1
|
He L, Yang J, Hao Y, Yang X, Shi X, Zhang D, Zhao D, Yan W, Bie X, Chen L, Chen G, Zhao S, Liu X, Zheng H, Zhang K. DDX20: A Multifunctional Complex Protein. Molecules 2023; 28:7198. [PMID: 37894677 PMCID: PMC10608988 DOI: 10.3390/molecules28207198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
DEAD-box decapping enzyme 20 (DDX20) is a putative RNA-decapping enzyme that can be identified by the conserved motif Asp-Glu-Ala-Asp (DEAD). Cellular processes involve numerous RNA secondary structure alterations, including translation initiation, nuclear and mitochondrial splicing, and assembly of ribosomes and spliceosomes. DDX20 reportedly plays an important role in cellular transcription and post-transcriptional modifications. On the one hand, DDX20 can interact with various transcription factors and repress the transcriptional process. On the other hand, DDX20 forms the survival motor neuron complex and participates in the assembly of snRNP, ultimately affecting the RNA splicing process. Finally, DDX20 can potentially rely on its RNA-unwinding enzyme function to participate in microRNA (miRNA) maturation and act as a component of the RNA-induced silencing complex. In addition, although DDX20 is not a key component in the innate immune system signaling pathway, it can affect the nuclear factor kappa B (NF-κB) and p53 signaling pathways. In particular, DDX20 plays different roles in tumorigenesis development through the NF-κB signaling pathway. This process is regulated by various factors such as miRNA. DDX20 can influence processes such as viral replication in cells by interacting with two proteins in Epstein-Barr virus and can regulate the replication process of several viruses through the innate immune system, indicating that DDX20 plays an important role in the innate immune system. Herein, we review the effects of DDX20 on the innate immune system and its role in transcriptional and post-transcriptional modification processes, based on which we provide an outlook on the future of DDX20 research in innate immunity and viral infections.
Collapse
Affiliation(s)
- Lu He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Yu Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xijuan Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Dajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Dengshuai Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Wenqian Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xintian Bie
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Lingling Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guohui Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Siyue Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
2
|
Li X, Jin DS, Eadara S, Caterina MJ, Meffert MK. Regulation by noncoding RNAs of local translation, injury responses, and pain in the peripheral nervous system. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100119. [PMID: 36798094 PMCID: PMC9926024 DOI: 10.1016/j.ynpai.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Neuropathic pain is a chronic condition arising from damage to somatosensory pathways that results in pathological hypersensitivity. Persistent pain can be viewed as a consequence of maladaptive plasticity which, like most enduring forms of cellular plasticity, requires altered expression of specific gene programs. Control of gene expression at the level of protein synthesis is broadly utilized to directly modulate changes in activity and responsiveness in nociceptive pathways and provides an effective mechanism for compartmentalized regulation of the proteome in peripheral nerves through local translation. Levels of noncoding RNAs (ncRNAs) are commonly impacted by peripheral nerve injury leading to persistent pain. NcRNAs exert spatiotemporal regulation of local proteomes and affect signaling cascades supporting altered sensory responses that contribute to hyperalgesia. This review discusses ncRNAs found in the peripheral nervous system (PNS) that are dysregulated following nerve injury and the current understanding of their roles in pathophysiological pain-related responses including neuroimmune interactions, neuronal survival and axon regeneration, Schwann cell dedifferentiation and proliferation, intercellular communication, and the generation of ectopic action potentials in primary afferents. We review progress in the field beyond cataloging, with a focus on the relevant target transcripts and mechanisms underlying pain modulation by ncRNAs.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Daniel S. Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Sreenivas Eadara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Michael J. Caterina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Department of Neurosurgery and Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
3
|
Patel P, Buchanan CN, Zdradzinski MD, Sahoo PK, Kar A, Lee S, Vaughn L, Urisman A, Oses-Prieto J, Dell’Orco M, Cassidy D, Costa I, Miller S, Thames E, Smith T, Burlingame A, Perrone-Bizzozero N, Twiss J. Intra-axonal translation of Khsrp mRNA slows axon regeneration by destabilizing localized mRNAs. Nucleic Acids Res 2022; 50:5772-5792. [PMID: 35556128 PMCID: PMC9177972 DOI: 10.1093/nar/gkac337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Axonally synthesized proteins support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this and other aspects of post-transcriptional regulation of neuronal mRNAs, but only a limited number of axonal RBPs are known. We used targeted proteomics to profile RBPs in peripheral nerve axons. We detected 76 proteins with reported RNA binding activity in axoplasm, and levels of several change with axon injury and regeneration. RBPs with altered levels include KHSRP that decreases neurite outgrowth in developing CNS neurons. Axonal KHSRP levels rapidly increase after injury remaining elevated up to 28 days post axotomy. Khsrp mRNA localizes into axons and the rapid increase in axonal KHSRP is through local translation of Khsrp mRNA in axons. KHSRP can bind to mRNAs with 3'UTR AU-rich elements and targets those transcripts to the cytoplasmic exosome for degradation. KHSRP knockout mice show increased axonal levels of KHSRP target mRNAs, Gap43, Snap25, and Fubp1, following sciatic nerve injury and these mice show accelerated nerve regeneration in vivo. Together, our data indicate that axonal translation of the RNA binding protein Khsrp mRNA following nerve injury serves to promote decay of other axonal mRNAs and slow axon regeneration.
Collapse
Affiliation(s)
- Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Matthew D Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Lauren S Vaughn
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Anatoly Urisman
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Juan Oses-Prieto
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Michela Dell’Orco
- Department of Neurosciences, University of New Mexico School of Health Sciences, Albuquerque, NM 87131, USA
| | - Devon E Cassidy
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sharmina Miller
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Health Sciences, Albuquerque, NM 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
4
|
Esteves AD, Koyuncu OO, Enquist LW. A Pseudorabies Virus Serine/Threonine Kinase, US3, Promotes Retrograde Transport in Axons via Akt/mToRC1. J Virol 2022; 96:e0175221. [PMID: 34985995 PMCID: PMC8906396 DOI: 10.1128/jvi.01752-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
Infection of peripheral axons by alpha herpesviruses (AHVs) is a critical stage in establishing a lifelong infection in the host. Upon entering the cytoplasm of axons, AHV nucleocapsids and associated inner-tegument proteins must engage the cellular retrograde transport machinery to promote the long-distance movement of virion components to the nucleus. The current model outlining this process is incomplete, and further investigation is required to discover all viral and cellular determinants involved as well as the temporality of the events. Using a modified trichamber system, we have discovered a novel role of the pseudorabies virus (PRV) serine/threonine kinase US3 in promoting efficient retrograde transport of nucleocapsids. We discovered that transporting nucleocapsids move at similar velocities in both the presence and absence of a functional US3 kinase; however, fewer nucleocapsids are moving when US3 is absent, and they move for shorter periods of time before stopping, suggesting that US3 is required for efficient nucleocapsid engagement with the retrograde transport machinery. This led to fewer nucleocapsids reaching the cell bodies to produce a productive infection 12 h later. Furthermore, US3 was responsible for the induction of local translation in axons as early as 1 h postinfection (hpi) through the stimulation of a phosphatidylinositol 3-kinase (PI3K)/Akt-mToRC1 pathway. These data describe a novel role for US3 in the induction of local translation in axons during AHV infection, a critical step in transport of nucleocapsids to the cell body. IMPORTANCE Neurons are highly polarized cells with axons that can reach centimeters in length. Communication between axons at the periphery and the distant cell body is a relatively slow process involving the active transport of chemical messengers. There is a need for axons to respond rapidly to extracellular stimuli. Translation of repressed mRNAs present within the axon occurs to enable rapid, localized responses independently of the cell body. AHVs have evolved a way to hijack local translation in the axons to promote their transport to the nucleus. We have determined the cellular mechanism and viral components involved in the induction of axonal translation. The US3 serine/threonine kinase of PRV activates Akt-mToRC1 signaling pathways early during infection to promote axonal translation. When US3 is not present, the number of moving nucleocapsids and their processivity are reduced, suggesting that US3 activity is required for efficient engagement of nucleocapsids with the retrograde transport machinery.
Collapse
Affiliation(s)
- Andrew D. Esteves
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Orkide O. Koyuncu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lynn W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
5
|
Copper complex of a thienyl-hydrazone rhodamine derivative is a highly selective colorimetric sensor for pyrophosphate. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Dalla Costa I, Buchanan CN, Zdradzinski MD, Sahoo PK, Smith TP, Thames E, Kar AN, Twiss JL. The functional organization of axonal mRNA transport and translation. Nat Rev Neurosci 2021; 22:77-91. [PMID: 33288912 PMCID: PMC8161363 DOI: 10.1038/s41583-020-00407-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Axons extend for tremendously long distances from the neuronal soma and make use of localized mRNA translation to rapidly respond to different extracellular stimuli and physiological states. The locally synthesized proteins support many different functions in both developing and mature axons, raising questions about the mechanisms by which local translation is organized to ensure the appropriate responses to specific stimuli. Publications over the past few years have uncovered new mechanisms for regulating the axonal transport and localized translation of mRNAs, with several of these pathways converging on the regulation of cohorts of functionally related mRNAs - known as RNA regulons - that drive axon growth, axon guidance, injury responses, axon survival and even axonal mitochondrial function. Recent advances point to these different regulatory pathways as organizing platforms that allow the axon's proteome to be modulated to meet its physiological needs.
Collapse
Affiliation(s)
- Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
7
|
Huang Y, Wang C, Li K, Ye Y, Shen A, Guo L, Chen P, Meng C, Wang Q, Yang X, Huang Z, Xing X, Lin Y, Liu X, Peng J, Lin Y. Death-associated protein kinase 1 suppresses hepatocellular carcinoma cell migration and invasion by upregulation of DEAD-box helicase 20. Cancer Sci 2020; 111:2803-2813. [PMID: 32449268 PMCID: PMC7419049 DOI: 10.1111/cas.14499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 01/21/2023] Open
Abstract
Death‐associated protein kinase 1 (DAPK) is a calcium/calmodulin kinase that plays a vital role as a suppressor gene in various cancers. Yet its role and target gene independent of p53 is still unknown in hepatocellular carcinoma (HCC). In this study, we discovered that DAPK suppressed HCC cell migration and invasion instead of proliferation or colony formation. Using a proteomics approach, we identified DEAD‐box helicase 20 (DDX20) as an important downstream target of DAPK in HCC cells and critical for DAPK‐mediated inhibition of HCC cell migration and invasion. Using integrin inhibitor RGD and GTPase activity assays, we discovered that DDX20 suppressed HCC cell migration and invasion through the CDC42‐integrin pathway, which was previously reported as an important downstream pathway of DAPK in cancer. Further research using cycloheximide found that DAPK attenuates the proteasomal degradation of DDX20 protein, which is dependent on the kinase activity of DAPK. Our results shed light on new functions and regulation for both DAPK and DDX20 in carcinogenesis and identifies new potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Yide Huang
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Chenyi Wang
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ke Li
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Ye
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Aling Shen
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Libin Guo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Pengchen Chen
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Chen Meng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qingshui Wang
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xinliu Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhen Huang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Youyu Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jun Peng
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yao Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
8
|
Smith TP, Sahoo PK, Kar AN, Twiss JL. Intra-axonal mechanisms driving axon regeneration. Brain Res 2020; 1740:146864. [PMID: 32360100 DOI: 10.1016/j.brainres.2020.146864] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022]
Abstract
Traumatic injury to the peripheral and central nervous systems very often causes axotomy, where an axon loses connections with its target resulting in loss of function. The axon segments distal to the injury site lose connection with the cell body and degenerate. Axotomized neurons in the periphery can spontaneously mount a regenerative response and reconnect to their denervated target tissues, though this is rarely complete in humans. In contrast, spontaneous regeneration rarely occurs after axotomy in the spinal cord and brain. Here, we concentrate on the mechanisms underlying this spontaneous regeneration in the peripheral nervous system, focusing on events initiated from the axon that support regenerative growth. We contrast this with what is known for axonal injury responses in the central nervous system. Considering the neuropathy focus of this special issue, we further draw parallels and distinctions between the injury-response mechanisms that initiate regenerative gene expression programs and those that are known to trigger axon degeneration.
Collapse
Affiliation(s)
- Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
9
|
Takabatake M, Goshima Y, Sasaki Y. Semaphorin-3A Promotes Degradation of Fragile X Mental Retardation Protein in Growth Cones via the Ubiquitin-Proteasome Pathway. Front Neural Circuits 2020; 14:5. [PMID: 32184710 PMCID: PMC7059091 DOI: 10.3389/fncir.2020.00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/07/2020] [Indexed: 01/07/2023] Open
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates local translation in dendrites and spines for synaptic plasticity. In axons, FMRP is implicated in axonal extension and axon guidance. We previously demonstrated the involvement of FMRP in growth cone collapse via a translation-dependent response to Semaphorin-3A (Sema3A), a repulsive axon guidance factor. In the case of attractive axon guidance factors, RNA-binding proteins such as zipcode binding protein 1 (ZBP1) accumulate towards the stimulated side of growth cones for local translation. However, it remains unclear how Sema3A effects FMRP localization in growth cones. Here, we show that levels of FMRP in growth cones of hippocampal neurons decreased after Sema3A stimulation. This decrease in FMRP was suppressed by the ubiquitin-activating enzyme E1 enzyme inhibitor PYR-41 and proteasome inhibitor MG132, suggesting that the ubiquitin-proteasome pathway is involved in Sema3A-induced FMRP degradation in growth cones. Moreover, the E1 enzyme or proteasome inhibitor suppressed Sema3A-induced increases in microtubule-associated protein 1B (MAP1B) in growth cones, suggesting that the ubiquitin-proteasome pathway promotes local translation of MAP1B, whose translation is mediated by FMRP. These inhibitors also blocked the Sema3A-induced growth cone collapse. Collectively, our results suggest that Sema3A promotes degradation of FMRP in growth cones through the ubiquitin-proteasome pathway, leading to growth cone collapse via local translation of MAP1B. These findings reveal a new mechanism of axon guidance regulation: degradation of the translational suppressor FMRP via the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Masaru Takabatake
- Functional Structure Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukio Sasaki
- Functional Structure Biology Laboratory, Department of Medical Life Science, Yokohama City University Graduate School of Medical Life Science, Yokohama, Japan
| |
Collapse
|
10
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
11
|
Khalil B, Morderer D, Price PL, Liu F, Rossoll W. mRNP assembly, axonal transport, and local translation in neurodegenerative diseases. Brain Res 2018; 1693:75-91. [PMID: 29462608 PMCID: PMC5997521 DOI: 10.1016/j.brainres.2018.02.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
The development, maturation, and maintenance of the mammalian nervous system rely on complex spatiotemporal patterns of gene expression. In neurons, this is achieved by the expression of differentially localized isoforms and specific sets of mRNA-binding proteins (mRBPs) that regulate RNA processing, mRNA trafficking, and local protein synthesis at remote sites within dendrites and axons. There is growing evidence that axons contain a specialized transcriptome and are endowed with the machinery that allows them to rapidly alter their local proteome via local translation and protein degradation. This enables axons to quickly respond to changes in their environment during development, and to facilitate axon regeneration and maintenance in adult organisms. Aside from providing autonomy to neuronal processes, local translation allows axons to send retrograde injury signals to the cell soma. In this review, we discuss evidence that disturbances in mRNP transport, granule assembly, axonal localization, and local translation contribute to pathology in various neurodegenerative diseases, including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Dmytro Morderer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Phillip L Price
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA; Department of Cell Biology, Emory University, Atlanta, GA 30322 USA
| | - Feilin Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA; Eye Center, The Second Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA.
| |
Collapse
|
12
|
Koh HR, Myong S. Single-Cell Imaging Approaches for Studying Small-RNA-Induced Gene Regulation. Biophys J 2018; 115:203-208. [PMID: 29970232 DOI: 10.1016/j.bpj.2018.05.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/23/2023] Open
Abstract
RNA interference (RNAi) is a process by which gene expression is downregulated by small interfering RNAs or microRNAs. The quantification of the RNAi efficiency can be performed at both the messenger RNA (mRNA) and the protein level, which is required to assess the potency of small interfering RNAs or microRNAs. Recently, we employed a single-cell mRNA imaging method to study RNAi in which we visualized individual mRNA targets with high precision while resolving the cellular localization and cell-to-cell heterogeneity in addition to RNAi efficiency. In this Biophysical Perspective, we highlight our recent work on quantitative analysis of the RNAi pathway and point out some important future directions. Alongside, we discuss about several single-cell imaging techniques that can be applied to study RNAi. The single-cell imaging techniques discussed here are widely applicable to other gene regulation processes such as the CRISPR-CAS system.
Collapse
Affiliation(s)
- Hye Ran Koh
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland; Department of Chemistry, Chung-Ang University, Seoul, Korea
| | - Sua Myong
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland; Department of Physics, Center for the Physics of Living Cells and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
13
|
Abstract
Gemin3, also known as DDX20 or DP103, is a DEAD-box RNA helicase which is involved in more than one cellular process. Though RNA unwinding has been determined in vitro, it is surprisingly not required for all of its activities in cellular metabolism. Gemin3 is an essential gene, present in Amoeba and Metazoa. The highly conserved N-terminus hosts the helicase core, formed of the helicase- and DEAD-domains, which, based on crystal structure determination, have key roles in RNA binding. The C-terminus of Gemin3 is highly divergent between species and serves as the interaction site for several accessory factors that could recruit Gemin3 to its target substrates and/or modulate its function. This review article focuses on the known roles of Gemin3, first as a core member of the survival motor neuron (SMN) complex, in small nuclear ribonucleoprotein biogenesis. Although mechanistic details are lacking, a critical function for Gemin3 in this pathway is supported by numerous in vitro and in vivo studies. Gene expression activities of Gemin3 are next underscored, mainly messenger ribonucleoprotein trafficking, gene silencing via microRNA processing, and transcriptional regulation. The involvement of Gemin3 in abnormal cell signal transduction pathways involving p53 and NF-κB is also highlighted. Finally, the clinical implications of Gemin3 deregulation are discussed including links to spinal muscular atrophy, poliomyelitis, amyotrophic lateral sclerosis, and cancer. Impressive progress made over the past two decades since the discovery of Gemin3 bodes well for further work that refines the mechanism(s) underpinning its multiple activities.
Collapse
|
14
|
O'Hern PJ, do Carmo G Gonçalves I, Brecht J, López Soto EJ, Simon J, Chapkis N, Lipscombe D, Kye MJ, Hart AC. Decreased microRNA levels lead to deleterious increases in neuronal M2 muscarinic receptors in Spinal Muscular Atrophy models. eLife 2017; 6. [PMID: 28463115 PMCID: PMC5413352 DOI: 10.7554/elife.20752] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/01/2017] [Indexed: 12/17/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is caused by diminished Survival of Motor Neuron (SMN) protein, leading to neuromuscular junction (NMJ) dysfunction and spinal motor neuron (MN) loss. Here, we report that reduced SMN function impacts the action of a pertinent microRNA and its mRNA target in MNs. Loss of the C. elegans SMN ortholog, SMN-1, causes NMJ defects. We found that increased levels of the C. elegans Gemin3 ortholog, MEL-46, ameliorates these defects. Increased MEL-46 levels also restored perturbed microRNA (miR-2) function in smn-1(lf) animals. We determined that miR-2 regulates expression of the C. elegans M2 muscarinic receptor (m2R) ortholog, GAR-2. GAR-2 loss ameliorated smn-1(lf) and mel-46(lf) synaptic defects. In an SMA mouse model, m2R levels were increased and pharmacological inhibition of m2R rescued MN process defects. Collectively, these results suggest decreased SMN leads to defective microRNA function via MEL-46 misregulation, followed by increased m2R expression, and neuronal dysfunction in SMA. DOI:http://dx.doi.org/10.7554/eLife.20752.001 Spinal muscular atrophy is a genetic disease that causes muscles to gradually weaken. In people with the disease, the nerve cells that control the movement of muscles – called motor neurons – deteriorate over time, hindering the person’s mobility and shortening their life expectancy. Spinal muscular atrophy is usually caused by genetic faults affecting a protein called SMN (which is short for “Survival of motor neuron”) and recent research suggested that disrupting this protein alters the function of short pieces of genetic material called microRNAs. However, the precise role that microRNAs play in the disease and their connection to the SMN protein was not clear. MicroRNAs interfere with the production of proteins by disrupting molecules called messenger RNAs, which are temporary strings of genetic code that carry the instructions for making protein. By disrupting messenger RNAs, microRNAs can delay or halt the production of specific proteins. This is an important part of the normal behavior of a cell, but disturbing the activity of microRNAs can lead to an unwanted rise or fall in crucial proteins. O’Hern et al. made use of engineered nematode worms and mice that share genetic features with spinal muscular atrophy patients, including disruption of the gene responsible for producing the SMN protein. These animal models of the disease were used to examine the relationship between decreased SMN levels and microRNAs in motor neurons. The experiments showed that reduced SMN activity affects a specific microRNA, which in turn causes motor neurons to produce more of a protein called m2R. This protein is a receptor for a molecule, called acetylcholine, which motor neurons use to send signals to muscle cells. Increased m2R may be detrimental to motor neurons. As such, O’Hern et al. decreased m2R protein activity to determine whether this could reverse the defects in motor neurons that arise in the animal models of the disease. Indeed, blocking this receptor rescued some of the defects seen in the animal models, supporting the link to spinal muscular atrophy. Several treatments that block m2R are already available to treat other conditions. As such, the next step is to determine whether these existing treatments are able to protect mice models of spinal muscular atrophy against muscle deterioration or increase their lifespan. If successful, this could open new avenues for the development of treatments in people. DOI:http://dx.doi.org/10.7554/eLife.20752.002
Collapse
Affiliation(s)
- Patrick J O'Hern
- Department of Neuroscience, Brown University, Providence, United States
| | | | - Johanna Brecht
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | | | - Jonah Simon
- Department of Neuroscience, Brown University, Providence, United States
| | - Natalie Chapkis
- Department of Neuroscience, Brown University, Providence, United States
| | - Diane Lipscombe
- Department of Neuroscience, Brown University, Providence, United States.,Brown Institute for Brain Science, Providence, United States
| | - Min Jeong Kye
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Anne C Hart
- Department of Neuroscience, Brown University, Providence, United States
| |
Collapse
|
15
|
Phay M, Kim HH, Yoo S. Analysis of piRNA-Like Small Non-coding RNAs Present in Axons of Adult Sensory Neurons. Mol Neurobiol 2016; 55:483-494. [PMID: 27966078 DOI: 10.1007/s12035-016-0340-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
Small non-coding RNAs (sncRNAs) have been shown to play pivotal roles in spatiotemporal-specific gene regulation that is linked to many different biological functions. PIWI-interacting RNAs (piRNAs), typically 25-34-nucleotide long, are originally identified and thought to be restricted in germline cells. However, recent studies suggest that piRNAs associate with neuronal PIWI proteins, contributing to neuronal development and function. Here, we identify a cohort of piRNA-like sncRNAs (piLRNAs) in rat sciatic nerve axoplasm and directly contrast temporal changes of piLRNA levels in the nerve following injury, as compared with those in an uninjured nerve using deep sequencing. We find that 32 of a total of 53 annotated piLRNAs show significant changes in their levels in the regenerating nerve, suggesting that individual axonal piLRNAs may play important regulatory roles in local messenger RNA (mRNA) translation during regeneration. Bioinformatics and biochemical analyses show that these piLRNAs carry characteristic features of mammalian piRNAs, including sizes, a sequence bias for uracil at the 5'-end and a 2'-O-methylation at the 3'-end. Their axonal expression is directly visualized by fluorescence in situ hybridization in cultured dorsal root ganglion neurons as well as immunoprecipitation with MIWI. Further, depletion of MIWI protein using RNAi from cultured sensory neurons increases axon growth rates, decreases axon retraction after injury, and increases axon regrowth after injury. All these data suggest more general roles for MIWI/piLRNA pathway that could confer a unique advantage for coordinately altering the population of proteins generated in growth cones and axons of neurons by targeting mRNA cohorts.
Collapse
Affiliation(s)
- Monichan Phay
- Nemours Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE, 19803, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Hak Hee Kim
- Nemours Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE, 19803, USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I duPont Hospital for Children, Wilmington, DE, 19803, USA. .,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
16
|
Dale EA, Fields DP, Devinney MJ, Mitchell GS. Phrenic motor neuron TrkB expression is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation. Exp Neurol 2016; 287:130-136. [PMID: 27185271 DOI: 10.1016/j.expneurol.2016.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/17/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
Phrenic long-term facilitation (pLTF) is a form of hypoxia-induced spinal respiratory motor plasticity that requires new synthesis of brain derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, tropomyosin receptor kinase B (TrkB). Since the cellular location of relevant TrkB receptors is not known, we utilized intrapleural siRNA injections to selectively knock down TrkB receptor protein within phrenic motor neurons. TrkB receptors within phrenic motor neurons are necessary for BDNF-dependent acute intermittent hypoxia-induced pLTF, demonstrating that phrenic motor neurons are a critical site of respiratory motor plasticity.
Collapse
Affiliation(s)
- Erica A Dale
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, United States
| | - Daryl P Fields
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, United States; Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States
| | - Michael J Devinney
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, United States
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706, United States; Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
17
|
Wertz MH, Winden K, Neveu P, Ng SY, Ercan E, Sahin M. Cell-type-specific miR-431 dysregulation in a motor neuron model of spinal muscular atrophy. Hum Mol Genet 2016; 25:2168-2181. [PMID: 27005422 DOI: 10.1093/hmg/ddw084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/11/2016] [Indexed: 12/17/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal-recessive pediatric neurodegenerative disease characterized by selective loss of spinal motor neurons. It is caused by mutation in the survival of motor neuron 1, SMN1, gene and leads to loss of function of the full-length SMN protein. microRNAs (miRNAs) are small RNAs that are involved in post-transcriptional regulation of gene expression. Prior studies have implicated miRNAs in the pathogenesis of motor neuron disease. We hypothesized that motor neuron-specific miRNA expression changes are involved in their selective vulnerability in SMA. Therefore, we sought to determine the effect of SMN loss on miRNAs and their target mRNAs in spinal motor neurons. We used microarray and RNAseq to profile both miRNA and mRNA expression in primary spinal motor neuron cultures after acute SMN knockdown. By integrating the miRNA:mRNA profiles, a number of dysregulated miRNAs were identified with enrichment in differentially expressed putative mRNA targets. miR-431 expression was highly increased, and a number of its putative mRNA targets were significantly downregulated in motor neurons after SMN loss. Further, we found that miR-431 regulates motor neuron neurite length by targeting several molecules previously identified to play a role in motor neuron axon outgrowth, including chondrolectin. Together, our findings indicate that cell-type-specific dysregulation of miR-431 plays a role in the SMA motor neuron phenotype.
Collapse
Affiliation(s)
- Mary H Wertz
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kellen Winden
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pierre Neveu
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Shi-Yan Ng
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA Neurotherapeutics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Ebru Ercan
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Zhu W, Zhao J, He J, Qi D, Wang L, Ma X, Liu P. Genetic variants in the MicroRNA biosynthetic pathway Gemin3 and Gemin4 are associated with a risk of cancer: a meta-analysis. PeerJ 2016; 4:e1724. [PMID: 27019773 PMCID: PMC4806601 DOI: 10.7717/peerj.1724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/01/2016] [Indexed: 01/22/2023] Open
Abstract
The effects of the microRNA (miRNA) processing genes Gemin3 and Gemin4 on cellular signaling pathways could have a major impact on the risk of cancer. Several studies concerning the association between the Gemin3 rs197412, Gemin4 rs7813 and Gemin4 rs2740348 polymorphisms with cancer susceptibility have been published. The present meta-analysis summarized this evidence and evaluated the precision of these relationships. Relevant studies (published prior to December 16th, 2015) without language restriction were identified using the PubMed, Web of Science and China National Knowledge Infrastructure (CNKI) on-line databases. The data were extracted from the eligible studies and were processed using Stata 12.0 software. Seven studies (2,588 cases and 2,549 controls) indicated that the rs7813 polymorphism was significantly associated with increased cancer risk (TT vs TC + CC, OR = 1.18 95% CI [1.05–1.32]). Six studies (1,314 cases and 1,244 controls) indicated that rs2740348 was associated with an increased cancer risk (GG vs. GC + CC, OR = 1.41 95% CI [1.00–1.83]). However the rs197412 polymorphism was not associated with an increased cancer risk (OR = 0.97 95% CI [0.80–1.19]). Our results suggest that the Gemin4 rs7813 T > C and rs2740348 G > C polymorphisms are associated with cancer susceptibility.
Collapse
Affiliation(s)
- Wenbo Zhu
- Public Health, Southeast University , Nanjing, Jiangsu , China
| | - Jun Zhao
- National Research Institute for Family Planning, National Research Institute for Family Planning , Beijing , China
| | - Jieyu He
- Public Health, Southeast University , Nanjing, Jiangsu , China
| | - Daxun Qi
- National Research Institute for Family Planning, National Research Institute for Family Planning , Beijing , China
| | - Lina Wang
- Public Health, Southeast University , Nanjing, Jiangsu , China
| | - Xu Ma
- National Research Institute for Family Planning, National Research Institute for Family Planning , Beijing , China
| | - Pei Liu
- Public Health, Southeast University , Nanjing, Jiangsu , China
| |
Collapse
|
19
|
Colicino E, Giuliano G, Power MC, Lepeule J, Wilker EH, Vokonas P, Brennan KJM, Fossati S, Hoxha M, Spiro A, Weisskopf MG, Schwartz J, Baccarelli AA. Long-term exposure to black carbon, cognition and single nucleotide polymorphisms in microRNA processing genes in older men. ENVIRONMENT INTERNATIONAL 2016; 88:86-93. [PMID: 26724585 PMCID: PMC4755894 DOI: 10.1016/j.envint.2015.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/02/2015] [Accepted: 12/13/2015] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Air pollution exposure has been linked to impaired cognitive aging, but little is known about biomarkers modifying this association. MicroRNAs (miRNAs) control gene expression and neuronal programming. miRNA levels vary due to single nucleotide polymorphisms (SNPs) in genes processing miRNAs from precursor molecules. OBJECTIVES To investigate whether SNPs in miRNA-processing genes are associated with cognition and modify the relationship between black carbon (BC), marker of traffic-related pollution, and cognitive functions. METHODS 533 Normative Aging Study men (mean±SD 72±7years) were tested ≤4 times (mean=1.7 times) using seven cognitive tests between 1995 and 2007. We tested interactions of 16 miRNA-related SNPs with 1-year average BC from a validated land-use-regression model. We used covariate-adjusted logistic regression for low (≤25) Mini-Mental tate Examination (MMSE) and mixed-effect regression for a global cognitive score combining six other tests. RESULTS Global cognition was negatively associated with the homozygous minor variant of rs595961 AGO1 (-0.42SD; 95%CI: (-0.71, -0.13)) relative to the major variant. BC-MMSE association was stronger in heterozygous carriers of rs11077 XPO5 (OR=1.99; 95%CI: (1.39, 2.85)) and minor variant carriers of GEMIN4 rs2740348 (OR=1.34; 95%CI: (1.05, 1.7)), compared to their major variant. The BC-global-cognition association was stronger in heterozygous carriers of GEMIN4 rs4968104 (-0.10SD; 95%CI: (-0.18, -0.02)), and GEMIN4 rs910924 (-0.09SD; 95%CI: (-0.17, -0.02)) relative to the major variant. Blood miRNA expression analyses showed associations only of XPO5 rs11077 with miR-9 and miR-96. CONCLUSIONS Carriers of particular miRNA-processing SNPs had higher susceptibility to BC in BC-cognition associations, possibly due to influences on miRNA expression.
Collapse
Affiliation(s)
- Elena Colicino
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| | - Giulia Giuliano
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| | - Melinda C Power
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| | - Johanna Lepeule
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| | - Elissa H Wilker
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA; Cardiovascular Epidemiology Research Unit, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Pantel Vokonas
- VA Boston Healthcare System and Boston University Schools of Public Health and Medicine, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Kasey J M Brennan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| | - Serena Fossati
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA; Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Via Festa del Perdono, 7, 20122 Milano, Italy.
| | - Mirjam Hoxha
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono, 7, 20122 Milano, Italy; Epidemiology Unit, Department of Preventive Medicine, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 33, 20122 Milano, Italy.
| | - Avron Spiro
- VA Boston Healthcare System and Boston University Schools of Public Health and Medicine, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Islamov RR, Samigullin DV, Rizvanov AA, Bondarenko NI, Nikolskiy EE. Synaptosome-associated protein 25 (SNAP25) synthesis in terminal buttons of mouse motor neuron. DOKL BIOCHEM BIOPHYS 2015; 464:272-4. [PMID: 26518545 DOI: 10.1134/s1607672915050026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Indexed: 11/23/2022]
Abstract
Previously, we formulated the hypothesis of compartmentalized protein synthesis in axons of motor neurons. In the axon hillock, along the entire length of the axon and in its ending, specific proteins are locally synthesized, which ensure the function of each compartment. In support of this hypothesis, in this work we studied the local protein synthesis in mouse motor nerve ending.
Collapse
Affiliation(s)
- R R Islamov
- Kazan State Medical University, ul. Butlerova 49, Kazan, 420012, Tatarstan, Russia
| | - D V Samigullin
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, ul. Lobachevskogo 2/31, Kazan, 420111, Russia. .,Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008, Tatarstan, Russia.
| | - A A Rizvanov
- Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008, Tatarstan, Russia
| | - N I Bondarenko
- Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008, Tatarstan, Russia
| | - E E Nikolskiy
- Kazan State Medical University, ul. Butlerova 49, Kazan, 420012, Tatarstan, Russia.,Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, ul. Lobachevskogo 2/31, Kazan, 420111, Russia.,Kazan (Volga Region) Federal University, ul. Kremlevskaya 18, Kazan, 420008, Tatarstan, Russia
| |
Collapse
|
21
|
Dynamic Change and Target Prediction of Axon-Specific MicroRNAs in Regenerating Sciatic Nerve. PLoS One 2015; 10:e0137461. [PMID: 26331719 PMCID: PMC4557935 DOI: 10.1371/journal.pone.0137461] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022] Open
Abstract
Injury to axons in the peripheral nervous system induces rapid and local regenerative responses to form a new growth cone, and to generate a retrogradely transporting injury signal. The evidence for essential roles of intra-axonal protein synthesis during regeneration is now compelling. MicroRNA (miRNA) has recently been recognized as a prominent player in post-transcriptional regulation of axonal protein synthesis. Here, we directly contrast temporal changes of miRNA levels in the sciatic nerve following injury, as compared to those in an uninjured nerve using deep sequencing. Small RNAs (<200 nucleotides in length) were fractionated from the proximal nerve stumps to improve the representation of differential miRNA levels. Of 141 axoplasmic miRNAs annotated, 63 rat miRNAs showed significantly differential levels at five time points following injury, compared to an uninjured nerve. The differential changes in miRNA levels responding to injury were processed for hierarchical clustering analyses, and used to predict target mRNAs by Targetscan and miRanda. By overlapping these predicted targets with 2,924 axonally localizing transcripts previously reported, the overlapping set of 214 transcripts was further analyzed by the Gene Ontology enrichment and Ingenuity Pathway Analyses. These results suggest the possibility that the potential targets for these miRNAs play key roles in numerous neurological functions involved in ER stress response, cytoskeleton dynamics, vesicle formation, and neuro-degeneration and-regeneration. Finally, our results suggest that miRNAs could play a direct role in regenerative response and may be manipulated to promote regenerative ability of injured nerves.
Collapse
|
22
|
Kim HH, Kim P, Phay M, Yoo S. Identification of precursor microRNAs within distal axons of sensory neuron. J Neurochem 2015; 134:193-9. [PMID: 25919946 DOI: 10.1111/jnc.13140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/30/2022]
Abstract
A set of specific precursor microRNAs (pre-miRNAs) are reported to localize into neuronal dendrites, where they could be processed locally to control synaptic protein synthesis and plasticity. However, it is not clear whether specific pre-miRNAs are also transported into distal axons to autonomously regulate intra-axonal protein synthesis. Here, we show that a subset of pre-miRNAs, whose mature miRNAs are enriched in axonal compartment of sympathetic neurons, are present in axons of neurons both in vivo and in vitro by quantitative PCR and by in situ hybridization. Some pre-miRNAs (let 7c-a and pre-miRs-16, 23a, 25, 125b-1, 433, and 541) showed elevated axonal levels, while others (pre-miRs-138-2, 185, and 221) were decreased in axonal levels following injury. Dicer and KSRP proteins are also present in distal axons, but Drosha is found restricted to the cell body. These findings suggest that specific pre-miRNAs are selected for localization into distal axons of sensory neurons and are presumably processed to mature miRNAs in response to extracellular stimuli. This study supports the notion that local miRNA biogenesis effectively provides another level of temporal control for local protein synthesis in axons.
Collapse
Affiliation(s)
- Hak Hee Kim
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Paul Kim
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Monichan Phay
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA.,Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| |
Collapse
|
23
|
Wang Y, Sakano H, Beebe K, Brown MR, de Laat R, Bothwell M, Kulesza RJ, Rubel EW. Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: a comparative study in the alligator, chicken, gerbil, and human. J Comp Neurol 2015; 522:2107-28. [PMID: 24318628 DOI: 10.1002/cne.23520] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/09/2022]
Abstract
Neuronal dendrites are structurally and functionally dynamic in response to changes in afferent activity. The fragile X mental retardation protein (FMRP) is an mRNA binding protein that regulates activity-dependent protein synthesis and morphological dynamics of dendrites. Loss and abnormal expression of FMRP occur in fragile X syndrome (FXS) and some forms of autism spectrum disorders. To provide further understanding of how FMRP signaling regulates dendritic dynamics, we examined dendritic expression and localization of FMRP in the reptilian and avian nucleus laminaris (NL) and its mammalian analogue, the medial superior olive (MSO), in rodents and humans. NL/MSO neurons are specialized for temporal processing of low-frequency sounds for binaural hearing, which is impaired in FXS. Protein BLAST analyses first demonstrate that the FMRP amino acid sequences in the alligator and chicken are highly similar to human FMRP with identical mRNA-binding and phosphorylation sites, suggesting that FMRP functions similarly across vertebrates. Immunocytochemistry further reveals that NL/MSO neurons have very high levels of dendritic FMRP in low-frequency hearing vertebrates including alligator, chicken, gerbil, and human. Remarkably, dendritic FMRP in NL/MSO neurons often accumulates at branch points and enlarged distal tips, loci known to be critical for branch-specific dendritic arbor dynamics. These observations support an important role for FMRP in regulating dendritic properties of binaural neurons that are essential for low-frequency sound localization and auditory scene segregation, and support the relevance of studying this regulation in nonhuman vertebrates that use low frequencies in order to further understand human auditory processing disorders.
Collapse
Affiliation(s)
- Yuan Wang
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, WA, 98195-7923
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Localized protein synthesis is a mechanism by which morphologically polarized cells react in a spatially confined and temporally acute manner to changes in their environment. During the development of the nervous system intra-axonal protein synthesis is crucial for the establishment of neuronal connections. In contrast, mature axons have long been considered as translationally inactive but upon nerve injury or under neurodegenerative conditions specific subsets of mRNAs are recruited into axons and locally translated. Intra-axonally synthesized proteins can have pathogenic or restorative and regenerative functions, and thus targeting the axonal translatome might have therapeutic value, for example in the treatment of spinal cord injury or Alzheimer's disease. In the case of Alzheimer's disease the local synthesis of the stress response transcription factor activating transcription factor 4 mediates the long-range retrograde spread of pathology across the brain, and inhibition of local Atf4 translation downstream of the integrated stress response might interfere with this spread. Several molecular tools and approaches have been developed to target specifically the axonal translatome by either overexposing proteins locally in axons or, conversely, knocking down selectively axonally localized mRNAs. Many questions about axonal translation remain to be answered, especially with regard to the mechanisms establishing specificity but, nevertheless, targeting the axonal translatome is a promising novel avenue to pursue in the development for future therapies for various neurological conditions.
Collapse
Affiliation(s)
- Jimena Baleriola
- />The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, 650 W. 168th St., New York, NY USA
| | - Ulrich Hengst
- />The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, 650 W. 168th St., New York, NY USA
- />Department of Pathology and Cell Biology, Columbia University, 650 W. 168th St., New York, NY USA
| |
Collapse
|
25
|
Lu A, Huang Z, Zhang C, Zhang X, Zhao J, Zhang H, Zhang Q, Wu S, Yi X. Differential expression of microRNAs in dorsal root ganglia after sciatic nerve injury. Neural Regen Res 2014; 9:1031-40. [PMID: 25206756 PMCID: PMC4146302 DOI: 10.4103/1673-5374.133164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2014] [Indexed: 12/22/2022] Open
Abstract
This study investigated the possible involvement of microRNAs in the regulation of genes that participate in peripheral neural regeneration. A microRNA microarray analysis was conducted and 23 microRNAs were identified whose expression was significantly changed in rat dorsal root ganglia after sciatic nerve transection. The expression of one of the downregulated microRNAs, microRNA-214, was validated using quantitative reverse transcriptase-PCR. MicroRNA-214 was predicted to target the 3'-untranslated region of Slit-Robo GTPase-activating protein 3. In situ hybridization verified that microRNA-214 was located in the cytoplasm of dorsal root ganglia primary neurons and was downregulated following sciatic nerve transection. Moreover, a combination of in situ hybridization and immunohistochemistry revealed that microRNA-214 and Slit-Robo GTPase-activating protein 3 were co-localized in dorsal root ganglion primary neurons. Western blot analysis suggested that Slit-Robo GTPase-activating protein 3 was upregulated in dorsal root ganglion neurons after sciatic nerve transection. These data demonstrate that microRNA-214 is located and differentially expressed in dorsal root ganglion primary neurons and may participate in regulating the gene expression of Slit-Robo GTPase-activating protein 3 after sciatic nerve transection.
Collapse
Affiliation(s)
- Anjie Lu
- Department of Orthopedics, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zufa Huang
- Department of Orthopedics, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chaoyue Zhang
- Department of Orthopedics, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xianfang Zhang
- Neurosciences Research Department, Hainan Medical University, Haikou, Hainan Province, China
| | - Jiuhong Zhao
- Neurosciences Research Department, Hainan Medical University, Haikou, Hainan Province, China
| | - Haiying Zhang
- Neurosciences Research Department, Hainan Medical University, Haikou, Hainan Province, China
| | - Quanpeng Zhang
- Neurosciences Research Department, Hainan Medical University, Haikou, Hainan Province, China
| | - Song Wu
- Department of Orthopedics, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xinan Yi
- Neurosciences Research Department, Hainan Medical University, Haikou, Hainan Province, China
| |
Collapse
|
26
|
Norcini M, Sideris A, Martin Hernandez LA, Zhang J, Blanck TJJ, Recio-Pinto E. An approach to identify microRNAs involved in neuropathic pain following a peripheral nerve injury. Front Neurosci 2014; 8:266. [PMID: 25221468 PMCID: PMC4148822 DOI: 10.3389/fnins.2014.00266] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022] Open
Abstract
Peripheral nerve injury alters the expression of hundreds of proteins in dorsal root ganglia (DRG). Targeting some of these proteins has led to successful treatments for acute pain, but not for sustained post-operative neuropathic pain. The latter may require targeting multiple proteins. Since a single microRNA (miR) can affect the expression of multiple proteins, here, we describe an approach to identify chronic neuropathic pain-relevant miRs. We used two variants of the spared nerve injury (SNI): Sural-SNI and Tibial-SNI and found distinct pain phenotypes between the two. Both models induced strong mechanical allodynia, but only Sural-SNI rats maintained strong mechanical and cold allodynia, as previously reported. In contrast, we found that Tibial-SNI rats recovered from mechanical allodynia and never developed cold allodynia. Since both models involve nerve injury, we increased the probability of identifying differentially regulated miRs that correlated with the quality and magnitude of neuropathic pain and decreased the probability of detecting miRs that are solely involved in neuronal regeneration. We found seven such miRs in L3-L5 DRG. The expression of these miRs increased in Tibial-SNI. These miRs displayed a lower level of expression in Sural-SNI, with four having levels lower than those in sham animals. Bioinformatic analysis of how these miRs could affect the expression of some ion channels supports the view that, following a peripheral nerve injury, the increase of the seven miRs may contribute to the recovery from neuropathic pain while the decrease of four of them may contribute to the development of chronic neuropathic pain. The approach used resulted in the identification of a small number of potentially neuropathic pain relevant miRs. Additional studies are required to investigate whether manipulating the expression of the identified miRs in primary sensory neurons can prevent or ameliorate chronic neuropathic pain following peripheral nerve injuries.
Collapse
Affiliation(s)
- Monica Norcini
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA
| | - Alexandra Sideris
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA
| | | | - Jin Zhang
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA
| | - Thomas J J Blanck
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA ; Department of Neuroscience and Physiology, NYU Langone Medical Center New York, NY, USA
| | - Esperanza Recio-Pinto
- Department of Anesthesiology, NYU Langone Medical Center New York, NY, USA ; Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center New York, NY, USA
| |
Collapse
|
27
|
Kye MJ, Niederst ED, Wertz MH, Gonçalves IDCG, Akten B, Dover KZ, Peters M, Riessland M, Neveu P, Wirth B, Kosik KS, Sardi SP, Monani UR, Passini MA, Sahin M. SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 2014; 23:6318-31. [PMID: 25055867 DOI: 10.1093/hmg/ddu350] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reduced expression of SMN protein causes spinal muscular atrophy (SMA), a neurodegenerative disorder leading to motor neuron dysfunction and loss. However, the molecular mechanisms by which SMN regulates neuronal dysfunction are not fully understood. Here, we report that reduced SMN protein level alters miRNA expression and distribution in neurons. In particular, miR-183 levels are increased in neurites of SMN-deficient neurons. We demonstrate that miR-183 regulates translation of mTor via direct binding to its 3' UTR. Interestingly, local axonal translation of mTor is reduced in SMN-deficient neurons, and this can be recovered by miR-183 inhibition. Finally, inhibition of miR-183 expression in the spinal cord of an SMA mouse model prolongs survival and improves motor function of Smn-mutant mice. Together, these observations suggest that axonal miRNAs and the mTOR pathway are previously unidentified molecular mechanisms contributing to SMA pathology.
Collapse
Affiliation(s)
- Min Jeong Kye
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA, Institute of Human Genetics, Institute for Genetics and
| | - Emily D Niederst
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary H Wertz
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Bikem Akten
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katarzyna Z Dover
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology and
| | - Miriam Peters
- Institute of Human Genetics, Institute for Genetics and, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Markus Riessland
- Institute of Human Genetics, Institute for Genetics and, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Pierre Neveu
- Kavli Institute for Theoretical Physics and, Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106, USA, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany and
| | - Brunhilde Wirth
- Institute of Human Genetics, Institute for Genetics and, Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Kenneth S Kosik
- Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - S Pablo Sardi
- Genzyme, a Sanofi Company, Framingham, MA 01701, USA
| | - Umrao R Monani
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology and, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Mustafa Sahin
- Department of Neurology, The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA,
| |
Collapse
|
28
|
Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014; 35:6143-56. [PMID: 24818883 DOI: 10.1016/j.biomaterials.2014.04.064] [Citation(s) in RCA: 411] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/16/2014] [Indexed: 12/19/2022]
Abstract
Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China.
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - David F Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
29
|
Yang PW, Huang YC, Hsieh CY, Hua KT, Huang YT, Chiang TH, Chen JS, Huang PM, Hsu HH, Kuo SW, Kuo ML, Lee JM. Association of miRNA-related genetic polymorphisms and prognosis in patients with esophageal squamous cell carcinoma. Ann Surg Oncol 2014; 21 Suppl 4:S601-9. [PMID: 24770678 DOI: 10.1245/s10434-014-3709-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a deadly disease with a poor prognosis. The single nucleotide polymorphisms (SNPs) involved in microRNA (miRNA) functions are potential biomarkers for prognosis of various human cancers. We investigated the association of the miRNA-related SNPs with the prognosis of ESCC. METHODS A total of 504 patients with ESCC were enrolled. The genotypes of 18 miRNA-related SNPs were analyzed from the genomic DNA of peripheral leukocytes and were correlated with the prognosis of patients randomly assigned to a training set (n = 129) or an independent replication set (n = 375). RESULTS In the training group, only the rs4919510 SNP of the mir-608 gene was significantly associated with clinical outcome (CG vs. GG, hazard ratio [HR] 0.47, 95 % confidence interval [CI] 0.27-0.82, P = 0.008 for death, HR 0.47, 95 % CI 0.29-0.77, P = 0.002 for recurrence). The association for overall survival was confirmed in an independent replication group (CG vs. GG, HR 0.74, 95 % CI 0.56-0.97, P = 0.031 for death). Two other SNPs, rs14035 of RAN and rs7813 of GEMIN4, showed a borderline significant association with the prognosis of ESCC. In a combined analysis, we demonstrated the cumulative effect of the mir-608, RAN, and GEMIN4 polymorphisms on the clinical outcome of ESCC (HR 1.40, 95 % CI 1.18-1.67, P trend < 0.001 for mortality, HR 1.30, 95 % CI 1.10-1.53, P trend = 0.002 for recurrence). The cumulative effect was more evident in patients receiving concurrent chemoradiotherapy. CONCLUSIONS The hereditary genetic polymorphisms of mir-608, RAN, and GEMIN4 can serve as predictors for clinical outcome in ESCC patients treated with concurrent chemoradiotherapy.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gomes C, Merianda TT, Lee SJ, Yoo S, Twiss JL. Molecular determinants of the axonal mRNA transcriptome. Dev Neurobiol 2014; 74:218-32. [PMID: 23959706 PMCID: PMC3933445 DOI: 10.1002/dneu.22123] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
Axonal protein synthesis has been shown to play a role in developmental and regenerative growth, as well as in cell body responses to axotomy. Recent studies have begun to identify the protein products that contribute to these autonomous responses of axons. In the peripheral nervous system, intra-axonal protein synthesis has been implicated in the localized in vivo responses to neuropathic stimuli, and there is emerging evidence for protein synthesis in CNS axons in vivo. Despite that hundreds of mRNAs have now been shown to localize into the axonal compartment, knowledge of what RNA binding proteins are responsible for this is quite limited. Here, we review the current state of knowledge of RNA transport mechanisms and highlight recently uncovered mechanisms for dynamically altering the axonal transcriptome. Both changes in the levels or activities of components of the RNA transport apparatus and alterations in transcription of transported mRNAs can effectively shift the axonal mRNA population. Consistent with this, the axonal RNA population shifts with development, with changes in growth state, and in response to extracellular stimulation. Each of these events must impact the transcriptional and transport apparatuses of the neuron, thus directly and indirectly modifying the axonal transcriptome.
Collapse
Affiliation(s)
- Cynthia Gomes
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Tanuja T. Merianda
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Seung Joon Lee
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
| | - Soonmoon Yoo
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 USA
| | - Jeffery L. Twiss
- Department of Biology, Drexel University, Philadelphia, Pennsylvania 19104 USA
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29201
| |
Collapse
|
31
|
The Gemin associates of survival motor neuron are required for motor function in Drosophila. PLoS One 2013; 8:e83878. [PMID: 24391840 PMCID: PMC3877121 DOI: 10.1371/journal.pone.0083878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/09/2013] [Indexed: 12/13/2022] Open
Abstract
Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3(ΔN) mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3(ΔN) overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3(ΔN), we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3(ΔN)-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3(ΔN). Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo.
Collapse
|
32
|
Garza-Manero S, Pichardo-Casas I, Arias C, Vaca L, Zepeda A. Selective distribution and dynamic modulation of miRNAs in the synapse and its possible role in Alzheimer's Disease. Brain Res 2013; 1584:80-93. [PMID: 24355599 DOI: 10.1016/j.brainres.2013.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/30/2013] [Accepted: 12/07/2013] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control a wide range of functions in the cell. They act as post-transcriptional gene regulators throughout in development and in adulthood, although recent evidence suggests their potential role in the onset and development of various diseases and neuropathologies. In neurons miRNAs seem to play a key role as regulators of synaptic function. Synapses are vulnerable structures in neurodegenerative diseases. In particular, synaptic loss has been described as an early event in the pathogenesis of Alzheimer's Disease (AD). MicroRNA-mediated gene silencing represents a candidate event for the repression of specific mRNAs and protein synthesis that could account for synaptic dysfunction. In this work, we review the participation of miRNAs in synaptic function and consider their possible role in synaptic alterations in AD. First we review the biogenesis of miRNAs and their role as post-transcriptional regulators. Then we discuss recently published data on the distribution of miRNAs in the brain as well as their role in dynamic regulation at the synapse. In the second part, we briefly introduce the reader to AD, focusing on synaptic alterations in the progression of the pathology. Then we discuss possible implications of miRNAs in the associated synaptic dysfunction.
Collapse
Affiliation(s)
- Sylvia Garza-Manero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México, DF, Mexico.
| | - Israel Pichardo-Casas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510 México, DF, Mexico.
| | - Clorinda Arias
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México, DF, Mexico.
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510 México, DF, Mexico.
| | - Angélica Zepeda
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, México, DF, Mexico.
| |
Collapse
|
33
|
Abstract
Ion channels and transporters are expressed in every living cell, where they participate in controlling a plethora of biological processes and physiological functions, such as excitation of cells in response to stimulation, electrical activities of cells, excitation-contraction coupling, cellular osmolarity, and even cell growth and death. Alterations of ion channels/transporters can have profound impacts on the cellular physiology associated with these proteins. Expression of ion channels/transporters is tightly regulated and expression deregulation can trigger abnormal processes, leading to pathogenesis, the channelopathies. While transcription factors play a critical role in controlling the transcriptome of ion channels/transporters at the transcriptional level by acting on the 5'-flanking region of the genes, microribonucleic acids (miRNAs), a newly discovered class of regulators in the gene network, are also crucial for expression regulation at the posttranscriptional level through binding to the 3'untranslated region of the genes. These small noncoding RNAs fine tune expression of genes involved in a wide variety of cellular processes. Recent studies revealed the role of miRNAs in regulating expression of ion channels/transporters and the associated physiological functions. miRNAs can target ion channel genes to alter cardiac excitability (conduction, repolarization, and automaticity) and affect arrhythmogenic potential of heart. They can modulate circadian rhythm, pain threshold, neuroadaptation to alcohol, brain edema, etc., through targeting ion channel genes in the neuronal systems. miRNAs can also control cell growth and tumorigenesis by acting on the relevant ion channel genes. Future studies are expected to rapidly increase to unravel a new repertoire of ion channels/transporters for miRNA regulation.
Collapse
Affiliation(s)
- Zhiguo Wang
- Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
34
|
Sasaki Y, Gross C, Xing L, Goshima Y, Bassell GJ. Identification of axon-enriched microRNAs localized to growth cones of cortical neurons. Dev Neurobiol 2013; 74:397-406. [PMID: 23897634 DOI: 10.1002/dneu.22113] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/07/2013] [Accepted: 07/15/2013] [Indexed: 01/16/2023]
Abstract
There is increasing evidence that localized mRNAs in axons and growth cones play an important role in axon extension and pathfinding via local translation. A few studies have revealed the presence of microRNAs (miRNAs) in axons, which may control local protein synthesis during axon development. However, so far, there has been no attempt to screen for axon-enriched miRNAs and to validate their possible localization to growth cones of developing axons from neurons of the central nervous system. In this study, the localization of miRNAs in axons and growth cones in cortical neurons was examined using a "neuron ball" culture method that is suitable to prepare axonal miRNAs with high yield and purity. Axonal miRNAs prepared from the neuron ball cultures of mouse cortical neurons were analyzed by quantitative real-time RT-PCR. Among 375 miRNAs that were analyzed, 105 miRNAs were detected in axons, and six miRNAs were significantly enriched in axonal fractions when compared with cell body fractions. Fluorescence in situ hybridization revealed that two axon-enriched miRNAs, miR-181a-1* and miR-532, localized as distinct granules in distal axons and growth cones. The association of these miRNAs with the RNA-induced silencing complex further supported their function to regulate mRNA levels or translation in the brain. These results suggest a mechanism to localize specific miRNAs to distal axons and growth cones, where they could be involved in local mRNA regulation. These findings provide new insight into the presence of axonal miRNAs and motivate further analysis of their function in local protein synthesis underlying axon guidance.
Collapse
Affiliation(s)
- Yukio Sasaki
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, 30322; Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | | | | | | | | |
Collapse
|
35
|
Wu D, Murashov AK. Molecular mechanisms of peripheral nerve regeneration: emerging roles of microRNAs. Front Physiol 2013; 4:55. [PMID: 23554595 PMCID: PMC3612692 DOI: 10.3389/fphys.2013.00055] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 03/07/2013] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs are small non-coding RNAs that suppress gene expression through target mRNA degradation or translation repression. Recent studies suggest that miRNA plays an important role in multiple physiological and pathological processes in the nervous system. In this review article, we described what is currently known about the mechanisms in peripheral nerve regeneration on cellular and molecular levels. Recently, changes in microRNA expression profiles have been detected in different injury models, and emerging evidence strongly indicates that these changes promote neurons to survive by shifting their physiology from maintaining structure and supporting synaptic transmission towards a regenerative phenotype. We reviewed the putative mechanisms involved in miRNA mediated post-transcriptional regulation and pointed out several areas where future research is necessary to advance our understanding of how targeting miRNA machinery can be used as a therapeutic approach for treating nerve injuries.
Collapse
Affiliation(s)
- Di Wu
- Department of Physiology, East Carolina University Greenville, NC, USA ; Department of Neurobiology and Anatomy, Drexel University College of Medicine Philadelphia, PA, USA
| | | |
Collapse
|
36
|
Koyuncu OO, Perlman DH, Enquist LW. Efficient retrograde transport of pseudorabies virus within neurons requires local protein synthesis in axons. Cell Host Microbe 2013; 13:54-66. [PMID: 23332155 DOI: 10.1016/j.chom.2012.10.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/15/2012] [Accepted: 11/16/2012] [Indexed: 11/24/2022]
Abstract
After replicating in epithelial cells, alphaherpesviruses such as pseudorabies virus (PRV) invade axons of peripheral nervous system neurons and undergo retrograde transport toward the distant cell bodies. Although several viral proteins engage molecular motors to facilitate transport, the initial steps and neuronal responses to infection are poorly understood. Using compartmented neuron cultures to physically separate axon infection from cell bodies, we found that PRV infection induces local protein synthesis in axons, including proteins involved in cytoskeletal remodeling, intracellular trafficking, signaling, and metabolism. This rapid translation of axonal mRNAs is required for efficient PRV retrograde transport and infection of cell bodies. Furthermore, induction of axonal damage, which also induces local protein synthesis, prior to infection reduces virion trafficking, suggesting that host damage signals and virus particles compete for retrograde transport. Thus, similar to axonal damage, virus infection induces local protein translation in axons, and viruses likely exploit this response for invasion.
Collapse
Affiliation(s)
- Orkide O Koyuncu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
37
|
Xing L, Bassell GJ. mRNA localization: an orchestration of assembly, traffic and synthesis. Traffic 2012; 14:2-14. [PMID: 22913533 DOI: 10.1111/tra.12004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 12/14/2022]
Abstract
Asymmetrical mRNA localization and subsequent local translation provide efficient mechanisms for protein sorting in polarized cells. Defects in mRNA localization have been linked to developmental abnormalities and neurological diseases. Thus, it is critical to understand the machineries mediating and mechanisms underlying the asymmetrical distribution of mRNA and its regulation. The goal of this review is to summarize recent advances in the understanding of mRNA transport and localization, including the assembly and sorting of transport messenger ribonucleic protein (mRNP) granules, molecular mechanisms of active mRNP transport, cytoskeletal interactions and regulation of these events by extracellular signals.
Collapse
Affiliation(s)
- Lei Xing
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
38
|
Pacheco A, Twiss JL. Localized IRES-dependent translation of ER chaperone protein mRNA in sensory axons. PLoS One 2012; 7:e40788. [PMID: 22911708 PMCID: PMC3404055 DOI: 10.1371/journal.pone.0040788] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 06/13/2012] [Indexed: 12/25/2022] Open
Abstract
Transport of neuronal mRNAs into distal nerve terminals and growth cones allows axonal processes to generate proteins autonomous from the cell body. While the mechanisms for targeting mRNAs for transport into axons has received much attention, how specificity is provided to the localized translational apparatus remains largely unknown. In other cellular systems, protein synthesis can be regulated by both cap-dependent and cap-independent mechanisms. The possibility that these mechanisms are used by axons has not been tested. Here, we have used expression constructs encoding axonally targeted bicistronic reporter mRNAs to determine if sensory axons can translate mRNAs through cap-independent mechanisms. Our data show that the well-defined IRES element of encephalomyocarditis virus (EMCV) can drive internal translational initiation of a bicistronic reporter mRNA in distal DRG axons. To test the potential for cap-independent translation of cellular mRNAs, we asked if calreticulin or grp78/BiP mRNA 5'UTRs might have IRES activity in axons. Only grp78/BiP mRNA 5'UTR showed clear IRES activity in axons when placed between the open reading frames of diffusion limited fluorescent reporters. Indeed, calreticulin's 5'UTR provided an excellent control for potential read through by ribosomes, since there was no evidence of internal initiation when this UTR was placed between reporter ORFs in a bicistronic mRNA. This study shows that axons have the capacity to translate through internal ribosome entry sites, but a simple binary choice between cap-dependent and cap-independent translation cannot explain the specificity for translation of individual mRNAs in distal axons.
Collapse
Affiliation(s)
- Almudena Pacheco
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Jeffery L. Twiss
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Cauchi RJ. Conserved requirement for DEAD-box RNA helicase Gemin3 in Drosophila oogenesis. BMC Res Notes 2012; 5:120. [PMID: 22361416 PMCID: PMC3392723 DOI: 10.1186/1756-0500-5-120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 02/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background DEAD-box RNA helicase Gemin3 is an essential protein since its deficiency is lethal in both vertebrates and invertebrates. In addition to playing a role in transcriptional regulation and RNA silencing, as a core member of the SMN (survival of motor neurons) complex, Gemin3 is required for the biogenesis of spliceosomal snRNPs (small nuclear ribonucleoproteins), and axonal mRNA metabolism. Studies in the mouse and C. elegans revealed that loss of Gemin3 function has a negative impact on ovarian physiology and development. Findings This work reports on the generation and characterisation of gemin3 mutant germline clones in Drosophila adult females. Gemin3 was found to be required for the completion of oogenesis and its loss led to egg polarity defects, oocyte mislocalisation, and abnormal chromosome morphology. Canonical Cajal bodies were absent in the majority of gemin3 mutant egg chambers and histone locus bodies displayed an atypical morphology. snRNP distribution was perturbed so that on gemin3 loss, snRNP cytoplasmic aggregates (U bodies) were only visible in wild type. Conclusions These findings establish a conserved requirement for Gemin3 in Drosophila oogenesis. Furthermore, in view of the similarity to the phenotypes described previously in smn mutant germ cells, the present results confirm the close functional relationship between SMN and Gemin3 on a cellular level.
Collapse
Affiliation(s)
- Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida MSD 2080, Malta G.C.
| |
Collapse
|
40
|
Fallini C, Bassell GJ, Rossoll W. Spinal muscular atrophy: the role of SMN in axonal mRNA regulation. Brain Res 2012; 1462:81-92. [PMID: 22330725 DOI: 10.1016/j.brainres.2012.01.044] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 01/19/2012] [Indexed: 01/15/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by homozygous mutations or deletions in the survival of motor neuron (SMN1) gene, encoding the ubiquitously expressed SMN protein. SMN associates with different proteins (Gemins 2-8, Unrip) to form a multimeric complex involved in the assembly of small nuclear ribonucleoprotein complexes (snRNPs). Since this activity is essential for the survival of all cell types, it still remains unclear why motor neurons are selectively vulnerable to low levels of SMN protein. Aside from its housekeeping role in the assembly of snRNPs, additional functions of SMN have been proposed. The well-documented localization of SMN in axonal transport granules and its interaction with numerous mRNA-binding proteins not involved in splicing regulation suggest a role in axonal RNA metabolism. This review will focus on the neuropathological and experimental evidence supporting a role for SMN in regulating the assembly, localization, or stability of axonal messenger ribonucleoprotein complexes (mRNPs). Furthermore, how defects in this non-canonical SMN function may contribute to the motor neuron pathology observed in SMA will be discussed. This article is part of a Special Issue entitled RNA-Binding Proteins.
Collapse
Affiliation(s)
- Claudia Fallini
- Department of Cell Biology, School of Medicine, Emory University School of Medicine, Atlanta 30322, USA
| | | | | |
Collapse
|
41
|
Price TJ, Melemedjian OK. Fragile X mental retardation protein (FMRP) and the spinal sensory system. Results Probl Cell Differ 2012; 54:41-59. [PMID: 22009347 DOI: 10.1007/978-3-642-21649-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The purpose of this chapter is to discuss the role of the fragile X mental retardation protein (FMRP) in the spinal sensory system and the potential for use of the mouse model of fragile X syndrome to better understand some aspects of the human syndrome as well as advance knowledge in other areas of investigation, such as pain amplification, an important aspect of clinical pain disorders. We describe how the Fmr1 knockout mouse can be used to better understand the role of Fmrp in axons using cultures of sensory neurons and using manipulations to these neurons in vivo. We also discuss the established evidence for a role of Fmrp in nociceptive sensitization and how this evidence relates to an emerging role of translation control as a key process in pain amplification. Finally, we explore opportunities centered on the Fmr1 KO mouse for gaining further insight into the role of translation control in pain amplification and how this model may be used to identify novel therapeutic targets. We conclude that the study of the spinal sensory system in the Fmr1 KO mouse presents several unique prospects for gaining better insight into the human disorder and other clinical issues, such as chronic pain disorders, that affect millions of people worldwide.
Collapse
Affiliation(s)
- Theodore J Price
- Department of Pharmacology, The University of Arizona School of Medicine, Tucson, AZ, USA.
| | | |
Collapse
|
42
|
Pichardo-Casas I, Goff LA, Swerdel MR, Athie A, Davila J, Ramos-Brossier M, Lapid-Volosin M, Friedman WJ, Hart RP, Vaca L. Expression profiling of synaptic microRNAs from the adult rat brain identifies regional differences and seizure-induced dynamic modulation. Brain Res 2011; 1436:20-33. [PMID: 22197703 DOI: 10.1016/j.brainres.2011.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/24/2011] [Accepted: 12/01/2011] [Indexed: 12/01/2022]
Abstract
In recent years, microRNAs or miRNAs have been proposed to target neuronal mRNAs localized near the synapse, exerting a pivotal role in modulating local protein synthesis, and presumably affecting adaptive mechanisms such as synaptic plasticity. In the present study we have characterized the distribution of miRNAs in five regions of the adult mammalian brain and compared the relative abundance between total fractions and purified synaptoneurosomes (SN), using three different methodologies. The results show selective enrichment or depletion of some miRNAs when comparing total versus SN fractions. These miRNAs were different for each brain region explored. Changes in distribution could not be attributed to simple diffusion or to a targeting sequence inside the miRNAs. In silico analysis suggest that the differences in distribution may be related to the preferential concentration of synaptically localized mRNA targeted by the miRNAs. These results favor a model of co-transport of the miRNA-mRNA complex to the synapse, although further studies are required to validate this hypothesis. Using an in vivo model for increasing excitatory activity in the cortex and the hippocampus indicates that the distribution of some miRNAs can be modulated by enhanced neuronal (epileptogenic) activity. All these results demonstrate the dynamic modulation in the local distribution of miRNAs from the adult brain, which may play key roles in controlling localized protein synthesis at the synapse.
Collapse
Affiliation(s)
- Israel Pichardo-Casas
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, DF México.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu D, Raafat A, Pak E, Clemens S, Murashov AK. Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro. Exp Neurol 2011; 233:555-65. [PMID: 22178326 DOI: 10.1016/j.expneurol.2011.11.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/18/2011] [Accepted: 11/25/2011] [Indexed: 01/29/2023]
Abstract
Both central and peripheral axons contain pivotal microRNA (miRNA) proteins. While recent observations demonstrated that miRNA biosynthetic machinery responds to peripheral nerve lesion in an injury-regulated pattern, the physiological significance of this phenomenon remains to be elucidated. In the current paper we hypothesized that deletion of Dicer would disrupt production of Dicer-dependent miRNAs and would negatively impact regenerative axon growth. Taking advantage of tamoxifen-inducible CAG-CreERt:Dicer(fl/fl) knockout (Dicer KO), we investigated the results of Dicer deletion on sciatic nerve regeneration in vivo and regenerative axon growth in vitro. Here we show that the sciatic functional index, an indicator of functional recovery, was significantly lower in Dicer KO mice in comparison to wild-type animals. Restoration of mechanical sensitivity recorded in the von Frey test was also markedly impaired in Dicer mutants. Further, Dicer deletion impeded the recovery of nerve conduction velocity and amplitude of evoked compound action potentials in vitro. Histologically, both total number of regenerating nerve fibers and mean axonal area were notably smaller in the Dicer KO mice. In addition, Dicer-deficient neurons failed to regenerate axons in dissociated dorsal root ganglia (DRG) cultures. Taken together, our results demonstrate that knockout of Dicer clearly impedes regenerative axon growth as well as anatomical, physiological and functional recovery. Our data suggest that the intact Dicer-dependent miRNA pathway is critical for the successful peripheral nerve regeneration after injury.
Collapse
Affiliation(s)
- Di Wu
- Department of Physiology, East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | |
Collapse
|
44
|
Ruangsri S, Lin A, Mulpuri Y, Lee K, Spigelman I, Nishimura I. Relationship of axonal voltage-gated sodium channel 1.8 (NaV1.8) mRNA accumulation to sciatic nerve injury-induced painful neuropathy in rats. J Biol Chem 2011; 286:39836-47. [PMID: 21965668 PMCID: PMC3220569 DOI: 10.1074/jbc.m111.261701] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/27/2011] [Indexed: 12/21/2022] Open
Abstract
Painful peripheral neuropathy is a significant clinical problem; however, its pathological mechanism and effective treatments remain elusive. Increased peripheral expression of tetrodotoxin-resistant voltage-gated sodium channel 1.8 (NaV1.8) has been shown to associate with chronic pain symptoms in humans and experimental animals. Sciatic nerve entrapment (SNE) injury was used to develop neuropathic pain symptoms in rats, resulting in increased NaV1.8 mRNA in the injured nerve but not in dorsal root ganglia (DRG). To study the role of NaV1.8 mRNA in the pathogenesis of SNE-induced painful neuropathy, NaV1.8 shRNA vector was delivered by subcutaneous injection of cationized gelatin/plasmid DNA polyplex into the rat hindpaw and its subsequent retrograde transport via sciatic nerve to DRG. This in vivo NaV1.8 shRNA treatment reversibly and repeatedly attenuated the SNE-induced pain symptoms, an effect that became apparent following a distinct lag period of 3-4 days and lasted for 4-6 days before returning to pretreatment levels. Surprisingly, apparent knockdown of NaV1.8 mRNA occurred only in the injured nerve, not in the DRG, during the pain alleviation period. Levels of heteronuclear NaV1.8 RNA were unaffected by SNE or shRNA treatments, suggesting that transcription of the Scn10a gene encoding NaV1.8 was unchanged. Based on these data, we postulate that increased axonal mRNA transport results in accumulation of functional NaV1.8 protein in the injured nerve and the development of painful neuropathy symptoms. Thus, targeted delivery of agents that interfere with axonal NaV1.8 mRNA may represent effective neuropathic pain treatments.
Collapse
Affiliation(s)
- Supanigar Ruangsri
- From the Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry
- Division of Oral Biology & Medicine, School of Dentistry, and
- the Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Audrey Lin
- From the Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry
| | | | - Kyung Lee
- From the Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry
| | - Igor Spigelman
- Division of Oral Biology & Medicine, School of Dentistry, and
- Brain Research Institute, UCLA, Los Angeles, California 90095 and
| | - Ichiro Nishimura
- From the Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry
- Division of Oral Biology & Medicine, School of Dentistry, and
| |
Collapse
|
45
|
Obara I, Tochiki KK, Géranton SM, Carr FB, Lumb BM, Liu Q, Hunt SP. Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice. Pain 2011; 152:2582-2595. [PMID: 21917376 DOI: 10.1016/j.pain.2011.07.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/13/2011] [Accepted: 07/29/2011] [Indexed: 12/22/2022]
Abstract
The management of neuropathic pain is unsatisfactory, and new treatments are required. Because the sensitivity of a subset of fast-conducting primary afferent nociceptors is thought to be regulated by the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, selectively targeting mTORC1 represents a new strategy for the control of chronic pain. Here we show that activated mTOR was expressed largely in myelinated sensory fibers in mouse and that inhibiting the mTORC1 pathway systemically alleviated mechanical hypersensitivity in mouse models of inflammatory and neuropathic pain. Specifically, systemic administration of mTORC1 inhibitor temsirolimus (CCI-779), both acutely (25 mg/kg i.p.) and chronically (4 daily 25 mg/kg i.p.), inhibited the mTORC1 pathway in sensory axons and the spinal dorsal horn and reduced mechanical and cold hypersensitivity induced by nerve injury. Moreover, systemic treatment with CCI-779 also reduced mechanical but not heat hypersensitivity in an inflammatory pain state. This treatment did not influence nociceptive thresholds in naive or sham-treated control animals. Also, there was no evidence for neuronal toxicity after repeated systemic treatment with CCI-779. Additionally, we show that acute and chronic i.p. administration of Torin1 (20 mg/kg), a novel ATP-competitive inhibitor targeting both mTORC1 and mTORC2 pathways, reduced the response to mechanical and cold stimuli in neuropathic mice. Our findings emphasize the importance of the mTORC1 pathway as a regulator of nociceptor sensitivity and therefore as a potential target for therapeutic intervention, particularly in chronic pain.
Collapse
Affiliation(s)
- Ilona Obara
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland Department of Physiology, University of Bristol, Bristol BS8 1TD, UK Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Jung H, O'Hare CM, Holt CE. Translational regulation in growth cones. Curr Opin Genet Dev 2011; 21:458-64. [PMID: 21530230 PMCID: PMC3683644 DOI: 10.1016/j.gde.2011.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
Axonal growth cones (GCs) steer in response to extrinsic cues using mechanisms that include local protein synthesis. This adaptive form of gene regulation occurs with spatial precision and depends on subcellular mRNA localisation. Recent genome-wide studies have shown unexpectedly complex and dynamically changing mRNA repertoires in growing axons and GCs. Axonal targeting of some transcripts seems to be highly selective and involves sequence diversity in non-coding regions generated by transcriptional and/or post-transcriptional mechanisms. New evidence reports direct coupling of a guidance receptor to the protein synthesis machinery and other findings demonstrate that some guidance cues can repress translation. The recent findings shed further light on the exquisitely regulated process that enables distant cellular compartments to respond to local stimuli.
Collapse
Affiliation(s)
- Hosung Jung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, United Kingdom
| | | | | |
Collapse
|
47
|
Wu D, Raafat M, Pak E, Hammond S, Murashov AK. MicroRNA machinery responds to peripheral nerve lesion in an injury-regulated pattern. Neuroscience 2011; 190:386-97. [PMID: 21689732 DOI: 10.1016/j.neuroscience.2011.06.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/02/2011] [Indexed: 12/20/2022]
Abstract
Recently, functional and potent RNA interference (RNAi) has been reported in peripheral nerve axons transfected with short-interfering RNA (siRNA). In addition, components of RNA-induced silencing complex (RISC) have been identified in axotomized sciatic nerve fibers as well as in regenerating dorsal root ganglia (DRG) neurons in vitro. Based on these observations, and on the fact that siRNA and microRNA (miRNA) share the same effector enzymes, we hypothesized that the endogenous miRNA biosynthetic pathway would respond to peripheral nerve injury. To answer this question, we investigated changes in the expression of miRNA biosynthetic enzymes following peripheral nerve crush injury in mice. Here, we show that several pivotal miRNA biosynthetic enzymes are expressed in an injury-regulated pattern in sciatic nerve in vivo, and in DRG axons in vitro. Moreover, the sciatic nerve lesion induced expression of mRNA-processing bodies (P-bodies), which are the local foci of mRNA degradation in DRG axons. In addition, a group of injury-regulated miRNAs was identified by miRNA microarray and validated by real-time quantitative PCR (qPCR) and in situ hybridization analyses. Taken together, our data support the hypothesis that the peripheral nerve regeneration processes may be regulated by miRNA pathway.
Collapse
Affiliation(s)
- D Wu
- Department of Physiology, East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Islamov RR, Tyapkina OV, Eremeev AA, Shaymardanova GF, Chakkaeva EA, Kozlovskaya IB, Nikolsky EE. Possible specialization of motoneuron axonal compartments in synthesis of particular proteins. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci 2010; 30:10860-71. [PMID: 20702715 DOI: 10.1523/jneurosci.1980-10.2010] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To examine the role of small RNAs in peripheral pain pathways, we deleted the enzyme Dicer in mouse postmitotic damage-sensing neurons. We used a Nav1.8-Cre mouse to target those nociceptors important for inflammatory pain. The conditional null mice were healthy with a normal number of sensory neurons and normal acute pain thresholds. Behavioral studies showed that inflammatory pain was attenuated or abolished. Inflammatory mediators failed to enhance excitability of Nav1.8+ sensory neurons from null mutant mice. Acute noxious input into the dorsal horn of the spinal cord was apparently normal, but the increased input associated with inflammatory pain measured using c-Fos staining was diminished. Microarray and quantitative real-time reverse-transcription PCR (qRT-PCR) analysis showed that Dicer deletion lead to the upregulation of many broadly expressed mRNA transcripts in dorsal root ganglia. By contrast, nociceptor-associated mRNA transcripts (e.g., Nav1.8, P2xr3, and Runx-1) were downregulated, resulting in lower levels of protein and functional expression. qRT-PCR analysis also showed lowered levels of expression of nociceptor-specific pre-mRNA transcripts. MicroRNA microarray and deep sequencing identified known and novel nociceptor microRNAs in mouse Nav1.8+ sensory neurons that may regulate nociceptor gene expression.
Collapse
|