulling geometry on ubiquitin's mechanical stability, it was found that the linkage involved in the mechanical degradation of cellular proteins renders the protein remarkably insensitive to periodic forces. We also devised a complementary kinetic energy landscape model that traces these observations and explains periodic-force, single-molecule measurements. In turn, this analytical model is capable of predicting dynamic protein responses. These results provide new insights into ubiquitin mechanics and a potential mechanical role during protein degradation, as well as first frameworks for dynamic protein stability and the modeling of repetitive mechanical processes.
Collapse
Affiliation(s)
- Piotr Szymczak
- Institute of Theoretical Physics, Warsaw University, Poland
| | | |
Collapse
|
36
|
Flanigan TL, Craig DH, Gayer CP, Basson MD. The effects of increased extracellular deformation, pressure, and integrin phosphorylation on fibroblast migration. J Surg Res 2009; 156:103-9. [PMID: 19555977 DOI: 10.1016/j.jss.2009.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/13/2009] [Accepted: 03/22/2009] [Indexed: 01/27/2023]
Abstract
Wound healing requires fibroblast migration. Increased pressure slows migration and ulcer healing. Pressure also induces beta1 integrin phosphorylation. We hypothesized that beta1 phosphorylation influences cell adhesion and migration. We compared the effects of increased pressure on the adhesion and motility of GD25 beta1-integrin null fibroblasts transfected with wild-type beta1A-integrin, S785A or TT788/9AA (phosphorylation-deficient), or T788D (constitutively phosphomimetic) mutants. GD25 beta1 null cells adhered less than wild type beta1A cells, suggesting adherence by non-integrin mechanisms. Preventing Ser-785 or Thr 788/789 phosphorylation reduced adhesion, suggesting that phosphorylation regulates adhesiveness. Substituting Asp for Thr788 stimulated adhesion on both substrates. Pressure decreased migration in all lines and on all matrixes, the most in wild type beta1A integrin cells and only slightly in beta1A TT788/9AA cells. In comparison, another physical force, repetitive deformation, increased migration in the beta1A integrin T788D, S785A, and wild type cells on fibronectin, and decreased migration on collagen. Deformation did not affect the migration of GD25 beta1-integrin null or TT788/9AA cells. Extracellular signal-regulated kinase (ERK) blockade neither altered basal migration nor prevented pressure inhibition, while the cellular deformation response on fibronectin was altered. beta1-Integrin phosphorylation regulates cellular adhesion and the deformation effects on motility. The pressure-induced motility response is independently regulated.
Collapse
Affiliation(s)
- Thomas L Flanigan
- Department of Surgery, John D Dingell VA Medical Center, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|
37
|
Chaturvedi LS, Saad SA, Bakshi N, Marsh HM, Basson MD. Strain matrix-dependently dissociates gut epithelial spreading and motility. J Surg Res 2009; 156:217-23. [PMID: 19691992 DOI: 10.1016/j.jss.2009.03.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/18/2009] [Accepted: 03/22/2009] [Indexed: 01/26/2023]
Abstract
BACKGROUND Repetitive deformation enhances intestinal epithelial migration across tissue fibronectin (tFN) via Src but inhibits migration across collagen. Since cell spreading generally precedes motility, we compared the effects of cyclic strain on Caco-2 spreading and migration on tFN, collagen-I, and plasma fibronectin (pFN), and investigated the role of Src in deformation-influenced spreading and migration. MATERIALS AND METHODS Human Caco-2 intestinal epithelial cells on tFN, collagen-I or pFN were subjected to an average 10% strain at 10 cycles/min for 2 h. Src was inhibited with 10muM PP2 or Src was reduced with siRNA. Parallel studies assessed deformation effects on monolayer wound closure. RESULTS Deformation, Src-inhibition or reduction each inhibited spreading on tFN but Src-inhibition or reduction prevented further inhibition of spreading by deformation without preventing further inhibition of motility. Deformation did not alter spreading on collagen-I or pFN, but inhibited wound closure. CONCLUSIONS Although cell spreading generally precedes and parallels motility, repetitive deformation regulates motility independently of spreading. Since deformation activates Src, the ability of Src blockade to mimic strain-associated inhibition of spreading on tFN suggests that this effect occurs by a separate mechanism that may also require basal Src activity. Further delineation of the mechanisms by which strain disparately modulates spreading and motility may permit acceleration of mucosal healing by targeted interventions to separately promote spreading and epithelial motility.
Collapse
Affiliation(s)
- Lakshmi S Chaturvedi
- Department of Surgery, John D. Dingell VA Medical Center, Detroit, Michigan, USA
| | | | | | | | | |
Collapse
|
38
|
Orgill DP, Manders EK, Sumpio BE, Lee RC, Attinger CE, Gurtner GC, Ehrlich HP. The mechanisms of action of vacuum assisted closure: more to learn. Surgery 2009; 146:40-51. [PMID: 19541009 DOI: 10.1016/j.surg.2009.02.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 02/02/2009] [Indexed: 02/07/2023]
Affiliation(s)
- Dennis P Orgill
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Flanigan TL, Owen CR, Gayer C, Basson MD. Supraphysiologic extracellular pressure inhibits intestinal epithelial wound healing independently of luminal nutrient flow. Am J Surg 2008; 196:683-9. [PMID: 18954600 DOI: 10.1016/j.amjsurg.2008.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 01/09/2023]
Abstract
BACKGROUND Luminal pressure may injure the gut mucosa in obstruction, ileus, or inflammatory bowel disease. METHODS We formed Roux-en-Y anastomoses in 19 mice, creating proximal and defunctionalized partially obstructed limbs and a distal limb to vary luminal pressure and flow. We induced mucosal ulcers by serosal acetic acid, and assessed proliferation (proliferating cell nuclear antigen) and ERK (immunoblotting). Parallel studies compared Caco-2 enterocyte migration and proliferation after pressure and/or ERK blockade. RESULTS At 3 days, anastomoses were probe-patent, proximal and distal limbs contained chyme, and defunctionalized limbs were empty. The proximal and defunctionalized limbs showed increased pressure and slower healing despite increased proliferation, ERK protein, and ERK activation. In vitro, pressure decreased Caco-2 migration across collagen or fibronectin, stimulated proliferation, and activated ERK. However, ERK blockade did not prevent pressure effects. CONCLUSIONS Luminal pressure during obstruction or ileus may impair mucosal healing independently of luminal flow despite increased mitosis and ERK activation.
Collapse
Affiliation(s)
- Thomas L Flanigan
- Departments of Surgery, Anatomy and Cell Biology, John D. Dingell VA Medical Center and Wayne State University, Surgical Service (11S), 4646 John R. St., Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
40
|
Gayer CP, Chaturvedi LS, Wang S, Craig DH, Flanigan T, Basson MD. Strain-induced proliferation requires the phosphatidylinositol 3-kinase/AKT/glycogen synthase kinase pathway. J Biol Chem 2008; 284:2001-11. [PMID: 19047055 DOI: 10.1074/jbc.m804576200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The intestinal epithelium is repetitively deformed by shear, peristalsis, and villous motility. Such repetitive deformation stimulates the proliferation of intestinal epithelial cells on collagen or laminin substrates via ERK, but the upstream mediators of this effect are poorly understood. We hypothesized that the phosphatidylinositol 3-kinase (PI3K)/AKT cascade mediates this mitogenic effect. PI3K, AKT, and glycogen synthase kinase-3beta (GSK-3beta) were phosphorylated by 10 cycles/min strain at an average 10% deformation, and pharmacologic blockade of these molecules or reduction by small interfering RNA (siRNA) prevented the mitogenic effect of strain in Caco-2 or IEC-6 intestinal epithelial cells. Strain MAPK activation required PI3K but not AKT. AKT isoform-specific siRNA transfection demonstrated that AKT2 but not AKT1 is required for GSK-3beta phosphorylation and the strain mitogenic effect. Furthermore, overexpression of AKT1 or an AKT chimera including the PH domain and hinge region of AKT2 and the catalytic domain and C-tail of AKT1 prevented strain activation of GSK-3beta, but overexpression of AKT2 or a chimera including the PH domain and hinge region of AKT1 and the catalytic domain and C-tail of AKT2 did not. These data delineate a role for PI3K, AKT2, and GSK-3beta in the mitogenic effect of strain. PI3K is required for both ERK and AKT2 activation, whereas AKT2 is sequentially required for GSK-3beta. Furthermore, AKT2 specificity requires its catalytic domain and tail region. Manipulating this pathway may prevent mucosal atrophy and maintain the mucosal barrier in conditions such as ileus, sepsis, and prolonged fasting when peristalsis and villous motility are decreased and the mucosal barrier fails.
Collapse
Affiliation(s)
- Christopher P Gayer
- Department of Surgery, John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan 48301, USA
| | | | | | | | | | | |
Collapse
|
41
|
Chaturvedi LS, Gayer CP, Marsh HM, Basson MD. Repetitive deformation activates Src-independent FAK-dependent ERK motogenic signals in human Caco-2 intestinal epithelial cells. Am J Physiol Cell Physiol 2008; 294:C1350-61. [PMID: 18400991 DOI: 10.1152/ajpcell.00027.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Repetitive deformation due to villous motility or peristalsis may support the intestinal mucosa, stimulating intestinal epithelial proliferation under normal circumstances and restitution in injured and inflamed mucosa rich in tissue fibronectin. Cyclic strain enhances Caco-2 and IEC-6 intestinal epithelial cell migration across fibronectin via ERK. However, the upstream mediators of ERK activation are unknown. We investigated whether Src and FAK mediate strain-induced ERK phosphorylation and migration in human Caco-2 intestinal epithelial cells on fibronectin. Monolayers on tissue fibronectin-precoated membranes were subjected to an average 10% repetitive deformation at 10 cycles/min. Phosphorylation of Src-Tyr 418, FAK-Tyr 397-Tyr 576-Tyr 925, and ERK were significantly increased by deformation. The stimulation of wound closure by strain was prevented by Src blockade with PP2 (10 micromol/l) or specific short interfering (si)RNA. Src inhibition also prevented strain-induced FAK phosphorylation at Tyr 397 and Tyr 576 but not FAK-Tyr 925 or ERK phosphorylation. Reducing FAK by siRNA inhibited strain-induced ERK phosphorylation. Transfection of NH2-terminal tyrosine phosphorylation-deficient FAK mutants Y397F, Y576F-Y577F, and Y397F-Y576F-Y577F did not prevent the activation of ERK2 by cyclic strain, but a FAK mutant at the COOH terminal (Y925F) prevented the strain-induced activation of ERK2. Although the Y397F-Y576F-Y577F FAK construct exhibited less basal FAK-Tyr 925 phosphorylation under static conditions, it nevertheless exhibited increased FAK-Tyr 925 phosphorylation in response to strain. These results suggest that repetitive deformation stimulates intestinal epithelial motility across fibronectin in a manner that requires both Src activation and a novel Src-independent FAK-Tyr 925-dependent pathway that activates ERK. This pathway may be an important target for interventions to promote mucosal healing in settings of intestinal ileus or fasting.
Collapse
Affiliation(s)
- Lakshmi S Chaturvedi
- Surgical Service, John D Dingell Veterans Affairs Medical Center, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
42
|
Craig DH, Zhang J, Basson MD. Cytoskeletal signaling by way of alpha-actinin-1 mediates ERK1/2 activation by repetitive deformation in human Caco2 intestinal epithelial cells. Am J Surg 2007; 194:618-22. [PMID: 17936423 DOI: 10.1016/j.amjsurg.2007.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 07/30/2007] [Accepted: 08/03/2007] [Indexed: 01/27/2023]
Abstract
BACKGROUND Repetitive deformation stimulates proliferation in human Caco2 intestinal epithelial cells by way of an ERK1/2-dependent pathway. We examined the effects of cytoskeletal perturbation on deformation-induced signaling in Caco2 cells. METHODS The Caco2 cell cytoskeleton was disrupted with either cytochalasin D, phalloidin, colchicine, or paclitaxel. Levels of alpha-actinin-1 and -4 and paxillin were reduced by specific small interfering RNA. Cells on collagen I-precoated membranes were subjected to 10% repetitive deformation at 10 cycles/min. After 1 hour, cells were lysed for Western blot analysis. RESULTS Strain-activated ERK1/2, focal adhesion kinase, and Src phosphorylation in dimethyl sulfoxide- and/or nontargeting small interfering RNA-treated control cell populations. Cytochalasin D and paclitaxel, but not phalloidin and colchicine, blocked ERK1/2 phosphorylation. A decrease in alpha-actinin-1, but not in alpha-actinin-4 or paxillin, inhibited ERK1/2 and focal adhesion kinase phosphorylation, whereas Src activation appears to be independent of these effects. CONCLUSIONS The intestinal epithelial cell cytoskeleton may transduce mechanical signals by way of alpha-actinin-1 into the focal adhesion complex, culminating in ERK1/2 activation and proliferation.
Collapse
Affiliation(s)
- David H Craig
- Department of Surgery, John D. Dingell VA Medical Center and Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
43
|
Rotavirus replication in intestinal cells differentially regulates integrin expression by a phosphatidylinositol 3-kinase-dependent pathway, resulting in increased cell adhesion and virus yield. J Virol 2007; 82:148-60. [PMID: 17942548 DOI: 10.1128/jvi.01980-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Changes in the interactions between intestinal cells and their surrounding environment during virus infection have not been well documented. The growth and survival of intestinal epithelial cells, the main targets of rotavirus infection, are largely dependent on the interaction of cell surface integrins with the extracellular matrix. In this study, we detected alterations in cellular integrin expression following rotavirus infection, identified the signaling components required, and analyzed the subsequent effects on cell binding to the matrix component collagen. After rotavirus infection of intestinal cells, expression of alpha2beta1 and beta2 integrins was up-regulated, whereas that of alphaVbeta3, alphaVbeta5, and alpha5beta1 integrins, if present, was down-regulated. This differential regulation of integrins was reflected at the transcriptional level. It was unrelated to the use of integrins as rotavirus receptors, as both integrin-using and integrin-independent viruses induced integrin regulation. Using pharmacological agents that inhibit kinase activity, integrin regulation was shown to be dependent on phosphatidylinositol 3-kinase (PI3K) but independent of the activities of the mitogen-activated protein kinases p38 and ERK1/2, and cyclooxygenase-2. Replication-dependent activation of the PI3K/Akt pathway was observed following infection of intestinal and nonintestinal cell lines. Rotavirus activation of PI3K was important for regulation of alpha2beta1 expression. Blockade of integrin regulation by PI3K inhibition led to decreased adherence of infected intestinal cells to collagen and a concomitant decrease in virus titer. These findings indicate that rotavirus-induced PI3K activation causes regulation of integrin expression in intestinal cells, leading to prolonged adherence of infected cells to collagen and increased virus production.
Collapse
|
44
|
Chaturvedi LS, Marsh HM, Basson MD. Src and focal adhesion kinase mediate mechanical strain-induced proliferation and ERK1/2 phosphorylation in human H441 pulmonary epithelial cells. Am J Physiol Cell Physiol 2007; 292:C1701-13. [PMID: 17215324 DOI: 10.1152/ajpcell.00529.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary epithelial cells are exposed to repetitive deformation during physiological breathing and mechanical ventilation. Such deformation may influence pulmonary growth, development, and barotrauma. Although deformation stimulates proliferation and activates extracellular signal-regulated kinases (ERK1/2) in human pulmonary epithelial H441 cells, the upstream mechanosensors that induce ERK activation are poorly understood. We investigated whether c-Src or focal adhesion kinase (FAK) mediates cyclic mechanical strain-induced ERK1/2 activation and proliferation in human pulmonary epithelial (NCI-H441) cells. The H441 and A549 cells were grown on collagen I-precoated membranes and were subjected to an average 10% cyclic mechanical strain at 20 cycles/min. Cyclic strain activated Src within 2 min by increasing phosphorylation at Tyr(418), followed by rapid phosphorylation of FAK at Tyr(397) and Tyr(576) and ERK1/2 at Thr(202)/Tyr(204) (n = 5, P < 0.05). Twenty-four (A549 cells) and 24-72 h (H441 cells) of cyclic mechanical strain increased cell numbers compared with static culture. Twenty-four hours of cyclic strain also increased H441 FAK, Src, and ERK phosphorylation without affecting total FAK, Src, or ERK protein. The mitogenic effect was blocked by Src (10 micromol/l PP2 or short interfering RNA targeted to Src) or MEK (50 micromol/l PD-98059) inhibition. PP2 also blocked strain-induced phosphorylation of FAK-Tyr(576) and ERK-Thr(202)/Tyr(204) but not FAK-Tyr(397). Reducing FAK by FAK-targeted short interfering RNA blocked mechanical strain-induced mitogenicity and significantly attenuated strain-induced ERK activation but not strain-induced Src phosphorylation. Together, these results suggest that repetitive mechanical deformation induced by ventilation supports pulmonary epithelial proliferation by a pathway involving Src, FAK, and then ERK signaling.
Collapse
Affiliation(s)
- Lakshmi S Chaturvedi
- John D. Dingell Veterans Affairs Medical Center, 4646 John R. St., Detroit, MI 48201, USA
| | | | | |
Collapse
|
45
|
Oh JY, Jung KA, Kim MK, Wee WR, Lee JH. Effect of mechanical strain on human limbal epithelial cells in vitro. Curr Eye Res 2006; 31:1015-20. [PMID: 17169839 DOI: 10.1080/02713680601038832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate the effects of the mechanical cyclic strain on the extracellular matrix (ECM) production by cultivated human limbal epithelial cells (HLECs) in vitro. METHODS HLECs were repetitively stretched and relaxed by 20% of their original length. Morphology of HLECs was observed, and concentrations of fibronectin and laminin V were measured. RESULTS The strained HLECs were elongated and aligned perpendicular to the direction of force. Fibronectin and laminin V were highly expressed in the strain group compared with the control. CONCLUSIONS Cyclic strain induces the synthesis of fibronectin and laminin V in cultivated HLECs.
Collapse
Affiliation(s)
- Joo Youn Oh
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
46
|
Cevallos M, Riha GM, Wang X, Yang H, Yan S, Li M, Chai H, Yao Q, Chen C. Cyclic strain induces expression of specific smooth muscle cell markers in human endothelial cells. Differentiation 2006; 74:552-61. [PMID: 17177852 DOI: 10.1111/j.1432-0436.2006.00089.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of this study was to determine whether cyclic strain could promote human umbilical vein endothelial cells (HUVECs) to express markers in common with the mature smooth muscle cell (SMC) phenotype, suggesting endothelial cell to SMC transdifferentiation. HUVECs were cultured on stretched membranes at 10% stretch and 60 cycles/min for 24-96 hr, and demonstrated elongation with enhanced and organized F-actin distribution. By using real-time polymerase chain reaction analysis, the mRNA levels of five specific SMC markers, SM22-alpha, alpha-smooth muscle actin (alpha-SMA), caldesmon-1, smooth muscle myosin heavy chain (SMMHC), and calponin-1 were significantly increased in cyclic strain-treated HUVECs as compared with those in static control cells. Protein levels of SM22-alpha and alpha-SMA were also substantially increased by Western blot and immunofluorescence staining. In addition, two specific endothelial markers, von Willebrand factor (vWF) and vascular endothelial growth factor receptor-2 (VEGFR-2), showed a reduction in mRNA expression. In addition, cyclic strain-induced increase of SM22-alpha and alpha-SMA expression were reversible when cells were cultured back to the static condition. These results demonstrate a possible endothelial cell to SMC transdifferentiation in response to cyclic strain. Hemodynamic forces in modulating endothelial phenotype may play an important role in the vascular system.
Collapse
Affiliation(s)
- Manuel Cevallos
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang J, Owen CR, Sanders MA, Turner JR, Basson MD. The motogenic effects of cyclic mechanical strain on intestinal epithelial monolayer wound closure are matrix dependent. Gastroenterology 2006; 131:1179-89. [PMID: 17030187 DOI: 10.1053/j.gastro.2006.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 06/28/2006] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Complex deformation during normal digestion due to peristalsis or villous motility may be trophic for the intestinal mucosa. Because tissue fibronectin is increased in inflammatory states that may accompany mucosal injury, we evaluated the effects of cyclic mechanical strain and fibronectin on intestinal epithelial monolayer wound closure in Caco-2 and IEC-6 intestinal epithelial cells. METHODS Wounds created in intestinal epithelial monolayers were subjected to cyclic deformation. Wound closure was assessed by morphometry using microscopic imaging. Cell signals were assessed by Western blot and confocal microscopy. RESULTS Mechanical strain stimulated wound closure on fibronectin but inhibited closure on collagen in Caco-2 and IEC-6 cells. The effect was independent of proliferation or cell spreading. Myosin light chain (MLC) and extracellular signal-regulated kinase (ERK) were phosphorylated in response to strain in confluent monolayers on both collagen and fibronectin. Blocking MLC or ERK phosphorylation inhibited the motogenic effect of strain on fibronectin. Although phosphorylated MLC was redistributed to the leading edge of migrating cells following 6 hours of strain on collagen and fibronectin, phosphorylated ERK was redistributed to the lamellipodial edge only on fibronectin. CONCLUSIONS Strain promotes intestinal epithelial wound closure by a pathway requiring ERK and MLC kinase. Fibronectin-dependent ERK redistribution in response to strain in confluent migrating cells may explain the matrix dependence of the motogenic effect. Repetitive deformation stimulates intestinal epithelial proliferation on a collagen substrate, but not fibronectin. Deformation may exert matrix-dependent effects on intestinal epithelial cells, promoting epithelial restitution in fibronectin-rich tissue and proliferation in fibronectin-poor mucosa.
Collapse
Affiliation(s)
- Jianhu Zhang
- Department of Surgery, John D. Dingell VA Medical Center, 4646 John R. Street, Detroit, MI 48301, USA
| | | | | | | | | |
Collapse
|
48
|
Thamilselvan V, Basson MD. The role of the cytoskeleton in differentially regulating pressure-mediated effects on malignant colonocyte focal adhesion signaling and cell adhesion. Carcinogenesis 2005; 26:1687-97. [PMID: 15917311 DOI: 10.1093/carcin/bgi135] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increased extracellular pressure stimulates colon cancer cell adhesion by activating focal adhesion kinase (FAK) and Src. We investigated the role of the cytoskeleton in pressure-induced inside-out FAK and Src phosphorylation and pressure-stimulated adhesion. We perturbed actin polymerization with phalloidin, cytochalasin D and latrunculin B, and microtubule organization with colchicine and paclitaxol. We compared the effects of these agents on pressure-induced SW620 and human primary colon cancer cell adhesion and inside-out FAK/Src activation with outside-in adhesion-dependent FAK/Src activation. Cells pretreated with cytoskeletal inhibitors were subjected to 15 mmHg increased pressure and allowed to adhere to collagen I coated plates or prevented from adhesion to pacificated plates for 30 min. Phalloidin, cytochalasin D, latrunculin B and colchicine pretreatment completely prevented pressure-stimulated and significantly inhibited basal SW620 cell adhesion. Taxol did not inhibit pressure-induced colon cancer cell adhesion, but significantly lowered basal adhesion. Cytochalasin D and colchicine had similar effects in pressure-stimulated primary human malignant colonocytes. Phalloidin, cytochalasin D, latrunculin B and colchicine prevented pressure-induced SW620 FAK phosphorylation but not Src phosphorylation. FAK phosphorylation in response to collagen I adhesion was significantly attenuated but not completely prevented by these inhibitors. Although Src phosphorylation was not increased on adhesion, the cytoskeleton disrupting agents significantly lowered basal Src phosphorylation in adherent cells. These results suggest that both cytoskeleton-dependent FAK activation and cytoskeleton-independent Src activation may be required for extracellular pressure to stimulate colon cancer cell adhesion. Furthermore, the cytoskeleton plays a different role in pressure-activated FAK and Src signaling than in FAK and Src activation in adherent cells. We, therefore, hypothesize that cytoskeletal interactions with focal adhesion signals mediate the effects of extracellular pressure on colon cancer cell adhesion.
Collapse
Affiliation(s)
- Vijayalakshmi Thamilselvan
- Department of Surgery, Wayne State University School of Medicine and John D.Dingell Veterans Affairs Medical Center, 4646 John R. Street, Detroit, MI 48201, USA
| | | |
Collapse
|
49
|
Li W, Sumpio BE. Strain-induced vascular endothelial cell proliferation requires PI3K-dependent mTOR-4E-BP1 signal pathway. Am J Physiol Heart Circ Physiol 2005; 288:H1591-7. [PMID: 15591103 DOI: 10.1152/ajpheart.00382.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The aim of this study was to determine whether the phosphatidylinositol 3-kinase (PI3K)-dependent mammalian target of rapamycin (mTOR)-eukaryotic initiation factor 4E binding protein 1 (4E-BP1) signal pathway and S6 kinase (S6K), the major element of the mTOR pathway, play a role in the enhanced vascular endothelial cell (EC) proliferation induced by cyclic strain. Bovine aortic ECs were subjected to an average of 10% strain at a rate of 60 cycles/min for ≤24 h. Cyclic strain-induced EC proliferation was reduced by pretreatment with rapamycin but not the MEK1 inhibitor PD-98059. The PI3K inhibitors wortmannin and LY-294002 also attenuated strain-induced EC proliferation and strain-induced activation of S6K. Rapamycin but not PD-98059 prevented strain-induced S6K activation, and PD-98059 but not rapamycin prevented strain-induced activation of extracellular signal-regulated kinases 1 and 2. Cyclic strain also activated 4E-BP1, which could be inhibited by PI3K inhibitors. These data suggest that the PI3K-dependent S6K-mTOR-4E-BP1 signal pathway may be critically involved in strain-induced bovine aortic EC proliferation.
Collapse
Affiliation(s)
- Wei Li
- Dept. of Surgery, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | |
Collapse
|
50
|
Walsh MF, Woo RKY, Gomez R, Basson MD. Extracellular pressure stimulates colon cancer cell proliferation via a mechanism requiring PKC and tyrosine kinase signals. Cell Prolif 2005; 37:427-41. [PMID: 15548175 PMCID: PMC6495684 DOI: 10.1111/j.1365-2184.2004.00324.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Pressure in colonic tumours may increase during constipation, obstruction or peri-operatively. Pressure enhances colonocyte adhesion by a c-Src- and actin-cytoskeleton-dependent PKC-independent pathway. We hypothesized that pressure activates mitogenic signals. METHODS Malignant colonocytes on a collagen I matrix were subjected to 15 mmHg pressure. ERK, p38, c-Src and Akt phosphorylation and PKCalpha redistribution were assessed by western blot after 30 min and PKC activation by ELISA. Cells were counted after 24 h and after inhibition of each signal, tyrosine phosphorylation or actin depolymerization. RESULTS Pressure time-dependently increased SW620 and HCT-116 cell counts on collagen or fibronectin (P < 0.01). Pressure increased the SW620 S-phase fraction from 28 +/- 1 to 47 +/- 1% (P = 0.0002). Pressure activated p38, ERK, and c-Src (P < 0.05 each) but not Akt/PKB. Pressure decreased cytosolic PKC activity, and translocated PKCalpha to a membrane fraction. Blockade of p38, ERK, c-Src or PI-3-K or actin depolymerization did not inhibit pressure-stimulated proliferation. However, global tyrosine kinase blockade (genistein) and PKC blockade (calphostin C) negated pressure-induced proliferation. CONCLUSIONS Extracellular pressure stimulates cell proliferation and activates several signals. However, the mitogenic effect of pressure requires only tyrosine kinase and PKCalpha activation. Pressure may modulate colon cancer growth and implantation by two distinct pathways, one stimulating proliferation and the other promoting adhesion.
Collapse
Affiliation(s)
- M F Walsh
- Wayne State University School of Medicine, John D. Dingell VAMC, Detroit, MI 48201-1932, USA
| | | | | | | |
Collapse
|