1
|
Duangrat R, Parichatikanond W, Chanmahasathien W, Mangmool S. Adenosine A 3 Receptor: From Molecular Signaling to Therapeutic Strategies for Heart Diseases. Int J Mol Sci 2024; 25:5763. [PMID: 38891948 PMCID: PMC11171512 DOI: 10.3390/ijms25115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular diseases (CVDs), particularly heart failure, are major contributors to early mortality globally. Heart failure poses a significant public health problem, with persistently poor long-term outcomes and an overall unsatisfactory prognosis for patients. Conventionally, treatments for heart failure have focused on lowering blood pressure; however, the development of more potent therapies targeting hemodynamic parameters presents challenges, including tolerability and safety risks, which could potentially restrict their clinical effectiveness. Adenosine has emerged as a key mediator in CVDs, acting as a retaliatory metabolite produced during cellular stress via ATP metabolism, and works as a signaling molecule regulating various physiological processes. Adenosine functions by interacting with different adenosine receptor (AR) subtypes expressed in cardiac cells, including A1AR, A2AAR, A2BAR, and A3AR. In addition to A1AR, A3AR has a multifaceted role in the cardiovascular system, since its activation contributes to reducing the damage to the heart in various pathological states, particularly ischemic heart disease, heart failure, and hypertension, although its role is not as well documented compared to other AR subtypes. Research on A3AR signaling has focused on identifying the intricate molecular mechanisms involved in CVDs through various pathways, including Gi or Gq protein-dependent signaling, ATP-sensitive potassium channels, MAPKs, and G protein-independent signaling. Several A3AR-specific agonists, such as piclidenoson and namodenoson, exert cardioprotective impacts during ischemia in the diverse animal models of heart disease. Thus, modulating A3ARs serves as a potential therapeutic approach, fueling considerable interest in developing compounds that target A3ARs as potential treatments for heart diseases.
Collapse
Affiliation(s)
- Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | | | - Wisinee Chanmahasathien
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Mahmud S, Hamza A, Lee YB, Min JK, Islam R, Dogsom O, Park JB. Lipopolysaccharide Stimulates A549 Cell Migration through p-Tyr 42 RhoA and Phospholipase D1 Activity. Biomolecules 2023; 14:6. [PMID: 38275747 PMCID: PMC10813223 DOI: 10.3390/biom14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Cell migration is a crucial contributor to metastasis, a critical process associated with the mortality of cancer patients. The initiation of metastasis is triggered by epithelial-mesenchymal transition (EMT), along with the changes in the expression of EMT marker proteins. Inflammation plays a significant role in carcinogenesis and metastasis. Lipopolysaccharide (LPS), a typical inflammatory agent, promoted the generation of superoxide through the activation of p-Tyr42 RhoA, Rho-dependent kinase 2 (ROCK2), and the phosphorylation of p47phox. In addition, p-Tyr42 RhoA activated phospholipase D1 (PLD1), with PLD1 and phosphatidic acid (PA) being involved in superoxide production. PA also regulated the expression of EMT proteins. Consequently, we have identified MHY9 (Myosin IIA, NMIIA) as a PA-binding protein in response to LPS. MYH9 also contributed to cell migration and the alteration in the expression of EMT marker proteins. Co-immunoprecipitation revealed the formation of a complex involving p-Tyr42 RhoA, PLD1, and MYH9. These proteins were found to be distributed in both the cytosol and nucleus. In addition, we have found that p-Tyr42 RhoA PLD1 and MYH9 associate with the ZEB1 promoter. The suppression of ZEB1 mRNA levels was achieved through the knockdown of RhoA, PLD1, and MYH9 using si-RNAs. Taken together, we propose that p-Tyr42 RhoA and PLD1, responsible for producing PA, and PA-bound MYH9 are involved in the regulation of ZEB1 expression, thereby promoting cell migration.
Collapse
Affiliation(s)
- Shohel Mahmud
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Amir Hamza
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
| | - Yoon-Beom Lee
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
| | - Jung-Ki Min
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
| | - Rokibul Islam
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Oyungerel Dogsom
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- Department of Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Hallym University, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (S.M.); (A.H.); (Y.-B.L.); (J.-K.M.); (R.I.); (O.D.)
- Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|
3
|
Nguyen ATN, Tran QL, Baltos JA, McNeill SM, Nguyen DTN, May LT. Small molecule allosteric modulation of the adenosine A 1 receptor. Front Endocrinol (Lausanne) 2023; 14:1184360. [PMID: 37435481 PMCID: PMC10331460 DOI: 10.3389/fendo.2023.1184360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent the target for approximately a third of FDA-approved small molecule drugs. The adenosine A1 receptor (A1R), one of four adenosine GPCR subtypes, has important (patho)physiological roles in humans. A1R has well-established roles in the regulation of the cardiovascular and nervous systems, where it has been identified as a potential therapeutic target for a number of conditions, including cardiac ischemia-reperfusion injury, cognition, epilepsy, and neuropathic pain. A1R small molecule drugs, typically orthosteric ligands, have undergone clinical trials. To date, none have progressed into the clinic, predominantly due to dose-limiting unwanted effects. The development of A1R allosteric modulators that target a topographically distinct binding site represent a promising approach to overcome current limitations. Pharmacological parameters of allosteric ligands, including affinity, efficacy and cooperativity, can be optimized to regulate A1R activity with high subtype, spatial and temporal selectivity. This review aims to offer insights into the A1R as a potential therapeutic target and highlight recent advances in the structural understanding of A1R allosteric modulation.
Collapse
Affiliation(s)
- Anh T. N. Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Quan L. Tran
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Samantha M. McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Diep T. N. Nguyen
- Department of Information Technology, Faculty of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
4
|
Kumar K, Singh N, Yadav HN, Maslov L, Jaggi AS. Endless Journey of Adenosine Signaling in Cardioprotective Mechanism of Conditioning Techniques: Clinical Evidence. Curr Cardiol Rev 2023; 19:56-71. [PMID: 37309766 PMCID: PMC10636797 DOI: 10.2174/1573403x19666230612112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
Myocardial ischemic injury is a primary cause of death among various cardiovascular disorders. The condition occurs due to an interrupted supply of blood and vital nutrients (necessary for normal cellular activities and viability) to the myocardium, eventually leading to damage. Restoration of blood supply to ischemic tissue is noted to cause even more lethal reperfusion injury. Various strategies, including some conditioning techniques, like preconditioning and postconditioning, have been developed to check the detrimental effects of reperfusion injury. Many endogenous substances have been proposed to act as initiators, mediators, and end effectors of these conditioning techniques. Substances, like adenosine, bradykinin, acetylcholine, angiotensin, norepinephrine, opioids, etc., have been reported to mediate cardioprotective activity. Among these agents, adenosine has been widely studied and suggested to have the most pronounced cardioprotective effects. The current review article highlights the role of adenosine signaling in the cardioprotective mechanism of conditioning techniques. The article also provides an insight into various clinical studies that substantiate the applicability of adenosine as a cardioprotective agent in myocardial reperfusion injury.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leonid Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| |
Collapse
|
5
|
Tei R, Baskin JM. Click chemistry and optogenetic approaches to visualize and manipulate phosphatidic acid signaling. J Biol Chem 2022; 298:101810. [PMID: 35276134 PMCID: PMC9006657 DOI: 10.1016/j.jbc.2022.101810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 12/28/2022] Open
Abstract
The simple structure of phosphatidic acid (PA) belies its complex biological functions as both a key phospholipid biosynthetic intermediate and a potent signaling molecule. In the latter role, PA controls processes including vesicle trafficking, actin dynamics, cell growth, and migration. However, experimental methods to decode the pleiotropy of PA are sorely lacking. Because PA metabolism and trafficking are rapid, approaches to accurately visualize and manipulate its levels require high spatiotemporal precision. Here, we describe recent efforts to create a suite of chemical tools that enable imaging and perturbation of PA signaling. First, we describe techniques to visualize PA production by phospholipase D (PLD) enzymes, which are major producers of PA, called Imaging Phospholipase D Activity with Clickable Alcohols via Transphosphatidylation (IMPACT). IMPACT harnesses the ability of endogenous PLD enzymes to accept bioorthogonally tagged alcohols in transphosphatidylation reactions to generate functionalized reporter lipids that are subsequently fluorescently tagged via click chemistry. Second, we describe two light-controlled approaches for precisely manipulating PA signaling. Optogenetic PLDs use light-mediated heterodimerization to recruit a bacterial PLD to desired organelle membranes, and photoswitchable PA analogs contain azobenzene photoswitches in their acyl tails, enabling molecular shape and bioactivity to be controlled by light. We highlight select applications of these tools for studying GPCR-Gq signaling, discovering regulators of PLD signaling, tracking intracellular lipid transport pathways, and elucidating new oncogenic signaling roles for PA. We envision that these chemical tools hold promise for revealing many new insights into lipid signaling pathways.
Collapse
Affiliation(s)
- Reika Tei
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
6
|
Hallaj S, Mirza-Aghazadeh-Attari M, Arasteh A, Ghorbani A, Lee D, Jadidi-Niaragh F. Adenosine: The common target between cancer immunotherapy and glaucoma in the eye. Life Sci 2021; 282:119796. [PMID: 34245774 DOI: 10.1016/j.lfs.2021.119796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
Adenosine, an endogenous purine nucleoside, is a well-known actor of the immune system and the inflammatory response both in physiologic and pathologic conditions. By acting upon particular, G-protein coupled adenosine receptors, i.e., A1, A2- a & b, and A3 receptors mediate a variety of intracellular and immunomodulatory actions. Several studies have elucidated Adenosine's effect and its up-and downstream molecules and enzymes on the anti-tumor response against several types of cancers. We have also targeted a couple of molecules to manipulate this pathway and get the immune system's desired response in our previous experiences. Besides, the outgrowth of the studies on ocular Adenosine in recent years has significantly enhanced the knowledge about Adenosine and its role in ocular immunology and the inflammatory response of the eye. Glaucoma is the second leading cause of blindness globally, and the recent application of Adenosine and its derivatives has shown the critical role of the adenosine pathway in its pathophysiology. However, despite a very promising background, the phase III clinical trial of Trabodenoson failed to achieve the non-inferiority goals of the study. In this review, we discuss different aspects of the abovementioned pathway in ophthalmology and ocular immunology; following a brief evaluation of the current immunotherapeutic strategies, we try to elucidate the links between cancer immunotherapy and glaucoma in order to introduce novel therapeutic targets for glaucoma.
Collapse
Affiliation(s)
- Shahin Hallaj
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA
| | | | - Amin Arasteh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Anahita Ghorbani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel Lee
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Liang D, Wu K, Tei R, Bumpus TW, Ye J, Baskin JM. A real-time, click chemistry imaging approach reveals stimulus-specific subcellular locations of phospholipase D activity. Proc Natl Acad Sci U S A 2019; 116:15453-15462. [PMID: 31311871 PMCID: PMC6681737 DOI: 10.1073/pnas.1903949116] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fidelity of signal transduction requires spatiotemporal control of the production of signaling agents. Phosphatidic acid (PA) is a pleiotropic lipid second messenger whose modes of action differ based on upstream stimulus, biosynthetic source, and site of production. How cells regulate the local production of PA to effect diverse signaling outcomes remains elusive. Unlike other second messengers, sites of PA biosynthesis cannot be accurately visualized with subcellular precision. Here, we describe a rapid, chemoenzymatic approach for imaging physiological PA production by phospholipase D (PLD) enzymes. Our method capitalizes on the remarkable discovery that bulky, hydrophilic trans-cyclooctene-containing primary alcohols can supplant water as the nucleophile in the PLD active site in a transphosphatidylation reaction of PLD's lipid substrate, phosphatidylcholine. The resultant trans-cyclooctene-containing lipids are tagged with a fluorogenic tetrazine reagent via a no-rinse, inverse electron-demand Diels-Alder (IEDDA) reaction, enabling their immediate visualization by confocal microscopy in real time. Strikingly, the fluorescent reporter lipids initially produced at the plasma membrane (PM) induced by phorbol ester stimulation of PLD were rapidly internalized via apparent nonvesicular pathways rather than endocytosis, suggesting applications of this activity-based imaging toolset for probing mechanisms of intracellular phospholipid transport. By instead focusing on the initial 10 s of the IEDDA reaction, we precisely pinpointed the subcellular locations of endogenous PLD activity as elicited by physiological agonists of G protein-coupled receptor and receptor tyrosine kinase signaling. These tools hold promise to shed light on both lipid trafficking pathways and physiological and pathological effects of localized PLD signaling.
Collapse
Affiliation(s)
- Dongjun Liang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Kane Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Reika Tei
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Timothy W Bumpus
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Johnny Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853;
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
8
|
Free-Energy Calculations for Bioisosteric Modifications of A 3 Adenosine Receptor Antagonists. Int J Mol Sci 2019; 20:ijms20143499. [PMID: 31315296 PMCID: PMC6679372 DOI: 10.3390/ijms20143499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 11/16/2022] Open
Abstract
Adenosine receptors are a family of G protein-coupled receptors with increased attention as drug targets on different indications. We investigate the thermodynamics of ligand binding to the A3 adenosine receptor subtype, focusing on a recently reported series of diarylacetamidopyridine inhibitors via molecular dynamics simulations. With a combined approach of thermodynamic integration and one-step perturbation, we characterize the impact of the charge distribution in a central heteroaromatic ring on the binding affinity prediction. Standard charge distributions according to the GROMOS force field yield values in good agreement with the experimental data and previous free energy calculations. Subsequently, we examine the thermodynamics of inhibitor binding in terms of the energetic and entropic contributions. The highest entropy penalties are found for inhibitors with methoxy substituents in meta position of the aryl groups. This bulky group restricts rotation of aromatic rings attached to the pyrimidine core which leads to two distinct poses of the ligand. Our predictions support the previously proposed binding pose for the o-methoxy ligand, yielding in this case a very good correlation with the experimentally measured affinities with deviations below 4 kJ/mol.
Collapse
|
9
|
Keyvanloo Shahrestanaki M, Aghaei M. A3 receptor agonist, Cl-IBMECA, potentiate glucose-induced insulin secretion from MIN6 insulinoma cells possibly through transient Ca 2+ entry. Res Pharm Sci 2019; 14:107-114. [PMID: 31620186 PMCID: PMC6791172 DOI: 10.4103/1735-5362.253357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Diabetes incidence showed ascending trends in recent years indicating urgent need for new therapeutic agents. Extracellular adenosine signaling showed promising results. However, role of its A3 receptor in pancreatic β-cells proliferation and insulin secretion is not well established. Thus, we aimed to determine its main signaling mediators in MIN6 insulinoma cell line. A3 adenosine receptor (A3AR) expression was confirmed using RT-PCR. Receptor functionality was evaluated by measurements of cAMP, using ELISA kit, and intracellular Ca2+ levels, using Fura 2/AM probe in response to the specific A3AR agonist (Cl- IBMECA). Insulin ELISA kit was used to measure insulin release. Herein, we mentioned that MIN6 cells express active form of A3AR, which decreased cAMP levels with the half maximal effective concentration (EC50) value of 5.61. [Ca2+]i Levels transiently (approximately 120 sec) increased in response to the agonist. Cl-IBMECA increase insulin secretion at 0.01-1 μM, but showed an inhibitory effects at higher concentrations (1-10 μM). Altogether, we found that in MIN6 cells, A3AR, possibly through Ca2+ mediated signaling pathways, potentiated glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Mohammad Keyvanloo Shahrestanaki
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
10
|
Sek K, Mølck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int J Mol Sci 2018; 19:ijms19123837. [PMID: 30513816 PMCID: PMC6321150 DOI: 10.3390/ijms19123837] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a major role in the surveillance and control of malignant cells, with the presence of tumor infiltrating lymphocytes (TILs) correlating with better patient prognosis in multiple tumor types. The development of ‘checkpoint blockade’ and adoptive cellular therapy has revolutionized the landscape of cancer treatment and highlights the potential of utilizing the patient’s own immune system to eradicate cancer. One mechanism of tumor-mediated immunosuppression that has gained attention as a potential therapeutic target is the purinergic signaling axis, whereby the production of the purine nucleoside adenosine in the tumor microenvironment can potently suppress T and NK cell function. The production of extracellular adenosine is mediated by the cell surface ectoenzymes CD73, CD39, and CD38 and therapeutic agents have been developed to target these as well as the downstream adenosine receptors (A1R, A2AR, A2BR, A3R) to enhance anti-tumor immune responses. This review will discuss the role of adenosine and adenosine receptor signaling in tumor and immune cells with a focus on their cell-specific function and their potential as targets in cancer immunotherapy.
Collapse
Affiliation(s)
- Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Christina Mølck
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
| | - Gregory D Stewart
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville 3052, Australia.
| | - Lev Kats
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
- Department of Pathology, University of Melbourne, Parkville 3010, Australia.
- Department of Immunology, Monash University, Clayton 3052, Australia.
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, 3010 Parkville, Australia.
| |
Collapse
|
11
|
Brand CS, Tan VP, Brown JH, Miyamoto S. RhoA regulates Drp1 mediated mitochondrial fission through ROCK to protect cardiomyocytes. Cell Signal 2018; 50:48-57. [PMID: 29953931 DOI: 10.1016/j.cellsig.2018.06.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 12/12/2022]
Abstract
Cardiac ischemia/reperfusion, loss of blood flow and its subsequent restoration, causes damage to the heart. Oxidative stress from ischemia/reperfusion leads to dysfunction and death of cardiomyocytes, increasing the risk of progression to heart failure. Alterations in mitochondrial dynamics, in particular mitochondrial fission, have been suggested to play a role in cardioprotection from oxidative stress. We tested the hypothesis that activation of RhoA regulates mitochondrial fission in cardiomyocytes. Our studies show that expression of constitutively active RhoA in cardiomyocytes increases phosphorylation of Dynamin-related protein 1 (Drp1) at serine-616, and leads to localization of Drp1 at mitochondria. Both responses are blocked by inhibition of Rho-associated Protein Kinase (ROCK). Endogenous RhoA activation by the GPCR agonist sphingosine-1-phosphate (S1P) also increases Drp1 phosphorylation and its mitochondrial translocation in a RhoA and ROCK dependent manner. Consistent with the role of mitochondrial Drp1 in fission, RhoA activation in cardiomyocytes leads to formation of smaller mitochondria and this is attenuated by inhibition of ROCK, by siRNA knockdown of Drp1 or by expression of a phosphorylation-deficient Drp1 S616A mutant. In addition, activation of RhoA prevents cell death in cardiomyocytes challenged by oxidative stress and this protection is blocked by siRNA knockdown of Drp1 or by Drp1 S616A expression. Taken together our findings demonstrate that RhoA activation can regulate Drp1 to induce mitochondrial fission and subsequent cellular protection, implicating regulation of fission as a novel mechanism contributing to RhoA-mediated cardioprotection.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Pharmacology, School of Medicine, University of California - San Diego, La Jolla, CA 92093, United States
| | - Valerie P Tan
- Department of Pharmacology, School of Medicine, University of California - San Diego, La Jolla, CA 92093, United States
| | - Joan Heller Brown
- Department of Pharmacology, School of Medicine, University of California - San Diego, La Jolla, CA 92093, United States.
| | - Shigeki Miyamoto
- Department of Pharmacology, School of Medicine, University of California - San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
12
|
Nishat S, Khan LA, Ansari ZM, Basir SF. Adenosine A3 Receptor: A promising therapeutic target in cardiovascular disease. Curr Cardiol Rev 2016; 12:18-26. [PMID: 26750723 PMCID: PMC4807713 DOI: 10.2174/1573403x12666160111125116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/28/2015] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular complications are one of the major factors for early mortality in the present
worldwide scenario and have become a major challenge in both developing and developed nations. It
has thus become of immense importance to look for different therapeutic possibilities and treatments
for the growing burden of cardiovascular diseases. Recent advancements in research have opened
various means for better understanding of the complication and treatment of the disease. Adenosine
receptors have become tool of choice in understanding the signaling mechanism which might lead to
the cardiovascular complications. Adenosine A3 receptor is one of the important receptor which is extensively studied as a
therapeutic target in cardiovascular disorder. Recent studies have shown that A3AR is involved in the amelioration of cardiovascular
complications by altering the expression of A3AR. This review focuses towards the therapeutic potential of
A3AR involved in cardiovascular disease and it might help in better understanding of mechanism by which this receptor
may prove useful in improving the complications arising due to various cardiovascular diseases. Understanding of A3AR
signaling may also help to develop newer agonists and antagonists which might be prove helpful in the treatment of cardiovascular
disorder.
Collapse
Affiliation(s)
| | | | | | - Seemi F Basir
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India.
| |
Collapse
|
13
|
Liu M, Fu Z, Wu X, Du K, Zhang S, Zeng L. Inhibition of phospholipaseD2 increases hypoxia-induced human colon cancer cell apoptosis through inactivating of the PI3K/AKT signaling pathway. Tumour Biol 2015; 37:6155-68. [PMID: 26614430 DOI: 10.1007/s13277-015-4348-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is a common feature of solid tumor, and is a direct stress that triggers apoptosis in many human cell types. As one of solid cancer, hypoxia exists in the whole course of colon cancer occurrence and progression. Our previous studies shown that hypoxia induce high expression of phospholipase D2 (PLD2) and survivin in colon cancer cells. However, the correlation between PLD2 and survivin in hypoxic colon cancer cells remains unknown. In this study, we observed significantly elevated PLD2 and survivin expression levels in colon cancer tissues and cells. This is a positive correlation between of them, and co-expression of PLD2 and survivin has a positive correlation with the clinicpatholic features including tumor size, TNM stage, and lymph node metastasis. We also found that hypoxia induced the activity of PLD increased significant mainly caused by PLD2 in colon cancer cells. However, inhibition the activity of PLD2 induced by hypoxia promotes the apoptosis of human colon cancer cells, as well as decreased the expression of apoptosis markers including survivin and bcl2. Moreover, the pharmacological inhibition of PI3K/AKT supported the hypothesis that promotes the apoptosis of hypoxic colon cancer cells by PLD2 activity inhibition may through inactivation of the PI3K/AKT signaling pathway. Furthermore, interference the PLD2 gene expression leaded to the apoptosis of hypoxic colon cancer cells increased and also decreased the expression level of survivin and bcl2 may through inactivation of PI3K/AKT signaling pathway. These results indicated that PLD2 play antiapoptotic role in colon cancer under hypoxic conditions, inhibition of the activity, or interference of PLD2 gene expression will benefit for the treatment of colon cancer patients.
Collapse
Affiliation(s)
- Maoxi Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, Peoples's Republic of China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, Peoples's Republic of China.
| | - Xingye Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, Peoples's Republic of China.
| | - Kunli Du
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, Peoples's Republic of China
| | - Shouru Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, Peoples's Republic of China
| | - Li Zeng
- Department of traditional Chinese Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, Peoples's Republic of China
| |
Collapse
|
14
|
Litosch I. Regulating G protein activity by lipase-independent functions of phospholipase C. Life Sci 2015; 137:116-24. [DOI: 10.1016/j.lfs.2015.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/18/2015] [Accepted: 07/22/2015] [Indexed: 11/27/2022]
|
15
|
Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi S. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2015; 67:74-102. [PMID: 25387804 DOI: 10.1124/pr.113.008540] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Fabrizio Vincenzi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Pier Giovanni Baraldi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Mojgan Aghazadeh Tabrizi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| |
Collapse
|
16
|
Molecular regulation of synaptogenesis during associative learning and memory. Brain Res 2014; 1621:239-51. [PMID: 25485772 DOI: 10.1016/j.brainres.2014.11.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 01/06/2023]
Abstract
Synaptogenesis plays a central role in associative learning and memory. The biochemical pathways that underlie synaptogenesis are complex and incompletely understood. Nevertheless, research has so far identified three conceptually distinct routes to synaptogenesis: cell-cell contact mediated by adhesion proteins, cell-cell biochemical signaling from astrocytes and other cells, and neuronal signaling through classical ion channels and cell surface receptors. The cell adhesion pathways provide the physical substrate to the new synaptic connection, while cell-cell signaling may provide a global or regional signal, and the activity-dependent pathways provide the neuronal specificity that is required for the new synapses to produce functional neuronal networks capable of storing associative memories. These three aspects of synaptogenesis require activation of a variety of interacting biochemical pathways that converge on the actin cytoskeleton and strengthen the synapse in an information-dependent manner. This article is part of a Special Issue titled SI: Brain and Memory.
Collapse
|
17
|
Liu M, Du K, Fu Z, Zhang S, Wu X. Hypoxia-inducible factor 1-alpha up-regulates the expression of phospholipase D2 in colon cancer cells under hypoxic conditions. Med Oncol 2014; 32:394. [DOI: 10.1007/s12032-014-0394-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
|
18
|
1,2,4-triazolo[1,5-a]quinoxaline derivatives and their simplified analogues as adenosine A₃ receptor antagonists. Synthesis, structure-affinity relationships and molecular modeling studies. Bioorg Med Chem 2014; 23:9-21. [PMID: 25497490 DOI: 10.1016/j.bmc.2014.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/30/2014] [Accepted: 11/21/2014] [Indexed: 11/21/2022]
Abstract
The 1,2,4-triazolo[1,5-a]quinoxaline (TQX) scaffold was extensively investigated in our previously reported studies and recently, our attention was focused at position 5 of the tricyclic nucleus where different acyl and carboxylate moieties were introduced (compounds 2-15). This study produced some interesting compounds endowed with good hA3 receptor affinity and selectivity. In addition, to find new insights about the structural requirements for hA3 receptor-ligand interaction, the tricyclic TQX ring was destroyed yielding some 1,2,4-triazole derivatives (compounds 16-23). These simplified compounds, though maintaining the crucial structural requirements for adenosine receptor-ligand interaction, have a very low hA3 adenosine receptor affinity, the only exception being compound 23 (1-[3-(4-methoxyphenyl)-1-phenyl-1H-1,2,4-triazol-5-yl]-3-phenylurea) endowed with a Ki value in the micro-molar range and high hA3 selectivity versus both hA1 and hA2A AR subtypes. Evaluation of the side products obtained in the herein reported synthetic pathways led to the identification of some new triazolo[1,5-a]quinoxalines as hA3AR antagonists (compounds 24-27). These derivatives, though lacking the classical structural requirements for the anchoring at the hA3 receptor site, show high hA3 affinity and in some case selectivity versus hA1 and hA2A subtypes. Molecular docking of the herein reported tricyclic and simplified derivatives was carried out to depict their hypothetical binding mode to our model of hA3 receptor.
Collapse
|
19
|
Abstract
The reduction or cessation of the blood supply to an organ results in tissue ischemia. Ischemia can cause significant tissue damage, and is observed as a result of a thrombosis, as part of a disease process, and during surgery. However, the restoration of the blood supply often causes more damage to the tissue than the ischemic episode itself. Research is therefore focused on identifying the cellular pathways involved in the protection of organs from the damage incurred by this process of ischemia reperfusion (I/R). The hypoxia-inducible factors (HIFs) are a family of heterodimeric transcription factors that are stabilized during ischemia. The genes that are expressed downstream of HIF activity enhance oxygen-independent ATP generation, cell survival, and angiogenesis, amongst other phenotypes. They are, therefore, important factors in the protection of tissues from I/R injury. Interestingly, a number of the mechanisms already known to induce organ protection against I/R injury, including preconditioning, postconditioning, and activation of signaling pathways such as adenosine receptor signaling, converge on the HIF system. This review describes the evidence for HIFs playing a role in I/R protection mediated by these factors, highlights areas that require further study, and discuss whether HIFs themselves are good therapeutic targets for protecting tissues from I/R injury.
Collapse
Affiliation(s)
- Neil J Howell
- Department of Cardiothoracic Surgery, University Hospital Birmingham, Edgbaston, Birmingham, UK
| | - Daniel A Tennant
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
20
|
Prevention of RhoA activation and cofilin-mediated actin polymerization mediates the antihypertrophic effect of adenosine receptor agonists in angiotensin II- and endothelin-1-treated cardiomyocytes. Mol Cell Biochem 2013; 385:239-48. [PMID: 24096734 DOI: 10.1007/s11010-013-1832-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/26/2013] [Indexed: 10/26/2022]
Abstract
Adenosine receptor activation has been shown to be associated with diminution of cardiac hypertrophy and it has been suggested that endogenously produced adenosine may serve to blunt pro-hypertrophic processes. In the present study, we determined the effects of two pro-hypertrophic stimuli, angiotensin II (Ang II, 100 nM) and endothelin-1 (ET-1, 10 nM) on Ras homolog gene family, member A (RhoA)/Rho-associated, coiled-coil containing protein kinase (ROCK) activation in cultured neonatal rat ventricular myocytes and whether the latter serves as a target for the anti-hypertrophic effect of adenosine receptor activation. Both hypertrophic stimuli potently increased RhoA activity with peak activation occurring 15-30 min following agonist addition. These effects were associated with significantly increased phosphorylation (inactivation) of cofilin, a downstream mediator of RhoA, an increase in actin polymerization, and increased activation and nuclear import of p38 mitogen activated protein kinase. The ability of both Ang II and ET-1 to activate the RhoA pathway was completely prevented by the adenosine A1 receptor agonist N (6)-cyclopentyladenosine, the A2a receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine, the A3 receptor agonist N (6)-(3-iodobenzyl)adenosine-5'-methyluronamide as well as the nonspecific adenosine analog 2-chloro adenosine. All effects of specific receptor agonists were prevented by their respective receptor antagonists. Moreover, all adenosine agonists prevented either Ang II- or ET-1-induced hypertrophy, a property shared by the RhoA inhibitor Clostridium botulinum C3 exoenzyme, the ROCK inhibitor Y-27632 or the actin depolymerizing agent latrunculin B. Our study therefore demonstrates that both Ang II and ET-1 can activate the RhoA pathway and that prevention of the hypertrophic response to both agonists by adenosine receptor activation is mediated by prevention of RhoA stimulation and actin polymerization.
Collapse
|
21
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
22
|
Abstract
Adenosine kinase (ADK; EC 2.7.1.20) is an evolutionarily conserved phosphotransferase that converts the purine ribonucleoside adenosine into 5'-adenosine-monophosphate. This enzymatic reaction plays a fundamental role in determining the tone of adenosine, which fulfills essential functions as a homeostatic and metabolic regulator in all living systems. Adenosine not only activates specific signaling pathways by activation of four types of adenosine receptors but it is also a primordial metabolite and regulator of biochemical enzyme reactions that couple to bioenergetic and epigenetic functions. By regulating adenosine, ADK can thus be identified as an upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. Consequently, ADK emerges as a rational therapeutic target, and adenosine-regulating drugs have been tested extensively. In recent attempts to improve specificity of treatment, localized therapies have been developed to augment adenosine signaling at sites of injury or pathology; those approaches include transplantation of stem cells with deletions of ADK or the use of gene therapy vectors to downregulate ADK expression. More recently, the first human mutations in ADK have been described, and novel findings suggest an unexpected role of ADK in a wider range of pathologies. ADK-regulating strategies thus represent innovative therapeutic opportunities to reconstruct network homeostasis in a multitude of conditions. This review will provide a comprehensive overview of the genetics, biochemistry, and pharmacology of ADK and will then focus on pathologies and therapeutic interventions. Challenges to translate ADK-based therapies into clinical use will be discussed critically.
Collapse
Affiliation(s)
- Detlev Boison
- Legacy Research Institute, 1225 NE 16th Ave, Portland, OR 97202, USA.
| |
Collapse
|
23
|
Yan XF, Zhang ZM, Yao HY, Guan Y, Zhu JP, Zhang LH, Jia YL, Wang RW. Cardiovascular protection and antioxidant activity of the extracts from the mycelia of Cordyceps sinensis act partially via adenosine receptors. Phytother Res 2012. [PMID: 23192916 DOI: 10.1002/ptr.4899] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mycelia of cultured Cordyceps sinensis (CS) is one of the most common substitutes for natural CS and was approved for arrhythmia in China. However, the role of CS in ameliorating injury during ischemia-reperfusion (I/R) is still unclear. We examined effects of extracts from CS on I/R and investigated the possible mechanisms. Post-ischemic coronary perfusion pressure, ventricular function, and coronary flow were measured using the Langendorff mouse heart model. Oxidative stress of cardiac homogenates was performed using an ELISA. Our results indicate that CS affords cardioprotection possibly through enhanced adenosine receptor activation. Cardioprotection was demonstrated by reduced post-ischemic diastolic dysfunction and improved recovery of pressure development and coronary flow. Treatment with CS largely abrogates oxidative stress and damage in glucose- or pyruvate-perfused hearts. Importantly, observed reductions in oxidative stress [glutathione disulfide (GSSG)]/[GSSG + glutathione] and [malondialdehyde (MDA)]/[superoxide dismutase + MDA] ratios as well as the resultant damage upon CS treatment correlate with functional markers of post-ischemic myocardial outcome. These effects of CS were partially blocked by 8-ρ-sulfophenyltheophylline, an adenosine receptor antagonist. Our results demonstrate a suppressive role of CS in ischemic contracture. Meanwhile, the results also suggest pre-ischemic adenosine receptor activation may be involved in reducing contracture in hearts pretreated with CS.
Collapse
Affiliation(s)
- Xiao-Feng Yan
- The Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310009, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Xiang SY, Dusaban SS, Brown JH. Lysophospholipid receptor activation of RhoA and lipid signaling pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:213-22. [PMID: 22986288 DOI: 10.1016/j.bbalip.2012.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/08/2012] [Accepted: 09/08/2012] [Indexed: 01/08/2023]
Abstract
The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) signal through G-protein coupled receptors (GPCRs) which couple to multiple G-proteins and their effectors. These GPCRs are quite efficacious in coupling to the Gα(12/13) family of G-proteins, which stimulate guanine nucleotide exchange factors (GEFs) for RhoA. Activated RhoA subsequently regulates downstream enzymes that transduce signals which affect the actin cytoskeleton, gene expression, cell proliferation and cell survival. Remarkably many of the enzymes regulated downstream of RhoA either use phospholipids as substrates (e.g. phospholipase D, phospholipase C-epsilon, PTEN, PI3 kinase) or are regulated by phospholipid products (e.g. protein kinase D, Akt). Thus lysophospholipids signal from outside of the cell and control phospholipid signaling processes within the cell that they target. Here we review evidence suggesting an integrative role for RhoA in responding to lysophospholipids upregulated in the pathophysiological environment, and in transducing this signal to cellular responses through effects on phospholipid regulatory or phospholipid regulated enzymes. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Sunny Yang Xiang
- Department of Pharmacology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
25
|
Cheong SL, Federico S, Venkatesan G, Mandel AL, Shao YM, Moro S, Spalluto G, Pastorin G. The A3 adenosine receptor as multifaceted therapeutic target: pharmacology, medicinal chemistry, and in silico approaches. Med Res Rev 2011; 33:235-335. [PMID: 22095687 DOI: 10.1002/med.20254] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine is an ubiquitous local modulator that regulates various physiological and pathological functions by stimulating four membrane receptors, namely A(1), A(2A), A(2B), and A(3). Among these G protein-coupled receptors, the A(3) subtype is found mainly in the lung, liver, heart, eyes, and brain in our body. It has been associated with cerebroprotection and cardioprotection, as well as modulation of cellular growth upon its selective activation. On the other hand, its inhibition by selective antagonists has been reported to be potentially useful in the treatment of pathological conditions including glaucoma, inflammatory diseases, and cancer. In this review, we focused on the pharmacology and the therapeutic implications of the human (h)A(3) adenosine receptor (AR), together with an overview on the progress of hA(3) AR agonists, antagonists, allosteric modulators, and radioligands, as well as on the recent advances pertaining to the computational approaches (e.g., quantitative structure-activity relationships, homology modeling, molecular docking, and molecular dynamics simulations) applied to the modeling of hA(3) AR and drug design.
Collapse
Affiliation(s)
- Siew Lee Cheong
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Xiang SY, Vanhoutte D, Del Re DP, Purcell NH, Ling H, Banerjee I, Bossuyt J, Lang RA, Zheng Y, Matkovich SJ, Miyamoto S, Molkentin JD, Dorn GW, Brown JH. RhoA protects the mouse heart against ischemia/reperfusion injury. J Clin Invest 2011; 121:3269-76. [PMID: 21747165 DOI: 10.1172/jci44371] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/18/2011] [Indexed: 12/24/2022] Open
Abstract
The small GTPase RhoA serves as a nodal point for signaling through hormones and mechanical stretch. However, the role of RhoA signaling in cardiac pathophysiology is poorly understood. To address this issue, we generated mice with cardiomyocyte-specific conditional expression of low levels of activated RhoA (CA-RhoA mice) and demonstrated that they exhibited no overt cardiomyopathy. When challenged by in vivo or ex vivo ischemia/reperfusion (I/R), however, the CA-RhoA mice exhibited strikingly increased tolerance to injury, which was manifest as reduced myocardial lactate dehydrogenase (LDH) release and infarct size and improved contractile function. PKD was robustly activated in CA-RhoA hearts. The cardioprotection afforded by RhoA was reversed by PKD inhibition. The hypothesis that activated RhoA and PKD serve protective physiological functions during I/R was supported by several lines of evidence. In WT mice, both RhoA and PKD were rapidly activated during I/R, and blocking PKD augmented I/R injury. In addition, cardiac-specific RhoA-knockout mice showed reduced PKD activation after I/R and strikingly decreased tolerance to I/R injury, as shown by increased infarct size and LDH release. Collectively, our findings provide strong support for the concept that RhoA signaling in adult cardiomyocytes promotes survival. They also reveal unexpected roles for PKD as a downstream mediator of RhoA and in cardioprotection against I/R.
Collapse
Affiliation(s)
- Sunny Yang Xiang
- Department of Pharmacology, UCSD, San Diego, California 92093-0636, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Miyamoto S, Del Re DP, Xiang SY, Zhao X, Florholmen G, Brown JH. Revisited and revised: is RhoA always a villain in cardiac pathophysiology? J Cardiovasc Transl Res 2010; 3:330-43. [PMID: 20559774 DOI: 10.1007/s12265-010-9192-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/22/2010] [Indexed: 01/10/2023]
Abstract
The neonatal rat ventricular myocyte model of hypertrophy has provided tremendous insight with regard to signaling pathways regulating cardiac growth and gene expression. Many mediators thus discovered have been successfully extrapolated to the in vivo setting, as assessed using genetically engineered mice and physiological interventions. Studies in neonatal rat ventricular myocytes demonstrated a role for the small G-protein RhoA and its downstream effector kinase, Rho-associated coiled-coil containing protein kinase (ROCK), in agonist-mediated hypertrophy. Transgenic expression of RhoA in the heart does not phenocopy this response, however, nor does genetic deletion of ROCK prevent hypertrophy. Pharmacologic inhibition of ROCK has effects most consistent with roles for RhoA signaling in the development of heart failure or responses to ischemic damage. Whether signals elicited downstream of RhoA promote cell death or survival and are deleterious or salutary is, however, context and cell-type dependent. The concepts discussed above are reviewed, and the hypothesis that RhoA might protect cardiomyocytes from ischemia and other insults is presented. Novel RhoA targets including phospholipid regulated and regulating enzymes (Akt, PI kinases, phospholipase C, protein kinases C and D) and serum response element-mediated transcriptional responses are considered as possible pathways through which RhoA could affect cardiomyocyte survival.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0636, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
The study of the A(3) adenosine receptor (A(3)AR) represents a rapidly growing and intense area of research in the adenosine field. The present chapter will provide an overview of the expression patterns, molecular pharmacology and functional role of this A(3)AR subtype under pathophysiological conditions. Through studies utilizing selective A(3)AR agonists and antagonists, or A(3)AR knockout mice, it is now clear that this receptor plays a critical role in the modulation of ischemic diseases as well as in inflammatory and autoimmune pathologies. Therefore, the potential therapeutic use of agonists and antagonists will also be described. The discussion will principally address the use of such compounds in the treatment of brain and heart ischemia, asthma, sepsis and glaucoma. The final part concentrates on the molecular basis of A(3)ARs in autoimmune diseases such as rheumatoid arthritis, and includes a description of clinical trials with the selective agonist CF101. Based on this chapter, it is evident that continued research to discover agonists and antagonists for the A(3)AR subtype is warranted.
Collapse
|
29
|
Abstract
Cardiac hypertrophy, congestive heart failure, diabetic cardiomyopathy and myocardial ischemia-reperfusion injury are associated with a disturbance in cardiac sarcolemmal membrane phospholipid homeostasis. The contribution of the different phospholipases and their related signaling mechanisms to altered function of the diseased myocardium is not completely understood. Resolution of this issue is essential for both the understanding of the pathophysiology of heart disease and for determining if components of the phospholipid signaling pathways could serve as appropriate therapeutic targets. This review provides an outline of the role of phospholipase A2, C and D and subsequent signal transduction mechanisms in different cardiac pathologies with a discussion of their potential as targets for drug development for the prevention/treatment of heart disease.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre & Departments of Human Anatomy & Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
30
|
Bromberg KD, Iyengar R, He JC. Regulation of neurite outgrowth by G(i/o) signaling pathways. FRONT BIOSCI-LANDMRK 2008; 13:4544-57. [PMID: 18508528 DOI: 10.2741/3022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neurogenesis is a long and winding journey. A neural progenitor cell migrates long distances, differentiates by forming a single axon and multiple dendrites, undergoes maturation, and ultimately survives. The initial formation of neurites during neuronal differentiation, commonly referred to as "neurite outgrowth," can be induced by a large repertoire of signals that stimulate an array of receptors and downstream signaling pathways. The G(i/o) family of heterotrimeric G-proteins are abundantly expressed in the brain and enriched at neuronal growth cones. Recent evidence has uncovered several G(i/o)-coupled receptors that induce neurite outgrowth and has begun to elucidate the underlying molecular mechanisms. Emerging data suggests that signals from several G(i/o)-coupled receptors converge at the transcription factor STAT3 to regulate neurite outgrowth and at Rac1 and Cdc42 to regulate cytoskeletal reorganization. Physiologically, signaling through G(i/o)-coupled cannabinoid receptors is critical for pro percentral nervous system development. As the mechanisms by which G(i/o)-coupled receptors regulate neurite outgrowth are clarified, it is becoming evident that modulating signals from G(i/o) and their receptors has great potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kenneth D Bromberg
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | |
Collapse
|
31
|
Butcher A, Gregg A, Scammells PJ, Rose' Meyer RB. Effect of a novel partial adenosine A1 receptor agonist VCP102 in reducing ischemic damage in the mouse heart. Drug Dev Res 2008. [DOI: 10.1002/ddr.20220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Bonventre JV. Molecular and Genetic Aspects of Ischemic Acute Kidney Injury. MOLECULAR AND GENETIC BASIS OF RENAL DISEASE 2008:531-555. [DOI: 10.1016/b978-1-4160-0252-9.50034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA. The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 2007; 117:123-40. [PMID: 18029023 DOI: 10.1016/j.pharmthera.2007.09.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 02/01/2023]
Abstract
Adenosine is a primordial signaling molecule present in every cell of the human body that mediates its physiological functions by interacting with 4 subtypes of G-protein-coupled receptors, termed A1, A2A, A2B and A3. The A3 subtype is perhaps the most enigmatic among adenosine receptors since, although several studies have been performed in the years to elucidate its physiological function, it still presents in several cases a double nature in different pathophysiological conditions. The 2 personalities of A3 often come into direct conflict, e.g., in ischemia, inflammation and cancer, rendering this receptor as a single entity behaving in 2 different ways. This review focuses on the most relevant aspects of A3 adenosine subtype activation and summarizes the pharmacological evidence as the basis of the dichotomy of this receptor in different therapeutic fields. Although much is still to be learned about the function of the A3 receptor and in spite of its duality, at the present time it can be speculated that A3 receptor selective ligands might show utility in the treatment of ischemic conditions, glaucoma, asthma, arthritis, cancer and other disorders in which inflammation is a feature. The biggest and most intriguing challenge for the future is therefore to understand whether and where selective A3 agonists or antagonists are the best choice.
Collapse
Affiliation(s)
- Stefania Gessi
- Department of Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Tappia PS. Phospholipid-mediated signaling systems as novel targets for treatment of heart disease. Can J Physiol Pharmacol 2007; 85:25-41. [PMID: 17487243 DOI: 10.1139/y06-098] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phospholipases associated with the cardiac sarcolemmal (SL) membrane hydrolyze specific membrane phospholipids to generate important lipid signaling molecules, which are known to influence normal cardiac function. However, impairment of the phospholipases and their related signaling events may be contributory factors in altering cardiac function of the diseased myocardium. The identification of the changes in such signaling systems as well as understanding the contribution of phospholipid-signaling pathways to the pathophysiology of heart disease are rapidly emerging areas of research in this field. In this paper, I provide an overview of the role of phospholipid-mediated signal transduction processes in cardiac hypertrophy and congestive heart failure, diabetic cardiomyopathy, as well as in ischemia-reperfusion. From the cumulative evidence presented, it is suggested that phospholipid-mediated signal transduction processes could serve as novel targets for the treatment of the different types of heart disease.
Collapse
Affiliation(s)
- Paramjit S Tappia
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R2H 2A6, Canada
| |
Collapse
|
35
|
Ozacmak VH, Sayan H. Pretreatment with adenosine and adenosine A1 receptor agonist protects against intestinal ischemia-reperfusion injury in rat. World J Gastroenterol 2007; 13:538-47. [PMID: 17278219 PMCID: PMC4065975 DOI: 10.3748/wjg.v13.i4.538] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effects of adenosine and A1 receptor activation on reperfusion-induced small intestinal injury.
METHODS: Rats were randomized into groups with sham operation, ischemia and reperfusion, and systemic treatments with either adenosine or 2-chloro-N6-cyclopentyladenosine, A1 receptor agonist or 8-cyclopentyl-1,3-dipropylxanthine, A1 receptor antagonist, plus adenosine before ischemia. Following reperfusion, contractions of ileum segments in response to KCl, carbachol and substance P were recorded. Tissue myeloperoxidase, malondialdehyde, and reduced glutathione levels were measured.
RESULTS: Ischemia significantly decreased both contraction and reduced glutathione level which were ameliorated by adenosine and agonist administration. Treatment also decreased neutrophil infiltration and membrane lipid peroxidation. Beneficial effects of adenosine were abolished by pretreatment with A1 receptor antagonist.
CONCLUSION: The data suggest that adenosine and A1 receptor stimulation attenuate ischemic intestinal injury via decreasing oxidative stress, lowering neutrophil infiltration, and increasing reduced glutathione content.
Collapse
Affiliation(s)
- V Haktan Ozacmak
- Department of Physiology, School of Medicine, Zonguldak Karaelmas University, Kozlu 67600, Zonguldak, Turkey.
| | | |
Collapse
|
36
|
Goswami SK, Maulik N, Das DK. Ischemia-reperfusion and cardioprotection: a delicate balance between reactive oxygen species generation and redox homeostasis. Ann Med 2007; 39:275-89. [PMID: 17558599 DOI: 10.1080/07853890701374677] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Ischemia-reperfusion injury of the myocardium has long been a subject of intense research. Cardiac preconditioning, an associated phenomenon, has also been critically investigated over the past two decades. Although the biochemistry of ischemia-reperfusion and its association with oxidative metabolism has long been established, recent studies have further revealed a more intricate role of a number of reactive oxygen-nitrogen species in those processes. Emerging evidence suggests that an elaborate network of enzymes (and other biomolecules) dedicated to the generation, utilization, and diminution of reactive oxygen-nitrogen species maintains the redox homeostasis in the myocardium, and any perturbation of its status has distinctive effects. It thus appears that while excessive generation of reactive species leads to cellular injury, their regulated generation may cause transient and reversible modifications of cellular proteins leading the transmission of intracellular signals with specific effects. Taken together, generation of reactive oxygen-nitrogen species in the myocardium plays a nodal role in mediating both ischemic injury and cardioprotection.
Collapse
Affiliation(s)
- Shyamal K Goswami
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110, USA
| | | | | |
Collapse
|
37
|
Tappia PS, Singal T, Dent MR, Asemu G, Mangat R, Dhalla NS. Phospholipid-mediated signaling in diseased myocardium. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.6.701] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Minelli A, Bellezza I, Agostini M, Bracarda S, Culig Z. Mechanism of 2-chloroadenosine toxicity to PC3 cell line. Prostate 2006; 66:1425-36. [PMID: 16741921 DOI: 10.1002/pros.20458] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND 2-CADO inhibits the growth of several types of cells and causes apoptosis by a mechanism which involves adenosine receptors or cellular uptake or both. METHODS Androgen-independent (PC3) prostate cancer cells were used in the study and proliferation, cell-cycle progression, and apoptosis analyzed. Deoxy-and ribonucleoside triphosphate pools were determined by HPLC. The molecular mechanism was examined by assessing the involvement of DNA synthesizing enzymes in the cellular response. RESULTS 2-CADO treatment dramatically reduced the number of prostate cancer cells and permanently stopped cell-cycle progression in the S-phase. The role of 2-CADO in prostate cancer cells is uptake-mediated and followed by sequential phosphorylations to 2-Cl-ATP that irreversibly inhibits several key-enzymes for DNA biosynthesis. CONCLUSIONS Arrest of DNA synthesis responsible for toxicity of 2-CADO to PC3 cells is due to the lack of substrates for DNA polymerization caused by irreversible inhibition of purine/pyrimidine ribo-and 2-deoxyribonucleotides salvage enzymes.
Collapse
Affiliation(s)
- Alba Minelli
- Dipartimento di Medicina Sperimentale Scienze Biochimiche, Sezione Biochimica Cellulare, via del Giochetto, Perugia, Italia.
| | | | | | | | | |
Collapse
|
39
|
Gao ZG, Duong HT, Sonin T, Kim SK, Van Rompaey P, Van Calenbergh S, Mamedova L, Kim HO, Kim MJ, Kim AY, Liang BT, Jeong LS, Jacobson KA. Orthogonal activation of the reengineered A3 adenosine receptor (neoceptor) using tailored nucleoside agonists. J Med Chem 2006; 49:2689-702. [PMID: 16640329 PMCID: PMC3471142 DOI: 10.1021/jm050968b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An alternative approach to overcome the inherent lack of specificity of conventional agonist therapy can be the reengineering of the GPCRs and their agonists. A reengineered receptor (neoceptor) could be selectively activated by a modified agonist, but not by the endogenous agonist. Assisted by rhodopsin-based molecular modeling, we pinpointed mutations of the A(3) adenosine receptor (AR) for selective affinity enhancement following complementary modifications of adenosine. Ribose modifications examined included, at 3': amino, aminomethyl, azido, guanidino, ureido; and at 5': uronamido, azidodeoxy. N(6)-Variations included 3-iodobenzyl, 5-chloro-2-methyloxybenzyl, and methyl. An N(6)-3-iodobenzyl-3'-ureido adenosine derivative 10 activated phospholipase C in COS-7 cells (EC(50) = 0.18 microM) or phospholipase D in chick primary cardiomyocytes, both mediated by a mutant (H272E), but not the wild-type, A(3)AR. The affinity enhancements for 10 and the corresponding 3'-acetamidomethyl analogue 6 were >100-fold and >20-fold, respectively. 10 concentration-dependently protected cardiomyocytes transfected with the neoceptor against hypoxia. Unlike 10, adenosine activated the wild-type A(3)AR (EC(50) of 1.0 microM), but had no effect on the H272E mutant A(3)AR (100 microM). Compound 10 was inactive at human A(1), A(2A), and A(2B)ARs. The orthogonal pair comprising an engineered receptor and a modified agonist should be useful for elucidating signaling pathways and could be therapeutically applied to diseases following organ-targeted delivery of the neoceptor gene.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Heng T. Duong
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatiana Sonin
- Department of Cardiology, University of Connecticut Health Center, Farmington, CT 06030-1601
| | - Soo-Kyung Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philippe Van Rompaey
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences (FFW), Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences (FFW), Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Liaman Mamedova
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hea Ok Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Myong Jung Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Ae Yil Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Bruce T. Liang
- Department of Cardiology, University of Connecticut Health Center, Farmington, CT 06030-1601
| | - Lak Shin Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
40
|
Ghelardoni S, Frascarelli S, Carnicelli V, Ronca-Testoni S, Zucchi R. Modulation of cardiac sarcoplasmic reticulum calcium release by aenosine: a protein kinase C- dependent pathway. Mol Cell Biochem 2006; 288:59-64. [PMID: 16583139 DOI: 10.1007/s11010-006-9118-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Accepted: 01/05/2006] [Indexed: 11/27/2022]
Abstract
We have already reported that A(3) adenosine receptor stimulation reduces [(3)H]-ryanodine binding and sarcoplasmic reticulum Ca(2+) release in rat heart. In the present work we have investigated the transduction pathway responsible for this effect. Isolated rat hearts were perfused for 20 min in the presence of the following substances: 100 nM N(6)-(iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA), an A(3) adenosine agonist; 10 muM U-73122, a phospholipase C inhibitor; 2 muM chelerythrine, a protein kinase C inhibitor. At the end of perfusion, the hearts were homogenized and [(3)H]-ryanodine binding was assayed. IB-MECA produced a significant decrease in ryanodine binding, which was abolished in the presence of chelerythrine but not in the presence of U-73122. RT-PCR experiments showed that ryanodine receptor gene expression was not affected by IB-MECA. In Western blot experiments, ryanodine receptor phosphorylation on serine 2809 was not modified after perfusion with IB-MECA. We conclude that modulation of SR Ca(2+) release channel by IB-MECA is dependent on protein kinase C activation. However, in this model protein kinase C activation is not due to phospholipase C activation. In addition, changes in ryanodine receptor gene expression or direct phosphorylation of the ryanodine receptor on serine 2809 residue do not appear to occur.
Collapse
Affiliation(s)
- Sandra Ghelardoni
- Dipartimento di Scienze dell'Uomo e dell'Ambiente, University of Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
41
|
Abstract
Adenosine receptors are major targets of caffeine, the most commonly consumed drug in the world. There is growing evidence that they could also be promising therapeutic targets in a wide range of conditions, including cerebral and cardiac ischaemic diseases, sleep disorders, immune and inflammatory disorders and cancer. After more than three decades of medicinal chemistry research, a considerable number of selective agonists and antagonists of adenosine receptors have been discovered, and some have been clinically evaluated, although none has yet received regulatory approval. However, recent advances in the understanding of the roles of the various adenosine receptor subtypes, and in the development of selective and potent ligands, as discussed in this review, have brought the goal of therapeutic application of adenosine receptor modulators considerably closer.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA.
| | | |
Collapse
|
42
|
Asemu G, Dent MR, Singal T, Dhalla NS, Tappia PS. Differential changes in phospholipase D and phosphatidate phosphohydrolase activities in ischemia–reperfusion of rat heart. Arch Biochem Biophys 2005; 436:136-44. [PMID: 15752718 DOI: 10.1016/j.abb.2005.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 01/31/2005] [Indexed: 10/25/2022]
Abstract
Phospholipase D (PLD2) produces phosphatidic acid (PA), which is converted to 1,2 diacylglycerol (DAG) by phosphatidate phosphohydrolase (PAP2). Since PA and DAG regulate Ca(2+) movements, we examined PLD2 and PAP2 in the sarcolemma (SL) and sarcoplasmic reticular (SR) membranes from hearts subjected to ischemia and reperfusion (I-R). Although SL and SR PLD2 activities were unaltered after 30 min ischemia, 5 min reperfusion resulted in a 36% increase in SL PLD2 activity, whereas 30 min reperfusion resulted in a 30% decrease in SL PLD2 activity, as compared to the control value. SR PLD2 activity was decreased (39%) after 5 min reperfusion, but returned to control levels after 30 min reperfusion. Ischemia for 60 min resulted in depressed SL and SR PLD2 activities, characterized with reduced V(max) and increased K(m) values, which were not reversed during reperfusion. Although the SL PAP2 activity was decreased (31%) during ischemia and at 30 min reperfusion (28%), the SR PAP2 activity was unchanged after 30 min ischemia, but was decreased after 5 min reperfusion (25%) and almost completely recovered after 30 min reperfusion. A 60 min period of ischemia followed by reperfusion caused an irreversible depression of SL and SR PAP2 activities. Our results indicate that I-R induced cardiac dysfunction is associated with subcellular changes in PLD2 and PAP2 activities.
Collapse
Affiliation(s)
- Girma Asemu
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, Canada R2H 2A6
| | | | | | | | | |
Collapse
|
43
|
Abstract
RhoA and Rho-kinase (ROCK) participate in a wide variety of cell signal functions such as cell growth, smooth and cardiac muscle contraction, cytoskeleton rearrangement, cell migration and proliferation. In vascular smooth muscle cells, RhoA and ROCK play an important role in Ca2+ sensitization and regulate vascular smooth muscle tone. In the heart, RhoA and ROCK mediate hypertrophic response leading to cardiac hypertrophy. Recent cellular and molecular biology studies using ROCK inhibitors such as Y-27632 and fasudil have indicated a pivotal role of the RhoA-ROCK cascade in many aspects of cardiovascular function such as cardiac hypertrophy and ventricular remodeling following myocardial infarction. Inhibition of the RhoA-ROCK signaling pathway may be a suitable target for a number of cardiovascular diseases including hypertension, atherosclerosis, diabetes and hypertrophic heart failure. This review focuses on the current understanding of the RhoA-ROCK signal pathway in heart diseases and discusses the use of ROCK inhibitors as therapeutic agents for heart diseases ranging from hypertensive cardiomyopathy to heart failure.
Collapse
Affiliation(s)
- Jun Ren
- Center for Cardiovascular Research and Alternative Medicine and Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY 82071, USA.
| | | |
Collapse
|
44
|
Nishizawa K, Wolkowicz PE, Yamagishi T, Guo LL, Pike MM. Fasudil prevents KATP channel-induced improvement in postischemic functional recovery. Am J Physiol Heart Circ Physiol 2005; 288:H3011-5. [PMID: 15695558 DOI: 10.1152/ajpheart.00611.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whereas activation of ATP-dependent potassium (K(ATP)) channels greatly improves postischemic myocardial recovery, the final effector mechanism for K(ATP) channel-induced cardioprotection remains elusive. RhoA is a GTPase that regulates a variety of cellular processes known to be involved with K(ATP) channel cardioprotection. Our goal was to determine whether the activity of a key rhoA effector, rho kinase (ROCK), is required for K(ATP) channel-induced cardioprotection. Four groups of perfused rat hearts were subjected to 36 min of zero-flow ischemia and 44 min of reperfusion with continuous measurements of mechanical function and (31)P NMR high-energy phosphate data: 1) untreated, 2) pinacidil (10 microM) to activate K(ATP) channels, 3) fasudil (15 microM) to inhibit ROCK, and 4) both fasudil and pinacidil. Pinacidil significantly improved postischemic mechanical recovery [39 +/- 16 vs. 108 +/- 4 mmHg left ventricular diastolic pressure (LVDP), untreated and pinacidil, respectively]. Fasudil did not affect reperfusion LVDP (41 +/- 13 mmHg) but completely blocked the marked improvement in mechanical recovery that occurred with pinacidil treatment (54 +/- 15 mmHg). Substantial attenuation of the postischemic energetic recovery was also observed. These data support the hypothesis that ROCK activity plays a role in K(ATP) channel-induced cardioprotection.
Collapse
Affiliation(s)
- Kenya Nishizawa
- Dept. of Medicine, Univ. of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
45
|
Chaudary N, Naydenova Z, Shuralyova I, Coe IR. The adenosine transporter, mENT1, is a target for adenosine receptor signaling and protein kinase Cepsilon in hypoxic and pharmacological preconditioning in the mouse cardiomyocyte cell line, HL-1. J Pharmacol Exp Ther 2004; 310:1190-8. [PMID: 15131243 DOI: 10.1124/jpet.104.067157] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brief exposure of the heart to hypoxia results in less cellular damage after subsequent hypoxia, an effect known as preconditioning (PC). PC has been widely studied but is still not fully understood. Adenosine (Ado), adenosine receptors, and protein kinase C (PKC) have been implicated as integral components of PC. Adenosine (nucleoside) transporters (NTs) facilitate flux of Ado across cell membranes, but their role in PC is unknown. Therefore, we used the murine cardiomyocyte cell line, HL-1, and asked if there was feedback regulation of NTs by Ado, Ado receptors, and PKC following either hypoxic or pharmacological PC. Activation (by specific agonists) of A1 or A3 Ado receptors or PKC resulted in PC in HL-1. The A1 (but not A3) receptor is coupled to PKCepsilon, and activation of PKCepsilon (by specific peptide agonist) resulted in PC. Moreover, PKCepsilon stimulates Ado uptake via the predominant NT in HL-1, mouse equilibrative nucleoside transporter 1 (mENT1). Studies in primary neonatal mouse cardiomyocytes confirmed our observations in HL-1 cells. Hypoxic challenge led to a rapid increase in, and efflux of, intracellular Ado from cells, which was blocked by NT inhibitors (dipyridamole/nitrobenzylthioinosine). Moreover, NT inhibition during hypoxia or PC was highly protective, suggesting that Ado loss contributes to decreased cell viability. Our data suggest that hypoxic challenge causes an efflux of Ado via ENTs, activation of A1 and/or A3 receptors, signaling through PKCepsilon, and activation of ENT1. Since Ado is required for ATP synthesis on reperfusion, this feedback regulation of mENT1 would promote reuptake of Ado.
Collapse
Affiliation(s)
- Naz Chaudary
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3
| | | | | | | |
Collapse
|
46
|
Fabritz L, Kirchhof P, Fortmüller L, Auchampach JA, Baba HA, Breithardt G, Neumann J, Boknik P, Schmitz W. Gene dose-dependent atrial arrhythmias, heart block, and brady-cardiomyopathy in mice overexpressing A(3) adenosine receptors. Cardiovasc Res 2004; 62:500-8. [PMID: 15158142 PMCID: PMC3910327 DOI: 10.1016/j.cardiores.2004.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2003] [Revised: 01/31/2004] [Accepted: 02/04/2004] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE An increased expression of adenosine receptors is a promising target for gene therapy aimed at protecting the myocardium against ischemic damage, but may alter cardiac electrophysiology. We therefore studied the effects of heart-directed overexpression of A(3) adenosine receptors (A(3)ARs) at different gene doses on sinus and atrio-ventricular (AV) nodal function in mice. METHODS AND RESULTS Mice with heart-specific overexpression of A(3)AR at high (A(3)(high)) or low (A(3)(low)) levels and their wild-type littermates were studied. Telemetric electrocardiogram (ECG) recordings in adult freely moving A(3)(high) mice showed profound sinus bradycardia resulting in either ventricular escape rhythms or an incessant bradycardia-tachycardia syndrome (minimal heart rate A(3)(high) 217+/-25*; WT 406+/-21 beats/min, all values as mean+/-S.E.M., n=7 per genotype, *p<0.05). Exercise attenuated bradycardia in A(3)(high) mice (maximal heart rate A(3)(high) 650+/-13*; WT 796+/-13 beats/min) and first-degree AV nodal block was present (PQ interval A(3)(high) 36+/-4*; WT 23+/-5 ms). Isolated hearts showed complete heart block (10/17 A(3)(high)* vs. 1/17 WT). Atrial bradycardia and AV block were already present 3 weeks after birth. Doppler echocardiography revealed atrial dysfunction and progressive atrial enlargement that was moderate at 3 and 8 weeks, and progressed at 12 and 21 weeks of age (all p<0.05 vs. WT). Atrial contractility and sarcoendoplasmic Ca(2+) ATPase (SERCA) 2a protein expression were reduced in isolated left A(3)(high) atria at the age of 14 weeks. Fibrosis was present in left A(3)(high) atria at 14 weeks, but not at 5 weeks of age. A(3)(low) mice had first-degree AV block without arrhythmias or structural changes. CONCLUSIONS Heart-directed overexpression of A(3)AR resulted in gene dose-dependent AV block and pronounced sinus nodal dysfunction in vivo. Profound bradycardia heralded atrial and ventricular dilatation, dysfunction, and fibrosis. In contrast to A(1) adenosine receptors (A(1)AR), the effects of A(3)AR overexpression were attenuated during exercise. This may have implications for the physiology of sinus nodal regulation and for therapeutic attempts to increase the expression of adenosine receptors.
Collapse
Affiliation(s)
- Larissa Fabritz
- Department of Cardiology and Angiology and Institute for Arteriosclerosis Research, University Hospital Münster, Münster, Germany
| | - Paulus Kirchhof
- Department of Cardiology and Angiology and Institute for Arteriosclerosis Research, University Hospital Münster, Münster, Germany
| | - Lisa Fortmüller
- Department of Cardiology and Angiology and Institute for Arteriosclerosis Research, University Hospital Münster, Münster, Germany
| | - John A. Auchampach
- Department of Pharmacology and Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hideo A. Baba
- Institute of Pathology, University of Essen, Essen, Germany
| | - Günter Breithardt
- Department of Cardiology and Angiology and Institute for Arteriosclerosis Research, University Hospital Münster, Münster, Germany
| | - Joachim Neumann
- Institute of Pharmacology and Toxicology, University Hospital Münster, Münster, Germany
| | - Peter Boknik
- Institute of Pharmacology and Toxicology, University Hospital Münster, Münster, Germany
| | - Wilhelm Schmitz
- Institute of Pharmacology and Toxicology, University Hospital Münster, Münster, Germany
| |
Collapse
|