1
|
Eyolfson E, Suesser KRB, Henry H, Bonilla-Del Río I, Grandes P, Mychasiuk R, Christie BR. The effect of traumatic brain injury on learning and memory: A synaptic focus. Neuroscientist 2025; 31:195-214. [PMID: 39316552 PMCID: PMC11909778 DOI: 10.1177/10738584241275583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Deficits in learning and memory are some of the most commonly reported symptoms following a traumatic brain injury (TBI). We will examine whether the neural basis of these deficits stems from alterations to bidirectional synaptic plasticity within the hippocampus. Although the CA1 subregion of the hippocampus has been a focus of TBI research, the dentate gyrus should also be given attention as it exhibits a unique ability for adult neurogenesis, a process highly susceptible to TBI-induced damage. This review examines our current understanding of how TBI results in deficits in synaptic plasticity, as well as how TBI-induced changes in endocannabinoid (eCB) systems may drive these changes. Through the synthesis and amalgamation of existing data, we propose a possible mechanism for eCB-mediated recovery in synaptic plasticity deficits. This hypothesis is based on the plausible roles of CB1 receptors in regulating inhibitory tone, influencing astrocytes and microglia, and modulating glutamate release. Dysregulation of the eCBs may be responsible for deficits in synaptic plasticity and learning following TBI. Taken together, the existing evidence indicates eCBs may contribute to TBI manifestation, pathogenesis, and recovery, but it also suggests there may be a therapeutic role for the eCB system in TBI.
Collapse
Affiliation(s)
- Eric Eyolfson
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Kirsten R. B. Suesser
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Holly Henry
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country, Leioa, Spain
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Brian R. Christie
- Division of Medical Sciences and Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
2
|
Fischer QS, Kalikulov D, Viana Di Prisco G, Williams CA, Baldwin PR, Friedlander MJ. Synaptic Plasticity in the Injured Brain Depends on the Temporal Pattern of Stimulation. J Neurotrauma 2024; 41:2455-2477. [PMID: 38818799 DOI: 10.1089/neu.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction; however, little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naive), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naive or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.
Collapse
Affiliation(s)
- Quentin S Fischer
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Djanenkhodja Kalikulov
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | - Carrie A Williams
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
| | - Philip R Baldwin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J Friedlander
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Faculty of Health Sciences, Virginia Tech, Roanoke, Virginia, USA
| |
Collapse
|
3
|
Heresco-Levy U, Haviv J, Caine YG. NMDAR Down-Regulation: Dual - Hit Molecular Target For COPD - Depression Comorbidity. J Inflamm Res 2024; 17:7619-7625. [PMID: 39464345 PMCID: PMC11512766 DOI: 10.2147/jir.s487650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease characterized by sustained airflow limitation that represents one of the main causes of disability in modern society. Depression affects approximately 40% of COPD patients. Both COPD and depression are associated with chronic systemic inflammation and their comorbidity represents a critical unmet treatment need. N-methyl-D-aspartate glutamatergic receptors (NMDAR) are well characterized in the central nervous system (CNS) and widely expressed in lung tissue and inflammation-related cells. Accumulating evidence indicates that pathologic NMDAR up-regulation, leading to pro-inflammatory pathways activation and tissue damage, may play a crucial role in chronic lung injury as well as in depression. D-cycloserine, a bacteriostatic antibiotic used since the 1950's in tuberculosis, acts at therapeutic dosages also as a NMDAR functional antagonist and has antidepressant and anti-inflammatory effects. We hypothesize that NMDAR down-regulation may represent a unified molecular target for the treatment of COPD - depression comorbidity and may simultaneously alleviate both respiratory and depression symptomatology. We postulate that D-cycloserine treatment may achieve these dual - hit objectives and envisage that our hypotheses may apply to additional inflammation disorders that are frequently accompanied by depression.
Collapse
Affiliation(s)
- Uriel Heresco-Levy
- Herzog Medical Center, Jerusalem, Israel
- Psychiatry Department, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
4
|
Nikulina E, Tsokas P, Whitney K, Tcherepanov A, Hsieh C, Sacktor TC, Bergold PJ. Increased protein kinase Mζ expression by Minocycline and N-acetylcysteine restores late-phase long-term potentiation and spatial learning after closed head injury in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.613738. [PMID: 39345361 PMCID: PMC11429999 DOI: 10.1101/2024.09.20.613738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cognitive deficits frequently arise after traumatic brain injury. The murine closed head injury (CHI) models these deficits since injured mice cannot acquire Barnes maze. Dosing of minocycline plus N-acetylcysteine beginning 12 hours post-CHI (MN12) restores Barnes maze acquisition by an unknown mechanism. Increased hippocampal synaptic efficacy is needed to acquire Barnes maze, synaptic long-term potentiation (LTP) models this increased synaptic efficacy in vitro . LTP has an early phase (E-LTP) lasting up to one hour that is mediated by second messengers that is followed by a late phase (L-LTP) that needs new synthesis of protein kinase M zeta (PKMζ). PKMζ has constitutive kinase activity because it lacks the autoinhibitory regulatory domain found in other PKCs. Due to its constitutive activity, the amount of PKMζ kinase activity is determined by PKMζ protein levels. We report that CHI bilaterally decreases PKMζ levels in the CA3 and CA1 hippocampus. MN12 increases CA1 PKMζ expression. CHI inhibits E-LTP in slices from the ipsilesional hippocampus and inhibits L-LTP in slices from both hippocamppi. MN12 treatment reestablishes both E-LTP and L-LTP in slices from the injured MN12-treated hippocampus. The restoration of L-LTP from injured MN12-treated hippocampus is mediated by PKMζ because L-LTP is blocked by the specific PKMζ inhibitor, ζ-stat. Hippocampal ζ-stat infusions also prevents Barnes maze acquisition in injured, MN12-treated mice. These data suggest that post-injury minocycline plus N-acetylcysteine targets PKMζ to improve synaptic plasticity and cognition in mice with closed-head injury.
Collapse
|
5
|
Heresco-Levy U, Lerer B. Synergistic psychedelic - NMDAR modulator treatment for neuropsychiatric disorders. Mol Psychiatry 2024; 29:146-152. [PMID: 37945694 DOI: 10.1038/s41380-023-02312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Modern research data suggest a therapeutic role for serotonergic psychedelics in depression and other neuropsychiatric disorders, although psychotomimetic effects may limit their widespread utilization. Serotonergic psychedelics enhance neuroplasticity via serotonin 2 A receptors (5HT2AR) activation and complex serotonergic-glutamatergic interactions involving the ionotropic glutamate receptors, tropomyosin receptor kinase B (TrkB) and the mammalian target of rapamycin (mTOR). N-methyl-d-aspartate receptors (NMDAR) channel antagonists, i.e. ketamine, and glycine modulatory site full and partial agonists, i.e., D-serine (DSR) and D-cycloserine (DCS), share some of these mechanisms of action and have neuroplastic and antidepressant effects. Moreover, procognitive effects have been reported for DSR and DCS and 5HT2AR-NMDAR interactions modulate neuronal excitability in prefrontal cortex and represent a target for new antipsychotics. We hypothesize that the synchronous administration of a psychedelic and a NMDAR modulator may increase the therapeutic impact of each of the treatment components and allow for dose adjustments and improved safety. We propose to initially focus research on the acute concurrent administration of psilocybin and DSR or DCS in depression.
Collapse
Affiliation(s)
- Uriel Heresco-Levy
- Department of Psychiatry, Herzog Medical Center; Hebrew University Faculty of Medicine, Jerusalem, Israel.
| | - Bernard Lerer
- Hadassah BrainLabs, Center for Psychedelic Research, Hadassah Medical Center, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
6
|
Machado CA, Oliveira BDS, Dias TL, Barros JLVMD, Ferreira GMF, Cordeiro TM, Feracin V, Alexandre CH, Abreu LKS, Silva WND, Carvalho BC, Fernandes HDB, Vieira ÉLM, Castro PR, Ferreira RN, Kangussu LM, Franco GR, Guatimosim C, Barcelos LDS, Simões E Silva AC, Toscano ECDB, Rachid MA, Teixeira AL, Miranda ASD. Weight-drop model as a valuable tool to study potential neurobiological processes underlying behavioral and cognitive changes secondary to mild traumatic brain injury. J Neuroimmunol 2023; 385:578242. [PMID: 37951202 DOI: 10.1016/j.jneuroim.2023.578242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
The pathophysiology of post-traumatic brain injury (TBI) behavioral and cognitive changes is not fully understood, especially in its mild presentation. We designed a weight drop TBI model in mice to investigate the role of neuroinflammation in behavioral and cognitive sequelae following mild TBI. C57BL/6 mice displayed depressive-like behavior at 72 h after mild TBI compared with controls, as indicated by a decrease in the latency to first immobility and climbing time in the forced swim test. Additionally, anxiety-like behavior and hippocampal-associated spatial learning and memory impairment were found in the elevated plus maze and in the Barnes maze, respectively. Levels of a set of inflammatory mediators and neurotrophic factors were analyzed at 6 h, 24 h, 72 h, and 30 days after injury in ipsilateral and contralateral hemispheres of the prefrontal cortex and hippocampus. Principal components analysis revealed two principal components (PC), which represented 59.1% of data variability. PC1 (cytokines and chemokines) expression varied between both hemispheres, while PC2 (neurotrophic factors) expression varied only across the investigated brain areas. Our model reproduces mild TBI-associated clinical signs and pathological features and might be a valuable tool to broaden the knowledge regarding mild TBI pathophysiology as well as to test potential therapeutic targets.
Collapse
Affiliation(s)
- Caroline Amaral Machado
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruna da Silva Oliveira
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thomaz Lüscher Dias
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Thiago Macedo Cordeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor Feracin
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristian Henrique Alexandre
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Larissa Katharina Sabino Abreu
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison Nunes da Silva
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Brener Cunha Carvalho
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heliana de Barros Fernandes
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Érica Leandro Marciano Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Novaes Ferreira
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Miranda Kangussu
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gloria Regina Franco
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristina Guatimosim
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucíola da Silva Barcelos
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Milene Alvarenga Rachid
- Department of Pathology, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX.
| | - Aline Silva de Miranda
- Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Hussain H, Rashan L, Hassan U, Abbas M, Hakkim FL, Green IR. Frankincense diterpenes as a bio-source for drug discovery. Expert Opin Drug Discov 2022; 17:513-529. [PMID: 35243948 DOI: 10.1080/17460441.2022.2044782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Frankincense (Boswellia sp.) gum resins have been employed as an incense in cultural and religious ceremonies for many years. Frankincense resin has over the years been employed to treat depression, inflammation, and cancer in traditional medicines. AREAS COVERED This inclusive review focuses on the significance of frankincense diterpenoids, and in particular, incensole derivatives for establishment future treatments of depression, neurological disorders, and cancer. The authors survey the available literature and furnish an overview of future perspectives of these intriguing molecules. EXPERT OPINION Numerous diterpenoids including cembrane, prenylaromadendrane, and the verticillane-type have been isolated from various Boswellia resins. Cembrane-type diterpenoids occupy a crucial position in pharmaceutical chemistry and related industries because of their intriguing biological and encouraging pharmacological potentials. Several cembranes have been reported to possess anti-Alzheimer, anti-inflammatory, hepatoprotective, and antimalarial effects along with a good possibility to treat anxiety and depression. Although some slight drawbacks of these compounds have been noted, including the selectivity of these diterpenoids, there is a great need to address these in future research endeavors. Moreover, it is vitally important for medicinal chemists to prepare libraries of incensole-heterocyclic analogs as well as hybrid compounds between incensole or its acetate and anti-depressant or anti-inflammatory drugs.
Collapse
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Luay Rashan
- Medicinal Plants Division, Research Center, Dhofar University, Salalah, Oman
| | - Uzma Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Muzaffar Abbas
- Faculty of Pharmacy, Capital University of Science & Technology, Islamabad, Pakistan
| | | | - Ivan R Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
8
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
9
|
Mirzahosseini G, Ismael S, Ahmed HA, Ishrat T. Manifestation of renin angiotensin system modulation in traumatic brain injury. Metab Brain Dis 2021; 36:1079-1086. [PMID: 33835385 PMCID: PMC8273091 DOI: 10.1007/s11011-021-00728-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/31/2021] [Indexed: 01/20/2023]
Abstract
Traumatic brain injury (TBI) alters brain function and is a crucial public health concern worldwide. TBI triggers the release of inflammatory mediators (cytokines) that aggravate cerebral damage, thereby affecting clinical prognosis. The renin angiotensin system (RAS) plays a critical role in TBI pathophysiology. RAS is widely expressed in many organs including the brain. Modulation of the RAS in the brain via angiotensin type 1 (AT1) and type 2 (AT2) receptor signaling affects many pathophysiological processes, including TBI. AT1R is highly expressed in neurons and astrocytes. The upregulation of AT1R mediates the effects of angiotensin II (ANG II) including release of proinflammatory cytokines, cell death, oxidative stress, and vasoconstriction. The AT2R, mainly expressed in the fetal brain during development, is also related to cognitive function. Activation of this receptor pathway decreases neuroinflammation and oxidative stress and improves overall cell survival. Numerous studies have illustrated the therapeutic potential of inhibiting AT1R and activating AT2R for treatment of TBI with variable outcomes. In this review, we summarize studies that describe the role of brain RAS signaling, through AT1R and AT2R in TBI, and its modulation with pharmacological approaches.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Saifudeen Ismael
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
| | - Heba A Ahmed
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Wittenborg Building, Room-231, Memphis, TN, 38163, USA.
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
10
|
Shi AC, Rohlwink U, Scafidi S, Kannan S. Microglial Metabolism After Pediatric Traumatic Brain Injury - Overlooked Bystanders or Active Participants? Front Neurol 2021; 11:626999. [PMID: 33569038 PMCID: PMC7868439 DOI: 10.3389/fneur.2020.626999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Microglia play an integral role in brain development but are also crucial for repair and recovery after traumatic brain injury (TBI). TBI induces an intense innate immune response in the immature, developing brain that is associated with acute and chronic changes in microglial function. These changes contribute to long-lasting consequences on development, neurologic function, and behavior. Although alterations in glucose metabolism are well-described after TBI, the bulk of the data is focused on metabolic alterations in astrocytes and neurons. To date, the interplay between alterations in intracellular metabolic pathways in microglia and the innate immune response in the brain following an injury is not well-studied. In this review, we broadly discuss the microglial responses after TBI. In addition, we highlight reported metabolic alterations in microglia and macrophages, and provide perspective on how changes in glucose, fatty acid, and amino acid metabolism can influence and modulate the microglial phenotype and response to injury.
Collapse
Affiliation(s)
- Aria C Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ursula Rohlwink
- Neuroscience Institute and Division of Neurosurgery, University of Cape Town, Cape Town, South Africa.,The Francis Crick Institute, London, United Kingdom
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
LeVine SM, Tsau S. Substrate Reduction Therapy for Krabbe Disease: Exploring the Repurposing of the Antibiotic D-Cycloserine. Front Pediatr 2021; 9:807973. [PMID: 35118033 PMCID: PMC8804370 DOI: 10.3389/fped.2021.807973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Krabbe disease is a lysosomal storage disease that is caused by a deficiency in galactosylceramidase. Infantile onset disease is the most common presentation, which includes progressive neurological deterioration with corresponding demyelination, development of globoid cells, astrocyte gliosis, etc. Hemopoietic stem cell transplantation (HSCT) is a disease modifying therapy, but this intervention is insufficient with many patients still experiencing developmental delays and progressive deterioration. Preclinical studies have used animal models, e.g., twitcher mice, to test different experimental therapies resulting in developments that have led to progressive improvements in the therapeutic impact. Some recent advances have been in the areas of gene therapy and substrate reduction therapy (SRT), as well as using these in combination with HSCT. Unfortunately, new experimental approaches have encountered obstacles which have impeded the translation of novel therapies to human patients. In an effort to identify a safe adjunct therapy, D-cycloserine was tested in preliminary studies in twitcher mice. When administered as a standalone therapy, D-cycloserine was shown to lengthen the lifespan of twitcher mice in a small but significant manner. D-Cycloserine is an FDA approved antibiotic used for drug resistant tuberculosis. It also acts as a partial agonist of the NMDA receptor, which has led to numerous human studies for a range of neuropsychiatric and neurological conditions. In addition, D-cycloserine may inhibit serine palmitoyltransferase (SPT), which catalyzes the rate-limiting step in sphingolipid production. The enantiomer, L-cycloserine, is a much more potent inhibitor of SPT than D-cycloserine. Previously, L-cycloserine was found to act as an effective SRT agent in twitcher mice as both a standalone therapy and as part of combination therapies. L-Cycloserine is not approved for human use, and its potent inhibitory properties may limit its ability to maintain a level of partial inactivation of SPT that is also safe. In theory, D-cycloserine would encompass a much broader dosage range to achieve a safe degree of partial inhibition of SPT, which increases the likelihood it could advance to human studies in patients with Krabbe disease. Furthermore, additional properties of D-cycloserine raise the possibility of other therapeutic mechanisms that could be exploited for the treatment of this disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sheila Tsau
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
12
|
An update on the association between traumatic brain injury and Alzheimer's disease: Focus on Tau pathology and synaptic dysfunction. Neurosci Biobehav Rev 2020; 120:372-386. [PMID: 33171143 DOI: 10.1016/j.neubiorev.2020.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
L.P. Li, J.W. Liang and H.J. Fu. An update on the association between traumatic brain injury and Alzheimer's disease: Focus on Tau pathology and synaptic dysfunction. NEUROSCI BIOBEHAV REVXXX-XXX,2020.-Traumatic brain injury (TBI) and Alzheimer's disease (AD) are devastating conditions that have long-term consequences on individual's cognitive functions. Although TBI has been considered a risk factor for the development of AD, the link between TBI and AD is still in debate. Aggregation of hyperphosphorylated tau and intercorrelated synaptic dysfunction, two key pathological elements in both TBI and AD, play a pivotal role in mediating neurodegeneration and cognitive deficits, providing a mechanistic link between these two diseases. In the first part of this review, we analyze the experimental literatures on tau pathology in various TBI models and review the distribution, biological features and mechanisms of tau pathology following TBI with implications in AD pathogenesis. In the second part, we review evidences of TBI-mediated structural and functional impairments in synapses, with a focus on the overlapped mechanisms underlying synaptic abnormalities in both TBI and AD. Finally, future perspectives are proposed for uncovering the complex relationship between TBI and neurodegeneration, and developing potential therapeutic avenues for alleviating cognitive deficits after TBI.
Collapse
|
13
|
Fleischmann C, Shohami E, Trembovler V, Heled Y, Horowitz M. Cognitive Effects of Astaxanthin Pretreatment on Recovery From Traumatic Brain Injury. Front Neurol 2020; 11:999. [PMID: 33178093 PMCID: PMC7593578 DOI: 10.3389/fneur.2020.00999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023] Open
Abstract
Traumatic brain injury (TBI), caused by mechanical impact to the brain, is a leading cause of death and disability among young adults, with slow and often incomplete recovery. Preemptive treatment strategies may increase the injury resilience of high-risk populations such as soldiers and athletes. In this work, the xanthophyll carotenoid Astaxanthin was examined as a potential nutritional preconditioning method in mice (sabra strain) to increase their resilience prior to TBI in a closed head injury (CHI) model. The effect of Astaxanthin pretreatment on heat shock protein (HSP) dynamics and functional outcome after CHI was explored by gavage or free eating (in pellet form) for 2 weeks before CHI. Assessment of neuromotor function by the neurological severity score (NSS) revealed significant improvement in the Astaxanthin gavage-treated group (100 mg/kg, ATX) during recovery compared to the gavage-treated olive oil group (OIL), beginning at 24 h post-CHI and lasting throughout 28 days (p < 0.007). Astaxanthin pretreatment in pellet form produced a smaller improvement in NSS vs. posttreatment at 7 days post-CHI (p < 0.05). Cognitive and behavioral evaluation using the novel object recognition test (ORT) and the Y Maze test revealed an advantage for Astaxanthin administration via free eating vs. standard chow during recovery post-CHI (ORT at 3 days, p < 0.035; improvement in Y Maze score from 2 to 29 days, p < 0.02). HSP profile and anxiety (open field test) were not significantly affected by Astaxanthin. In conclusion, astaxanthin pretreatment may contribute to improved recovery post-TBI in mice and is influenced by the form of administration.
Collapse
Affiliation(s)
- Chen Fleischmann
- The Institute of Military Physiology, IDF Medical Corps, Tel-Hashomer, Israel.,Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel.,Laboratory of Environmental Physiology, Hebrew University, Jerusalem, Israel
| | - Esther Shohami
- Department of Pharmacology, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Victoria Trembovler
- Department of Pharmacology, Institute for Drug Research, Hebrew University, Jerusalem, Israel
| | - Yuval Heled
- Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan, Israel.,Kibbutzim College, Tel Aviv, Israel
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Hebrew University, Jerusalem, Israel
| |
Collapse
|
14
|
Khodaei S, Avramescu S, Wang DS, Sheng H, Chan NK, Lecker I, Fernandez-Escobar A, Lei G, Dewar MB, Whissell PD, Baker AJ, Orser BA. Inhibiting α5 Subunit-Containing γ-Aminobutyric Acid Type A Receptors Attenuates Cognitive Deficits After Traumatic Brain Injury. Crit Care Med 2020; 48:533-544. [PMID: 32205600 DOI: 10.1097/ccm.0000000000004161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Cognitive deficits after traumatic brain injury are a leading cause of disability worldwide, yet no effective pharmacologic treatments exist to improve cognition. Traumatic brain injury increases proinflammatory cytokines, which trigger excess function of α5 subunit-containing γ-aminobutyric acid type A receptors. In several models of brain injury, drugs that inhibit α5 subunit-containing γ-aminobutyric acid type A receptor function improve cognitive performance. Thus, we postulated that inhibiting α5 subunit-containing γ-aminobutyric acid type A receptors would improve cognitive performance after traumatic brain injury. In addition, because traumatic brain injury reduces long-term potentiation in the hippocampus, a cellular correlate of memory, we studied whether inhibition of α5 subunit-containing γ-aminobutyric acid type A receptors attenuated deficits in long-term potentiation after traumatic brain injury. DESIGN Experimental animal study. SETTING Research laboratory. SUBJECTS Adult male mice and hippocampal brain slices. INTERVENTIONS Anesthetized mice were subjected to traumatic brain injury with a closed-head, free-weight drop method. One week later, the mice were treated with L-655,708 (0.5 mg/kg), an inhibitor that is selective for α5 subunit-containing γ-aminobutyric acid type A receptors, 30 minutes before undergoing behavioral testing. Problem-solving abilities were assessed using the puzzle box assay, and memory performance was studied with novel object recognition and object place recognition assays. In addition, hippocampal slices were prepared 1 week after traumatic brain injury, and long-term potentiation was studied using field recordings in the cornu Ammonis 1 region of slices that were perfused with L-655,708 (100 nM). MEASUREMENTS AND MAIN RESULTS Traumatic brain injury increased the time required to solve difficult but not simple tasks in the puzzle box assay and impaired memory in the novel object recognition and object place recognition assays. L-655,708 improved both problem solving and memory in the traumatic brain injury mice. Traumatic brain injury reduced long-term potentiation in the hippocampal slices, and L-655,708 attenuated this reduction. CONCLUSIONS Pharmacologic inhibition of α5 subunit-containing γ-aminobutyric acid type A receptors attenuated cognitive deficits after traumatic brain injury and enhanced synaptic plasticity in hippocampal slices. Collectively, these results suggest that α5 subunit-containing γ-aminobutyric acid type A receptors are novel targets for pharmacologic treatment of traumatic brain injury-induced persistent cognitive deficits.
Collapse
Affiliation(s)
- Shahin Khodaei
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Sinziana Avramescu
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Heping Sheng
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Nathan K Chan
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Irene Lecker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Gang Lei
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Michael B Dewar
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Paul D Whissell
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Andrew J Baker
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, St. Michael's Hospital, Toronto, ON, Canada
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
15
|
Zhao X, Rondón-Ortiz AN, Lima EP, Puracchio M, Roderick RC, Kentner AC. Therapeutic efficacy of environmental enrichment on behavioral, endocrine, and synaptic alterations in an animal model of maternal immune activation. Brain Behav Immun Health 2020; 3. [PMID: 32368757 PMCID: PMC7197879 DOI: 10.1016/j.bbih.2020.100043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Maternal immune activation (MIA) has been identified as a significant risk factor for several neurodevelopmental disorders. We have previously demonstrated that postpubertal environmental enrichment (EE) rescues and promotes resiliency against MIA in male rats. Importantly, EE protocols have demonstrated clinical relevancy in human rehabilitation settings. Applying some of the elements of these EE protocols (e.g. social, physical, cognitive stimulation) to animal models of health and disease allows for the exploration of the mechanisms that underlie their success. Here, using a MIA model, we further investigate the rehabilitative potential of complex environments with a focus on female animals. Additionally, we expand upon some of our previous work by exploring genetic markers of synaptic plasticity and stress throughout several brain regions of both sexes. In the current study, standard housed female Sprague-Dawley rats were challenged with either the inflammatory endotoxin lipopolysaccharide (LPS; 100 μg/kg) or saline (equivolume) on gestational day 15. On postnatal day 50, male and female offspring were randomized into one of three conditions that differed in terms of cage size, number of cage mates (social stimulation) and enrichment materials. Spatial discrimination ability and social behavior were assessed six weeks later. Similar to our previously published work in males, our results revealed that a single LPS injection during mid gestation disrupted spatial discrimination ability in female rats. Postpubertal EE rescued this disruption. On the endocrine level, EE dampened elevations in plasma corticosterone that followed MIA, which may mediate EE's rehabilitative effects in female offspring. Within the prefrontal cortex, hippocampus, amygdala, and hypothalamus, MIA and EE altered the mRNA expression of several genes associated with resiliency and synaptic plasticity in both sexes. Overall, our findings provide further evidence that EE may serve as a therapeutic intervention for MIA-induced behavioral and cognitive deficits. Moreover, we identify some sexually dimorphic molecular mechanisms that may underlie these impairments and their rescue.
Collapse
Affiliation(s)
- Xin Zhao
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Alejandro N Rondón-Ortiz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Erika P Lima
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Madeline Puracchio
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Ryland C Roderick
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States 02115
| |
Collapse
|
16
|
Joy MT, Ben Assayag E, Shabashov-Stone D, Liraz-Zaltsman S, Mazzitelli J, Arenas M, Abduljawad N, Kliper E, Korczyn AD, Thareja NS, Kesner EL, Zhou M, Huang S, Silva TK, Katz N, Bornstein NM, Silva AJ, Shohami E, Carmichael ST. CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell 2020; 176:1143-1157.e13. [PMID: 30794775 DOI: 10.1016/j.cell.2019.01.044] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 10/05/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022]
Abstract
We tested a newly described molecular memory system, CCR5 signaling, for its role in recovery after stroke and traumatic brain injury (TBI). CCR5 is uniquely expressed in cortical neurons after stroke. Post-stroke neuronal knockdown of CCR5 in pre-motor cortex leads to early recovery of motor control. Recovery is associated with preservation of dendritic spines, new patterns of cortical projections to contralateral pre-motor cortex, and upregulation of CREB and DLK signaling. Administration of a clinically utilized FDA-approved CCR5 antagonist, devised for HIV treatment, produces similar effects on motor recovery post stroke and cognitive decline post TBI. Finally, in a large clinical cohort of stroke patients, carriers for a naturally occurring loss-of-function mutation in CCR5 (CCR5-Δ32) exhibited greater recovery of neurological impairments and cognitive function. In summary, CCR5 is a translational target for neural repair in stroke and TBI and the first reported gene associated with enhanced recovery in human stroke.
Collapse
Affiliation(s)
- Mary T Joy
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Einor Ben Assayag
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dalia Shabashov-Stone
- Department of Pharmacology, The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sigal Liraz-Zaltsman
- Department of Pharmacology, The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Israel; Institute for Health and Medical Professions, Ono Academic College, Kiryat Ono, Israel
| | - Jose Mazzitelli
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Marcela Arenas
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Nora Abduljawad
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Efrat Kliper
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Amos D Korczyn
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nikita S Thareja
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Efrat L Kesner
- Department of Pharmacology, The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miou Zhou
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory and Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| | - Shan Huang
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory and Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| | - Tawnie K Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory and Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| | - Noomi Katz
- Institute for Health and Medical Professions, Ono Academic College, Kiryat Ono, Israel
| | - Natan M Bornstein
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alcino J Silva
- Departments of Neurobiology, Psychiatry and Biobehavioral Sciences, and Psychology, Integrative Center for Learning and Memory and Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| | - Esther Shohami
- Department of Pharmacology, The Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
The ameliorative effects of myricetin on neurobehavioral activity, electrophysiology, and biochemical changes in an animal model of traumatic brain injury. LEARNING AND MOTIVATION 2019. [DOI: 10.1016/j.lmot.2019.101597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
19
|
Sta Maria NS, Sargolzaei S, Prins ML, Dennis EL, Asarnow RF, Hovda DA, Harris NG, Giza CC. Bridging the gap: Mechanisms of plasticity and repair after pediatric TBI. Exp Neurol 2019; 318:78-91. [PMID: 31055004 DOI: 10.1016/j.expneurol.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/09/2019] [Accepted: 04/25/2019] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury is the leading cause of death and disability in the United States, and may be associated with long lasting impairments into adulthood. The multitude of ongoing neurobiological processes that occur during brain maturation confer both considerable vulnerability to TBI but may also provide adaptability and potential for recovery. This review will examine and synthesize our current understanding of developmental neurobiology in the context of pediatric TBI. Delineating this biology will facilitate more targeted initial care, mechanism-based therapeutic interventions and better long-term prognostication and follow-up.
Collapse
Affiliation(s)
- Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, ZNI115, Los Angeles, CA 90033, United States of America.
| | - Saman Sargolzaei
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America.
| | - Mayumi L Prins
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Emily L Dennis
- Brigham and Women's Hospital/Harvard University and Department of Psychology, Stanford University, 1249 Boylston Street, Boston, MA 02215, United States of America.
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Box 951759, 760 Westwood Plaza, 48-240C Semel Institute, Los Angeles, CA 90095-1759, United States of America.
| | - David A Hovda
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Department of Medical and Molecular Pharmacology, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562 & Semel 18-228A, Los Angeles, CA 90095-6901, United States of America.
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Christopher C Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America; Division of Pediatric Neurology, Mattel Children's Hospital - UCLA, Los Angeles, CA, United States of America.
| |
Collapse
|
20
|
Glotfelty EJ, Delgado TE, Tovar-y-Romo LB, Luo Y, Hoffer BJ, Olson L, Karlsson TE, Mattson MP, Harvey BK, Tweedie D, Li Y, Greig NH. Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacol Transl Sci 2019; 2:66-91. [PMID: 31396586 PMCID: PMC6687335 DOI: 10.1021/acsptsci.9b00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is becoming an increasing public health issue. With an annually estimated 1.7 million TBIs in the United States (U.S) and nearly 70 million worldwide, the injury, isolated or compounded with others, is a major cause of short- and long-term disability and mortality. This, along with no specific treatment, has made exploration of TBI therapies a priority of the health system. Age and sex differences create a spectrum of vulnerability to TBI, with highest prevalence among younger and older populations. Increased public interest in the long-term effects and prevention of TBI have recently reached peaks, with media attention bringing heightened awareness to sport and war related head injuries. Along with short-term issues, TBI can increase the likelihood for development of long-term neurodegenerative disorders. A growing body of literature supports the use of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptor (R) agonists, along with unimolecular combinations of these therapies, for their potent neurotrophic/neuroprotective activities across a variety of cellular and animal models of chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and acute cerebrovascular disorders (stroke). Mild or moderate TBI shares many of the hallmarks of these conditions; recent work provides evidence that use of these compounds is an effective strategy for its treatment. Safety and efficacy of many incretin-based therapies (GLP-1 and GIP) have been demonstrated in humans for the treatment of type 2 diabetes mellitus (T2DM), making these compounds ideal for rapid evaluation in clinical trials of mild and moderate TBI.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas E. Delgado
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Luis B. Tovar-y-Romo
- Division
of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yu Luo
- Department
of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Barry J. Hoffer
- Department
of Neurosurgery, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106, United States
| | - Lars Olson
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mark P. Mattson
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Brandon K. Harvey
- Molecular
Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience
Department, National Institute on Drug Abuse,
National Institutes of Health, Baltimore, Maryland 21224, United States
| | - David Tweedie
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Yazhou Li
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Nigel H. Greig
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
21
|
Nicoletti CG, Monteleone F, Marfia GA, Usiello A, Buttari F, Centonze D, Mori F. Oral D-Aspartate enhances synaptic plasticity reserve in progressive multiple sclerosis. Mult Scler 2019; 26:304-311. [DOI: 10.1177/1352458519828294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Synaptic plasticity reserve correlates with clinical recovery after a relapse in relapsing–remitting forms of multiple sclerosis (MS) and is significantly compromised in patients with progressive forms of MS. These findings suggest that progression of disability in MS is linked to reduced synaptic plasticity reserve. D-Aspartate, an endogenous aminoacid approved for the use in humans as a dietary supplement, enhances synaptic plasticity in mice. Objective: To test whether D-Aspartate oral intake increases synaptic plasticity reserve in progressive MS patients. Methods: A total of 31 patients affected by a progressive form of MS received either single oral daily doses of D-Aspartate 2660 mg or placebo for 4 weeks. Synaptic plasticity reserve and trans-synaptic cortical excitability were measured through transcranial magnetic stimulation (TMS) protocols before and after D-Aspartate. Results: Both TMS-induced long-term potentiation (LTP), intracortical facilitation (ICF) and short-interval ICF increased after 2 and 4 weeks of D-Aspartate but not after placebo, suggesting an enhancement of synaptic plasticity reserve and increased trans-synaptic glutamatergic transmission. Conclusion: Daily oral D-Aspartate 2660 mg for 4 weeks enhances synaptic plasticity reserve in patients with progressive MS, opening the path to further studies assessing its clinical effects on disability progression.
Collapse
Affiliation(s)
- Carolina G Nicoletti
- Multiple Sclerosis Clinical & Research Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabrizia Monteleone
- Multiple Sclerosis Clinical & Research Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Girolama A Marfia
- Multiple Sclerosis Clinical & Research Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, The Second University of Naples, Caserta, Italy/ Laboratory of Behavioral Neuroscience, CEINGE —Biotecnologie Avanzate, Naples, Italy
| | | | - Diego Centonze
- Multiple Sclerosis Clinical & Research Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/ Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
| | - Francesco Mori
- Multiple Sclerosis Clinical & Research Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy/ Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
22
|
Mirshekar MA, Sarkaki A, Farbood Y, Gharib Naseri MK, Badavi M, Mansouri MT, Haghparast A. Neuroprotective effects of gallic acid in a rat model of traumatic brain injury: behavioral, electrophysiological, and molecular studies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:1056-1063. [PMID: 30524680 PMCID: PMC6281072 DOI: 10.22038/ijbms.2018.29639.7165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective(s): Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. Clinically, it is essential to limit the development of cognitive impairment after TBI. In the present study, the neuroprotective effects of gallic acid (GA) on neurological score, memory, long-term potentiation (LTP) from hippocampal dentate gyrus (hDG), brain lipid peroxidation and cytokines after TBI were evaluated. Materials and Methods: Seventy-two adult male Wistar rats divided randomly into three groups with 24 in each: Veh + Sham, Veh + TBI and GA + TBI (GA; 100 mg/kg, PO for 7 days before TBI induction). Brain injury was made by Marmarou’s method. Briefly, a 200 g weight was fallen down from a 2 m height through a free-falling tube onto the head of anesthetized animal. Results: Veterinary coma scores (VCS), memory and recorded hDG -LTP significantly reduced in Veh + TBI group at 1 and 24 hr after TBI when compared to Veh + Sham (P<0.001), respectively, while brain tissue content of interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α) and malondialdehyde (MDA) were increased significantly (P<0.001). Pretreatment of TBI rats with GA improved clinical signs, memory and hDG-LTP significantly (P<0.001) compared to Veh + TBI group, while brain tissue content of IL-1β, IL-6, TNF-α and MDA were decreased significantly (P<0.001). Conclusion: Our results propose that GA has neuroprotective effect on memory and LTP impairment due to TBI through decrement of brain lipid peroxidation and cerebral pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Mohammad Ali Mirshekar
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Physiology, School of Medicine and Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Sarkaki
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoub Farbood
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taghi Mansouri
- Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmacology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Stimulation of N-methyl-D-aspartate receptors by exogenous and endogenous ligands improves outcome of brain injury. Curr Opin Neurol 2018; 31:687-692. [DOI: 10.1097/wco.0000000000000612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Liraz-Zaltsman S, Slusher B, Atrakchi-Baranes D, Rosenblatt K, Friedman Levi Y, Kesner E, Silva AJ, Biegon A, Shohami E. Enhancement of Brain d-Serine Mediates Recovery of Cognitive Function after Traumatic Brain Injury. J Neurotrauma 2018; 35:1667-1680. [PMID: 29648983 DOI: 10.1089/neu.2017.5561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cognitive deficits, especially memory loss, are common and devastating neuropsychiatric sequelae of traumatic brain injury (TBI). The deficits may persist for years and may be accompanied by increased risk of developing early- onset dementia. Past attempts to reverse the neuropathological effects of brain injury with glutamate-N-methyl-d-aspartate (NMDA) antagonists failed to show any benefits or worsened the outcome, suggesting that activation, rather than blockage, of the NMDA receptor (NMDAR) may be useful in the subacute period after TBI and stroke. Activation of the NMDAR requires occupation of the glycine-modulatory site by co-agonists to achieve its synaptic functions. Glycine and d-serine are endogenous ligands/co-agonists of synaptic NMDARs in many areas of the mature brain. The aim of the present study was to evaluate the effect of 6-chlorobenzo(d)isoxazol-3-ol (CBIO), an inhibitor of D-amino acid oxidase (DAAO), which degrades d-serine, on cognitive outcome in a mouse model of TBI. Because treating TBI animals with CBIO elevates the endogenous levels of d-serine, we compared this novel treatment with treatment by exogenous d-serine alone and combined with CBIO. The results show that a single treatment (24 h post-injury) with CBIO in the mouse model of closed head injury significantly improves cognitive and motor function, and decreases lesion volume and the inflammatory response. Moreover, the compound proved to be neuroprotective, as the hippocampal volume and the number of neurons in hippocampal regions increased. Treatment with CBIO boosted the NR1 and phospho- NR1 subunits of the NMDAR and affected the CREB, phospho-CREB, and brain-derived neurotropic factor (BDNF) pathways. These findings render CBIO a promising, novel treatment for cognitive impairment following TBI.
Collapse
Affiliation(s)
- Sigal Liraz-Zaltsman
- 1 The Joseph Sagol Neuroscience Center, Sheba Medical Center , Tel Hashomer, Israel .,2 Department of Pharmacology, Institute for Drug Research, Hebrew University , Jerusalem, Israel
| | - Barbara Slusher
- 3 Johns Hopkin Drug Discovery and Department of Neurology, Johns Hopkins School of Medicine , Baltimore, Maryland
| | | | | | - Yael Friedman Levi
- 2 Department of Pharmacology, Institute for Drug Research, Hebrew University , Jerusalem, Israel
| | - Efrat Kesner
- 2 Department of Pharmacology, Institute for Drug Research, Hebrew University , Jerusalem, Israel
| | - Alcino J Silva
- 5 Integrative Center for Learning and Memory Brain Research Institute, University of California , Los Angeles, California
| | - Anat Biegon
- 6 Department of Radiology and Neurology, Stony Brook University School of Medicine , Stony Brook, New York
| | - Esther Shohami
- 2 Department of Pharmacology, Institute for Drug Research, Hebrew University , Jerusalem, Israel
| |
Collapse
|
25
|
Marshall J, Szmydynger-Chodobska J, Rioult-Pedotti MS, Lau K, Chin AT, Kotla SKR, Tiwari RK, Parang K, Threlkeld SW, Chodobski A. TrkB-enhancer facilitates functional recovery after traumatic brain injury. Sci Rep 2017; 7:10995. [PMID: 28887487 PMCID: PMC5591207 DOI: 10.1038/s41598-017-11316-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/22/2017] [Indexed: 11/29/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a key player in regulating synaptic strength and learning, is dysregulated following traumatic brain injury (TBI), suggesting that stimulation of BDNF signaling pathways may facilitate functional recovery. This study investigates whether CN2097, a peptidomimetic ligand which targets the synaptic scaffold protein, postsynaptic density protein 95, to enhance downstream signaling of tropomyosin-related kinase B, a receptor for BDNF, can improve neurological function after TBI. Moderate to severe TBI elicits neuroinflammation and c-Jun-N-terminal kinase (JNK) activation, which is associated with memory deficits. Here we demonstrate that CN2097 significantly reduces the post-traumatic synthesis of proinflammatory mediators and inhibits the post-traumatic activation of JNK in a rodent model of TBI. The recordings of field excitatory post-synaptic potentials in the hippocampal CA1 subfield demonstrate that TBI inhibits the expression of long-term potentiation (LTP) evoked by high-frequency stimulation of Schaffer collaterals, and that CN2097 attenuates this LTP impairment. Lastly, we demonstrate that CN2097 significantly improves the complex auditory processing deficits, which are impaired after injury. The multifunctionality of CN2097 strongly suggests that CN2097 could be highly efficacious in targeting complex secondary injury processes resulting from neurotrauma.
Collapse
Affiliation(s)
- John Marshall
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02912, USA.
| | - Joanna Szmydynger-Chodobska
- Neurotrauma and Brain Barriers Research Laboratory, Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Mengia S Rioult-Pedotti
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Kara Lau
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Andrea T Chin
- Neurotrauma and Brain Barriers Research Laboratory, Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Siva K Reddy Kotla
- Center for Targeted Drug Delivery, Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | | | - Adam Chodobski
- Neurotrauma and Brain Barriers Research Laboratory, Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| |
Collapse
|
26
|
Na ES, De Jesús-Cortés H, Martinez-Rivera A, Kabir ZD, Wang J, Ramesh V, Onder Y, Rajadhyaksha AM, Monteggia LM, Pieper AA. D-cycloserine improves synaptic transmission in an animal model of Rett syndrome. PLoS One 2017; 12:e0183026. [PMID: 28813484 PMCID: PMC5559075 DOI: 10.1371/journal.pone.0183026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/30/2017] [Indexed: 01/24/2023] Open
Abstract
Rett syndrome (RTT), a leading cause of intellectual disability in girls, is predominantly caused by mutations in the X-linked gene MECP2. Disruption of Mecp2 in mice recapitulates major features of RTT, including neurobehavioral abnormalities, which can be reversed by re-expression of normal Mecp2. Thus, there is reason to believe that RTT could be amenable to therapeutic intervention throughout the lifespan of patients after the onset of symptoms. A common feature underlying neuropsychiatric disorders, including RTT, is altered synaptic function in the brain. Here, we show that Mecp2tm1.1Jae/y mice display lower presynaptic function as assessed by paired pulse ratio, as well as decreased long term potentiation (LTP) at hippocampal Schaffer–collateral-CA1 synapses. Treatment of Mecp2tm1.1Jae/y mice with D-cycloserine (DCS), an FDA-approved analog of the amino acid D-alanine with antibiotic and glycinergic activity, corrected the presynaptic but not LTP deficit without affecting deficient hippocampal BDNF levels. DCS treatment did, however, partially restore lower BDNF levels in the brain stem and striatum. Thus, treatment with DCS may mitigate the severity of some of the neurobehavioral symptoms experienced by patients with Rett syndrome.
Collapse
Affiliation(s)
- Elisa S. Na
- Department of Psychology & Philosophy, Texas Woman’s University, Denton, TX, United States of America
| | - Héctor De Jesús-Cortés
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Arlene Martinez-Rivera
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Weill Cornell Autism Research Program, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
| | - Zeeba D. Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Weill Cornell Autism Research Program, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
| | - Jieqi Wang
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Vijayashree Ramesh
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Yasemin Onder
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Anjali M. Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Weill Cornell Autism Research Program, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- * E-mail: (AMR); (LMM); (AAP)
| | - Lisa M. Monteggia
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail: (AMR); (LMM); (AAP)
| | - Andrew A. Pieper
- Weill Cornell Autism Research Program, Weill Cornell Medicine, Cornell University, New York, NY, United States of America
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Department of Free Radical and Radiation Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Department of Veterans Affairs, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- * E-mail: (AMR); (LMM); (AAP)
| |
Collapse
|
27
|
Sta Maria NS, Reger ML, Cai Y, Baquing MAT, Buen F, Ponnaluri A, Hovda DA, Harris NG, Giza CC. D-Cycloserine Restores Experience-Dependent Neuroplasticity after Traumatic Brain Injury in the Developing Rat Brain. J Neurotrauma 2017; 34:1692-1702. [PMID: 27931146 PMCID: PMC5397224 DOI: 10.1089/neu.2016.4747] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) in children can cause persisting cognitive and behavioral dysfunction, and inevitably raises concerns about lost potential in these injured youth. Lateral fluid percussion injury (FPI) in weanling rats pathologically affects hippocampal N-methyl-d-aspartate receptor (NMDAR)- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated glutamatergic neurotransmission subacutely within the first post-injury week. FPI to weanling rats has also been shown to impair enriched-environment (EE) induced enhancement of Morris water maze (MWM) learning and memory in adulthood. Recently, improved outcomes can be achieved using agents that enhance NMDAR function. We hypothesized that administering D-cycloserine (DCS), an NMDAR co-agonist, every 12 h (i.p.) would restore subacute glutamatergic neurotransmission and reinstate experience-dependent plasticity. Postnatal day 19 (P19) rats received either a sham or FPI. On post-injury day (PID) 1-3, animals were randomized to saline (Sal) or DCS. Firstly, immunoblotting of hippocampal NMDAR and AMPAR proteins were measured on PID4. Second, PID4 novel object recognition, an NMDAR- and hippocampal- mediated working memory task, was assessed. Third, P19 rats were placed in an EE (17 days), and MWM performance was measured, starting on PID30. On PID4, DCS restored reduced NR2A and increased GluR2 by 54%, and also restored diminished recognition memory in FPI pups. EE significantly improved MWM performance in shams, regardless of treatment. In contrast, FPI-EE-Sal animals only performed to the level of standard housed animals, whereas FPI-EE-DCS animals were comparable with sham-EE counterparts. This study shows that NMDAR agonist use during reduced glutamatergic transmission after developmental TBI can reinstate early molecular and behavioral responses that subsequently manifest in experience-dependent plasticity and rescued potential.
Collapse
Affiliation(s)
- Naomi S. Sta Maria
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Bioengineering, UCLA Brain Injury Research Center, Los Angeles, California
| | - Maxine L. Reger
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Psychology, UCLA Brain Injury Research Center, Los Angeles, California
| | - Yan Cai
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
| | - Mary Anne T. Baquing
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Harbor-UCLA Department of Obstetrics and Gynecology, UCLA Brain Injury Research Center, Los Angeles, California
| | - Floyd Buen
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Head and Neck Surgery, UCLA Brain Injury Research Center, Los Angeles, California
| | - Aditya Ponnaluri
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Mechanical Engineering, UCLA Brain Injury Research Center, Los Angeles, California
| | - David A. Hovda
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Department of Medical and Molecular Pharmacology, UCLA Brain Injury Research Center, Los Angeles, California
| | - Neil G. Harris
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
| | - Christopher C. Giza
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, California
- Division of Pediatric Neurology, UCLA Brain Injury Research Center, Los Angeles, California
| |
Collapse
|
28
|
Abstract
Every year in the United States, millions of individuals incur ischemic brain injury from stroke, cardiac arrest, or traumatic brain injury. These acquired brain injuries can lead to death or long-term neurologic and neuropsychological impairments. The mechanisms of ischemic and traumatic brain injury that lead to these deficiencies result from a complex interplay of interdependent molecular pathways, including excitotoxicity, acidotoxicity, ionic imbalance, oxidative stress, inflammation, and apoptosis. This article reviews several mechanisms of brain injury and discusses recent developments. Although much is known from animal models of injury, it has been difficult to translate these effects to humans.
Collapse
Affiliation(s)
- Nidia Quillinan
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard J Traystman
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Emergency Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Neurology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Goff DC. D-cycloserine in Schizophrenia: New Strategies for Improving Clinical Outcomes by Enhancing Plasticity. Curr Neuropharmacol 2017; 15:21-34. [PMID: 26915421 PMCID: PMC5327448 DOI: 10.2174/1570159x14666160225154812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/13/2015] [Accepted: 01/30/2016] [Indexed: 12/25/2022] Open
Abstract
Background Dysregulation of N-methyl D-aspartate (NMDA) receptor signaling is strongly implicated in schizophrenia. Based on the ketamine model of NMDA receptor hypoactivity, therapeutic approaches designed to maintain a sustained increase in agonist activity at the glycine site of the NMDA receptor have produced promising, although inconsistent, efficacy for negative symptoms. Methods A review of the published literature on D-cycloserine (DCS) pharmacology in animal models and in clinical studies was performed. Findings relevant to DCS effects on memory and plasticity and their potential clinical application to schizophrenia were summarized. Results Studies in animals and clinical trials in patients with anxiety disorders have demonstrated that single or intermittent dosing with DCS enhances memory consolidation. Preliminary trials in patients with schizophrenia suggest that intermittent dosing with DCS may produce persistent improvement of negative symptoms and enhance learning when combined with cognitive behavioral therapy for delusions or with cognitive remediation. The pharmacology of DCS is complex, since it acts as a “super agonist” at NMDA receptors containing GluN2C subunits and, under certain conditions, it may act as an antagonist at NMDA receptors containing GluN2B subunits. Conclusions There are preliminary findings that support a role for D-cycloserine in schizophrenia as a strategy to enhance neuroplasticity and memory. However, additional studies with DCS are needed to confirm these findings. In addition, clinical trials with positive and negative allosteric modulators with greater specificity for NMDA receptor subtypes are needed to identify the optimal strategy for enhancing neuroplasticity in schizophrenia.
Collapse
Affiliation(s)
- Donald C Goff
- Nathan Kline Institute for Psychiatric Research, NYU School of Medicine, USA
| |
Collapse
|
30
|
Liraz-Zaltsman S, Yaka R, Shabashov D, Shohami E, Biegon A. Neuroinflammation-Induced Memory Deficits Are Amenable to Treatment with D-Cycloserine. J Mol Neurosci 2016; 60:46-62. [PMID: 27421842 DOI: 10.1007/s12031-016-0786-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/21/2016] [Indexed: 12/18/2022]
Abstract
Cognitive deficits, especially memory loss, are common following many types of brain insults which are associated with neuroinflammation, although the underlying mechanisms are not entirely clear. The present study aimed to characterize the long-term cognitive and behavioral impairments in a mouse model of neuroinflammation in the absence of other insults and to evaluate the therapeutic potential of D-cycloserine (DCS). DCS is a co-agonist of the NMDA receptor that ameliorates cognitive deficits in models of TBI and stroke. Using a mouse model of global neuroinflammation induced by intracisternal (i.c.) administration of endotoxin (LPS), we found long-lasting microgliosis, memory deficits, impaired LTP, and reduced levels of the obligatory NR1 subunit of the NMDA receptor. A single administration of DCS, 1 day after i.c. LPS reduced microgliosis, reversed the cognitive deficits and restored LTP and NR1 levels. These results demonstrate that neuroinflammation alone, in the absence of trauma or ischemia, can cause persistent (>6 months) memory deficits linked to deranged NNMDA receptor function and suggest a possible role for NMDA co-agonists in reducing the cognitive sequelae of neuroinflammation.
Collapse
Affiliation(s)
- Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel.
- Department of Pharmacology, School of Pharmacy, Hebrew University, Jerusalem, Israel.
| | - Rami Yaka
- Department of Pharmacology, School of Pharmacy, Hebrew University, Jerusalem, Israel
| | - Dalia Shabashov
- Department of Pharmacology, School of Pharmacy, Hebrew University, Jerusalem, Israel
| | - Esther Shohami
- Department of Pharmacology, School of Pharmacy, Hebrew University, Jerusalem, Israel
| | - Anat Biegon
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
- Department of Neurology, Stony Brook University School of Medicine, Stony Brook, New York, USA
| |
Collapse
|
31
|
Constans A, Pin-Barre C, Temprado JJ, Decherchi P, Laurin J. Influence of Aerobic Training and Combinations of Interventions on Cognition and Neuroplasticity after Stroke. Front Aging Neurosci 2016; 8:164. [PMID: 27445801 PMCID: PMC4928497 DOI: 10.3389/fnagi.2016.00164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022] Open
Abstract
Stroke often aggravated age-related cognitive impairments that strongly affect several aspects of quality of life. However, few studies are, to date, focused on rehabilitation strategies that could improve cognition. Among possible interventions, aerobic training is well known to enhance cardiovascular and motor functions but may also induce beneficial effects on cognitive functions. To assess the effectiveness of aerobic training on cognition, it seems necessary to know whether training promotes the neuroplasticity in brain areas involved in cognitive functions. In the present review, we first explore in both human and animal how aerobic training could improve cognition after stroke by highlighting the neuroplasticity mechanisms. Then, we address the potential effect of combinations between aerobic training with other interventions, including resistance exercises and pharmacological treatments. In addition, we postulate that classic recommendations for aerobic training need to be reconsidered to target both cognition and motor recovery because the current guidelines are only focused on cardiovascular and motor recovery. Finally, methodological limitations of training programs and cognitive function assessment are also developed in this review to clarify their effectiveness in stroke patients.
Collapse
Affiliation(s)
| | - Caroline Pin-Barre
- Aix-Marseille Université, CNRS, ISM, UMR 7287Marseille, France; Université Nice Sophia Antipolis, LAMHESS, UPRES EA 6309Nice, France
| | | | | | - Jérôme Laurin
- Aix-Marseille Université, CNRS, ISM, UMR 7287 Marseille, France
| |
Collapse
|
32
|
Lorón-Sánchez A, Torras-Garcia M, Coll-Andreu M, Costa-Miserachs D, Portell-Cortés I. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats. SCIENTIFICA 2016; 2016:9151490. [PMID: 27127685 PMCID: PMC4834408 DOI: 10.1155/2016/9151490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/09/2016] [Accepted: 03/23/2016] [Indexed: 06/05/2023]
Abstract
The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal.
Collapse
Affiliation(s)
- Alejandro Lorón-Sánchez
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Edifici B, 08193 Bellaterra, Barcelona, Spain
| | - Meritxell Torras-Garcia
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Edifici B, 08193 Bellaterra, Barcelona, Spain
| | - Margalida Coll-Andreu
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Edifici B, 08193 Bellaterra, Barcelona, Spain
| | - David Costa-Miserachs
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Edifici B, 08193 Bellaterra, Barcelona, Spain
| | - Isabel Portell-Cortés
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Edifici B, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
33
|
Goff D. The Therapeutic Role of d-Cycloserine in Schizophrenia. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:39-66. [PMID: 27288073 DOI: 10.1016/bs.apha.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ketamine model for schizophrenia has led to several therapeutic strategies for enhancing N-methyl d-aspartate (NMDA) receptor activity, including agonists directed at the glycine receptor site and inhibitors of glycine reuptake. Because ketamine may primarily block NMDA receptors on inhibitory interneurons, drugs that reduce glutamate release have also been investigated as a means of countering a deficit in inhibitory input. These approaches have met with some success for the treatment of negative and positive symptoms, but results have not been consistent. An emerging approach with the NMDA partial agonist, d-cycloserine (DCS), aims to enhance plasticity by intermittent treatment. Early trials have demonstrated benefit with intermittent DCS dosing for negative symptoms and memory. When combined with cognitive remediation, intermittent DCS treatment enhanced learning on a practiced auditory discrimination task and when added to cognitive behavioral therapy, DCS improved delusional severity in subjects who received DCS with the first CBT session. These studies require replication, but point toward a promising strategy for the treatment of schizophrenia and other disorders of plasticity.
Collapse
Affiliation(s)
- D Goff
- NYU School of Medicine, New York, United States.
| |
Collapse
|
34
|
Kumar A. NMDA Receptor Function During Senescence: Implication on Cognitive Performance. Front Neurosci 2015; 9:473. [PMID: 26732087 PMCID: PMC4679982 DOI: 10.3389/fnins.2015.00473] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors, a family of L-glutamate receptors, play an important role in learning and memory, and are critical for spatial memory. These receptors are tetrameric ion channels composed of a family of related subunits. One of the hallmarks of the aging human population is a decline in cognitive function; studies in the past couple of years have demonstrated deterioration in NMDA receptor subunit expression and function with advancing age. However, a direct relationship between impaired memory function and a decline in NMDA receptors is still ambiguous. Recent studies indicate a link between an age-associated NMDA receptor hypofunction and memory impairment and provide evidence that age-associated enhanced oxidative stress might be contributing to the alterations associated with senescence. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between age-associated impaired cognitive faculties and NMDA receptor hypofunction. The current review intends to present an overview of the research findings regarding changes in expression of various NMDA receptor subunits and deficits in NMDA receptor function during senescence and its implication in age-associated impaired hippocampal-dependent memory function.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| |
Collapse
|
35
|
Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, Eiden LE, Braga MF. GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury. Exp Neurol 2015; 273:11-23. [DOI: 10.1016/j.expneurol.2015.07.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 01/07/2023]
|
36
|
Randomized, Placebo-Controlled, Double-Blind Pilot Study of D-Cycloserine in Chronic Stroke. Rehabil Res Pract 2015; 2015:534239. [PMID: 26587287 PMCID: PMC4637506 DOI: 10.1155/2015/534239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 11/17/2022] Open
Abstract
Stroke is a leading cause of death and disability in the USA. Up to 60% of patients do not fully recover despite intensive physical therapy treatment. N-Methyl-D-aspartate receptors (NMDA-R) have been shown to play a role in synaptic plasticity when activated. D-Cycloserine promotes NMDA receptor function by binding to receptors with unoccupied glycine sites. These receptors are involved in learning and memory. We hypothesized that D-cycloserine, when combined with robotic-assisted physiotherapy (RAP), would result in greater gains compared with placebo + RAP in stroke survivors. Participants (n = 14) were randomized to D-cycloserine plus RAP or placebo plus RAP. Functional, cognitive, and quality-of-life measures were used to assess recovery. There was significant improvement in grip strength of the affected hand within both groups from baseline to 3 weeks (95% confidence interval for mean change, 3.95 ± 2.96 to 4.90 ± 3.56 N for D-cycloserine and 5.72 ± 3.98 to 8.44 ± 4.90 N for control). SIS mood domain showed improvement for both groups (95% confidence interval for mean change, 72.6 ± 16.3 to 82.9 ± 10.9 for D-cycloserine and 82.9 ± 13.5 to 90.3 ± 9.9 for control). This preliminary study does not provide evidence that D-cycloserine can provide greater gains in learning compared with placebo for stroke survivors.
Collapse
|
37
|
D-Serine and D-Cycloserine Reduce Compulsive Alcohol Intake in Rats. Neuropsychopharmacology 2015; 40:2357-67. [PMID: 25801502 PMCID: PMC4538350 DOI: 10.1038/npp.2015.84] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 12/21/2022]
Abstract
There is considerable interest in NMDAR modulators to enhance memory and treat neuropsychiatric disorders such as addiction, depression, and schizophrenia. D-serine and D-cycloserine, the NMDAR activators at the glycine site, are of particular interest because they have been used in humans without serious adverse effects. Interestingly, D-serine also inhibits some NMDARs active at hyperpolarized potentials (HA-NMDARs), and we previously found that HA-NMDARs within the nucleus accumbens core (NAcore) are critical for promoting compulsion-like alcohol drinking, where rats consume alcohol despite pairing with an aversive stimulus such as quinine, a paradigm considered to model compulsive aspects of human alcohol use disorders (AUDs). Here, we examined the impact of D-serine and D-cycloserine on this aversion-resistant alcohol intake (that persists despite adulteration with quinine) and consumption of quinine-free alcohol. Systemic D-serine reduced aversion-resistant alcohol drinking, without altering consumption of quinine-free alcohol or saccharin with or without quinine. Importantly, D-serine within the NAcore but not the dorsolateral striatum also selectively reduced aversion-resistant alcohol drinking. In addition, D-serine inhibited EPSCs evoked at -70 mV in vitro by optogenetic stimulation of mPFC-NAcore terminals in alcohol-drinking rats, similar to reported effects of the NMDAR blocker AP5. Further, D-serine preexposure occluded AP5 inhibition of mPFC-evoked EPSCs, suggesting that D-serine reduced EPSCs by inhibiting HA-NMDARs. Systemic D-cycloserine also selectively reduced intake of quinine-adulterated alcohol, and D-cycloserine inhibited NAcore HA-NMDARs in vitro. Our results indicate that HA-NMDAR modulators can reduce aversion-resistant alcohol drinking, and support testing of D-serine and D-cycloserine as immediately accessible, FDA-approved drugs to treat AUDs.
Collapse
|
38
|
Sarkaki A, Farbood Y, Gharib-Naseri MK, Badavi M, Mansouri MT, Haghparast A, Mirshekar MA. Gallic acid improved behavior, brain electrophysiology, and inflammation in a rat model of traumatic brain injury. Can J Physiol Pharmacol 2015. [DOI: 10.1139/cjpp-2014-0546] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. In the clinic it is essential to limit the development of cognitive impairment after TBI. In this study, the effects of gallic acid (GA; 100 mg/kg, per oral, from 7 days before to 2 days after TBI induction) on neurological score, passive avoidance memory, long-term potentiation (LTP) deficits, and levels of proinflammatory cytokines including interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) in the brain have been evaluated. Brain injury was induced following Marmarou’s method. Data were analyzed by one-way and repeated measures ANOVA followed by Tukey’s post-hoc test. The results indicated that memory was significantly impaired (p < 0.001) in the group treated with TBI + vehicle, together with deterioration of the hippocampal LTP and increased brain tissue levels of IL-1β, IL-6, and TNF-α. GA treatment significantly improved memory and LTP in the TBI rats. The brain tissue levels of IL-1β, IL-6, and TNF-α were significantly reduced (p < 0.001) in the group treated with GA. The results suggest that GA has neuroprotective properties against TBI-induced behavioral, electrophysiological, and inflammatory disorders, probably via the decrease of cerebral proinflammatory cytokines.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoub Farbood
- Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mohammad Badavi
- Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taghi Mansouri
- Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmacology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Mirshekar
- Ahvaz Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
39
|
Krings JG, Wineland A, Kallogjeri D, Rodebaugh TL, Nicklaus J, Lenze EJ, Piccirillo JF. A novel treatment for tinnitus and tinnitus-related cognitive difficulties using computer-based cognitive training and D-cycloserine. JAMA Otolaryngol Head Neck Surg 2015; 141:18-26. [PMID: 25356570 DOI: 10.1001/jamaoto.2014.2669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IMPORTANCE Tinnitus affects more than 40 million people in the Unites States, and cognitive difficulties are among the most commonly associated symptoms. OBJECTIVE To test the feasibility and preliminarily the effectiveness of using a putative neuroplasticity-enhancing drug, D-cycloserine, to facilitate a computer-assisted CT program for improving tinnitus bother and related cognitive difficulties. DESIGN, SETTING, AND PARTICIPANTS Double-blind, randomized clinical trial at an outpatient academic medical center of 34 participants aged 35 to 65 years with subjective, unilateral or bilateral, nonpulsatile tinnitus of at least 6 months' duration. INTERVENTIONS Five weeks of twice-weekly computer-based CT with either 250 mg D-cycloserine or placebo orally prior to computer CT sessions. MAIN OUTCOMES AND MEASURES Difference in the change in Tinnitus Functional Index (TFI) score between the 2 groups. RESULTS After excluding 1 participant lost to follow-up, 1 who withdrew, 1 who did not complete 90% of sessions, and 1 outlier, 30 participants were included in the analysis. The D-cycloserine plus CT group showed a significant improvement in median TFI score (-5.8 [95% CI, -9.4 to -1.1]) and self-reported cognitive deficits (-4.5 [95% CI, -11.5 to -1.0]), but the placebo group did not (-1.0 [95% CI, -11.7 to 4.9] and -2.0 [95% CI, -5.1 to 2.0], respectively). After controlling for age and duration of tinnitus, there was no significant difference in TFI score change between the 2 groups (P = .41). After confounders were controlled for, the D-cycloserine group demonstrated a significantly greater improvement in self-reported cognitive deficits as compared with the placebo group (P = .03). No serious adverse events were reported. CONCLUSIONS AND RELEVANCE Use of a computer-based CT program with a putative neuroplasticity-sensitizing drug, D-cycloserine, was feasible and well tolerated. With the limited sample size, the adjuvant use of D-cycloserine was no more effective than placebo at improving tinnitus bother. The finding that D-cycloserine use was more effective than placebo at improving self-reported cognitive difficulties could be important given the high rate of concern for cognitive deficits in patients with tinnitus. D-cycloserine and other putative neuroplasticity-facilitating agents could be investigated in the future as a strategy to enhance neuroplasticity-based tinnitus treatments. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01550796.
Collapse
Affiliation(s)
- James G Krings
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri2Doris Duke Clinical Research Fellowship, Washington University School of Medicine, St Louis, Missouri3Stanford Medical Scholars Fellowship, St
| | - Andre Wineland
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Dorina Kallogjeri
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Thomas L Rodebaugh
- Department of Psychology, Washington University in St Louis, St Louis, Missouri
| | - Joyce Nicklaus
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Jay F Piccirillo
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
40
|
Frühauf PKS, Ineu RP, Tomazi L, Duarte T, Mello CF, Rubin MA. Spermine reverses lipopolysaccharide-induced memory deficit in mice. J Neuroinflammation 2015; 12:3. [PMID: 25573647 PMCID: PMC4302583 DOI: 10.1186/s12974-014-0220-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/11/2014] [Indexed: 12/16/2022] Open
Abstract
Background Lipopolysaccharide (LPS) induces neuroinflammation and memory deficit. Since polyamines improve memory in various cognitive tasks, we hypothesized that spermine administration reverses LPS-induced memory deficits in an object recognition task in mice. The involvement of the polyamine binding site at the N-methyl-D-aspartate (NMDA) receptor and cytokine production in the promnesic effect of spermine were investigated. Methods Adult male mice were injected with LPS (250 μg/kg, intraperitoneally) and spermine (0.3 to 1 mg/kg, intraperitoneally) or ifenprodil (0.3 to 10 mg/kg, intraperitoneally), or both, and their memory function was evaluated using a novel object recognition task. In addition, cortical and hippocampal cytokines levels were measured by ELISA four hours after LPS injection. Results Spermine increased but ifenprodil decreased the recognition index in the novel object recognition task. Spermine, at doses that did not alter memory (0.3 mg/kg, intraperitoneally), reversed the cognitive impairment induced by LPS. Ifenprodil (0.3 mg/kg, intraperitoneally) reversed the protective effect of spermine against LPS-induced memory deficits. However, spermine failed to reverse the LPS-induced increase of cortical and hippocampal cytokine levels. Conclusions Spermine protects against LPS-induced memory deficits in mice by a mechanism that involves GluN2B receptors.
Collapse
Affiliation(s)
- Pâmella Karina Santana Frühauf
- Graduation Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Rafael Porto Ineu
- Graduation Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Lediane Tomazi
- Graduation Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Thiago Duarte
- Graduation Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Carlos Fernando Mello
- Graduation Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil. .,Department of Physiology and Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Maribel Antonello Rubin
- Graduation Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil. .,Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Camobi, CEP: 97105900, Santa Maria, RS, Brazil.
| |
Collapse
|
41
|
Portero-Tresserra M, Del Olmo N, Martí-Nicolovius M, Guillazo-Blanch G, Vale-Martínez A. D-cycloserine prevents relational memory deficits and suppression of long-term potentiation induced by scopolamine in the hippocampus. Eur Neuropsychopharmacol 2014; 24:1798-807. [PMID: 25453488 DOI: 10.1016/j.euroneuro.2014.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/01/2014] [Accepted: 10/11/2014] [Indexed: 01/31/2023]
Abstract
Previous research has demonstrated that systemic D-cycloserine (DCS), a partial agonist of the N-methyl-D-aspartate receptor (NMDAR), enhances memory processes in different learning paradigms and attenuates mnemonic deficits produced by diverse pharmacological manipulations. In the present study two experiments were conducted in rats to investigate whether DCS administered in the hippocampus may rescue relational memory deficits and improve deficient synaptic plasticity, both induced by an intracerebral injection of the muscarinic receptor antagonist scopolamine (SCOP). In experiment 1, we assessed whether DCS would prevent SCOP-induced amnesia in an olfactory learning paradigm requiring the integrity of the cholinergic system, the social transmission of food preference (STFP). The results showed that DCS (10 μg/site) injected into the ventral hippocampus (vHPC) before STFP acquisition compensated the 24-h retention deficit elicited by post-training intra-vHPC SCOP (40 μg/site), although it did not affect memory expression in non-SCOP treated rats. In experiment 2, we evaluated whether the perfusion of DCS in hippocampal slices may potentiate synaptic plasticity in CA1 synapses and thus recover SCOP-induced deficits in long-term potentiation (LTP). We found that DCS (50 µM and 100 µM) was able to rescue SCOP (100 µM)-induced LTP maintenance impairment, in agreement with the behavioral findings. Additionally, DCS alone (50 µM and 100 µM) enhanced field excitatory postsynaptic potentials prior to high frequency stimulation, although it did not significantly potentiate LTP. Our results suggest that positive modulation of the NMDAR, by activation of the glycine-binding site, may compensate relational memory impairments due to hippocampal muscarinic neurotransmission dysfunction possibly through enhancements in LTP maintenance.
Collapse
|
42
|
Combs VM, Crispell HD, Drew KL. D-cycloserine 24 and 48 hours after asphyxial cardiac arrest has no effect on hippocampal CA1 neuropathology. J Cereb Blood Flow Metab 2014; 34:jcbfm2014135. [PMID: 25099755 PMCID: PMC4269731 DOI: 10.1038/jcbfm.2014.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 01/13/2023]
Abstract
Stimulation of N-methyl-D-aspartate receptors (NMDAR) contributes to regenerative neuroplasticity following the initial excitotoxic insult during cerebral ischemia. Stimulation of NMDAR with the partial NMDAR agonist D-cycloserine (DCS) improves outcome and restores hippocampal synaptic plasticity in models of closed head injury. We thus hypothesized that DCS would improve outcome following restoration of spontaneous circulation (ROSC) from cardiac arrest (CA). DCS (10 mg/kg, IP) was administered to Sprague-Dawley rats (male, 250-330 g; 63-84 days old) 24 and 48 hours after 6 or 8 minutes of asphyxial CA. Heart rate and blood pressure declined similarly in all groups. Animals showed neurological deficits after 6 and 8 minutes CA (P<0.05, Tukey) and these deficits recovered more quickly after 6 minutes than after 8 minutes of CA. CA decreased the number of healthy neurons within CA1 with no difference between 6 and 8 minutes duration of CA (180.8±27.6 (naïve, n=5) versus 46.3±33.8 (all CA groups, n=27) neurons per mm CA1). DCS had no effect on neurological deficits or CA1 hippocampal cell counts (P>0.05, Tukey).
Collapse
Affiliation(s)
- Vélvá M Combs
- Alaska Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Heather D Crispell
- Alaska Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Kelly L Drew
- Alaska Neuroscience Program, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| |
Collapse
|
43
|
Umschweif G, Liraz-Zaltsman S, Shabashov D, Alexandrovich A, Trembovler V, Horowitz M, Shohami E. Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics 2014; 11:665-78. [PMID: 24957202 PMCID: PMC4121449 DOI: 10.1007/s13311-014-0286-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Angiotensin II receptor type 2 (AT(2)) agonists have been shown to limit brain ischemic insult and to improve its outcome. The activation of AT(2) was also linked to induced neuronal proliferation and differentiation in vitro. In this study, we examined the therapeutic potential of AT(2) activation following traumatic brain injury (TBI) in mice, a brain pathology that displays ischemia-like secondary damages. The AT(2) agonist CGP42112A was continuously infused immediately after closed head injury (CHI) for 3 days. We have followed the functional recovery of the injured mice for 35 days post-CHI, and evaluated cognitive function, lesion volume, molecular signaling, and neurogenesis at different time points after the impact. We found dose-dependent improvement in functional recovery and cognitive performance after CGP42112A treatment that was accompanied by reduced lesion volume and induced neurogenesis in the neurogenic niches of the brain and also in the injury region. At the cellular/molecular level, CGP42112A induced early activation of neuroprotective kinases protein kinase B (Akt) and extracellular-regulated kinases ½ (ERK½), and the neurotrophins nerve growth factor and brain-derived neurotrophic factor; all were blocked by treatment with the AT(2) antagonist PD123319. Our results suggest that AT(2) activation after TBI promotes neuroprotection and neurogenesis, and may be a novel approach for the development of new drugs to treat victims of TBI.
Collapse
Affiliation(s)
- Gali Umschweif
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
- />Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
| | | | - Dalia Shabashov
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
| | | | | | - Michal Horowitz
- />Laboratory of Environmental Physiology, The Hebrew University, Jerusalem, Israel
| | - Esther Shohami
- />Department of Pharmacology, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
44
|
Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits. J Cereb Blood Flow Metab 2014; 34:1223-32. [PMID: 24756076 PMCID: PMC4083389 DOI: 10.1038/jcbfm.2014.75] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 03/24/2014] [Accepted: 03/30/2014] [Indexed: 11/08/2022]
Abstract
Repeated mild traumatic brain injury (mTBI) can cause sustained cognitive and psychiatric changes, as well as neurodegeneration, but the underlying mechanisms remain unclear. We examined histologic, neurophysiological, and cognitive changes after single or repeated (three injuries) mTBI using the rat lateral fluid percussion (LFP) model. Repeated mTBI caused substantial neuronal cell loss and significantly increased numbers of activated microglia in both ipsilateral and contralateral hippocampus on post-injury day (PID) 28. Long-term potentiation (LTP) could not be induced on PID 28 after repeated mTBI in ex vivo hippocampal slices from either hemisphere. N-Methyl-D-aspartate (NMDA) receptor-mediated responses were significantly attenuated after repeated mTBI, with no significant changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated responses. Long-term potentiation was elicited in slices after single mTBI, with potentiation significantly increased in ipsilateral versus contralateral hippocampus. After repeated mTBI, rats displayed cognitive impairments in the Morris water maze (MWM) and novel object recognition (NOR) tests. Thus, repeated mTBI causes deficits in the hippocampal function and changes in excitatory synaptic neurotransmission, which are associated with chronic neuroinflammation and neurodegeneration.
Collapse
|
45
|
Cherry KM, Lenze EJ, Lang CE. Combining d-cycloserine with motor training does not result in improved general motor learning in neurologically intact people or in people with stroke. J Neurophysiol 2014; 111:2516-24. [PMID: 24671538 DOI: 10.1152/jn.00882.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurological rehabilitation involving motor training has resulted in clinically meaningful improvements in function but is unable to eliminate many of the impairments associated with neurological injury. Thus there is a growing need for interventions that facilitate motor learning during rehabilitation therapy, to optimize recovery. d-Cycloserine (DCS), a partial N-methyl-d-aspartate (NMDA) receptor agonist that enhances neurotransmission throughout the central nervous system (Ressler KJ, Rothbaum BO, Tannenbaum L, Anderson P, Graap K, Zimand E, Hodges L, Davis M. Arch Gen Psychiatry 61: 1136-1144, 2004), has been shown to facilitate declarative and emotional learning. We therefore tested whether combining DCS with motor training facilitates motor learning after stroke in a series of two experiments. Forty-one healthy adults participated in experiment I, and twenty adults with stroke participated in experiment II of this two-session, double-blind study. Session one consisted of baseline assessment, subject randomization, and oral administration of DCS or placebo (250 mg). Subjects then participated in training on a balancing task, a simulated feeding task, and a cognitive task. Subjects returned 1-3 days later for posttest assessment. We found that all subjects had improved performance from pretest to posttest on the balancing task, the simulated feeding task, and the cognitive task. Subjects who were given DCS before motor training, however, did not show enhanced learning on the balancing task, the simulated feeding task, or the associative recognition task compared with subjects given placebo. Moreover, training on the balancing task did not generalize to a similar, untrained balance task. Our findings suggest that DCS does not enhance motor learning or motor skill generalization in neurologically intact adults or in adults with stroke.
Collapse
Affiliation(s)
- Kendra M Cherry
- Program in Physical Therapy, Washington University, St. Louis, Missouri
| | - Eric J Lenze
- Department of Psychiatry, Washington University, St. Louis, Missouri
| | - Catherine E Lang
- Program in Physical Therapy, Washington University, St. Louis, Missouri; Program in Occupational Therapy, Washington University, St. Louis, Missouri; and Department of Neurology, Washington University, St. Louis, Missouri
| |
Collapse
|
46
|
Abstract
There are more than 3.17 million people coping with long-term disabilities due to traumatic brain injury (TBI) in the United States. The majority of TBI research is focused on developing acute neuroprotective treatments to prevent or minimize these long-term disabilities. Therefore, chronic TBI survivors represent a large, underserved population that could significantly benefit from a therapy that capitalizes on the endogenous recovery mechanisms occurring during the weeks to months following brain trauma. Previous studies have found that the hippocampus is highly vulnerable to brain injury, in both experimental models of TBI and during human TBI. Although often not directly mechanically injured by the head injury, in the weeks to months following TBI, the hippocampus undergoes atrophy and exhibits deficits in long-term potentiation (LTP), a persistent increase in synaptic strength that is considered to be a model of learning and memory. Decoding the chronic hippocampal LTP and cell signaling deficits after brain trauma will provide new insights into the molecular mechanisms of hippocampal-dependent learning impairments caused by TBI and facilitate the development of effective therapeutic strategies to improve hippocampal-dependent learning for chronic survivors of TBI.
Collapse
Affiliation(s)
- Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
47
|
Portero-Tresserra M, Cristóbal-Narváez P, Martí-Nicolovius M, Guillazo-Blanch G, Vale-Martínez A. D-cycloserine in prelimbic cortex reverses scopolamine-induced deficits in olfactory memory in rats. PLoS One 2013; 8:e70584. [PMID: 23936452 PMCID: PMC3732227 DOI: 10.1371/journal.pone.0070584] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/19/2013] [Indexed: 12/02/2022] Open
Abstract
A significant interaction between N-methyl-D-aspartate (NMDA) and muscarinic receptors has been suggested in the modulation of learning and memory processes. The present study further investigates this issue and explores whether d-cycloserine (DCS), a partial agonist at the glycine binding site of the NMDA receptors that has been regarded as a cognitive enhancer, would reverse scopolamine (SCOP)-induced amnesia in two olfactory learning tasks when administered into the prelimbic cortex (PLC). Thus, in experiment 1, DCS (10 µg/site) was infused prior to acquisition of odor discrimination (ODT) and social transmission of food preference (STFP), which have been previously characterized as paradigms sensitive to PLC muscarinic blockade. Immediately after learning such tasks, SCOP was injected (20 µg/site) and the effects of both drugs (alone and combined) were tested in 24-h retention tests. To assess whether DCS effects may depend on the difficulty of the task, in the STFP the rats expressed their food preference either in a standard two-choice test (experiment 1) or a more challenging three-choice test (experiment 2). The results showed that bilateral intra-PLC infusions of SCOP markedly disrupted the ODT and STFP memory tests. Additionally, infusions of DCS alone into the PLC enhanced ODT but not STFP retention. However, the DCS treatment reversed SCOP-induced memory deficits in both tasks, and this effect seemed more apparent in ODT and 3-choice STFP. Such results support the interaction between the glutamatergic and the cholinergic systems in the PLC in such a way that positive modulation of the NMDA receptor/channel, through activation of the glycine binding site, may compensate dysfunction of muscarinic neurotransmission involved in stimulus-reward and relational learning tasks.
Collapse
Affiliation(s)
- Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Paula Cristóbal-Narváez
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Margarita Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gemma Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Anna Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciencies de la Salut, Institut de Neurociencies, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
48
|
Opposite roles of NMDA receptors in relapsing and primary progressive multiple sclerosis. PLoS One 2013; 8:e67357. [PMID: 23840674 PMCID: PMC3696106 DOI: 10.1371/journal.pone.0067357] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 05/16/2013] [Indexed: 01/08/2023] Open
Abstract
Synaptic transmission and plasticity mediated by NMDA receptors (NMDARs) could modulate the severity of multiple sclerosis (MS). Here the role of NMDARs in MS was first explored in 691 subjects carrying specific allelic variants of the NR1 subunit gene or of the NR2B subunit gene of this glutamate receptor. The analysis was replicated for significant SNPs in an independent sample of 1548 MS subjects. The C allele of rs4880213 was found to be associated with reduced NMDAR-mediated cortical excitability, and with increased probability of having more disability than the CT/TT MS subjects. MS severity was higher in the CC group among relapsing-remitting MS (RR-MS) patients, while primary progressive MS (PP-MS) subjects homozygous for the T allele had more pronounced clinical worsening. Mean time to first relapse, but not to an active MRI scan, was lower in the CC group of RR-MS patients, and the number of subjects with two or more clinical relapses in the first two years of the disease was higher in CC compared to CT/TT group. Furthermore, the percentage of relapses associated with residual disability was lower in subjects carrying the T allele. Lesion load at the MRI was conversely unaffected by the C or T allele of this SNP in RR-MS patients. Axonal and neuronal degeneration at the optical coherence tomography was more severe in the TT group of PP-MS patients, while reduced retinal nerve fiber thickness had less consequences on visual acuity in RR-MS patients bearing the T allele. Finally, the T allele was associated with preserved cognitive abilities at the Rao's brief repeatable neuropsychological battery in RR-MS. Signaling through glutamate NMDARs enhances both compensatory synaptic plasticity and excitotoxic neurodegeneration, impacting in opposite ways on RR-MS and PP-MS pathophysiological mechanisms.
Collapse
|
49
|
Kranjac D, Koster KM, Kahn MS, Eimerbrink MJ, Womble BM, Cooper BG, Chumley MJ, Boehm GW. Peripheral administration of d-cycloserine rescues memory consolidation following bacterial endotoxin exposure. Behav Brain Res 2013; 243:38-43. [DOI: 10.1016/j.bbr.2012.12.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/21/2012] [Accepted: 12/27/2012] [Indexed: 12/12/2022]
|
50
|
Etazolate, an α-secretase activator, reduces neuroinflammation and offers persistent neuroprotection following traumatic brain injury in mice. Neuropharmacology 2013. [DOI: 10.1016/j.neuropharm.2012.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|