1
|
Cherf GM, Lee RB, Mehta N, Clifford C, Torres K, Kintzing JR, Cochran JR. An engineered ultrahigh affinity bi-paratopic uPAR targeting agent confers enhanced tumor targeting. Biotechnol Bioeng 2024; 121:3169-3180. [PMID: 38965775 DOI: 10.1002/bit.28790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/08/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is overexpressed on tumor cells in multiple types of cancer and contributes to disease progression and metastasis. In this work, we engineered a novel bi-paratopic uPAR targeting agent by fusing the binding domains of two native uPAR ligands: uPA and vitronectin, with a flexible peptide linker. The linker length was optimized to facilitate simultaneous engagement of both domains to their adjacent epitopes on uPAR, resulting in a high affinity and avid binding interaction. Furthermore, the individual domains were affinity-matured using yeast surface display and directed evolution, resulting in a bi-paratopic protein with affinity in the picomolar to femtomolar range. This engineered uPAR targeting agent demonstrated significantly enhanced tumor localization in mouse tumor models compared to the native uPAR ligand and warrants further investigation as a diagnostic and therapeutic agent for cancer.
Collapse
Affiliation(s)
- Gerald M Cherf
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Robert B Lee
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Nishant Mehta
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Claire Clifford
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Kathleen Torres
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Tan J, Ge Y, Zhang M, Ding M. Proteomics analysis uncovers plasminogen activator PLAU as a target of the STING pathway for suppression of cancer cell migration and invasion. J Biol Chem 2022; 299:102779. [PMID: 36496076 PMCID: PMC9823231 DOI: 10.1016/j.jbc.2022.102779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
The stimulator of interferon genes (STING) pathway is vital for immune defense against pathogen invasion and cancer. Although ample evidence substantiates that the STING signaling pathway plays an essential role in various cancers via cytokines, no comprehensive investigation of secretory proteins regulated by the STING pathway has been conducted hitherto. Herein, we identify 24 secretory proteins significantly regulated by the STING signaling pathway through quantitative proteomics. Mechanistic analyses reveal that STING activation inhibits the translation of urokinase-type plasminogen activator (PLAU) via the STING-PERK-eIF2α signaling axis. PLAU is highly expressed in a variety of cancers and promotes the migration and invasion of cancer cells. Notably, the activation of STING inhibits cancer cell migration and invasion by suppressing PLAU. Collectively, these results provide novel insights into the anticancer mechanism of the STING pathway, offering a theoretical basis for precision therapy for this patient population.
Collapse
|
3
|
Role of Airway Smooth Muscle in Inflammation Related to Asthma and COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:139-172. [PMID: 33788192 DOI: 10.1007/978-3-030-63046-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Airway smooth muscle contributes to both contractility and inflammation in the pathophysiology of asthma and COPD. Airway smooth muscle cells can change the degree of a variety of functions, including contraction, proliferation, migration, and the secretion of inflammatory mediators (phenotype plasticity). Airflow limitation, airway hyperresponsiveness, β2-adrenergic desensitization, and airway remodeling, which are fundamental characteristic features of these diseases, are caused by phenotype changes in airway smooth muscle cells. Alterations between contractile and hyper-contractile, synthetic/proliferative phenotypes result from Ca2+ dynamics and Ca2+ sensitization. Modulation of Ca2+ dynamics through the large-conductance Ca2+-activated K+ channel/L-type voltage-dependent Ca2+ channel linkage and of Ca2+ sensitization through the RhoA/Rho-kinase pathway contributes not only to alterations in the contractile phenotype involved in airflow limitation, airway hyperresponsiveness, and β2-adrenergic desensitization but also to alteration of the synthetic/proliferative phenotype involved in airway remodeling. These Ca2+ signal pathways are also associated with synergistic effects due to allosteric modulation between β2-adrenergic agonists and muscarinic antagonists. Therefore, airway smooth muscle may be a target tissue in the therapy for these diseases. Moreover, the phenotype changing in airway smooth muscle cells with focuses on Ca2+ signaling may provide novel strategies for research and development of effective remedies against both bronchoconstriction and inflammation.
Collapse
|
4
|
Grinenko T, Yusova О, Revka O, Patalakh I, Yatsenko T. Fibrinolysis regulation by platelets retaining plasminogen and tissue-type plasminogen activator on their surface. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.06.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
5
|
Díaz-Valdivia NI, Calderón CC, Díaz JE, Lobos-González L, Sepulveda H, Ortíz RJ, Martinez S, Silva V, Maldonado HJ, Silva P, Wehinger S, Burzio VA, Torres VA, Montecino M, Leyton L, Quest AFG. Anti-neoplastic drugs increase caveolin-1-dependent migration, invasion and metastasis of cancer cells. Oncotarget 2017; 8:111943-111965. [PMID: 29340103 PMCID: PMC5762371 DOI: 10.18632/oncotarget.22955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022] Open
Abstract
Expression of the scaffolding protein Caveolin-1 (CAV1) enhances migration and invasion of metastatic cancer cells. Yet, CAV1 also functions as a tumor suppressor in early stages of cancer, where expression is suppressed by epigenetic mechanisms. Thus, we sought to identify stimuli/mechanisms that revert epigenetic CAV1 silencing in cancer cells and evaluate how this affects their metastatic potential. We reasoned that restricted tissue availability of anti-neoplastic drugs during chemotherapy might expose cancer cells to sub-therapeutic concentrations, which activate signaling pathways and the expression of CAV1 to favor the acquisition of more aggressive traits. Here, we used in vitro [2D, invasion] and in vivo (metastasis) assays, as well as genetic and biochemical approaches to address this question. Colon and breast cancer cells were identified where CAV1 levels were low due to epigenetic suppression and could be reverted by treatment with the methyltransferase inhibitor 5’-azacytidine. Exposure of these cells to anti-neoplastic drugs for short periods of time (24-48 h) increased CAV1 expression through ROS production and MEK/ERK activation. In colon cancer cells, increased CAV1 expression enhanced migration and invasion in vitro via pathways requiring Src-family kinases, as well as Rac-1 activity. Finally, elevated CAV1 expression in colon cancer cells following exposure in vitro to sub-cytotoxic drug concentrations increased their metastatic potential in vivo. Therefore exposure of cancer cells to anti-neoplastic drugs at non-lethal drug concentrations induces signaling events and changes in transcription that favor CAV1-dependent migration, invasion and metastasis. Importantly, this may occur in the absence of selection for drug-resistance.
Collapse
Affiliation(s)
- Natalia I Díaz-Valdivia
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Claudia C Calderón
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge E Díaz
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Lorena Lobos-González
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Hugo Sepulveda
- Gene Regulation Laboratory, Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Rina J Ortíz
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Universidad Bernardo O Higgins, Facultad de Salud, Departamento de Ciencias Químicas y Biológicas, Santiago, Chile
| | - Samuel Martinez
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Horacio J Maldonado
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Patricio Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Sergio Wehinger
- Faculty of Health Sciences, University of Talca, Interdisciplinary Excellence Research Program Healthy Ageing (PIEI-ES), Talca, Chile
| | - Verónica A Burzio
- Fundación Ciencia & Vida, Santiago, Chile.,Faculty of Biological Sciences, Universidad Andrés Bello, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Martín Montecino
- Gene Regulation Laboratory, Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Salter B, Pray C, Radford K, Martin JG, Nair P. Regulation of human airway smooth muscle cell migration and relevance to asthma. Respir Res 2017; 18:156. [PMID: 28814293 PMCID: PMC5559796 DOI: 10.1186/s12931-017-0640-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/10/2017] [Indexed: 01/15/2023] Open
Abstract
Airway remodelling is an important feature of asthma pathogenesis. A key structural change inherent in airway remodelling is increased airway smooth muscle mass. There is emerging evidence to suggest that the migration of airway smooth muscle cells may contribute to cellular hyperplasia, and thus increased airway smooth muscle mass. The precise source of these cells remains unknown. Increased airway smooth muscle mass may be collectively due to airway infiltration of myofibroblasts, neighbouring airway smooth muscle cells in the bundle, or circulating hemopoietic progenitor cells. However, the relative contribution of each cell type is not well understood. In addition, although many studies have identified pro and anti-migratory agents of airway smooth muscle cells, whether these agents can impact airway remodelling in the context of human asthma, remains to be elucidated. As such, further research is required to determine the exact mechanism behind airway smooth muscle cell migration within the airways, how much this contributes to airway smooth muscle mass in asthma, and whether attenuating this migration may provide a therapeutic avenue for asthma. In this review article, we will discuss the current evidence with respect to the regulation of airway smooth muscle cell migration in asthma.
Collapse
Affiliation(s)
- Brittany Salter
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - Cara Pray
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - Katherine Radford
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - James G. Martin
- Meakins Christie Laboratories, McGill University, Montreal, QC Canada
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| |
Collapse
|
7
|
Foley JH, Conway EM. Cross Talk Pathways Between Coagulation and Inflammation. Circ Res 2017; 118:1392-408. [PMID: 27126649 DOI: 10.1161/circresaha.116.306853] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
Anatomic pathology studies performed over 150 years ago revealed that excessive activation of coagulation occurs in the setting of inflammation. However, it has taken over a century since these seminal observations were made to delineate the molecular mechanisms by which these systems interact and the extent to which they participate in the pathogenesis of multiple diseases. There is, in fact, extensive cross talk between coagulation and inflammation, whereby activation of one system may amplify activation of the other, a situation that, if unopposed, may result in tissue damage or even multiorgan failure. Characterizing the common triggers and pathways are key for the strategic design of effective therapeutic interventions. In this review, we highlight some of the key molecular interactions, some of which are already showing promise as therapeutic targets for inflammatory and thrombotic disorders.
Collapse
Affiliation(s)
- Jonathan H Foley
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.)
| | - Edward M Conway
- From the Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom (J.H.F.); Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free NHS Trust, London, United Kingdom (J.H.F.); and Centre for Blood Research, Department of Medicine, University of British Columbia, Vancouver, Canada (E.M.C.).
| |
Collapse
|
8
|
Stewart AG, Xia YC, Harris T, Royce S, Hamilton JA, Schuliga M. Plasminogen-stimulated airway smooth muscle cell proliferation is mediated by urokinase and annexin A2, involving plasmin-activated cell signalling. Br J Pharmacol 2014; 170:1421-35. [PMID: 24111848 DOI: 10.1111/bph.12422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/04/2013] [Accepted: 08/27/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The conversion of plasminogen into plasmin by interstitial urokinase plasminogen activator (uPA) is potentially important in asthma pathophysiology. In this study, the effect of uPA-mediated plasminogen activation on airway smooth muscle (ASM) cell proliferation was investigated. EXPERIMENTAL APPROACH Human ASM cells were incubated with plasminogen (0.5-50 μg·mL(-1) ) or plasmin (0.5-50 mU·mL(-1) ) in the presence of pharmacological inhibitors, including UK122, an inhibitor of uPA. Proliferation was assessed by increases in cell number or MTT reduction after 48 h incubation with plasmin(ogen), and by earlier increases in [(3) H]-thymidine incorporation and cyclin D1 expression. KEY RESULTS Plasminogen (5 μg·mL(-1) )-stimulated increases in cell proliferation were attenuated by UK122 (10 μM) or by transfection with uPA gene-specific siRNA. Exogenous plasmin (5 mU·mL(-1) ) also stimulated increases in cell proliferation. Inhibition of plasmin-stimulated ERK1/2 or PI3K/Akt signalling attenuated plasmin-stimulated increases in ASM proliferation. Furthermore, pharmacological inhibition of cell signalling mediated by the EGF receptor, a receptor trans-activated by plasmin, also reduced plasmin(ogen)-stimulated cell proliferation. Knock down of annexin A2, which has dual roles in both plasminogen activation and plasmin-signal transduction, also attenuated ASM cell proliferation following incubation with either plasminogen or plasmin. CONCLUSIONS AND IMPLICATIONS Plasminogen stimulates ASM cell proliferation in a manner mediated by uPA and involving multiple signalling pathways downstream of plasmin. Targeting mediators of plasminogen-evoked ASM responses, such as uPA or annexin A2, may be useful in the treatment of asthma.
Collapse
Affiliation(s)
- A G Stewart
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia; Lung Health Research Centre, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Human sprouty1 suppresses urokinase receptor-stimulated cell migration and invasion. ISRN BIOCHEMISTRY 2013; 2013:598251. [PMID: 25937961 PMCID: PMC4393002 DOI: 10.1155/2013/598251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) has been implicated in several processes in tumor progression including cell migration and invasion in addition to initiation of signal transduction. Since uPAR lacks a transmembrane domain, it uses the interaction with other proteins to modulate intracellular signal transduction. We have previously identified hSpry1 as a partner protein of uPAR, suggesting a physiological role for hSpry1 in the regulation of uPAR signal transduction. In this study, hSpry1 was found to colocalize with uPAR upon stimulation with epidermal growth factor (EGF), urokinase (uPA), or its amino terminal fragment (uPA-ATF), implicating a physiological role of hSpry1 in regulation of uPAR signalling pathway. Moreover, hSpry1 was able to inhibit uPAR-stimulated cell migration in HEK293/uPAR, breast carcinoma, and colorectal carcinoma cells. In addition, hSpry1 was found to inhibit uPAR-stimulated cell invasion in breast carcinoma and osteosarcoma cell lines. Increasing our understanding of how hSpry1 negatively regulates uPAR-stimulated cellular functions may determine a distinctive role for hSpry1 in tumour suppression.
Collapse
|
10
|
Rao JS, Gujrati M, Chetty C. Tumor-associated soluble uPAR-directed endothelial cell motility and tumor angiogenesis. Oncogenesis 2013; 2:e53. [PMID: 23797476 PMCID: PMC3740303 DOI: 10.1038/oncsis.2013.19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The expression of urokinase-type plasminogen activator (uPA) receptor (uPAR) correlates with the malignant phenotype of various cancers. The soluble form of uPAR (s-uPAR) is present in the circulation of cancer patients, but the role of s-uPAR in endothelial cell migration is poorly understood. Therefore, we examined the role of tumor-associated s-uPAR on endothelial cell motility and angiogenesis. Here, we present evidence that tumor-associated s-uPAR augments the migration of human umbilical vein endothelial cells (HUVECs). When grown on tumor-conditioned medium, the membrane fraction of HUVECs had increased localization of s-uPAR onto its cell membrane. Colocalization studies for GM1 ganglioside receptor and uPAR further demonstrated s-uPAR recruitment onto lipid rafts of HUVECs. Immunoblot analysis for uPAR in lipid raft fractions confirmed s-uPAR recruiting onto HUVECs' membrane. Further, s-uPAR induced Rac1-mediated cell migration while either function-blocking uPAR antibodies or dominant-negative mutant Rac1 expression in HUVECs-mitigated s-uPAR-enhanced cell migration. In addition, orthotopic implantation of uPAR-overexpressing cells resulted in a significant increase in circulating s-uPAR in blood serum and invasive nature of tumor and tumor vasculature in mice. Collectively, this data provide insight into tumor-associated s-uPAR-directed migration of endothelial cells and its subsequent influence on tumor angiogenesis.
Collapse
Affiliation(s)
- J S Rao
- 1] Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA [2] Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | | | | |
Collapse
|
11
|
Schuliga M, Westall G, Xia Y, Stewart AG. The plasminogen activation system: new targets in lung inflammation and remodeling. Curr Opin Pharmacol 2013; 13:386-93. [PMID: 23735578 DOI: 10.1016/j.coph.2013.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 11/26/2022]
Abstract
The plasminogen activation system (PAS) and the plasmin it forms have dual roles in chronic respiratory diseases including asthma, chronic obstructive pulmonary disease and interstitial lung disease. Whilst plasmin-mediated airspace fibrinolysis is beneficial, interstitial plasmin contributes to lung dysfunction because of its pro-inflammatory and tissue remodeling activities. Recent studies highlight the potential of fibrinolytic agents, including small molecule inhibitors of plasminogen activator inhibitor-1 (PAI-1), as treatments for chronic respiratory disease. Current data also suggest that interstitial urokinase plasminogen activator is an important mediator of lung inflammation and remodeling. However, further preclinical characterization of uPA as a drug target for lung disease is required. Here we review the concept of selectively targeting the contributions of PAS to treat chronic respiratory disease.
Collapse
Affiliation(s)
- Michael Schuliga
- Department of Pharmacol, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
12
|
The plasminogen system in regulating stem cell mobilization. J Biomed Biotechnol 2012; 2012:437920. [PMID: 23118508 PMCID: PMC3478786 DOI: 10.1155/2012/437920] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/05/2012] [Indexed: 12/24/2022] Open
Abstract
The treatment of patients with hematopoietic progenitor and stem cells (HPSCs) to reconstitute hematopoiesis after myeloablative therapy or to repair ischemia after myocardial infarction has significantly improved clinical outcomes. Successful blood or bone marrow transplants require a sufficient number of HPSCs capable of homing to the injured site to regenerate tissue. Granulocyte-colony stimulating factor (G-CSF) is widely used clinically for stem cell mobilization. However, in some patients the response is poor, thus a better understanding of the mechanisms underlying G-CSF-regulated stem cell mobilization is needed. The pasminogen (Plg) system is the primary fibrinolytic pathway responsible for clot dissolution after thrombosis. Recent evidence suggests that Plg plays a pivotal role in stem cell mobilization from the bone marrow to the peripheral circulation, particularly in HPSC mobilization in response to G-CSF. This paper will discuss the potential mechanisms by which the Plg system regulates stem cell mobilization, focusing on stepwise proteolysis and signal transduction during HPSC egress from their bone marrow niche. Clear elucidation of the underlying mechanisms may lead to the development of new Plg-based therapeutic strategies to improve stem cell mobilization in treating hematological and cardiovascular diseases.
Collapse
|
13
|
HAX1 Augments Cell Proliferation, Migration, Adhesion, and Invasion Induced by Urokinase-Type Plasminogen Activator Receptor. JOURNAL OF ONCOLOGY 2012; 2012:950749. [PMID: 22315598 PMCID: PMC3270441 DOI: 10.1155/2012/950749] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/06/2011] [Accepted: 10/06/2011] [Indexed: 12/24/2022]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a cell surface receptor which has a multifunctional task in the process of tumorigenesis including cell proliferation, adhesion, migration, and invasion. Many of the biological functions of uPAR necessitate interactions with other proteins. We have shown previously that uPAR interacts with HAX1 protein (HS-1-associated protein X-1). In the current study, to gain insight into the possible role of HAX1 overexpression in regulation of uPAR signal transduction pathway, several function assays were used. We found that, upon stimulation of uPAR, HAX1 colocalizes with uPAR suggesting a physiological role for HAX1 in the regulation of uPAR signal transduction. HAX1 overexpression augments cell proliferation and migration in uPAR-stimulated cells. Moreover, HAX1 over-expression augmented uPAR-induced cell adhesion to vitronectin as well as cellular invasion. Our results suggest that HAX1 over-expression may underlay a novel mechanism to regulate uPAR-induced functions in cancer cells.
Collapse
|
14
|
Abstract
Airway smooth muscle has classically been of interest for its contractile response linked to bronchoconstriction. However, terminally differentiated smooth muscle cells are phenotypically plastic and have multifunctional capacity for proliferation, cellular hypertrophy, migration, and the synthesis of extracellular matrix and inflammatory mediators. These latter properties of airway smooth muscle are important in airway remodeling which is a structural alteration that compounds the impact of contractile responses on limiting airway conductance. In this overview, we describe the important signaling components and the functional evidence supporting a view of smooth muscle cells at the core of fibroproliferative remodeling of hollow organs. Signal transduction components and events are summarized that control the basic cellular processes of proliferation, cell survival, apoptosis, and cellular migration. We delineate known intracellular control mechanisms and suggest future areas of interest to pursue to more fully understand factors that regulate normal myocyte function and airway remodeling in obstructive lung diseases.
Collapse
Affiliation(s)
- William T Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA.
| | | | | | | | | |
Collapse
|
15
|
Won KJ, Lee HM, Lee CK, Lin HY, Na H, Lim KW, Roh HY, Sim S, Song H, Choi WS, Lee SH, Kim B. Protein Tyrosine Phosphatase SHP-2 Is Positively Involved in Platelet-Derived Growth Factor–Signaling in Vascular Neointima Formation via the Reactive Oxygen Species–Related Pathway. J Pharmacol Sci 2011; 115:164-175. [DOI: 10.1254/jphs.10250fp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022] Open
|
16
|
Schuliga M, Harris T, Stewart AG. Plasminogen activation by airway smooth muscle is regulated by type I collagen. Am J Respir Cell Mol Biol 2010; 44:831-9. [PMID: 20693403 DOI: 10.1165/rcmb.2009-0469oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasmin, the activated protease product of plasminogen, is involved in collagen remodeling, and is strongly implicated in asthma pathophysiology by recent genome-wide association studies. This study examines plasminogen "activation" by airway smooth muscle cells, and its regulation in a fibrotic environment created by culture on type I collagen and incubation with transforming growth factor (TGF)-β. Urokinase plasminogen activator (uPA) activity was detected in the supernatants of human airway smooth muscle cell cultures maintained in serum-free conditions. Incubation with plasminogen (1.5-50.0 μg/ml, 24 h) increased plasmin activity in a concentration-dependent manner (P < 0.001). uPA activity was higher in cultures maintained on fibrillar type I collagen substrata than in those on plastic, as was plasmin activity after incubation with plasminogen (20 μg/ml). Pretreatment with TGF-β (100 pM) for 18 hours inhibited plasminogen activation by airway smooth muscle cells maintained on plastic, but not on collagen. TGF-β stimulated an increase in the level of uPA mRNA in airway smooth muscle cells grown on collagen, but not on plastic. Reducing the levels of β1-integrin collagen receptor, using interference RNA, attenuated plasmin formation by airway smooth muscle cells grown on collagen, and restored the inhibitory effect of TGF-β. This study shows that airway smooth muscle activation of plasminogen by uPA is accelerated in a collagen-rich environment in which the inhibitory effect of TGF-β is attenuated in association with greater uPA expression induced via β1-integrin signaling. These findings suggest that the plasminogen-activation system involving uPA has the potential to contribute to airway wall remodeling in asthma.
Collapse
Affiliation(s)
- Michael Schuliga
- Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
17
|
Abstract
Atherosclerosis and thrombosis associated with the rupture of vulnerable plaque are the main causes of cardiovascular events, including acute coronary syndrome. Low-density lipoprotein (LDL) plays a key role in the pathogenesis of atherothrombotic processes. LDLs modify the antithrombotic properties of the vascular endothelium and change vessel contractility by reducing the availability of endothelial nitric oxide and activating proinflammatory signaling pathways. In addition, LDLs also influence the functions and interactions of cells present in atherosclerotic lesions, whether they come from the circulation or are resident in vessel walls. In fact, LDLs entering affected vessels undergo modifications (e.g. oxidation, aggregation and glycosylation) that potentiate their atherogenic properties. Once modified, these intravascular LDLs promote the formation of foam cells derived from smooth muscle cells and macrophages, thereby increasing the vulnerability of atherosclerotic plaque. Moreover, they also increase the thrombogenicity of both plaque and blood, in which circulating tissue factor levels are raised and platelet reactivity is enhanced. This review focuses on the importance of native and modified LDL for the pathogenesis of atherothrombosis. It also discusses current studies on LDL and its effects on the actions of vascular cells and blood cells, particularly platelets, and considers novel potential therapeutic targets.
Collapse
Affiliation(s)
- Lina Badimón
- Centro de Investigación Cardiovascular, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau Barcelona, España.
| | | | | |
Collapse
|
18
|
|
19
|
Urokinase receptor expression involves tyrosine phosphorylation of phosphoglycerate kinase. Mol Cell Biochem 2009; 335:235-47. [PMID: 19784757 DOI: 10.1007/s11010-009-0273-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
The interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, plays a central role in several pathophysiological processes, including cancer. uPA induces its own cell surface receptor expression through stabilization of uPAR mRNA. The mechanism involves binding of a 51 nt uPAR mRNA coding sequence with phosphoglycerate kinase (PGK) to down regulate cell surface uPAR expression. Tyrosine phosphorylation of PGK mediated by uPA treatment enhances uPAR mRNA stabilization. In contrast, inhibition of tyrosine phosphorylation augments PGK binding to uPAR mRNA and attenuates uPA-induced uPAR expression. Mapping the specific peptide region of PGK indicated that its first quarter (amino acids 1-100) interacts with uPAR mRNA. To determine if uPAR expression by uPA is regulated through activation of tyrosine residues of PGK, we mutated the specific tyrosine residue and tested mutant PGK for its ability to interfere with uPAR expression. Inhibition of tyrosine phosphorylation by mutating Y76 residue abolished uPAR expression induced by uPA treatment. These findings collectively demonstrate that Y76 residue present in the first quarter of the PGK molecule is involved in lung epithelial cell surface uPAR expression. This region can effectively mimic the function of a whole PGK molecule in inhibiting tumor cell growth.
Collapse
|
20
|
Maupas-Schwalm F, Bedel A, Augé N, Grazide MH, Mucher E, Thiers JC, Salvayre R, Nègre-Salvayre A. Integrin alpha(v)beta(3), metalloproteinases, and sphingomyelinase-2 mediate urokinase mitogenic effect. Cell Signal 2009; 21:1925-34. [PMID: 19735728 DOI: 10.1016/j.cellsig.2009.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 12/27/2022]
Abstract
Plasminogen activators are implicated in the pathogenesis of several diseases such as inflammatory diseases and cancer. Beside their serine-protease activity, these agents trigger signaling pathways involved in cell migration, adhesion and proliferation. We previously reported a role for the sphingolipid pathway in the mitogenic effect of plasminogen activators, but the signaling mechanisms involved in neutral sphingomyelinase-2 (NSMase-2) activation (the first step of the sphingolipid pathway) are poorly known. This study was carried out to investigate how urokinase plasminogen activator (uPA) activates NSMase-2. We report that uPA, as well as its catalytically inactive N-amino fragment ATF, triggers the sequential activation of MMP-2, NSMase-2 and ERK1/2 in ECV304 cells that are required for uPA-induced ECV304 proliferation, as assessed by the inhibitory effect of Marimastat (a MMP inhibitor), MMP-2-specific siRNA, MMP-2 defect, and NSMase-specific siRNA. Moreover, upon uPA stimulation, uPAR, MT1-MMP, MMP-2 and NSMase-2 interacted with integrin alpha(v)beta(3), evidenced by co-immunoprecipitation and immunocytochemistry experiments. Moreover, the alpha(v)beta(3) blocking antibody inhibited the uPA-triggered MMPs/uPAR/integrin alpha(v)beta(3) interaction, NSMase-2 activation, Ki67 expression and DNA synthesis in ECV304. In conclusion, uPA triggers interaction between integrin alpha(v)beta(3), uPAR and MMPs that leads to NSMase-2 and ERK1/2 activation and cell proliferation. These findings highlight a new signaling mechanism for uPA, and suggest that, upon uPA stimulation, uPAR, MMPs, integrin alpha(v)beta(3) and NSMase-2 form a signaling complex that take part in mitogenic signaling in ECV304 cells.
Collapse
Affiliation(s)
- Françoise Maupas-Schwalm
- Inserm U858 Team 10, Dept of Biochemistry and Molecular Biology, Faculty of Medicine-Rangueil, University Paul Sabatier Toulouse-3, IFR-150, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kiyan J, Haller H, Dumler I. The tyrosine phosphatase SHP-2 controls urokinase-dependent signaling and functions in human vascular smooth muscle cells. Exp Cell Res 2009; 315:1029-39. [DOI: 10.1016/j.yexcr.2008.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/03/2008] [Accepted: 12/16/2008] [Indexed: 11/16/2022]
|
22
|
Monaghan-Benson E, Mastick CC, McKeown-Longo PJ. A dual role for caveolin-1 in the regulation of fibronectin matrix assembly by uPAR. J Cell Sci 2008; 121:3693-703. [PMID: 18957516 DOI: 10.1242/jcs.028423] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The relationship between the plasminogen activator system and integrin function is well documented but incompletely understood. The mechanism of uPAR-mediated signaling across the membrane and the molecular basis of uPAR-dependent activation of integrins remain important issues. The present study was undertaken to identify the molecular intermediates involved in the uPAR signaling pathway controlling alpha5beta1-integrin activation and fibronectin polymerization. Disruption of lipid rafts with MbetaCD or depletion of caveolin-1 by siRNA led to the inhibition of uPAR-dependent integrin activation and stimulation of fibronectin polymerization in human dermal fibroblasts. The data indicate a dual role for caveolin-1 in the uPAR signaling pathway, leading to integrin activation. Caveolin-1 functions initially as a membrane adaptor or scaffold to mediate uPAR-dependent activation of Src and EGFR. Subsequently, in its phosphorylated form, caveolin-1 acts as an accessory molecule to direct trafficking of activated EGFR to focal adhesions. These studies provide a novel paradigm for the regulation of crosstalk among integrins, growth-factor receptors and uPAR.
Collapse
Affiliation(s)
- Elizabeth Monaghan-Benson
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
23
|
Abstract
Migration of smooth muscle cells is a process fundamental to development of hollow organs, including blood vessels and the airways. Migration is also thought to be part of the response to tissue injury. It has also been suggested to contribute to airways remodeling triggered by chronic inflammation. In both nonmuscle and smooth muscle cells numerous external signaling molecules and internal signal transduction pathways contribute to cell migration. The review includes evidence for the functional significance of airway smooth muscle migration, a summary of promigratory and antimigratory agents, and summaries of important signaling pathways mediating migration. Important signaling pathways and effector proteins described include small G proteins, phosphatidylinositol 3-kinases (PI3-K), Rho activated protein kinase (ROCK), p21-activated protein kinases (PAK), Src family tyrosine kinases, and mitogen-activated protein kinases (MAPK). These signaling modules control multiple critical effector proteins including actin nucleating, capping and severing proteins, myosin motors, and proteins that remodel microtubules. Actin filament remodeling, focal contact remodeling and propulsive force of molecular motors are all coordinated to move cells along gradients of chemical cues, matrix adhesiveness, or matrix stiffness. Airway smooth muscle cell migration can be modulated in vitro by drugs commonly used in pulmonary medicine including beta-adrenergic agonists and corticosteroids. Future studies of airway smooth muscle cell migration may uncover novel targets for drugs aimed at modifying airway remodeling.
Collapse
|
24
|
Song Z, Ma N, Hayashi T, Gabazza EC, Sugimura Y, Suzuki K. Intracellular localization of protein C inhibitor (PCI) and urinary plasminogen activator in renal tubular epithelial cells from humans and human PCI gene transgenic mice. Histochem Cell Biol 2008; 128:293-300. [PMID: 18193533 DOI: 10.1007/s00418-007-0330-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Urinary plasminogen activator (uPA) is a serine protease that plays important roles in various extracellular proteolytic processes. In humans, protein C inhibitor (PCI) is known to regulate the activity of the serine proteases involved in blood coagulation, wound healing, and tumor metastasis, whereas PCI is not present in murine plasma or tissues other than the reproductive tissues. The large amount of uPA-PCI complexes found in human urine suggests that these complexes are formed in the kidneys. In the present study, we performed immunofluorescence double labeling and electron microscopic immunocytochemistry using renal tissues from humans and human PCI gene transgenic (PCI-TG) mice. In human renal tissues, PCI and uPA colocalized in the cytoplasm of renal proximal tubular epithelial cells (RPTECs), and juxtaposition of PCI and uPA immunoreactive particles was detected in the microvilli and lysosomes in the RPTECs. The intracellular distributions of PCI and uPA in the RPTECs from PCI-TG mice were similar to those observed in human RPTECs. These findings hint at the physiological roles of uPA and PCI in human kidneys, and also suggest that the PCI-TG mice will be useful for evaluating the roles of PCI in human physiological and pathological conditions.
Collapse
Affiliation(s)
- Zhenhu Song
- Department of Molecular Pathobiology, Mie University Graduate School of Medicine, Tsu-city, Mie 514-8507, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Ploplis VA, Tipton H, Menchen H, Castellino FJ. A urokinase-type plasminogen activator deficiency diminishes the frequency of intestinal adenomas in ApcMin/+ mice. J Pathol 2007; 213:266-74. [PMID: 17893885 DOI: 10.1002/path.2236] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interaction of urokinase-type plasminogen activator (uPA) and its receptor, uPAR, on cell surfaces facilitates the generation of cell-bound plasmin, thus allowing cells to establish a proteolytic front that enables their migration through protein barriers. This complex also activates cell signalling pathways that influence cell functions. Clinical studies have identified uPA as an indicator of poor overall survival in patients with colorectal cancer. In the current study, a mouse model of colon cancer, Apc(Min/+), with an additional deficiency of uPA (Apc(Min/+)/Plau-/-) was used to determine the effects of uPA on tumour initiation and growth. Utilizing this model, it was found that the number of tumours was diminished in these mice relative to Apc(Min/+) mice, which correlated with the decreased leukocyte infiltration in the tumours. However, tumour growth was not impeded in Apc(Min/+)/Plau-/- mice, and proliferation and tumour vascularization were, in fact, enhanced in Apc(Min/+)/Plau-/- mice. These latter effects are consistent with a mechanism involving up-regulation of COX-2 expression and Akt pathway activation in Apc(Min/+)/Plau-/- mice. The results from this study suggest that uPA plays dual and opposing roles in regulating lesion development: one early, during the transition from normal epithelia to dysplastic lesions, and another later during tumour growth.
Collapse
Affiliation(s)
- V A Ploplis
- WM Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | |
Collapse
|
26
|
Seki N, Hashimoto N, Taira M, Yagi S, Yoshida Y, Ishikawa K, Suzuki Y, Sano H, Horiuchi S, Yoshida S, Sakurai K, Yagui K, Makino H, Saito Y. Regulation of Src homology 2-containing protein tyrosine phosphatase by advanced glycation end products: the role on atherosclerosis in diabetes. Metabolism 2007; 56:1591-8. [PMID: 17950112 DOI: 10.1016/j.metabol.2007.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 06/15/2007] [Indexed: 10/22/2022]
Abstract
Advanced glycation end products (AGEs), among the most important causes of atherosclerosis in diabetes mellitus, stimulate the proliferation of smooth muscle cells (SMCs). Smooth muscle cells are central in the formation of atherosclerotic lesions, where they show both increased migration and accelerated proliferation. In investigating how AGEs stimulate SMC proliferation, we focused on protein tyrosine phosphatase, especially Src homology 2-containing protein tyrosine phosphatase (SHP2), which is considered important in regulating cell proliferation. Advanced glycation end products increased activity of SHP2 in the membrane fraction of rat aortic SMCs compared with control bovine serum albumin (P < .05). Upon characterizing the genomic and promoter structure of SHP2, we detected nuclear factor-kappaB (NF-kappaB) binding sites in the promoter area. Advanced glycation end product stimulation increased luciferase activity in cells transfected with SHP2 promoter region including NF-kappaB binding sites (P < .05) and increased SHP2 expression (P < .05). These data indicate that AGE stimulation appears to activate NF-kappaB. Activated NF-kappaB binds to sites on the SHP2 promoter, resulting in increased SHP2 expression, SHP2 activity, and, ultimately, SMC proliferation. It suggests that AGE stimulation induces SMC proliferation via SHP2, underscoring the importance of control of AGE for suppressing macroangiopathy in diabetes mellitus.
Collapse
Affiliation(s)
- Naoto Seki
- Clinical Research Center, National Hospital Organization, Chiba-East National Hospital, Chiba 260-8712, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bryer SC, Koh TJ. The urokinase-type plasminogen activator receptor is not required for skeletal muscle inflammation or regeneration. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1152-8. [PMID: 17567716 DOI: 10.1152/ajpregu.00132.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothesis of this study was the urokinase-type plasminogen activator receptor (uPAR) is required for accumulation of inflammatory cells in injured skeletal muscle and for efficient muscle regeneration. Expression of uPAR was elevated at 1 and 3 days after cardiotoxin-induced muscle injury in wild-type mice before returning to baseline levels. Neutrophil accumulation peaked 1 day postinjury in muscle from both wild-type (WT) and uPAR null mice, while macrophage accumulation peaked between 3 and 5 days postinjury, with no differences between strains. Histological analyses confirmed efficient muscle regeneration in both wild-type and uPAR null mice, with no difference between strains in the formation or growth of regenerating fibers, or recovery of normal morphology. Furthermore, in vitro experiments demonstrated that chemotaxis is not different between WT and uPAR null macrophages. Finally, fusion of cultured satellite cells into multinucleated myotubes was not different between cells isolated from WT and uPAR null mice. These results demonstrate that uPAR is not required for the accumulation of inflammatory cells or the regeneration of skeletal muscle following injury, suggesting uPA can act independently of uPAR to regulate events critical for muscle regeneration.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Cell Fusion
- Cell Movement/physiology
- Cells, Cultured
- Chemotaxis/drug effects
- Cobra Cardiotoxin Proteins
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/pathology
- Myositis/chemically induced
- Myositis/physiopathology
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Urokinase Plasminogen Activator
- Regeneration/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/physiology
Collapse
Affiliation(s)
- Scott C Bryer
- Department of Movement Sciences, University of Illinois at Chicago, 1919 W. Taylor Street, Chicago, Il 60612, USA
| | | |
Collapse
|
28
|
Salasznyk RM, Zappala M, Zheng M, Yu L, Wilkins-Port C, McKeown-Longo PJ. The uPA receptor and the somatomedin B region of vitronectin direct the localization of uPA to focal adhesions in microvessel endothelial cells. Matrix Biol 2007; 26:359-70. [PMID: 17344041 DOI: 10.1016/j.matbio.2007.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 01/26/2007] [Accepted: 01/29/2007] [Indexed: 01/26/2023]
Abstract
Vitronectin is a plasma protein which can deposit into the extracellular matrix where it supports integrin and uPA dependent cell migration. In earlier studies, we have shown that the plasma protein, vitronectin, stimulates focal adhesion remodeling by recruiting urokinase-type plasminogen activator (uPA) to focal adhesion sites [Wilcox-Adelman, S. A., Wilkins-Port, C. E., McKeown-Longo, P. J., 2000. Localization of urokinase-type plasminogen activator to focal adhesions requires ligation of vitronectin integrin receptors. Cell. Adhes. Commun.7, 477-490]. In the present study, we used a variety of vitronectin constructs to demonstrate that the localization of uPA to adhesion sites requires the binding of both vitronectin integrin receptors and the uPA receptor (uPAR) to vitronectin. A recombinant fragment of vitronectin containing the connecting sequence (VN(CS)) was able to support integrin-dependent adhesion, spreading and focal adhesion assembly by human microvessel endothelial cells. Cells adherent to this fragment were not able to localize uPA to focal adhesions. A second recombinant fragment containing both the amino-terminal SMB domain and the CS domain was able to restore the localization of uPA to adhesion sites. This fragment, which contains a uPAR binding site, also resulted in the localization of uPAR to adhesion sites. uPAR blocking antibodies as well as phospholipase C treatment of cells inhibited uPA localization to adhesion sites confirming a role for uPAR in this process. The SMB domain alone was unable to direct either uPAR or uPA to adhesion sites in the absence of the CS domain. Our results indicate that vitronectin-dependent localization of uPA to adhesion sites requires the sequential binding of vitronectin integrins and uPAR to vitronectin.
Collapse
Affiliation(s)
- Roman M Salasznyk
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New, Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
29
|
Maquerlot F, Galiacy S, Malo M, Guignabert C, Lawrence DA, d'Ortho MP, Barlovatz-Meimon G. Dual role for plasminogen activator inhibitor type 1 as soluble and as matricellular regulator of epithelial alveolar cell wound healing. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1624-32. [PMID: 17071586 PMCID: PMC1780203 DOI: 10.2353/ajpath.2006.051053] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelium repair, crucial for restoration of alveolo-capillary barrier integrity, is orchestrated by various cytokines and growth factors. Among them keratinocyte growth factor plays a pivotal role in both cell proliferation and migration. The urokinase plasminogen activator (uPA) system also influences cell migration through proteolysis during epithelial repair. In addition, the complex formed by uPAR-uPA and matrix-bound plasminogen activator inhibitor type-1 (PAI-1) exerts nonproteolytic roles in various cell types. Here we present new evidence about the dual role of PAI-1 under keratinocyte growth factor stimulation using an in vitro repair model of rat alveolar epithelial cells. Besides proteolytic involvement of the uPA system, the availability of matrix-bound-PAI-1 is also required for an efficient healing. An unexpected decrease of healing was shown when PAI-1 activity was blocked. However, the proteolytic action of uPA and plasmin were still required. Moreover, immediately after wounding, PAI-1 was dramatically increased in the newly deposited matrix at the leading edge of wounds. We thus propose a dual role for PAI-1 in epithelial cell wound healing, both as a soluble inhibitor of proteolysis and also as a matrix-bound regulator of cell migration. Matrix-bound PAI-1 could thus be considered as a new member of the matricellular protein family.
Collapse
Affiliation(s)
- François Maquerlot
- Informatique, Biologie Intégrative et Systèmes Complexes, FRE 2873 Centre National de la Recherche Scientifique, Université d'Evry, Génopole, Evry, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Shetty S, Velusamy T, Idell S, Tang H, Shetty PK. Regulation of urokinase receptor expression by protein tyrosine phosphatases. Am J Physiol Lung Cell Mol Physiol 2006; 292:L414-21. [PMID: 17028265 DOI: 10.1152/ajplung.00121.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) play a major role in several physiological processes such as cell migration, proliferation, morphogenesis, and regulation of gene expression. Many of the biological activities of uPA depend on its association with uPAR. uPAR expression and its induction by uPA are regulated at the posttranscriptional level. Inhibition of protein tyrosine phosphatase-mediated dephosphorylation by sodium orthovanadate induces uPAR expression and, with uPA, additively induces cell surface uPAR expression. Sodium orthovanadate induces uPAR by increasing uPAR mRNA in a time- and concentration-dependent manner. Both sodium orthovanadate and uPA induce uPAR mRNA stability, indicating that dephosphorylation could contribute to uPA-induced posttranscriptional regulation of uPAR expression. Induction of the tyrosine phosphatase SHP2 in Beas2B and H157 cells inhibits basal cell surface uPAR expression and uPA-induced uPAR expression. Sodium orthovanadate also increases uPAR expression by decreasing the interaction of a uPAR mRNA coding region sequence with phosphoglycerate kinase (PGK) as well as by enhancing the interaction between a uPAR mRNA 3' untranslated sequence with heterogeneous nuclear ribonucleoprotein C (hnRNPC). On the contrary, overexpression of SHP2 in Beas2B cells increased interaction of PGK with the uPAR mRNA coding region and inhibited hnRNPC binding to the 3' untranslated sequence. These findings confirm a novel mechanism by which uPAR expression of lung airway epithelial cells is regulated at the level of mRNA stability by inhibition of protein tyrosine phosphatase-mediated dephosphorylation of uPAR mRNA binding proteins and demonstrate that the process involves SHP2.
Collapse
Affiliation(s)
- Sreerama Shetty
- The Texas Lung Injury Institute, Department of Specialty Care Services, The University of Texas Health Center at Tyler, TX 75708, USA.
| | | | | | | | | |
Collapse
|
31
|
Zhong J, Gencay MMC, Bubendorf L, Burgess JK, Parson H, Robinson BWS, Tamm M, Black JL, Roth M. ERK1/2 and p38 MAP kinase control MMP-2, MT1-MMP, and TIMP action and affect cell migration: a comparison between mesothelioma and mesothelial cells. J Cell Physiol 2006; 207:540-52. [PMID: 16447244 DOI: 10.1002/jcp.20605] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pleural malignant mesothelioma is a locally aggressive tumor of mesothelial cell origin. In other tumor types high expression of matrix metalloproteinase (MMP)-2, together with membrane-type1-MMP (MT1-MMP), and low levels of the tissue inhibitor of MMP (TIMP)-2 have been correlated with aggressive tumor progression and low survival rates. Therefore, we compared the expression and activation of these three factors and their regulation by two mesothelioma associated growth factors, platelet-derived growth factor (PDGF)-BB, and transforming growth factor (TGF)-beta1 in six human mesothelioma and one mesothelial cell line. Polymerase chain reaction (PCR), immunoblotting, zymography, and small inhibitory RNAs (siRNA) were used to study gene expression, protein activation, and signal transduction. To proof the relevance of our in vitro data immunohistochemistry was performed in tissue sections. PDGF-BB induced, while TGF-beta1 inhibited cell proliferation. PDGF-BB was a chemoattractant for mesothelial cells, and its effect was increased in the presence of TGF-beta1. TGF-beta1 stimulated the de novo synthesis of pro-MMP-2 in both cell types. Pro-MMP-2 synthesis involved p38 MAP kinase. In cell culture and tissue sections only mesothelial cells expressed MT1-MMP. Migration of mesothelioma cells was dependent on the presence of MT1-MMP. Migration, but not proliferation of mesothelioma cells was inhibited by oleoyl-N-hydroxylamide, TIMP-2, and siRNA for MT1-MMP. Our data suggest that in mesothelioma cells the phosphorylation of p38 MAP kinase is deregulated and is involved in pro-MMP-2 expression. Mesothelioma progression depends on an interaction with mesothelial cells that provide MT1-MMP necessary to activate pro-MMP-2 to facilitate migration through an extracellular matrix (ECM) layer.
Collapse
Affiliation(s)
- Jun Zhong
- Department of Pharmacology, The Woolcock Institute of Medical Research, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Many biological functions of heme oxygenase (HO), such as cytoprotection against oxidative stress, vasodilation, neurotransmission in the central or peripheral nervous systems, and anti-inflammatory, anti-apoptotic, or anti-proliferative potential, have been attributed to its enzymatic byproduct carbon monoxide (CO), although roles for biliverdin/bilirubin and iron have also been proposed. In addition to these well-characterized effects, recent findings reveal that HO-derived CO may act as an oxygen sensor and circadian modulator of heme biosynthesis. In lymphocytes, CO may participate in regulatory T cell function. A number of the known signaling effects of CO depend on stimulation of soluble guanylate cyclase and/or activation of mitogen-activated protein kinases (MAPK). Furthermore, modulation of caveolin-1 status may serve as an essential component of certain aspects of CO action, such as growth control. In this review, we summarize recent findings of the beneficial or detrimental effects of endogenous CO with an emphasis on the signaling pathways and downstream targets that trigger the action of this gas.
Collapse
Affiliation(s)
- Hong Pyo Kim
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
33
|
Hardin CD, Vallejo J. Caveolins in vascular smooth muscle: form organizing function. Cardiovasc Res 2006; 69:808-15. [PMID: 16386721 PMCID: PMC1446070 DOI: 10.1016/j.cardiores.2005.11.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/31/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022] Open
Abstract
Caveolae are becoming increasingly recognized as an important organizational structure for a variety of signal and energy-transducing systems in vascular smooth muscle (VSM). In this review, we discuss the emerging role of the caveolins in organizing and modulating the basic functions of smooth muscle: contraction, growth/proliferation, and the energetic support systems that support these functions. With clear alterations in cell metabolism and function in VSM with altered caveolin-1 (Cav-1) protein expression and with cardiovascular abnormalities associated with Cav-1 null mice, the caveolin family of proteins may play an important role in the function and dysfunction of VSM.
Collapse
Affiliation(s)
- Christopher D Hardin
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA.
| | | |
Collapse
|
34
|
MuraliKrishna PS, Gondi CS, Lakka SS, Julta A, Estes N, Gujrati M, Rao JS. RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem 2005; 280:36529-40. [PMID: 16127174 PMCID: PMC1351057 DOI: 10.1074/jbc.m503111200] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The invasive ability of tumor cells plays a key role in prostate cancer metastasis and is a major cause of treatment failure. Urokinase plasminogen activator-(uPA) and its receptor (uPAR)-mediated signaling have been implicated in tumor cell invasion, survival, and metastasis in a variety of cancers. This study was undertaken to investigate the biological roles of uPA and uPAR in prostate cancer cell invasion and survival, and the potential of uPA and uPAR as targets for prostate cancer therapy. uPA and uPAR expression correlates with the metastatic potential of prostate cancer cells. Thus, therapies designed to inhibit uPA and uPAR expression would be beneficial. LNCaP, DU145, and PC3 are prostate cancer cell lines with low, moderate, and high metastatic potential, respectively, as demonstrated by their capacity to invade the extracellular matrix. In this study we utilized small hairpin RNAs (shRNAs), also referred to as small interfering RNAs, to target human uPA and uPAR. These small interfering RNA constructs significantly inhibited uPA and uPAR expression at both the mRNA and protein levels in the highly metastatic prostate cancer cell line PC3. Our data demonstrated that uPA-uPAR knockdown in PC3 cells resulted in a dramatic reduction of tumor cell invasion as indicated by a Matrigel invasion assay. Furthermore, simultaneous silencing of the genes for uPA and uPAR using a single plasmid construct expressing shRNAs for both uPA and uPAR significantly reduced cell viability and ultimately resulted in the induction of apoptotic cell death. RNA interference for uPA and uPAR also abrogated uPA-uPAR signaling to downstream target molecules such as ERK1/2 and Stat 3. In addition, our results demonstrated that intratumoral injection with the plasmid construct expressing shRNAs for uPA and uPAR almost completely inhibited established tumor growth and survival in an orthotopic mouse prostate cancer model. These findings uncovered evidence of a complex signaling network operating downstream of uPA-uPAR that actively advances tumor cell invasion, proliferation, and survival of prostate cancer cells. Thus, RNA interference-directed targeting of uPA and uPAR is a convenient and novel tool for studying the biological role of the uPA-uPAR system and raises the potential of its application for prostate cancer therapy.
Collapse
Affiliation(s)
| | - Christopher S. Gondi
- From the Departments of Biomedical and Therapeutic Sciences (Program of Cancer Biology)
| | - Sajani S. Lakka
- From the Departments of Biomedical and Therapeutic Sciences (Program of Cancer Biology)
| | - Aman Julta
- From the Departments of Biomedical and Therapeutic Sciences (Program of Cancer Biology)
| | | | | | - Jasti S. Rao
- From the Departments of Biomedical and Therapeutic Sciences (Program of Cancer Biology)
- Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL, 61656
- *Corresponding author: Jasti S. Rao, PhD, Department of Biomedical and Therapeutic Sciences, Box 1649, Peoria, IL 61656. Phone (309) 671-3445; Fax (309) 671-3442; E-mail:
| |
Collapse
|