1
|
Alves DO, Geens R, da Silva Arruda HR, Jennen L, Corthaut S, Wuyts E, de Andrade GC, Prosdocimi F, Cordeiro Y, Pires JR, Vieira LR, de Oliveira GAP, Sterckx YGJ, Salmon D. Biophysical analysis of the membrane-proximal Venus Flytrap domain of ESAG4 receptor-like adenylate cyclase from Trypanosoma brucei. Mol Biochem Parasitol 2024; 260:111653. [PMID: 39447762 DOI: 10.1016/j.molbiopara.2024.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The protozoan parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases (RACs), primarily located to the flagellar surface and involved in sensing of the extracellular environment. RACs exhibit a conserved topology characterized by a large N-terminal extracellular moiety harbouring two Venus Flytrap (VFT) bilobate structures separated from an intracellular catalytic domain by a single transmembrane helix. RAC activation, which typically occurs under mild acid stress, requires the dimerization of the intracellular catalytic domain. The occurrence of VFT domains in the RAC's extracellular moiety suggests their potential responsiveness to extracellular ligands in the absence of stress, although no such ligands have been identified so far. Herein we report the biophysical characterization of the membrane-proximal VFT2 domain of a bloodstream form-specific RAC called ESAG4, whose ectodomain 3D structure is completely unknown. The paper describes an AlphaFold2-based optimisation of the expression construct, enabling facile and high-yield recombinant production and purification of the target protein. Through an interdisciplinary approach combining various biophysical methods, we demonstrate that the optimised VFT2 domain obtained by recombination is properly folded and behaves as a monomer in solution. The latter suggests a ligand-binding capacity independent of dimerization, unlike typical mammalian VFT receptors, as guanylate cyclase. In silico VFT2 genomic analyses shows divergence among cyclase isoforms, hinting at ligand specificity. Taken together this improved procedure enabling facile and high-yield recombinant production and purification of the target protein could benefit researchers studying trypanosomal RAC VFT domains but also any trypanosome domain with poorly defined boundaries. Additionally, our findings support the stable monomeric VFT2 domain as a useful tool for future structural investigations and ligand screening.
Collapse
Affiliation(s)
- Desirée O Alves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Rob Geens
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Hiam R da Silva Arruda
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Lisa Jennen
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Ellen Wuyts
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Guilherme Caldas de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Francisco Prosdocimi
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, Rio de Janeiro 21941-902, Brazil
| | - José Ricardo Pires
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium.
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
2
|
Denecke S, Malfara MF, Hodges KR, Holmes NA, Williams AR, Gallagher-Teske JH, Pascarella JM, Daniels AM, Sterk GJ, Leurs R, Ruthel G, Hoang R, Povelones ML, Povelones M. Adhesion of Crithidia fasciculata promotes a rapid change in developmental fate driven by cAMP signaling. mSphere 2024; 9:e0061724. [PMID: 39315810 PMCID: PMC11520290 DOI: 10.1128/msphere.00617-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Trypanosomatids are single-celled parasites responsible for human and animal disease. Typically, colonization of an insect host is required for transmission. Stable attachment of parasites to insect tissues via their single flagellum coincides with differentiation and morphological changes. Although attachment is a conserved stage in trypanosomatid life cycles, the molecular mechanisms are not well understood. To study this process, we elaborate upon an in vitro model in which the swimming form of the trypanosomatid Crithidia fasciculata rapidly differentiates following adhesion to artificial substrates. Live imaging of cells transitioning from swimming to attached shows parasites undergoing a defined sequence of events, including an initial adhesion near the base of the flagellum immediately followed by flagellar shortening, cell rounding, and the formation of a hemidesmosome-like attachment plaque between the tip of the shortened flagellum and the substrate. Quantitative proteomics of swimming versus attached parasites suggests differential regulation of cyclic adenosine monophosphate (cAMP)-based signaling proteins. We have localized two of these proteins to the flagellum of swimming C. fasciculata; however, both are absent from the shortened flagellum of attached cells. Pharmacological inhibition of cAMP phosphodiesterases increased cAMP levels in the cell and prevented attachment. Further, treatment with inhibitor did not affect the growth rate of either swimming or established attached cells, indicating that its effect is limited to a critical window during the early stages of adhesion. These data suggest that cAMP signaling is required for attachment of C. fasciculata and that flagellar signaling domains may be reorganized during differentiation and attachment.IMPORTANCETrypanosomatid parasites cause significant disease burden worldwide and require insect vectors for transmission. In the insect, parasites attach to tissues, sometimes dividing as attached cells or producing motile, infectious forms. The significance and cellular mechanisms of attachment are relatively unexplored. Here, we exploit a model trypanosomatid that attaches robustly to artificial surfaces to better understand this process. This attachment recapitulates that observed in vivo and can be used to define the stages and morphological features of attachment as well as conditions that impact attachment efficiency. We have identified proteins that are enriched in either swimming or attached parasites, supporting a role for the cyclic AMP signaling pathway in the transition from swimming to attached. As this pathway has already been implicated in environmental sensing and developmental transitions in trypanosomatids, our data provide new insights into activities required for parasite survival in their insect hosts.
Collapse
Affiliation(s)
- Shane Denecke
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Kelly R. Hodges
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Nikki A. Holmes
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Andre R. Williams
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | | | | | - Abigail M. Daniels
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan HZ, Amsterdam, the Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan HZ, Amsterdam, the Netherlands
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Hoang
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | - Megan L. Povelones
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Macedo-da-Silva J, Mule SN, Rosa-Fernandes L, Palmisano G. A computational pipeline elucidating functions of conserved hypothetical Trypanosoma cruzi proteins based on public proteomic data. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 138:401-428. [PMID: 38220431 DOI: 10.1016/bs.apcsb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The proteome is complex, dynamic, and functionally diverse. Functional proteomics aims to characterize the functions of proteins in biological systems. However, there is a delay in annotating the function of proteins, even in model organisms. This gap is even greater in other organisms, including Trypanosoma cruzi, the causative agent of the parasitic, systemic, and sometimes fatal disease called Chagas disease. About 99.8% of Trypanosoma cruzi proteome is not manually annotated (unreviewed), among which>25% are conserved hypothetical proteins (CHPs), calling attention to the knowledge gap on the protein content of this organism. CHPs are conserved proteins among different species of various evolutionary lineages; however, they lack functional validation. This study describes a bioinformatics pipeline applied to public proteomic data to infer possible biological functions of conserved hypothetical Trypanosoma cruzi proteins. Here, the adopted strategy consisted of collecting differentially expressed proteins between the epimastigote and metacyclic trypomastigotes stages of Trypanosoma cruzi; followed by the functional characterization of these CHPs applying a manifold learning technique for dimension reduction and 3D structure homology analysis (Spalog). We found a panel of 25 and 26 upregulated proteins in the epimastigote and metacyclic trypomastigote stages, respectively; among these, 18 CHPs (8 in the epimastigote stage and 10 in the metacyclic stage) were characterized. The data generated corroborate the literature and complement the functional analyses of differentially regulated proteins at each stage, as they attribute potential functions to CHPs, which are frequently identified in Trypanosoma cruzi proteomics studies. However, it is important to point out that experimental validation is required to deepen our understanding of the CHPs.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil; Centre for Motor Neuron Disease Research, Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Sydney, NSW, Australia
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil; School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
4
|
De Niz M, Frachon E, Gobaa S, Bastin P. Spatial confinement of Trypanosoma brucei in microfluidic traps provides a new tool to study free swimming parasites. PLoS One 2023; 18:e0296257. [PMID: 38134042 PMCID: PMC10745224 DOI: 10.1371/journal.pone.0296257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma brucei is the causative agent of African trypanosomiasis and is transmitted by the tsetse fly (Glossina spp.). All stages of this extracellular parasite possess a single flagellum that is attached to the cell body and confers a high degree of motility. While several stages are amenable to culture in vitro, longitudinal high-resolution imaging of free-swimming parasites has been challenging, mostly due to the rapid flagellar beating that constantly twists the cell body. Here, using microfabrication, we generated various microfluidic devices with traps of different geometrical properties. Investigation of trap topology allowed us to define the one most suitable for single T. brucei confinement within the field of view of an inverted microscope while allowing the parasite to remain motile. Chips populated with V-shaped traps allowed us to investigate various phenomena in cultured procyclic stage wild-type parasites, and to compare them with parasites whose motility was altered upon knockdown of a paraflagellar rod component. Among the properties that we investigated were trap invasion, parasite motility, and the visualization of organelles labelled with fluorescent dyes. We envisage that this tool we have named "Tryp-Chip" will be a useful tool for the scientific community, as it could allow high-throughput, high-temporal and high-spatial resolution imaging of free-swimming T. brucei parasites.
Collapse
Affiliation(s)
- Mariana De Niz
- Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris, INSERM U1201, Paris, France
| | - Emmanuel Frachon
- Institut Pasteur, Université de Paris, Biomaterials and Microfluidics Core Facility, Paris, France
| | - Samy Gobaa
- Institut Pasteur, Université de Paris, Biomaterials and Microfluidics Core Facility, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris, INSERM U1201, Paris, France
| |
Collapse
|
5
|
Povelones ML, Holmes NA, Povelones M. A sticky situation: When trypanosomatids attach to insect tissues. PLoS Pathog 2023; 19:e1011854. [PMID: 38128049 PMCID: PMC10734937 DOI: 10.1371/journal.ppat.1011854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Transmission of trypanosomatids to their mammalian hosts requires a complex series of developmental transitions in their insect vectors, including stable attachment to an insect tissue. While there are many ultrastructural descriptions of attached cells, we know little about the signaling events and molecular mechanisms involved in this process. Each trypanosomatid species attaches to a specific tissue in the insect at a particular stage of its life cycle. Attachment is mediated by the flagellum, which is modified to accommodate a filament-rich plaque within an expanded region of the flagellar membrane. Attachment immediately precedes differentiation to the mammal-infectious stage and in some cases a direct mechanistic link has been demonstrated. In this review, we summarize the current state of knowledge of trypanosomatid attachment in insects, including structure, function, signaling, candidate molecules, and changes in gene expression. We also highlight remaining questions about this process and how the field is poised to address them through modern approaches.
Collapse
Affiliation(s)
- Megan L. Povelones
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Nikki A. Holmes
- Department of Biology, Villanova University, Villanova, Pennsylvania, United States of America
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
Zheng Y, van den Kerkhof M, van der Meer T, Gul S, Kuzikov M, Ellinger B, de Esch IJP, Siderius M, Matheeussen A, Maes L, Sterk GJ, Caljon G, Leurs R. Discovery of 5-Phenylpyrazolopyrimidinone Analogs as Potent Antitrypanosomal Agents with In Vivo Efficacy. J Med Chem 2023; 66:10252-10264. [PMID: 37471520 PMCID: PMC10424178 DOI: 10.1021/acs.jmedchem.3c00161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 07/22/2023]
Abstract
Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei, is one of the neglected tropical diseases with a continuing need for new medication. We here describe the discovery of 5-phenylpyrazolopyrimidinone analogs as a novel series of phenotypic antitrypanosomal agents. The most potent compound, 30 (NPD-2975), has an in vitro IC50 of 70 nM against T. b. brucei with no apparent toxicity against human MRC-5 lung fibroblasts. Showing good physicochemical properties, low toxicity potential, acceptable metabolic stability, and other pharmacokinetic features, 30 was further evaluated in an acute mouse model of T. b. brucei infection. After oral dosing at 50 mg/kg twice per day for five consecutive days, all infected mice were cured. Given its good drug-like properties and high in vivo antitrypanosomal potential, the 5-phenylpyrazolopyrimidinone analog 30 represents a promising lead for future drug development to treat HAT.
Collapse
Affiliation(s)
- Yang Zheng
- Amsterdam
Institute for Molecules, Medicines and Systems, Division of Medicinal
Chemistry, Faculty of Science, Vrije Universiteit
Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Magali van den Kerkhof
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Tiffany van der Meer
- Amsterdam
Institute for Molecules, Medicines and Systems, Division of Medicinal
Chemistry, Faculty of Science, Vrije Universiteit
Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Sheraz Gul
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
- Fraunhofer
Cluster of Excellence for Immune-Mediated Diseases CIMD, 22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
- Fraunhofer
Cluster of Excellence for Immune-Mediated Diseases CIMD, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
- Fraunhofer
Cluster of Excellence for Immune-Mediated Diseases CIMD, 22525 Hamburg, Germany
| | - Iwan J. P. de Esch
- Amsterdam
Institute for Molecules, Medicines and Systems, Division of Medicinal
Chemistry, Faculty of Science, Vrije Universiteit
Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Marco Siderius
- Amsterdam
Institute for Molecules, Medicines and Systems, Division of Medicinal
Chemistry, Faculty of Science, Vrije Universiteit
Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - An Matheeussen
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Louis Maes
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Geert Jan Sterk
- Amsterdam
Institute for Molecules, Medicines and Systems, Division of Medicinal
Chemistry, Faculty of Science, Vrije Universiteit
Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Guy Caljon
- Laboratory
of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Rob Leurs
- Amsterdam
Institute for Molecules, Medicines and Systems, Division of Medicinal
Chemistry, Faculty of Science, Vrije Universiteit
Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
7
|
Jamabo M, Mahlalela M, Edkins AL, Boshoff A. Tackling Sleeping Sickness: Current and Promising Therapeutics and Treatment Strategies. Int J Mol Sci 2023; 24:12529. [PMID: 37569903 PMCID: PMC10420020 DOI: 10.3390/ijms241512529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the extracellular protozoan parasite Trypanosoma brucei, and targeted for eradication by 2030. The COVID-19 pandemic contributed to the lengthening of the proposed time frame for eliminating human African trypanosomiasis as control programs were interrupted. Armed with extensive antigenic variation and the depletion of the B cell population during an infectious cycle, attempts to develop a vaccine have remained unachievable. With the absence of a vaccine, control of the disease has relied heavily on intensive screening measures and the use of drugs. The chemotherapeutics previously available for disease management were plagued by issues such as toxicity, resistance, and difficulty in administration. The approval of the latest and first oral drug, fexinidazole, is a major chemotherapeutic achievement for the treatment of human African trypanosomiasis in the past few decades. Timely and accurate diagnosis is essential for effective treatment, while poor compliance and resistance remain outstanding challenges. Drug discovery is on-going, and herein we review the recent advances in anti-trypanosomal drug discovery, including novel potential drug targets. The numerous challenges associated with disease eradication will also be addressed.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Maduma Mahlalela
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Adrienne L. Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Centre (BioBRU), Rhodes University, Makhanda 6139, South Africa;
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| |
Collapse
|
8
|
Bachmaier S, Gould MK, Polatoglou E, Omelianczyk R, Brennand AE, Aloraini MA, Munday JC, Horn D, Boshart M, de Koning HP. Novel kinetoplastid-specific cAMP binding proteins identified by RNAi screening for cAMP resistance in Trypanosoma brucei. Front Cell Infect Microbiol 2023; 13:1204707. [PMID: 37475965 PMCID: PMC10354285 DOI: 10.3389/fcimb.2023.1204707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
Cyclic AMP signalling in trypanosomes differs from most eukaryotes due to absence of known cAMP effectors and cAMP independence of PKA. We have previously identified four genes from a genome-wide RNAi screen for resistance to the cAMP phosphodiesterase (PDE) inhibitor NPD-001. The genes were named cAMP Response Protein (CARP) 1 through 4. Here, we report an additional six CARP candidate genes from the original sample, after deep sequencing of the RNA interference target pool retrieved after NPD-001 selection (RIT-seq). The resistance phenotypes were confirmed by individual RNAi knockdown. Highest level of resistance to NPD-001, approximately 17-fold, was seen for knockdown of CARP7 (Tb927.7.4510). CARP1 and CARP11 contain predicted cyclic AMP binding domains and bind cAMP as evidenced by capture and competition on immobilised cAMP. CARP orthologues are strongly enriched in kinetoplastid species, and CARP3 and CARP11 are unique to Trypanosoma. Localization data and/or domain architecture of all CARPs predict association with the T. brucei flagellum. This suggests a crucial role of cAMP in flagellar function, in line with the cell division phenotype caused by high cAMP and the known role of the flagellum for cytokinesis. The CARP collection is a resource for discovery of unusual cAMP pathways and flagellar biology.
Collapse
Affiliation(s)
- Sabine Bachmaier
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Matthew K. Gould
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Eleni Polatoglou
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Radoslaw Omelianczyk
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Ana E. Brennand
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Maha A. Aloraini
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jane C. Munday
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael Boshart
- Faculty of Biology, Genetics, Ludwig-Maximillians University Munich (LMU), Martinsried, Germany
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Zheng Y, Schroeder S, Kanev GK, Botros SS, William S, Sabra ANA, Maes L, Caljon G, Gil C, Martinez A, Salado IG, Augustyns K, Edink E, Sijm M, de Heuvel E, de Esch IJP, van der Meer T, Siderius M, Sterk GJ, Brown D, Leurs R. To Target or Not to Target Schistosoma mansoni Cyclic Nucleotide Phosphodiesterase 4A? Int J Mol Sci 2023; 24:ijms24076817. [PMID: 37047792 PMCID: PMC10095301 DOI: 10.3390/ijms24076817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease with high morbidity. Recently, the Schistosoma mansoni phosphodiesterase SmPDE4A was suggested as a putative new drug target. To support SmPDE4A targeted drug discovery, we cloned, isolated, and biochemically characterized the full-length and catalytic domains of SmPDE4A. The enzymatically active catalytic domain was crystallized in the apo-form (PDB code: 6FG5) and in the cAMP- and AMP-bound states (PDB code: 6EZU). The SmPDE4A catalytic domain resembles human PDE4 more than parasite PDEs because it lacks the parasite PDE-specific P-pocket. Purified SmPDE4A proteins (full-length and catalytic domain) were used to profile an in-house library of PDE inhibitors (PDE4NPD toolbox). This screening identified tetrahydrophthalazinones and benzamides as potential hits. The PDE inhibitor NPD-0001 was the most active tetrahydrophthalazinone, whereas the approved human PDE4 inhibitors roflumilast and piclamilast were the most potent benzamides. As a follow-up, 83 benzamide analogs were prepared, but the inhibitory potency of the initial hits was not improved. Finally, NPD-0001 and roflumilast were evaluated in an in vitro anti-S. mansoni assay. Unfortunately, both SmPDE4A inhibitors were not effective in worm killing and only weakly affected the egg-laying at high micromolar concentrations. Consequently, the results with these SmPDE4A inhibitors strongly suggest that SmPDE4A is not a suitable target for anti-schistosomiasis therapy.
Collapse
Affiliation(s)
- Yang Zheng
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | | | - Georgi K Kanev
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Sanaa S Botros
- Pharmacology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Samia William
- Parasitology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Abdel-Nasser A Sabra
- Pharmacology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Carmen Gil
- Centro de Investigaciones Biologicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biologicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Irene G Salado
- Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Koen Augustyns
- Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ewald Edink
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Maarten Sijm
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Erik de Heuvel
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Tiffany van der Meer
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Marco Siderius
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - David Brown
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
10
|
Melfi F, Carradori S, Campestre C, Haloci E, Ammazzalorso A, Grande R, D'Agostino I. Emerging compounds and therapeutic strategies to treat infections from Trypanosoma brucei: an overhaul of the last 5-years patents. Expert Opin Ther Pat 2023; 33:247-263. [PMID: 36933190 DOI: 10.1080/13543776.2023.2193328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
INTRODUCTION Human African Trypanosomiasis is a neglected disease caused by infection from parasites belonging to the Trypanosoma brucei species. Only six drugs are currently available and employed depending on the stage of the infection: pentamidine, suramin, melarsoprol, eflornithine, nifurtimox, and fexinidazole. Joint research projects were launched in an attempt to find new therapeutic options for this severe and often lethal disease. AREAS COVERED After a brief description of the recent literature on the parasite and the disease, we searched for patents dealing with the proposal of new anti-trypanosomiasis agents and, following the PRISMA guidelines, we filtered the results to those published from 2018onwards returning suitable entries, which represent the contemporary landscape of compounds/strategies against Trypanosoma brucei. In addition, some relevant publications from the overall scientific literature were also discussed. EXPERT OPINION This review comprehensively covers and analyzes the most recent advances not only in the discovery of new inhibitors and their structure-activity relationships but also in the assessment of innovative biological targets opening new scenarios in the MedChem field. Lastly, also new vaccines and formulations recently patented were described. However, natural and synthetic compounds were analyzed in terms of inhibitory activity and selective toxicity against human cells.
Collapse
Affiliation(s)
- Francesco Melfi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Entela Haloci
- Department of Pharmacy, University of Medicine, Tirana, Albania
| | | | - Rossella Grande
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
11
|
Popruk S, Abu A, Ampawong S, Thiangtrongjit T, Tipthara P, Tarning J, Sreesai S, Reamtong O. Mass Spectrometry-Based Metabolomics Revealed Effects of Metronidazole on Giardia duodenalis. Pharmaceuticals (Basel) 2023; 16:ph16030408. [PMID: 36986506 PMCID: PMC10052756 DOI: 10.3390/ph16030408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Giardia duodenalis is a significant protozoan that affects humans and animals. An estimated 280 million G. duodenalis diarrheal cases are recorded annually. Pharmacological therapy is crucial for controlling giardiasis. Metronidazole is the first-line therapy for treating giardiasis. Several metronidazole targets have been proposed. However, the downstream signaling pathways of these targets with respect to their antigiardial action are unclear. In addition, several giardiasis cases have demonstrated treatment failures and drug resistance. Therefore, the development of novel drugs is an urgent need. In this study, we performed a mass spectrometry-based metabolomics study to understand the systemic effects of metronidazole in G. duodenalis. A thorough analysis of metronidazole processes helps identify potential molecular pathways essential for parasite survival. The results demonstrated 350 altered metabolites after exposure to metronidazole. Squamosinin A and N-(2-hydroxyethyl)hexacosanamide were the most up-regulated and down-regulated metabolites, respectively. Proteasome and glycerophospholipid metabolisms demonstrated significant differential pathways. Comparing glycerophospholipid metabolisms of G. duodenalis and humans, the parasite glycerophosphodiester phosphodiesterase was distinct from humans. This protein is considered a potential drug target for treating giardiasis. This study improved our understanding of the effects of metronidazole and identified new potential therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Supaluk Popruk
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Amanee Abu
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 4BH, UK
| | - Suthasinee Sreesai
- Central Equipment Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
12
|
Xanthine Analogs Suppress Trypanosoma cruzi Infection In Vitro Using PDEs as Targets. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Trypanosoma cruzi (T. cruzi), the causative agent of Chagas disease, has infected 6 million people, putting 70 million people at risk worldwide. Presently, very limited drugs are available, and these have severe side effects. Hence, there is an urgency to delve into other pathways and targets for novel drugs. Trypanosoma cruzi (T. cruzi) expresses a number of different cyclic AMP (cAMP)-specific phosphodiesterases (PDEs). cAMP is one of the key regulators of mammalian cell proliferation and differentiation, and it also plays an important role in T. cruzi growth. Very few studies have demonstrated the important role of cyclic nucleotide-specific PDEs in T. cruzi’s survival. T. cruzi phosphodiesterase C (TcrPDEC) has been proposed as a potential new drug target for treating Chagas disease. In the current study, we screen several analogs of xanthine for potency against trypomastigote and amastigote growth in vitro using three different strains of T. cruzi (Tulahuen, Y and CA-1/CL72). One of the potent analogs, GVK14, has been shown to inhibit all three strains of amastigotes in host cells as well as axenic cultures. In conclusion, xanthine analogs that inhibit T. cruzi PDE may provide novel alternative therapeutic options for Chagas disease.
Collapse
|
13
|
A multi-adenylate cyclase regulator at the flagellar tip controls African trypanosome transmission. Nat Commun 2022; 13:5445. [PMID: 36114198 PMCID: PMC9481589 DOI: 10.1038/s41467-022-33108-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Signaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging. Here we show that the composition of an adenylate cyclase (AC) complex in the flagellar tip microdomain is essential for tsetse salivary gland (SG) colonization and SoMo. Cyclic AMP response protein 3 (CARP3) binds and regulates multiple AC isoforms. CARP3 tip localization depends on the cytoskeletal protein FLAM8. Re-localization of CARP3 away from the tip microdomain is sufficient to abolish SoMo and fly SG colonization. Since intrinsic development is normal in carp3 and flam8 knock-out parasites, AC complex-mediated tip signaling specifically controls parasite migration and thereby transmission. Participation of several developmentally regulated receptor-type AC isoforms may indicate the complexity of the in vivo signals perceived. Trypanosomes can sense signal molecules and coordinate their movement in response to such signals, a phenomenon termed social motility (SoMo). Here, Bachmaier et al show that cyclic AMP response protein 3 (CARP3) localization to the flagellar tip and its interaction with a number of different adenylate cyclases is essential for migration to tsetse fly salivary glands and for SoMo, therewith linking SoMo and cAMP signaling to trypanosome transmission.
Collapse
|
14
|
Zheng Y, Müller J, Kunz S, Siderius M, Maes L, Caljon G, Müller N, Hemphill A, Sterk GJ, Leurs R. 3-nitroimidazo[1,2-b]pyridazine as a novel scaffold for antiparasitics with sub-nanomolar anti-Giardia lamblia activity. Int J Parasitol Drugs Drug Resist 2022; 19:47-55. [PMID: 35716585 PMCID: PMC9213561 DOI: 10.1016/j.ijpddr.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
As there is a continuous need for novel anti-infectives, the present study aimed to fuse two modes of action into a novel 3-nitroimidazo[1,2-b]pyridazine scaffold to improve antiparasitic efficacy. For this purpose, we combined known structural elements of phosphodiesterase inhibitors, a target recently proposed for Trypanosoma brucei and Giardia lamblia, with a nitroimidazole scaffold to generate nitrosative stress. The compounds were evaluated in vitro against a panel of protozoal parasites, namely Giardia lamblia, Trypanosoma brucei, T. cruzi, Leishmania infantum and Plasmodium falciparum and for cytotoxicity on MRC-5 cells. Interestingly, selective sub-nanomolar activity was obtained against G. lamblia, and by testing several analogues with and without the nitro group, it was shown that the presence of a nitro group, but not PDE inhibition, is responsible for the low IC50 values of these novel compounds. Adding the favourable drug-like properties (low molecular weight, cLogP (1.2–4.1) and low polar surface area), the key compounds from the 3-nitroimidazo[1,2-b]pyridazine series can be considered as valuable hits for further anti-giardiasis drug exploration and development. Analogues fusing a nitroimidazole moiety and a PDE inhibitor scaffold were prepared. These compounds were tested in vitro against a panel of protozoal parasites. Against Giardia lamblia, sub-nanomolar IC50 values were determined. PDE inhibition provided no significant contribution to the anti-Giardia potency. High potency with drug-like properties warrants further study of this hit series.
Collapse
|
15
|
Sáez Conde J, Dean S. Structure, function and druggability of the African trypanosome flagellum. J Cell Physiol 2022; 237:2654-2667. [PMID: 35616248 PMCID: PMC9323424 DOI: 10.1002/jcp.30778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
African trypanosomes are early branching protists that cause human and animal diseases, termed trypanosomiases. They have been under intensive study for more than 100 years and have contributed significantly to our understanding of eukaryotic biology. The combination of conserved and parasite-specific features mean that their flagellum has gained particular attention. Here, we discuss the different structural features of the flagellum and their role in transmission and virulence. We highlight the possibilities of targeting flagellar function to cure trypanosome infections and help in the fight to eliminate trypanosomiases.
Collapse
Affiliation(s)
- Julia Sáez Conde
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Samuel Dean
- Division of Biomedical Sciences, Warwick Medical SchoolUniversity of WarwickCoventryUK
| |
Collapse
|
16
|
Zara L, Moraca F, Van Muijlwijk-Koezen JE, Zarzycka B, Abel R, de Esch IJP. Exploring the Activity Profile of TbrPDEB1 and hPDE4 Inhibitors Using Free Energy Perturbation. ACS Med Chem Lett 2022; 13:904-910. [PMID: 35707144 PMCID: PMC9190044 DOI: 10.1021/acsmedchemlett.1c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Lorena Zara
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Francesca Moraca
- Schrodinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Jacqueline E. Van Muijlwijk-Koezen
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Barbara Zarzycka
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Robert Abel
- Schrodinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Iwan J. P. de Esch
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
17
|
Approaches to advance drug discovery for neglected tropical diseases. Drug Discov Today 2022; 27:2278-2287. [DOI: 10.1016/j.drudis.2022.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/21/2022] [Accepted: 04/02/2022] [Indexed: 12/19/2022]
|
18
|
A review of synthetic bioactive tetrahydro-β-carbolines: A medicinal chemistry perspective. Eur J Med Chem 2021; 225:113815. [PMID: 34479038 DOI: 10.1016/j.ejmech.2021.113815] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022]
Abstract
1, 2, 3, 4-Tetrahydro-β-carboline (THβC) scaffold is widespread in many natural products (NPs) and synthetic compounds which show a variety of pharmacological activities. In this article, we reviewed the design, structures and biological characteristics of reported synthetic THβC compounds, and structure and activity relationship (SAR) of them were also discussed. This work might provide a reference for subsequent drug development based on THβC.
Collapse
|
19
|
Llanos MA, Alberca LN, Larrea SCV, Schoijet AC, Alonso GD, Bellera CL, Gavenet L, Talevi A. Homology Modeling and Molecular Dynamics Simulations of Trypanosoma cruzi Phosphodiesterase b1. Chem Biodivers 2021; 19:e202100712. [PMID: 34813143 DOI: 10.1002/cbdv.202100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/22/2021] [Indexed: 11/07/2022]
Abstract
Cyclic nucleotide phosphodiesterases have been implicated in the proliferation, differentiation and osmotic regulation of trypanosomatids; in some trypanosomatid species, they have been validated as molecular targets for the development of new therapeutic agents. Because the experimental structure of Trypanosoma cruzi PDEb1 (TcrPDEb1) has not been solved so far, an homology model of the target was created using the structure of Trypanosoma brucei PDEb1 (TbrPDEb1) as a template. The model was refined by extensive enhanced sampling molecular dynamics simulations, and representative snapshots were extracted from the trajectory by combined clustering analysis. This structural ensemble was used to develop a structure-based docking model of the target. The docking accuracy of the model was validated by redocking and cross-docking experiments using all available crystal structures of TbrPDEb1, whereas the scoring accuracy was validated through a retrospective screen, using a carefully curated dataset of compounds assayed against TbrPDEb1 and/or TcrPDEb1. Considering the results from in silico validations, the model may be applied in prospective virtual screening campaigns to identify novel hits, as well as to guide the rational design of potent and selective inhibitors targeting this enzyme.
Collapse
Affiliation(s)
- Manuel A Llanos
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata - 47 and 115, La Plata, Buenos Aires, Argentina
| | - Lucas N Alberca
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata - 47 and 115, La Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Salomé C Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Alejandra C Schoijet
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Guillermo D Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires, Argentina
| | - Carolina L Bellera
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata - 47 and 115, La Plata, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET) - CCT, La Plata, Argentina
| | - Luciana Gavenet
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata - 47 and 115, La Plata, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET) - CCT, La Plata, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata - 47 and 115, La Plata, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET) - CCT, La Plata, Argentina
| |
Collapse
|
20
|
Structure of the trypanosome paraflagellar rod and insights into non-planar motility of eukaryotic cells. Cell Discov 2021; 7:51. [PMID: 34257277 PMCID: PMC8277818 DOI: 10.1038/s41421-021-00281-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic flagella (synonymous with cilia) rely on a microtubule-based axoneme, together with accessory filaments to carryout motility and signaling functions. While axoneme structures are well characterized, 3D ultrastructure of accessory filaments and their axoneme interface are mostly unknown, presenting a critical gap in understanding structural foundations of eukaryotic flagella. In the flagellum of the protozoan parasite Trypanosoma brucei (T. brucei), the axoneme is accompanied by a paraflagellar rod (PFR) that supports non-planar motility and signaling necessary for disease transmission and pathogenesis. Here, we employed cryogenic electron tomography (cryoET) with sub-tomographic averaging, to obtain structures of the PFR, PFR-axoneme connectors (PACs), and the axonemal central pair complex (CPC). The structures resolve how the 8 nm repeat of the axonemal tubulin dimer interfaces with the 54 nm repeat of the PFR, which consist of proximal, intermediate, and distal zones. In the distal zone, stacked "density scissors" connect with one another to form a "scissors stack network (SSN)" plane oriented 45° to the axoneme axis; and ~370 parallel SSN planes are connected by helix-rich wires into a paracrystalline array with ~90% empty space. Connections from these wires to the intermediate zone, then to overlapping layers of the proximal zone and to the PACs, and ultimately to the CPC, point to a contiguous pathway for signal transmission. Together, our findings provide insights into flagellum-driven, non-planar helical motility of T. brucei and have broad implications ranging from cell motility and tensegrity in biology, to engineering principles in bionics.
Collapse
|
21
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
22
|
De Araújo JS, da Silva PB, Batista MM, Peres RB, Cardoso-Santos C, Kalejaiye TD, Munday JC, De Heuvel E, Sterk GJ, Augustyns K, Salado IG, Matheeussen A, De Esch I, De Koning HP, Leurs R, Maes L, Soeiro MDNC. Evaluation of phthalazinone phosphodiesterase inhibitors with improved activity and selectivity against Trypanosoma cruzi. J Antimicrob Chemother 2021; 75:958-967. [PMID: 31860098 DOI: 10.1093/jac/dkz516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/15/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, needs urgent alternative therapeutic options as the treatments currently available display severe limitations, mainly related to efficacy and toxicity. OBJECTIVES As phosphodiesterases (PDEs) have been claimed as novel targets against T. cruzi, our aim was to evaluate the biological aspects of 12 new phthalazinone PDE inhibitors against different T. cruzi strains and parasite forms relevant for human infection. METHODS In vitro trypanocidal activity of the inhibitors was assessed alone and in combination with benznidazole. Their effects on parasite ultrastructural and cAMP levels were determined. PDE mRNA levels from the different T. cruzi forms were measured by quantitative reverse transcription PCR. RESULTS Five TcrPDEs were found to be expressed in all parasite stages. Four compounds displayed strong effects against intracellular amastigotes. Against bloodstream trypomastigotes (BTs), three were at least as potent as benznidazole. In vitro combination therapy with one of the most active inhibitors on both parasite forms (NPD-040) plus benznidazole demonstrated a quite synergistic profile (xΣ FICI = 0.58) against intracellular amastigotes but no interaction (xΣ FICI = 1.27) when BTs were assayed. BTs treated with NPD-040 presented disrupted Golgi apparatus, a swollen flagellar pocket and signs of autophagy. cAMP measurements of untreated parasites showed that amastigotes have higher ability to efflux this second messenger than BTs. NPD-001 and NPD-040 increase the intracellular cAMP content in both BTs and amastigotes, which is also released into the extracellular milieu. CONCLUSIONS The findings demonstrate the potential of PDE inhibitors as anti-T. cruzi drug candidates.
Collapse
Affiliation(s)
| | | | - Marcos Meuser Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Raiza Brandão Peres
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Camila Cardoso-Santos
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Titilola D Kalejaiye
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jane C Munday
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Erik De Heuvel
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Geert Jan Sterk
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Irene G Salado
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - An Matheeussen
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Iwan De Esch
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harry P De Koning
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Rob Leurs
- Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
23
|
Walsh B, Hill KL. Right place, right time: Environmental sensing and signal transduction directs cellular differentiation and motility in Trypanosoma brucei. Mol Microbiol 2021; 115:930-941. [PMID: 33434370 DOI: 10.1111/mmi.14682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/29/2022]
Abstract
Trypanosoma brucei and other African trypanosomes are vector-borne parasites that cause substantial human suffering across sub-Saharan Africa. The T. brucei life cycle is punctuated by numerous developmental stages, each occurring in a specific environmental niche and characterized by a unique morphology, metabolism, surface protein coat, and gene expression profile. The environmental cues and signaling pathways that drive transitions between these stages remain incompletely understood. Recent studies have started to fill this gap in knowledge. Likewise, several new studies have expanded our understanding of parasite movement through specific tissues and the parasite's ability to alter movement in response to external cues. Life cycle stage differentiation and motility are intimately integrated phenomena, as parasites must be at the right place (i.e., within a specific environmental milieu) at the right time (i.e., when they are appropriately staged and preadapted for perceiving and responding to signals) in order to complete their life cycle. In this review, we highlight some of the recent work that has transformed our understanding of signaling events that control parasite differentiation and motility. Increased knowledge of T. brucei environmental sensing and signal transduction advances our understanding of parasite biology and may direct prospective chemotherapeutic and transmission blockade strategies that are critical to eradication efforts.
Collapse
Affiliation(s)
- Breanna Walsh
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA.,Medical Scientist Training Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Kent L Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA.,California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
de Heuvel E, Kooistra AJ, Edink E, van Klaveren S, Stuijt J, van der Meer T, Sadek P, Mabille D, Caljon G, Maes L, Siderius M, de Esch IJP, Sterk GJ, Leurs R. Discovery of Diaryl Ether Substituted Tetrahydrophthalazinones as TbrPDEB1 Inhibitors Following Structure-Based Virtual Screening. Front Chem 2021; 8:608030. [PMID: 33553105 PMCID: PMC7859335 DOI: 10.3389/fchem.2020.608030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/16/2020] [Indexed: 12/04/2022] Open
Abstract
Several members of the 3′,5′-cyclic nucleotide phosphodiesterase (PDE) family play an essential role in cellular processes, which has labeled them as interesting targets for various diseases. The parasitic protozoan Trypanosoma brucei, causative agent of human African trypanosomiasis, contains several cyclic AMP specific PDEs from which TbrPDEB1 is validated as a drug target. The recent discovery of selective TbrPDEB1 inhibitors has increased their potential for a novel treatment for this disease. Compounds characterized by a rigid biphenyl tetrahydrophthalazinone core structure were used as starting point for the exploration of novel TbrPDEB1 inhibitors. Using a virtual screening campaign and structure-guided design, diaryl ether substituted phthalazinones were identified as novel TbrPDEB1 inhibitors with IC50 values around 1 μM against T. brucei. This study provides important structure-activity relationship (SAR) information for the future design of effective parasite-specific PDE inhibitors.
Collapse
Affiliation(s)
- Erik de Heuvel
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Albert J Kooistra
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ewald Edink
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sjors van Klaveren
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeffrey Stuijt
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tiffany van der Meer
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Payman Sadek
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Marco Siderius
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Schoijet AC, Sternlieb T, Alonso GD. Methods to Investigate Signal Transduction Pathways in Trypanosoma cruzi: Cyclic Nucleotide Phosphodiesterases Assay Protocols. Methods Mol Biol 2021; 2116:523-534. [PMID: 32221940 DOI: 10.1007/978-1-0716-0294-2_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Intracellular levels of cyclic nucleotide second messengers are regulated predominantly by a large superfamily of phosphodiesterases (PDEs). Most of the different PDE variants play specific physiological functions; in fact, PDEs can associate with other proteins allowing them to be strategically anchored throughout the cell. In this regard, precise cellular expression and compartmentalization of these enzymes produce the specific control of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) gradients in cells and enable their integration with other signaling pathways.In trypanosomatids, some PDEs are essential for their survival and play fundamental roles in the adaptation of these parasites to different environmental stresses, as well as in the differentiation between their different life cycle forms. Given that these enzymes not only are similar to human PDEs but also have differential biochemical properties, and due to the great knowledge of drugs that target human PDEs, trypanosomatid PDEs could be postulated as important therapeutic targets through the repositioning of drugs.In this chapter, we describe a simple and sensitive radioisotope-based method to measure cyclic 3',5'-nucleotide phosphodiesterase using [3H]cAMP.
Collapse
Affiliation(s)
- Alejandra C Schoijet
- Laboratorio de Señalización y Mecanismos Adaptativos en Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina
| | - Tamara Sternlieb
- Laboratorio de Señalización y Mecanismos Adaptativos en Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina
| | - Guillermo D Alonso
- Laboratorio de Señalización y Mecanismos Adaptativos en Tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina.
| |
Collapse
|
26
|
Silva DKC, Teixeira JS, Moreira DRM, da Silva TF, Barreiro EJDL, de Freitas HF, Pita SSDR, Teles ALB, Guimarães ET, Soares MBP. In Vitro, In Vivo and In Silico Effectiveness of LASSBio-1386, an N-Acyl Hydrazone Derivative Phosphodiesterase-4 Inhibitor, Against Leishmania amazonensis. Front Pharmacol 2021; 11:590544. [PMID: 33390966 PMCID: PMC7772393 DOI: 10.3389/fphar.2020.590544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis are group of neglected diseases with worldwide distribution that affect about 12 million people. The current treatment is limited and may cause severe adverse effects, and thus, the search for new drugs more effective and less toxic is relevant. We have previously investigated the immunomodulatory effects of LASSBio-1386, an N-acylhydrazone derivative. Here we investigated the in vitro and in vivo activity of LASSBio-1386 against L. amazonensis. LASSBio-1386 inhibited the proliferation of promastigotes of L. amazonensis (EC50 = 2.4 ± 0.48 µM), while presenting low cytotoxicity to macrophages (CC50 = 74.1 ± 2.9 µM). In vitro incubation with LASSBio-1386 reduced the percentage of Leishmania-infected macrophages and the number of intracellular parasites (EC50 = 9.42 ± 0.64 µM). Also, in vivo treatment of BALB/c mice infected with L. amazonensis resulted in a decrease of lesion size, parasitic load and caused histopathological alterations, when compared to vehicle-treated control. Moreover, LASSBio-1386 caused ultrastructural changes, arrested cell cycle in G0/G1 phase and did not alter the membrane mitochondrial potential of L. amazonensis. Aiming to its possible molecular interactions, we performed docking and molecular dynamics studies on Leishmania phosphodiesterase B1 (PDB code: 2R8Q) and LASSBio-1386. The computational analyses suggest that LASSBio-1386 acts against Leishmania through the modulation of leishmanial PDE activity. In conclusion, our results indicate that LASSBio-1386 is a promising candidate for the development of new leishmaniasis treatment.
Collapse
Affiliation(s)
- Dahara Keyse Carvalho Silva
- Departamento de Ciências da Vida, Núcleo de Estudo e Pesquisa em Histopatologia, Universidade Estadual da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Jessicada Silva Teixeira
- Departamento de Ciências da Vida, Núcleo de Estudo e Pesquisa em Histopatologia, Universidade Estadual da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Diogo Rodrigo Magalhães Moreira
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Tiago Fernandes da Silva
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eliezer Jesus de Lacerda Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Humberto Fonseca de Freitas
- Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - Samuel Silva da Rocha Pita
- Laboratório de Bioinformática e Modelagem Molecular (LaBiMM), Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - André Lacerda Braga Teles
- Departamento de Ciências da Vida, Laboratório de Modelagem Molecular Medicinal e Toxicológica, Universidade Estadual da Bahia (UNEB), Salvador, Brazil
| | - Elisalva Teixeira Guimarães
- Departamento de Ciências da Vida, Núcleo de Estudo e Pesquisa em Histopatologia, Universidade Estadual da Bahia (UNEB), Salvador, Brazil.,Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Milena Botelho Pereira Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Instituto Senai de Inovação em Sistemas Avançados em Saúde, Senai/Cimatec, Salvador, Brazil
| |
Collapse
|
27
|
Durante IM, Butenko A, Rašková V, Charyyeva A, Svobodová M, Yurchenko V, Hashimi H, Lukeš J. Large-Scale Phylogenetic Analysis of Trypanosomatid Adenylate Cyclases Reveals Associations with Extracellular Lifestyle and Host-Pathogen Interplay. Genome Biol Evol 2020; 12:2403-2416. [PMID: 33104188 PMCID: PMC7719234 DOI: 10.1093/gbe/evaa226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Receptor adenylate cyclases (RACs) on the surface of trypanosomatids are important players in the host–parasite interface. They detect still unidentified environmental signals that affect the parasites’ responses to host immune challenge, coordination of social motility, and regulation of cell division. A lesser known class of oxygen-sensing adenylate cyclases (OACs) related to RACs has been lost in trypanosomes and expanded mostly in Leishmania species and related insect-dwelling trypanosomatids. In this work, we have undertaken a large-scale phylogenetic analysis of both classes of adenylate cyclases (ACs) in trypanosomatids and the free-living Bodo saltans. We observe that the expanded RAC repertoire in trypanosomatids with a two-host life cycle is not only associated with an extracellular lifestyle within the vertebrate host, but also with a complex path through the insect vector involving several life cycle stages. In Trypanosoma brucei, RACs are split into two major clades, which significantly differ in their expression profiles in the mammalian host and the insect vector. RACs of the closely related Trypanosoma congolense are intermingled within these two clades, supporting early RAC diversification. Subspecies of T. brucei that have lost the capacity to infect insects exhibit high numbers of pseudogenized RACs, suggesting many of these proteins have become redundant upon the acquisition of a single-host life cycle. OACs appear to be an innovation occurring after the expansion of RACs in trypanosomatids. Endosymbiont-harboring trypanosomatids exhibit a diversification of OACs, whereas these proteins are pseudogenized in Leishmania subgenus Viannia. This analysis sheds light on how ACs have evolved to allow diverse trypanosomatids to occupy multifarious niches and assume various lifestyles.
Collapse
Affiliation(s)
- Ignacio Miguel Durante
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Life Science Research Centre, Faculty of Science, University of Ostrava, Czechia
| | - Vendula Rašková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Arzuv Charyyeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czechia
| | - Michaela Svobodová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czechia.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russian Federation
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| |
Collapse
|
28
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 2020; 10:200302. [PMID: 33234025 PMCID: PMC7729029 DOI: 10.1098/rsob.200302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or ‘dead’ enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile 8380453, Santigo de Chile
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution, The King's Buildings, Edinburgh EH9 3FL, UK.,Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
29
|
Kelly FD, Yates PA, Landfear SM. Nutrient sensing in Leishmania: Flagellum and cytosol. Mol Microbiol 2020; 115:849-859. [PMID: 33112443 DOI: 10.1111/mmi.14635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022]
Abstract
Parasites are by definition organisms that utilize resources from a host to support their existence, thus, promoting their ability to establish long-term infections and disease. Hence, sensing and acquiring nutrients for which the parasite and host compete is central to the parasitic mode of existence. Leishmania are flagellated kinetoplastid parasites that parasitize phagocytic cells, principally macrophages, of vertebrate hosts and the alimentary tract of sand fly vectors. Because nutritional supplies vary over time within both these hosts and are often restricted in availability, these parasites must sense a plethora of nutrients and respond accordingly. The flagellum has been recognized as an "antenna" that plays a core role in sensing environmental conditions, and various flagellar proteins have been implicated in sensing roles. In addition, these parasites exhibit non-flagellar intracellular mechanisms of nutrient sensing, several of which have been explored. Nonetheless, mechanistic details of these sensory pathways are still sparse and represent a challenging frontier for further experimental exploration.
Collapse
Affiliation(s)
- Felice D Kelly
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Phillip A Yates
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Scott M Landfear
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
30
|
Wang Z, Beneke T, Gluenz E, Wheeler RJ. The single flagellum of Leishmania has a fixed polarisation of its asymmetric beat. J Cell Sci 2020; 133:133/20/jcs246637. [PMID: 33093230 PMCID: PMC7595685 DOI: 10.1242/jcs.246637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic flagella undertake different beat types as necessary for different functions; for example, the Leishmania parasite flagellum undergoes a symmetric tip-to-base beat for forward swimming and an asymmetric base-to-tip beat to rotate the cell. In multi-ciliated tissues or organisms, the asymmetric beats are coordinated, leading to movement of the cell, organism or surrounding fluid. This coordination involves a polarisation of power stroke direction. Here, we asked whether the asymmetric beat of the single Leishmania flagellum also has a fixed polarisation. We developed high frame rate dual-colour fluorescence microscopy to visualise flagellar-associated structures in live swimming cells. This showed that the asymmetric Leishmania beat is polarised, with power strokes only occurring in one direction relative to the asymmetric flagellar machinery. Polarisation of bending was retained in deletion mutants whose flagella cannot beat but have a static bend. Furthermore, deletion mutants for proteins required for asymmetric extra-axonemal and rootlet-like flagellum-associated structures also retained normal polarisation. Leishmania beat polarisation therefore likely arises from either the nine-fold rotational symmetry of the axoneme structure or is due to differences between the outer doublet decorations. Highlighted Article: By using high speed, high-resolution fluorescence microscopy of swimming Leishmania cells, we showed that the asymmetric flagellar beat always wafts in the same direction and investigate which structures are involved.
Collapse
Affiliation(s)
- Ziyin Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Eva Gluenz
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Richard John Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Munday JC, Kunz S, Kalejaiye TD, Siderius M, Schroeder S, Paape D, Alghamdi AH, Abbasi Z, Huang SX, Donachie AM, William S, Sabra AN, Sterk GJ, Botros SS, Brown DG, Hoffman CS, Leurs R, de Koning HP. Cloning and functional complementation of ten Schistosoma mansoni phosphodiesterases expressed in the mammalian host stages. PLoS Negl Trop Dis 2020; 14:e0008447. [PMID: 32730343 PMCID: PMC7430754 DOI: 10.1371/journal.pntd.0008447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/17/2020] [Accepted: 06/02/2020] [Indexed: 01/29/2023] Open
Abstract
Only a single drug against schistosomiasis is currently available and new drug development is urgently required but very few drug targets have been validated and characterised. However, regulatory systems including cyclic nucleotide metabolism are emerging as primary candidates for drug discovery. Here, we report the cloning of ten cyclic nucleotide phosphodiesterase (PDE) genes of S. mansoni, out of a total of 11 identified in its genome. We classify these PDEs by homology to human PDEs. Male worms displayed higher expression levels for all PDEs, in mature and juvenile worms, and schistosomula. Several functional complementation approaches were used to characterise these genes. We constructed a Trypanosoma brucei cell line in which expression of a cAMP-degrading PDE complements the deletion of TbrPDEB1/B2. Inhibitor screens of these cells expressing only either SmPDE4A, TbrPDEB1 or TbrPDEB2, identified highly potent inhibitors of the S. mansoni enzyme that elevated the cellular cAMP concentration. We further expressed most of the cloned SmPDEs in two pde1Δ/pde2Δ strains of Saccharomyces cerevisiae and some also in a specialised strain of Schizosacharomyces pombe. Five PDEs, SmPDE1, SmPDE4A, SmPDE8, SmPDE9A and SmPDE11 successfully complemented the S. cerevisiae strains, and SmPDE7var also complemented to a lesser degree, in liquid culture. SmPDE4A, SmPDE8 and SmPDE11 were further assessed in S. pombe for hydrolysis of cAMP and cGMP; SmPDE11 displayed considerable preferrence for cGMP over cAMP. These results and tools enable the pursuit of a rigorous drug discovery program based on inhibitors of S. mansoni PDEs.
Collapse
Affiliation(s)
- Jane C. Munday
- Institute of Infection, Immunity and inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Stefan Kunz
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, The Netherlands
| | - Titilola D. Kalejaiye
- Institute of Infection, Immunity and inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Marco Siderius
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, The Netherlands
| | | | - Daniel Paape
- Institute of Infection, Immunity and inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Ali H. Alghamdi
- Institute of Infection, Immunity and inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Zainab Abbasi
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Sheng Xiang Huang
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Anne-Marie Donachie
- Institute of Infection, Immunity and inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Samia William
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Egypt
| | - Abdel Nasser Sabra
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Egypt
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, The Netherlands
| | - Sanaa S. Botros
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Egypt
| | - David G. Brown
- School of Biosciences, University of Kent, United Kingdom
| | - Charles S. Hoffman
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, The Netherlands
| | - Harry P. de Koning
- Institute of Infection, Immunity and inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
32
|
Touching the Surface: Diverse Roles for the Flagellar Membrane in Kinetoplastid Parasites. Microbiol Mol Biol Rev 2020; 84:84/2/e00079-19. [PMID: 32238446 DOI: 10.1128/mmbr.00079-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While flagella have been studied extensively as motility organelles, with a focus on internal structures such as the axoneme, more recent research has illuminated the roles of the flagellar surface in a variety of biological processes. Parasitic protists of the order Kinetoplastida, which include trypanosomes and Leishmania species, provide a paradigm for probing the role of flagella in host-microbe interactions and illustrate that this interface between the flagellar surface and the host is of paramount importance. An increasing body of knowledge indicates that the flagellar membrane serves a multitude of functions at this interface: attachment of parasites to tissues within insect vectors, close interactions with intracellular organelles of vertebrate cells, transactions between flagella from different parasites, junctions between the flagella and the parasite cell body, emergence of nanotubes and exosomes from the parasite directed to either host or microbial targets, immune evasion, and sensing of the extracellular milieu. Recent whole-organelle or genome-wide studies have begun to identify protein components of the flagellar surface that must mediate these diverse host-parasite interactions. The increasing corpus of knowledge on kinetoplastid flagella will likely prove illuminating for other flagellated or ciliated pathogens as well.
Collapse
|
33
|
Sternlieb T, Schoijet AC, Alonso GD. Intracellular cyclic AMP levels modulate differential adaptive responses on epimastigotes and cell culture trypomastigotes of Trypanosoma cruzi. Acta Trop 2020; 202:105273. [PMID: 31734265 DOI: 10.1016/j.actatropica.2019.105273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
Abstract
Among the many environmental challenges the parasite Trypanosoma cruzi has to overcome to complete its life cycle through different hosts, oxidative stress plays a central role. Different stages of this parasite encounter distinct sources of oxidative stress, such as the oxidative burst of the immune system, or the Heme released from hemoglobin degradation in the triatomine's midgut. Also, the redox status of the surroundings functions as a signal to the parasite, triggering processes coupled to differentiation or proliferation. Intracellular second messengers, like cAMP, are responsible for the transduction of environmental queues and initiating cellular processes accordingly. In trypanosomatids cAMP is involved in a variety of processes, including proliferation, differentiation, osmoregulation and quorum sensing. Trypanosomatid phosphodiesterases (PDE) show atypical pharmacological properties and some have been involved in key processes for the survival of the parasites, which validates them as attractive therapeutic targets. Our work here shows that cAMP modulates different processes according to parasite stage. Epimastigotes become more resistant to oxidative stress when pre-treated with cAMP analogs, while in trypomastigotes an increase in intracellular cAMP doesn't seem to aid in this response, although it does increase the number of amastigotes obtained 48 h after infection, compared to the control group. Also, we show that TcrPDEA1, a functionally enigmatic phosphodiesterase with very high Km, is involved in the epimastigotes response to oxidative stress.
Collapse
Affiliation(s)
- Tamara Sternlieb
- Laboratorio de señalización y mecanismos adaptativos en tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina
| | - Alejandra C Schoijet
- Laboratorio de señalización y mecanismos adaptativos en tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo D Alonso
- Laboratorio de señalización y mecanismos adaptativos en tripanosomátidos, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Schoijet AC, Sternlieb T, Alonso GD. Signal Transduction Pathways as Therapeutic Target for Chagas Disease. Curr Med Chem 2019; 26:6572-6589. [PMID: 31218950 DOI: 10.2174/0929867326666190620093029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/26/2018] [Accepted: 02/20/2019] [Indexed: 01/23/2023]
Abstract
Trypanosomatids are a group of flagellated unicellular eukaryotes, causing serious human diseases including Chagas disease (Trypanosoma cruzi), sleeping sickness (Trypanosoma brucei spp.) and Leishmaniasis (Leishmania spp.). The second messenger cAMP is involved in numerous and fundamental processes in these parasites including differentiation between stages, proliferation, osmoregulation, oxidative stress and quorum sensing. Interestingly, its signaling pathway is quite different from that of mammals, including structurally different adenylyl cyclases, the shortage of orthologous effector proteins and the absence of G-protein-coupled-receptors, among others. These characteristics make the proteins involved in these transduction pathways good candidates for therapeutic targets. However, the identification of new unknown druggable targets involves extensive research time and is economically very expensive, making difficult the transition from basic research to the clinical phase. Trypanosomatid PDEs have characteristic binding pockets that allow for a differential inhibition from their human orthologs. Modification in the approved drugs for human to convert them into trypanocidal treatments could lead to more effective therapies, shorter lab time and lower costs. In view of the fact that kinetoplastid PDEs are highly conserved with their mammalian counterparts, and since there are already numerous drugs on the market against human PDEs, the drug repositioning approach is highly promising. The development of new technologies, higher government and industrial involvement and more scientists committed to basic investigation, are the key to ultimately find an effective treatment and cure for the neglected tropical diseases.
Collapse
Affiliation(s)
- Alejandra Cecilia Schoijet
- Laboratorio de Senalizacion y Mecanismos Adaptativos en Tripanosomatidos, Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular "Dr. Hector N. Torres"; Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina
| | - Tamara Sternlieb
- Laboratorio de Senalizacion y Mecanismos Adaptativos en Tripanosomatidos, Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular "Dr. Hector N. Torres"; Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina
| | - Guillermo Daniel Alonso
- Laboratorio de Senalizacion y Mecanismos Adaptativos en Tripanosomatidos, Instituto de Investigaciones en Ingenieria Genetica y Biologia Molecular "Dr. Hector N. Torres"; Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
35
|
Lorès P, Dacheux D, Kherraf ZE, Nsota Mbango JF, Coutton C, Stouvenel L, Ialy-Radio C, Amiri-Yekta A, Whitfield M, Schmitt A, Cazin C, Givelet M, Ferreux L, Fourati Ben Mustapha S, Halouani L, Marrakchi O, Daneshipour A, El Khouri E, Do Cruzeiro M, Favier M, Guillonneau F, Chaudhry M, Sakheli Z, Wolf JP, Patrat C, Gacon G, Savinov SN, Hosseini SH, Robinson DR, Zouari R, Ziyyat A, Arnoult C, Dulioust E, Bonhivers M, Ray PF, Touré A. Mutations in TTC29, Encoding an Evolutionarily Conserved Axonemal Protein, Result in Asthenozoospermia and Male Infertility. Am J Hum Genet 2019; 105:1148-1167. [PMID: 31735292 DOI: 10.1016/j.ajhg.2019.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/11/2019] [Indexed: 12/30/2022] Open
Abstract
In humans, structural or functional defects of the sperm flagellum induce asthenozoospermia, which accounts for the main sperm defect encountered in infertile men. Herein we focused on morphological abnormalities of the sperm flagellum (MMAF), a phenotype also termed "short tails," which constitutes one of the most severe sperm morphological defects resulting in asthenozoospermia. In previous work based on whole-exome sequencing of a cohort of 167 MMAF-affected individuals, we identified bi-allelic loss-of-function mutations in more than 30% of the tested subjects. In this study, we further analyzed this cohort and identified five individuals with homozygous truncating variants in TTC29, a gene preferentially and highly expressed in the testis, and encoding a tetratricopeptide repeat-containing protein related to the intraflagellar transport (IFT). One individual carried a frameshift variant, another one carried a homozygous stop-gain variant, and three carried the same splicing variant affecting a consensus donor site. The deleterious effect of this last variant was confirmed on the corresponding transcript and protein product. In addition, we produced and analyzed TTC29 loss-of-function models in the flagellated protist T. brucei and in M. musculus. Both models confirmed the importance of TTC29 for flagellar beating. We showed that in T. brucei the TPR structural motifs, highly conserved between the studied orthologs, are critical for TTC29 axonemal localization and flagellar beating. Overall our work demonstrates that TTC29 is a conserved axonemal protein required for flagellar structure and beating and that TTC29 mutations are a cause of male sterility due to MMAF.
Collapse
Affiliation(s)
- Patrick Lorès
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Denis Dacheux
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France; Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, 33000 Bordeaux, France
| | - Zine-Eddine Kherraf
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble 38000, France
| | - Jean-Fabrice Nsota Mbango
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Charles Coutton
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Laurence Stouvenel
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Come Ialy-Radio
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjorie Whitfield
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Alain Schmitt
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Caroline Cazin
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Maëlle Givelet
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Lucile Ferreux
- Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Selima Fourati Ben Mustapha
- Histologie Embryologie et Biologie de la Reproduction, Centre de Promotion des Sciences de la Reproduction, Polyclinique les Jasmins, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Lazhar Halouani
- Histologie Embryologie et Biologie de la Reproduction, Centre de Promotion des Sciences de la Reproduction, Polyclinique les Jasmins, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Ouafi Marrakchi
- Histologie Embryologie et Biologie de la Reproduction, Centre de Promotion des Sciences de la Reproduction, Polyclinique les Jasmins, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Abbas Daneshipour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Elma El Khouri
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marcio Do Cruzeiro
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Maryline Favier
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - François Guillonneau
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marhaba Chaudhry
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Zeinab Sakheli
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Jean-Philippe Wolf
- INSERM U1016, Institut Cochin, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Catherine Patrat
- INSERM U1016, Institut Cochin, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Gérard Gacon
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Sergey N Savinov
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Seyedeh Hanieh Hosseini
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institutefor Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Derrick R Robinson
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Raoudha Zouari
- Histologie Embryologie et Biologie de la Reproduction, Centre de Promotion des Sciences de la Reproduction, Polyclinique les Jasmins, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Ahmed Ziyyat
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Christophe Arnoult
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Emmanuel Dulioust
- INSERM U1016, Institut Cochin, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France; Laboratoire d'Histologie Embryologie - Biologie de la Reproduction - CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Mélanie Bonhivers
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Pierre F Ray
- INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble 38000, France
| | - Aminata Touré
- INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
| |
Collapse
|
36
|
de Heuvel E, Singh AK, Boronat P, Kooistra AJ, van der Meer T, Sadek P, Blaazer AR, Shaner NC, Bindels DS, Caljon G, Maes L, Sterk GJ, Siderius M, Oberholzer M, de Esch IJ, Brown DG, Leurs R. Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors (Part 2). Bioorg Med Chem 2019; 27:4013-4029. [DOI: 10.1016/j.bmc.2019.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 01/27/2023]
|
37
|
Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors. Bioorg Med Chem 2019; 27:3998-4012. [PMID: 31327675 DOI: 10.1016/j.bmc.2019.06.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/21/2018] [Accepted: 06/14/2019] [Indexed: 12/26/2022]
Abstract
Several 3',5'-cyclic nucleotide phosphodiesterases (PDEs) have been validated as good drug targets for a large variety of diseases. Trypanosoma brucei PDEB1 (TbrPDEB1) has been designated as a promising drug target for the treatment of human African trypanosomiasis. Recently, the first class of selective nanomolar TbrPDEB1 inhibitors was obtained by targeting the parasite specific P-pocket. However, these biphenyl-substituted tetrahydrophthalazinone-based inhibitors did not show potent cellular activity against Trypanosoma brucei (T. brucei) parasites, leaving room for further optimization. Herein, we report the discovery of a new class of potent TbrPDEB1 inhibitors that display improved activities against T. brucei parasites. Exploring different linkers between the reported tetrahydrophthalazinone core scaffold and the amide tail group resulted in the discovery of alkynamide phthalazinones as new TbrPDEB1 inhibitors, which exhibit submicromolar activities versus T. brucei parasites and no cytotoxicity to human MRC-5 cells. Elucidation of the crystal structure of alkynamide 8b (NPD-048) bound to the catalytic domain of TbrPDEB1 shows a bidentate interaction with the key-residue Gln874 and good directionality towards the P-pocket. Incubation of trypanosomes with alkynamide 8b results in an increase of intracellular cAMP, validating a PDE-mediated effect in vitro and providing a new interesting compound series for further studies towards selective TbrPDEB1 inhibitors with potent phenotypic activity.
Collapse
|
38
|
Nucleoside analogue activators of cyclic AMP-independent protein kinase A of Trypanosoma. Nat Commun 2019; 10:1421. [PMID: 30926779 PMCID: PMC6440977 DOI: 10.1038/s41467-019-09338-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
Protein kinase A (PKA), the main effector of cAMP in eukaryotes, is a paradigm for the mechanisms of ligand-dependent and allosteric regulation in signalling. Here we report the orthologous but cAMP-independent PKA of the protozoan Trypanosoma and identify 7-deaza-nucleosides as potent activators (EC50 ≥ 6.5 nM) and high affinity ligands (KD ≥ 8 nM). A co-crystal structure of trypanosome PKA with 7-cyano-7-deazainosine and molecular docking show how substitution of key amino acids in both CNB domains of the regulatory subunit and its unique C-terminal αD helix account for this ligand swap between trypanosome PKA and canonical cAMP-dependent PKAs. We propose nucleoside-related endogenous activators of Trypanosoma brucei PKA (TbPKA). The existence of eukaryotic CNB domains not associated with binding of cyclic nucleotides suggests that orphan CNB domains in other eukaryotes may bind undiscovered signalling molecules. Phosphoproteome analysis validates 7-cyano-7-deazainosine as powerful cell-permeable inducer to explore cAMP-independent PKA signalling in medically important neglected pathogens.
Collapse
|
39
|
Shaw S, DeMarco SF, Rehmann R, Wenzler T, Florini F, Roditi I, Hill KL. Flagellar cAMP signaling controls trypanosome progression through host tissues. Nat Commun 2019; 10:803. [PMID: 30778051 PMCID: PMC6379439 DOI: 10.1038/s41467-019-08696-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
The unicellular parasite Trypanosoma brucei is transmitted between mammals by tsetse flies. Following the discovery that flagellar phosphodiesterase PDEB1 is required for trypanosomes to move in response to signals in vitro (social motility), we investigated its role in tsetse flies. Here we show that PDEB1 knockout parasites exhibit subtle changes in movement, reminiscent of bacterial chemotaxis mutants. Infecting flies with the knockout, followed by live confocal microscopy of fluorescent parasites within dual-labelled insect tissues, shows that PDEB1 is important for traversal of the peritrophic matrix, which separates the midgut lumen from the ectoperitrophic space. Without PDEB1, parasites are trapped in the lumen and cannot progress through the cycle. This demonstrates that the peritrophic matrix is a barrier that must be actively overcome and that the parasite’s flagellar cAMP signaling pathway facilitates this. Migration may depend on perception of chemotactic cues, which could stem from co-infecting parasites and/or the insect host. Trypanosoma brucei probably relies on chemotactic signals for movement through tsetse fly tissues, but the molecular basis is unknown. Here, the authors show that flagellar cAMP signaling is required for traversal of the peritrophic matrix and that, without it, parasites are trapped in the midgut lumen.
Collapse
Affiliation(s)
- Sebastian Shaw
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012, Bern, Switzerland
| | - Stephanie F DeMarco
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
| | - Tanja Wenzler
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland
| | - Francesca Florini
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012, Bern, Switzerland.
| | - Kent L Hill
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA. .,California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
40
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
41
|
Blaazer AR, Singh AK, de Heuvel E, Edink E, Orrling KM, Veerman JJN, van den Bergh T, Jansen C, Balasubramaniam E, Mooij WJ, Custers H, Sijm M, Tagoe DNA, Kalejaiye TD, Munday JC, Tenor H, Matheeussen A, Wijtmans M, Siderius M, de Graaf C, Maes L, de Koning HP, Bailey DS, Sterk GJ, de Esch IJP, Brown DG, Leurs R. Targeting a Subpocket in Trypanosoma brucei Phosphodiesterase B1 (TbrPDEB1) Enables the Structure-Based Discovery of Selective Inhibitors with Trypanocidal Activity. J Med Chem 2018; 61:3870-3888. [PMID: 29672041 PMCID: PMC5949723 DOI: 10.1021/acs.jmedchem.7b01670] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Several trypanosomatid
cyclic nucleotide phosphodiesterases (PDEs)
possess a unique, parasite-specific cavity near the ligand-binding
region that is referred to as the P-pocket. One of these enzymes, Trypanosoma brucei PDE B1 (TbrPDEB1), is considered a drug
target for the treatment of African sleeping sickness. Here, we elucidate
the molecular determinants of inhibitor binding and reveal that the
P-pocket is amenable to directed design. By iterative cycles of design,
synthesis, and pharmacological evaluation and by elucidating the structures
of inhibitor-bound TbrPDEB1, hPDE4B, and hPDE4D complexes, we have
developed 4a,5,8,8a-tetrahydrophthalazinones as the first selective
TbrPDEB1 inhibitor series. Two of these, 8 (NPD-008)
and 9 (NPD-039), were potent (Ki = 100 nM) TbrPDEB1 inhibitors with antitrypanosomal effects
(IC50 = 5.5 and 6.7 μM, respectively). Treatment
of parasites with 8 caused an increase in intracellular
cyclic adenosine monophosphate (cAMP) levels and severe disruption
of T. brucei cellular organization, chemically validating
trypanosomal PDEs as therapeutic targets in trypanosomiasis.
Collapse
Affiliation(s)
- Antoni R Blaazer
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| | - Abhimanyu K Singh
- School of Biosciences , University of Kent , Canterbury CT2 7NJ , U.K
| | - Erik de Heuvel
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| | - Ewald Edink
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| | - Kristina M Orrling
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| | | | | | - Chimed Jansen
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| | | | - Wouter J Mooij
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| | - Hans Custers
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| | - Maarten Sijm
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| | - Daniel N A Tagoe
- Institute of Infection, Immunity and Inflammation , University of Glasgow , Glasgow G12 8TA , U.K
| | - Titilola D Kalejaiye
- Institute of Infection, Immunity and Inflammation , University of Glasgow , Glasgow G12 8TA , U.K
| | - Jane C Munday
- Institute of Infection, Immunity and Inflammation , University of Glasgow , Glasgow G12 8TA , U.K
| | | | - An Matheeussen
- Laboratory for Microbiology, Parasitology and Hygiene , University of Antwerp , 2610 Wilrijk , Belgium
| | - Maikel Wijtmans
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| | - Marco Siderius
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene , University of Antwerp , 2610 Wilrijk , Belgium
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation , University of Glasgow , Glasgow G12 8TA , U.K
| | | | - Geert Jan Sterk
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| | - David G Brown
- School of Biosciences , University of Kent , Canterbury CT2 7NJ , U.K
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems , Vrije Universiteit Amsterdam , 1081 HZ Amsterdam , The Netherlands
| |
Collapse
|
42
|
Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response. Pathogens 2018; 7:pathogens7020048. [PMID: 29693583 PMCID: PMC6027212 DOI: 10.3390/pathogens7020048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma brucei, etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva (Salivaria). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.
Collapse
|
43
|
The single cyclic nucleotide-specific phosphodiesterase of the intestinal parasite Giardia lamblia represents a potential drug target. PLoS Negl Trop Dis 2017; 11:e0005891. [PMID: 28915270 PMCID: PMC5617230 DOI: 10.1371/journal.pntd.0005891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 09/27/2017] [Accepted: 08/21/2017] [Indexed: 01/08/2023] Open
Abstract
Background Giardiasis is an intestinal infection correlated with poverty and poor drinking water quality, and treatment options are limited. According to the Center for Disease Control and Prevention, Giardia infections afflict nearly 33% of people in developing countries, and 2% of the adult population in the developed world. This study describes the single cyclic nucleotide-specific phosphodiesterase (PDE) of G. lamblia and assesses PDE inhibitors as a new generation of anti-giardial drugs. Methods An extensive search of the Giardia genome database identified a single gene coding for a class I PDE, GlPDE. The predicted protein sequence was analyzed in-silico to characterize its domain structure and catalytic domain. Enzymatic activity of GlPDE was established by complementation of a PDE-deficient Saccharomyces cerevisiae strain, and enzyme kinetics were characterized in soluble yeast lysates. The potency of known PDE inhibitors was tested against the activity of recombinant GlPDE expressed in yeast and against proliferating Giardia trophozoites. Finally, the localization of epitope-tagged and ectopically expressed GlPDE in Giardia cells was investigated. Results Giardia encodes a class I PDE. Catalytically important residues are fully conserved between GlPDE and human PDEs, but sequence differences between their catalytic domains suggest that designing Giardia-specific inhibitors is feasible. Recombinant GlPDE hydrolyzes cAMP with a Km of 408 μM, and cGMP is not accepted as a substrate. A number of drugs exhibit a high degree of correlation between their potency against the recombinant enzyme and their inhibition of trophozoite proliferation in culture. Epitope-tagged GlPDE localizes as dots in a pattern reminiscent of mitosomes and to the perinuclear region in Giardia. Conclusions Our data strongly suggest that inhibition of G. lamblia PDE activity leads to a profound inhibition of parasite proliferation and that GlPDE is a promising target for developing novel anti-giardial drugs. Cellular signaling by the cyclic nucleotides cAMP and cGMP is ubiquitously found in organisms from human to unicellular parasites. Cyclic nucleotide-specific phosphodiesterases (PDEs) are pivotal regulators of these signaling processes and these enzymes represent important drug targets for a variety of diseases. Eleven PDE families are distinguished in humans and selective inhibition of a single human PDE family without targeting others is feasible. In parasites, interference in the signaling mechanism by PDE inhibition may be fatal. The diarrhea-causing parasite Giardia lamblia contains only one single PDE, named GlPDE. GlPDE activity is highly impaired by a range of PDE inhibitors, which also suppress parasite proliferation in vitro. Thus, there is a good agreement between PDE inhibition and parasite drug susceptibility. We demonstrate molecular differences between human PDEs and GlPDE that can be exploited for the development of GlPDE-selective inhibitors. Finally, our data may suggest localization of GlPDE to mitosome organelles, which are absent in human cells and thus are in the focus as possible targets for the treatment of giardiasis. This may add to the notion that GlPDE represents a potential target for the development of novel anti-giardial drugs.
Collapse
|
44
|
Long T, Rojo-Arreola L, Shi D, El-Sakkary N, Jarnagin K, Rock F, Meewan M, Rascón AA, Lin L, Cunningham KA, Lemieux GA, Podust L, Abagyan R, Ashrafi K, McKerrow JH, Caffrey CR. Phenotypic, chemical and functional characterization of cyclic nucleotide phosphodiesterase 4 (PDE4) as a potential anthelmintic drug target. PLoS Negl Trop Dis 2017; 11:e0005680. [PMID: 28704396 PMCID: PMC5526615 DOI: 10.1371/journal.pntd.0005680] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/25/2017] [Accepted: 06/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Reliance on just one drug to treat the prevalent tropical disease, schistosomiasis, spurs the search for new drugs and drug targets. Inhibitors of human cyclic nucleotide phosphodiesterases (huPDEs), including PDE4, are under development as novel drugs to treat a range of chronic indications including asthma, chronic obstructive pulmonary disease and Alzheimer's disease. One class of huPDE4 inhibitors that has yielded marketed drugs is the benzoxaboroles (Anacor Pharmaceuticals). METHODOLOGY/PRINCIPAL FINDINGS A phenotypic screen involving Schistosoma mansoni and 1,085 benzoxaboroles identified a subset of huPDE4 inhibitors that induced parasite hypermotility and degeneration. To uncover the putative schistosome PDE4 target, we characterized four PDE4 sequences (SmPDE4A-D) in the parasite's genome and transcriptome, and cloned and recombinantly expressed the catalytic domain of SmPDE4A. Among a set of benzoxaboroles and catechol inhibitors that differentially inhibit huPDE4, a relationship between the inhibition of SmPDE4A, and parasite hypermotility and degeneration, was measured. To validate SmPDE4A as the benzoxaborole molecular target, we first generated Caenorhabditis elegans lines that express a cDNA for smpde4a on a pde4(ce268) mutant (hypermotile) background: the smpde4a transgene restored mutant worm motility to that of the wild type. We then showed that benzoxaborole inhibitors of SmPDE4A that induce hypermotility in the schistosome also elicit a hypermotile response in the C. elegans lines that express the smpde4a transgene, thereby confirming SmPDE4A as the relevant target. CONCLUSIONS/SIGNIFICANCE The orthogonal chemical, biological and genetic strategies employed identify SmPDE4A's contribution to parasite motility and degeneration, and its potential as a drug target. Transgenic C. elegans is highlighted as a potential screening tool to optimize small molecule chemistries to flatworm molecular drug targets.
Collapse
Affiliation(s)
- Thavy Long
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Liliana Rojo-Arreola
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nelly El-Sakkary
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kurt Jarnagin
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Fernando Rock
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Maliwan Meewan
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Alberto A. Rascón
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Lin Lin
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Katherine A. Cunningham
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - George A. Lemieux
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Larissa Podust
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Reactivation of flagellar motility in demembranated Leishmania reveals role of cAMP in flagellar wave reversal to ciliary waveform. Sci Rep 2016; 6:37308. [PMID: 27849021 PMCID: PMC5110981 DOI: 10.1038/srep37308] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022] Open
Abstract
The flagellum of parasitic trypanosomes is a multifunctional appendage essential for its viability and infectivity. However, the biological mechanisms that make the flagellum so dynamic remains unexplored. No method is available to access and induce axonemal motility at will to decipher motility regulation in trypanosomes. For the first time we report the development of a detergent-extracted/demembranated ATP-reactivated model for studying flagellar motility in Leishmania. Flagellar beat parameters of reactivated parasites were similar to live ones. Using this model we discovered that cAMP (both exogenous and endogenous) induced flagellar wave reversal to a ciliary waveform in reactivated parasites via cAMP-dependent protein kinase A. The effect was reversible and highly specific. Such an effect of cAMP on the flagellar waveform has never been observed before in any organism. Flagellar wave reversal allows parasites to change direction of swimming. Our findings suggest a possible cAMP-dependent mechanism by which Leishmania responds to its surrounding microenvironment, necessary for its survival. Our demembranated-reactivated model not only serves as an important tool for functional studies of flagellated eukaryotic parasites but has the potential to understand ciliary motility regulation with possible implication on human ciliopathies.
Collapse
|
46
|
Siderius M, Shanmugham A, England P, van der Meer T, Bebelman JP, Blaazer AR, de Esch IJP, Leurs R. Surface plasmon resonance biosensor assay for the analysis of small-molecule inhibitor binding to human and parasitic phosphodiesterases. Anal Biochem 2016; 503:41-9. [PMID: 27033007 DOI: 10.1016/j.ab.2016.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
In the past decade, surface plasmon resonance (SPR) biosensor-based technology has been exploited more and more to characterize the interaction between drug targets and small-molecule modulators. Here, we report the successful application of SPR methodology for the analysis of small-molecule binding to two therapeutically relevant cAMP phosphodiesterases (PDEs), Trypanosoma brucei PDEB1 which is implicated in African sleeping sickness and human PDE4D which is implicated in a plethora of disease conditions including inflammatory pulmonary disorders such as asthma, chronic obstructive pulmonary disease and central nervous system (CNS) disorders. A protocol combining the use of directed capture using His-tagged PDE_CDs with covalent attachment to the SPR surface was developed. This methodology allows the determination of the binding kinetics of small-molecule PDE inhibitors and also allows testing their specificity for the two PDEs. The SPR-based assay could serve as a technology platform for the development of highly specific and high-affinity PDE inhibitors, accelerating drug discovery processes.
Collapse
Affiliation(s)
- Marco Siderius
- Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | - Anitha Shanmugham
- IOTA Pharmaceuticals, St. John's Innovation Centre, Cowley Road, Cambridge CB4 0WS, United Kingdom
| | - Paul England
- IOTA Pharmaceuticals, St. John's Innovation Centre, Cowley Road, Cambridge CB4 0WS, United Kingdom
| | - Tiffany van der Meer
- Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Jan Paul Bebelman
- Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Antoni R Blaazer
- Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands; IOTA Pharmaceuticals, St. John's Innovation Centre, Cowley Road, Cambridge CB4 0WS, United Kingdom
| | - Rob Leurs
- Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands; IOTA Pharmaceuticals, St. John's Innovation Centre, Cowley Road, Cambridge CB4 0WS, United Kingdom
| |
Collapse
|
47
|
Jansen C, Kooistra AJ, Kanev GK, Leurs R, de Esch IJP, de Graaf C. PDEStrIAn: A Phosphodiesterase Structure and Ligand Interaction Annotated Database As a Tool for Structure-Based Drug Design. J Med Chem 2016; 59:7029-65. [DOI: 10.1021/acs.jmedchem.5b01813] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chimed Jansen
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Albert J. Kooistra
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Georgi K. Kanev
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J. P. de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
48
|
Veerman J, van den Bergh T, Orrling KM, Jansen C, Cos P, Maes L, Chatelain E, Ioset JR, Edink EE, Tenor H, Seebeck T, de Esch I, Leurs R, Sterk GJ. Synthesis and evaluation of analogs of the phenylpyridazinone NPD-001 as potent trypanosomal TbrPDEB1 phosphodiesterase inhibitors and in vitro trypanocidals. Bioorg Med Chem 2016; 24:1573-81. [PMID: 26935942 DOI: 10.1016/j.bmc.2016.02.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/21/2016] [Accepted: 02/24/2016] [Indexed: 12/16/2022]
Abstract
Trypanosomal phosphodiesterases B1 and B2 (TbrPDEB1 and TbrPDEB2) play an important role in the life cycle of Trypanosoma brucei, the causative parasite of human African trypanosomiasis (HAT), also known as African sleeping sickness. Knock down of both enzymes leads to cell cycle arrest and is lethal to the parasite. Recently, we reported the phenylpyridazinone, NPD-001, with low nanomolar IC50 values on both TbrPDEB1 (IC50: 4nM) and TbrPDEB2 (IC50: 3nM) (J. Infect. Dis.2012, 206, 229). In this study, we now report on the first structure activity relationships of a series of phenylpyridazinone analogs as TbrPDEB1 inhibitors. A selection of compounds was also shown to be anti-parasitic. Importantly, a good correlation between TbrPDEB1 IC50 and EC50 against the whole parasite was observed. Preliminary analysis of the SAR of selected compounds on TbrPDEB1 and human PDEs shows large differences which shows the potential for obtaining parasite selective PDE inhibitors. The results of these studies support the pharmacological validation of the Trypanosome PDEB family as novel therapeutic approach for HAT and provide as well valuable information for the design of potent TbrPDEB1 inhibitors that could be used for the treatment of this disease.
Collapse
Affiliation(s)
- Johan Veerman
- Mercachem, PO Box 6747, 6503 GE Nijmegen, The Netherlands
| | | | - Kristina M Orrling
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Chimed Jansen
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Groenenborgerlaan 171, 2020 Wilrijk, Belgium
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Groenenborgerlaan 171, 2020 Wilrijk, Belgium
| | - Eric Chatelain
- DNDi (Drugs for Neglected Diseases initiative), 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Jean-Robert Ioset
- DNDi (Drugs for Neglected Diseases initiative), 15 Chemin Louis Dunant, 1202 Geneva, Switzerland
| | - Ewald E Edink
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Hermann Tenor
- Takeda, Takeda Pharmaceuticals International GmbH, Thurgauerstrasse 130, 8152 Glattpark-Opfikon, Zurich, Switzerland
| | - Thomas Seebeck
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Iwan de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Geert Jan Sterk
- Mercachem, PO Box 6747, 6503 GE Nijmegen, The Netherlands; Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Imhof S, Roditi I. The Social Life of African Trypanosomes. Trends Parasitol 2015; 31:490-498. [PMID: 26433252 DOI: 10.1016/j.pt.2015.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/28/2015] [Accepted: 06/24/2015] [Indexed: 01/03/2023]
Abstract
The unicellular parasite Trypanosoma brucei shuttles between its definitive host, the tsetse fly, and various mammals including humans. In the fly digestive tract, T. brucei must first migrate to the ectoperitrophic space, establish a persistent infection of the midgut and then migrate to the salivary glands before being transmitted to a new mammalian host. In 2010, it was shown that insect stages of the parasite (procyclic forms) exhibit social motility (SoMo) when cultured on a semi-solid surface, and it was postulated that this behaviour might reflect a migration step in the tsetse fly. Now, almost 5 years after the initial report, several new publications shed some light on the biological function of SoMo and provide insights into the underlying signalling pathways.
Collapse
Affiliation(s)
- Simon Imhof
- Institute of Cell Biology, University of Bern, Bern, Switzerland; Graduate School for Biomedical and Cellular Science, University of Bern, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
50
|
Saada EA, DeMarco SF, Shimogawa MM, Hill KL. "With a Little Help from My Friends"-Social Motility in Trypanosoma brucei. PLoS Pathog 2015; 11:e1005272. [PMID: 26679190 PMCID: PMC4683075 DOI: 10.1371/journal.ppat.1005272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Edwin A. Saada
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Stephanie F. DeMarco
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Michelle M. Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|