1
|
Ledderose C, Valsami EA, Elevado M, Junger WG. Adenosine Triphosphate Release From Influenza-Infected Lungs Enhances Neutrophil Activation and Promotes Disease Progression. J Infect Dis 2024; 230:120-130. [PMID: 39052721 PMCID: PMC11272046 DOI: 10.1093/infdis/jiad442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Adenosine triphosphate (ATP) enhances neutrophil responses, but little is known about the role of ATP in influenza infections. METHODS We used a mouse influenza model to study if ATP release is associated with neutrophil activation and disease progression. RESULTS Influenza infection increased pulmonary ATP levels 5-fold and plasma ATP levels 3-fold vs healthy mice. Adding ATP at those concentrations to blood from healthy mice primed neutrophils and enhanced CD11b and CD63 expression, CD62L shedding, and reactive oxygen species production in response to formyl peptide receptor stimulation. Influenza infection also primed neutrophils in vivo, resulting in formyl peptide receptor-induced CD11b expression and CD62L shedding up to 3 times higher than that of uninfected mice. In infected mice, large numbers of neutrophils entered the lungs. These cells were significantly more activated than the peripheral neutrophils of infected mice and pulmonary neutrophils of healthy mice. Plasma ATP levels of infected mice and influenza disease progression corresponded with the numbers and activation level of their pulmonary neutrophils. CONCLUSIONS Findings suggest that ATP release from the lungs of infected mice promotes influenza disease progression by priming peripheral neutrophils, which become strongly activated and cause pulmonary tissue damage after their recruitment to the lungs.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, University of California, San Diego Health
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | - Mark Elevado
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Wolfgang G Junger
- Department of Surgery, University of California, San Diego Health
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Dilxat T, Shi Q, Chen X, Liu X. Garlic oil supplementation blocks inflammatory pyroptosis-related acute lung injury by suppressing the NF-κB/NLRP3 signaling pathway via H 2S generation. Aging (Albany NY) 2024; 16:6521-6536. [PMID: 38613798 PMCID: PMC11042940 DOI: 10.18632/aging.205721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/09/2024] [Indexed: 04/15/2024]
Abstract
Acute lung injury (ALI) is a major cause of acute respiratory failure with a high morbidity and mortality rate, and effective therapeutic strategies for ALI remain limited. Inflammatory response is considered crucial for the pathogenesis of ALI. Garlic, a globally used cooking spice, reportedly exhibits excellent anti-inflammatory bioactivity. However, protective effects of garlic against ALI have never been reported. This study aimed to investigate the protective effects of garlic oil (GO) supplementation on lipopolysaccharide (LPS)-induced ALI models. Hematoxylin and eosin staining, pathology scores, lung myeloperoxidase (MPO) activity measurement, lung wet/dry (W/D) ratio detection, and bronchoalveolar lavage fluid (BALF) analysis were performed to investigate ALI histopathology. Real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to evaluate the expression levels of inflammatory factors, nuclear factor-κB (NF-κB), NLRP3, pyroptosis-related proteins, and H2S-producing enzymes. GO attenuated LPS-induced pulmonary pathological changes, lung W/D ratio, MPO activity, and inflammatory cytokines in the lungs and BALF. Additionally, GO suppressed LPS-induced NF-κB activation, NLRP3 inflammasome expression, and inflammatory-related pyroptosis. Mechanistically, GO promoted increased H2S production in lung tissues by enhancing the conversion of GO-rich polysulfide compounds or by increasing the expression of H2S-producing enzymes in vivo. Inhibition of endogenous or exogenous H2S production reversed the protective effects of GO on ALI and eliminated the inhibitory effects of GO on NF-κB, NLRP3, and pyroptotic signaling pathways. Overall, these findings indicate that GO has a critical anti-inflammatory effect and protects against LPS-induced ALI by suppressing the NF-κB/NLRP3 signaling pathway via H2S generation.
Collapse
Affiliation(s)
- Tursunay Dilxat
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Qiang Shi
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Xiaofan Chen
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Xuxin Liu
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| |
Collapse
|
3
|
Luo C, Liu X, Liu Y, Shao H, Gao J, Tao J. Upregulation of CD39 During Gout Attacks Promotes Spontaneous Remission of Acute Gouty Inflammation. Inflammation 2024; 47:664-677. [PMID: 38055119 DOI: 10.1007/s10753-023-01936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Gout is a self-limiting form of inflammatory arthropathy caused by the formation of urate crystals due to hyperuricemia. The resolution of gout involves the transition of proinflammatory M1-type macrophages to anti-inflammatory M2-type macrophages, as well as neutrophil-mediated extracellular trap (NET) formation. However, the underlying mechanisms of these changes are not clear. Studies have confirmed that high expression of CD39 on macrophages and neutrophils can trigger the polarization of macrophages from a proinflammatory state to an anti-inflammatory state. Recent studies have shown that the pathogenesis of gout involves extracellular ATP (eATP), and the synergistic effect of MSU and extracellular ATP can cause gout. CD39 is a kind of ATP hydrolysis enzyme that can degrade eATP, suggesting that CD39 may inhibit the aggravation of inflammation in gout and participate in the remission mechanism of gout. To confirm this hypothesis, using data mining and flow cytometry, we first found that CD39 expression was significantly upregulated on CD14 + monocytes and neutrophils in gout patients during the acute phase. Inhibition of CD39 by lentivirus or a CD39 inhibitor in acute gout models aggravated gouty arthritis and delayed gout remission. Apyrase, a functional analog of CD39, can significantly reduce the inflammatory response and promote gout remission in acute gout model mice. Our findings confirm that the upregulation of CD39 during gout flare-ups promotes spontaneous remission of acute gouty inflammation.
Collapse
Affiliation(s)
- Chengyu Luo
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Xingyue Liu
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Yiming Liu
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Huijun Shao
- Department of Rheumatology and Immunology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China
| | - Jie Gao
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, 230001, People's Republic of China.
- Department of Rheumatology and Immunology, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, People's Republic of China.
| |
Collapse
|
4
|
Kelestemur T, Németh ZH, Pacher P, Beesley J, Robson SC, Eltzschig HK, Haskó G. Adenosine metabolized from extracellular ATP ameliorates organ injury by triggering A 2BR signaling. Respir Res 2023; 24:186. [PMID: 37438813 PMCID: PMC10339538 DOI: 10.1186/s12931-023-02486-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Trauma and a subsequent hemorrhagic shock (T/HS) result in insufficient oxygen delivery to tissues and multiple organ failure. Extracellular adenosine, which is a product of the extracellular degradation of adenosine 5' triphosphate (ATP) by the membrane-embedded enzymes CD39 and CD73, is organ protective, as it participates in signaling pathways, which promote cell survival and suppress inflammation through adenosine receptors including the A2BR. The aim of this study was to evaluate the role of CD39 and CD73 delivering adenosine to A2BRs in regulating the host's response to T/HS. METHODS T/HS shock was induced by blood withdrawal from the femoral artery in wild-type, global knockout (CD39, CD73, A2BR) and conditional knockout (intestinal epithelial cell-specific deficient VillinCre-A2BRfl/fl) mice. At 3 three hours after resuscitation, blood and tissue samples were collected to analyze organ injury. RESULTS T/HS upregulated the expression of CD39, CD73, and the A2BR in organs. ATP and adenosine levels increased after T/HS in bronchoalveolar lavage fluid. CD39, CD73, and A2BR mimics/agonists alleviated lung and liver injury. Antagonists or the CD39, CD73, and A2BR knockout (KO) exacerbated lung injury, inflammatory cytokines, and chemokines as well as macrophage and neutrophil infiltration and accumulation in the lung. Agonists reduced the levels of the liver enzymes aspartate transferase and alanine transaminase in the blood, whereas antagonist administration or CD39, CD73, and A2BR KO enhanced enzyme levels. In addition, intestinal epithelial cell-specific deficient VillinCre-A2BRfl/fl mice showed increased intestinal injury compared to their wild-type VillinCre controls. CONCLUSION In conclusion, the CD39-CD73-A2BR axis protects against T/HS-induced multiple organ failure.
Collapse
Affiliation(s)
- Taha Kelestemur
- Department of Anesthesiology, Columbia University, 630 W 168th Street, New York City, NY, 10032, USA
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Zoltán H Németh
- Department of Anesthesiology, Columbia University, 630 W 168th Street, New York City, NY, 10032, USA
- Department of Surgery, Morristown Medical Center, Morristown, NJ, 07960, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jennet Beesley
- Daresbury Proteins Ltd, Sci-Tech Daresbury, Warrington, UK
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, 630 W 168th Street, New York City, NY, 10032, USA.
| |
Collapse
|
5
|
Liu Y, Li Z, Zhao X, Xiao J, Bi J, Li XY, Chen G, Lu L. Review immune response of targeting CD39 in cancer. Biomark Res 2023; 11:63. [PMID: 37287049 DOI: 10.1186/s40364-023-00500-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
The ATP-adenosine pathway has emerged as a promising target for cancer therapy, but challenges remain in achieving effective tumor control. Early research focused on blocking the adenosine generating enzyme CD73 and the adenosine receptors A2AR or A2BR in cancer. However, recent studies have shown that targeting CD39, the rate-limiting ecto-enzyme of the ATP-adenosine pathway, can provide more profound anti-tumor efficacy by reducing immune-suppressive adenosine accumulation and increasing pro-inflammatory ATP levels. In addition, combining CD39 blocking antibody with PD-1 immune checkpoint therapy may have synergistic anti-tumor effects and improve patient survival. This review will discuss the immune components that respond to CD39 targeting in the tumor microenvironment. Targeting CD39 in cancer has been shown to not only decrease adenosine levels in the tumor microenvironment (TME), but also increase ATP levels. Additionally, targeting CD39 can limit the function of Treg cells, which are known to express high levels of CD39. With phase I clinical trials of CD39 targeting currently underway, further understanding and rational design of this approach for cancer therapy are expected.
Collapse
Affiliation(s)
- Yao Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Zhongliang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Xiaoguang Zhao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China
| | - Jing Xiao
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jiacheng Bi
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xian-Yang Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
- Department of R&D, OriCell Therapeutics Co. Ltd, No.1227, Zhangheng Rd, Pudong, Shanghai, China.
| | - Guokai Chen
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, 519000, Guangdong, P.R. China.
| |
Collapse
|
6
|
Li R, Ren T, Zeng J, Xu H. ALCAM Deficiency Alleviates LPS-Induced Acute Lung Injury by Inhibiting Inflammatory Response. Inflammation 2023; 46:688-699. [PMID: 36418761 DOI: 10.1007/s10753-022-01765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
We investigated the effects and underlying mechanisms of activated leukocyte adhesion molecule (ALCAM) on acute lung injury (ALI) by using lipopolysaccharide (LPS)-induced ALI animal model and LPS-induced inflammation in vitro. In LPS-stimulated mice, ALCAM deficiency relieved lung injury, which manifested as reduced pathological changes in the lung tissue, reduced pulmonary edema, and reduced vascular permeability. Furthermore, we demonstrated that ALCAM deficiency reduced the infiltration of inflammatory cells, including neutrophil, eosinophil, and macrophages; the release of inflammatory cytokines, including IL-1β, IL-6, TNF-α, and COX2; and reduced the protein level of TLR4/NF-κB pathway (TLR4, MyD88, p-IkBɑ, and p-NF-κB p65). We also demonstrated that ALCAM deficiency reduced the expression of oxidative stress-related proteins (Nrf-2, HO-1, and NQO-1) and endoplasmic reticulum stress-related proteins (CHOP, GRP78, ATF-6, and p-eIF2ɑ). In addition, in LPS-induced inflammation in vitro, ALCAM overexpression promoted inflammatory response, oxidative stress, and ER stress. We established that ALCAM deficiency can suppress the ALI process by reducing inflammatory response, oxidative stress, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ruirui Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, No. 107, Shibei 2Nd Road, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Tao Ren
- Three Departments of Cardiology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Jianqiong Zeng
- Cardiovascular Surgery CCU, Foshan First People's Hospital, Foshan, 528000, Guangdong, People's Republic of China
| | - Hang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, No. 107, Shibei 2Nd Road, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
7
|
Meng L, Liao X, Wang Y, Chen L, Gao W, Wang M, Dai H, Yan N, Gao Y, Wu X, Wang K, Liu Q. Pharmacologic therapies of ARDS: From natural herb to nanomedicine. Front Pharmacol 2022; 13:930593. [PMID: 36386221 PMCID: PMC9651133 DOI: 10.3389/fphar.2022.930593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.
Collapse
Affiliation(s)
- Linlin Meng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Ximing Liao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Yuanyuan Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Liangzhi Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Muyun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Huiling Dai
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Na Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| | - Qinghua Liu
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| |
Collapse
|
8
|
Velankar KY, Mou M, Hartmeier PR, Clegg B, Gawalt ES, Jiang M, Meng WS. Recrystallization of Adenosine for Localized Drug Delivery. Mol Pharm 2022; 19:3394-3404. [PMID: 36001090 DOI: 10.1021/acs.molpharmaceut.2c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenosine (ADO) is an endogenous metabolite with immense potential to be repurposed as an immunomodulatory therapeutic, as preclinical studies have demonstrated in models of epilepsy, acute respiratory distress syndrome, and traumatic brain injury, among others. The currently licensed products Adenocard and Adenoscan are formulated at 3 mg/mL of ADO for rapid bolus intravenous injection, but the systemic administration of the saline formulations for anti-inflammatory purposes is limited by the nucleoside's profound hemodynamic effects. Moreover, concentrations that can be attained in the airway or the brain through direct instillation or injection are limited by the volumes that can be accommodated in the anatomical space (<5 mL in humans) and the rapid elimination by enzymatic and transport mechanisms in the interstitium (half-life <5 s). As such, highly concentrated formulations of ADO are needed to attain pharmacologically relevant concentrations at sites of tissue injury. Herein, we report a previously uncharacterized crystalline form of ADO (rcADO) in which 6.7 mg/mL of the nucleoside is suspended in water. Importantly, the crystallinity is not diminished in a protein-rich environment, as evidenced by resuspending the crystals in albumin (15% w/v). To the best of our knowledge, this is the first report of crystalline ADO generated using a facile and organic solvent-free method aimed at localized drug delivery. The crystalline suspension may be suitable for developing ADO into injectable formulations for attaining high concentrations of the endogenous nucleoside in inflammatory locales.
Collapse
Affiliation(s)
- Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Mingyao Mou
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Benjamin Clegg
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Mo Jiang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States.,Center for Pharmaceutical Engineering and Sciences, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
9
|
Yuan X, Mills T, Doursout MF, Evans SE, Vidal Melo MF, Eltzschig HK. Alternative adenosine Receptor activation: The netrin-Adora2b link. Front Pharmacol 2022; 13:944994. [PMID: 35910389 PMCID: PMC9334855 DOI: 10.3389/fphar.2022.944994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During hypoxia or inflammation, extracellular adenosine levels are elevated. Studies using pharmacologic approaches or genetic animal models pertinent to extracellular adenosine signaling implicate this pathway in attenuating hypoxia-associated inflammation. There are four distinct adenosine receptors. Of these, it is not surprising that the Adora2b adenosine receptor functions as an endogenous feedback loop to control hypoxia-associated inflammation. First, Adora2b activation requires higher adenosine concentrations compared to other adenosine receptors, similar to those achieved during hypoxic inflammation. Second, Adora2b is transcriptionally induced during hypoxia or inflammation by hypoxia-inducible transcription factor HIF1A. Studies seeking an alternative adenosine receptor activation mechanism have linked netrin-1 with Adora2b. Netrin-1 was originally discovered as a neuronal guidance molecule but also functions as an immune-modulatory signaling molecule. Similar to Adora2b, netrin-1 is induced by HIF1A, and has been shown to enhance Adora2b signaling. Studies of acute respiratory distress syndrome (ARDS), intestinal inflammation, myocardial or hepatic ischemia and reperfusion implicate the netrin-Adora2b link in tissue protection. In this review, we will discuss the potential molecular linkage between netrin-1 and Adora2b, and explore studies demonstrating interactions between netrin-1 and Adora2b in attenuating tissue inflammation.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott E. Evans
- Department of Pulmonology, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
10
|
Guo S, Han F, Zhu W. CD39 - A bright target for cancer immunotherapy. Biomed Pharmacother 2022; 151:113066. [PMID: 35550530 DOI: 10.1016/j.biopha.2022.113066] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022] Open
Abstract
The ATP-adenosine pathway functions as a key modulator of innate and adaptive immunity within the tumor microenvironment, and cancer immune evasion largely involves the generation of high amounts of immunosuppressive extracellular adenosine (eADO). Consequently, inhibition of eADO-generating enzymes and/or eADO receptors can effectively restore the antitumor immunity of multiple immune cells. With several clinical strategies currently being explored to modulating the eADO pathway in patients with cancer, recent clinical data with antagonists targeting CD73 and A2A receptor have demonstrated a promising therapeutic potential in cancer. Recent findings reveal that the ectonucleotidase CD39, the limiting enzyme been viewed as "immunological switch", converts ATP-driven pro-inflammatory milieu to an anti-inflammatory state mediated by adenosine. Owing to its superior feature of CD39 antagonism that rely not only on preventing the accumulation of adenosine but also on the stabilization of extracellular ATP to restore antitumor immunity, several inhibitors and clinical trials based on CD39 are being evaluated. Consequently, there is currently a focus on understanding the role of CD39 in governing immunity and how therapeutic strategies targeting this pathway alter the antitumor potential. We herein review the impact of CD39 on tumor microenvironment with a focus on treatment preference. Additionally, we also discuss the implication for rational combination therapies, molecular regulation, as well as potential limitations.
Collapse
Affiliation(s)
- Shuwei Guo
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fengfeng Han
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
11
|
The Ecto-5
′
nucleotidase/CD73 Mediates Leishmania amazonensis Survival in Macrophages. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9928362. [PMID: 35187176 PMCID: PMC8856795 DOI: 10.1155/2022/9928362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022]
Abstract
Endogenous nucleotides produced by various group of cells under inflammatory conditions act as potential danger signals in vivo. Extracellularly released nucleotides such as ATP are rapidly hydrolyzed to adenosine by the coordinated ectonucleotidase activities of CD39 and CD73. Leishmania is an obligate intracellular parasite of macrophages and capable of modulating host immune response in order to survive and multiply within host cells. In this study, the activity of CD73 induced by Leishmania amazonensis in infected macrophages has been investigated and correlated with parasite survival and infection in vitro. For this, the expression of CD39 and CD73, by flow cytometry, in murine peritoneal macrophages infected with metacyclic promastigotes of L. amazonensis has been analyzed. Our results showed that L. amazonensis-infected macrophages, unlike LPS-treated macrophages, increased CD73 expression. It was also noted that when CD73 enzymatic activity was blocked by α, β-methyleneadenosine 5′-diphosphate sodium salt (APCP), macrophage parasitism was significantly decreased. Interestingly, these effects were not associated with the production of TNF-α, IL-10, or nitric oxide (NO). Together, these data demonstrate that L. amazonensis induces a regulatory phenotype in macrophages, which by activating the CD39/CD73 pathway allows parasite survival through the action of immunomodulatory adenosine receptors.
Collapse
|
12
|
Ngamsri KC, Putri RA, Jans C, Schindler K, Fuhr A, Zhang Y, Gamper-Tsigaras J, Ehnert S, Konrad FM. CXCR4 and CXCR7 Inhibition Ameliorates the Formation of Platelet-Neutrophil Complexes and Neutrophil Extracellular Traps through Adora2b Signaling. Int J Mol Sci 2021; 22:13576. [PMID: 34948374 PMCID: PMC8709064 DOI: 10.3390/ijms222413576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022] Open
Abstract
Peritonitis and peritonitis-associated sepsis are characterized by an increased formation of platelet-neutrophil complexes (PNCs), which contribute to an excessive migration of polymorphonuclear neutrophils (PMN) into the inflamed tissue. An important neutrophilic mechanism to capture and kill invading pathogens is the formation of neutrophil extracellular traps (NETs). Formation of PNCs and NETs are essential to eliminate pathogens, but also lead to aggravated tissue damage. The chemokine receptors CXCR4 and CXCR7 on platelets and PMNs have been shown to play a pivotal role in inflammation. Thereby, CXCR4 and CXCR7 were linked with functional adenosine A2B receptor (Adora2b) signaling. We evaluated the effects of selective CXCR4 and CXCR7 inhibition on PNCs and NETs in zymosan- and fecal-induced sepsis. We determined the formation of PNCs in the blood and, in addition, their infiltration into various organs in wild-type and Adora2b-/- mice by flow cytometry and histological methods. Further, we evaluated NET formation in both mouse lines and the impact of Adora2b signaling on it. We hypothesized that the protective effects of CXCR4 and CXCR7 antagonism on PNC and NET formation are linked with Adora2b signaling. We observed an elevated CXCR4 and CXCR7 expression in circulating platelets and PMNs during acute inflammation. Specific CXCR4 and CXCR7 inhibition reduced PNC formation in the blood, respectively, in the peritoneal, lung, and liver tissue in wild-type mice, while no protective anti-inflammatory effects were observed in Adora2b-/- animals. In vitro, CXCR4 and CXCR7 antagonism dampened PNC and NET formation with human platelets and PMNs, confirming our in vivo data. In conclusion, our study reveals new protective aspects of the pharmacological modulation of CXCR4 and CXCR7 on PNC and NET formation during acute inflammation.
Collapse
Affiliation(s)
- Kristian-Christos Ngamsri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Rizki A. Putri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Christoph Jans
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Katharina Schindler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Anika Fuhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Yi Zhang
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Jutta Gamper-Tsigaras
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany;
| | - Franziska M. Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany; (K.-C.N.); (R.A.P.); (C.J.); (K.S.); (A.F.); (Y.Z.); (J.G.-T.)
| |
Collapse
|
13
|
Cardoso AM, Silvério MNO, de Oliveira Maciel SFV. Purinergic signaling as a new mechanism underlying physical exercise benefits: a narrative review. Purinergic Signal 2021; 17:649-679. [PMID: 34590239 PMCID: PMC8677870 DOI: 10.1007/s11302-021-09816-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
In the last years, it has become evident that both acute and chronic physical exercise trigger responses/adaptations in the purinergic signaling and these adaptations can be considered one important mechanism related to the exercise benefits for health improvement. Purinergic system is composed of enzymes (ectonucleotidases), receptors (P1 and P2 families), and molecules (ATP, ADP, adenosine) that are able to activate these receptors. These components are widely distributed in almost all cell types, and they respond/act in a specific manner depending on the exercise types and/or intensities as well as the cell type (organ/tissue analyzed). For example, while acute intense exercise can be associated with tissue damage, inflammation, and platelet aggregation, chronic exercise exerts anti-inflammatory and anti-aggregant effects, promoting health and/or treating diseases. All of these effects are dependent on the purinergic signaling. Thus, this review was designed to cover the aspects related to the relationship between physical exercise and purinergic signaling, with emphasis on the modulation of ectonucleotidases and receptors. Here, we discuss the impact of different exercise protocols as well as the differences between acute and chronic effects of exercise on the extracellular signaling exerted by purinergic system components. We also reinforce the concept that purinergic signaling must be understood/considered as a mechanism by which exercise exerts its effects.
Collapse
Affiliation(s)
- Andréia Machado Cardoso
- Graduate Program in Biomedical Sciences and Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil.
- Graduate Program in Physical Education, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Mauro Nicollas Oliveira Silvério
- Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil
| | - Sarah Franco Vieira de Oliveira Maciel
- Graduate Program in Biomedical Sciences and Medicine Course, Federal University of Fronteira Sul - UFFS, Campus Chapecó, Rodovia SC 484 - Km 02, Fronteira Sul, 89815-899, Brazil
| |
Collapse
|
14
|
Ďurčo F, Köstlin-Gille N, Poets CF, Gille C. Modulatory activity of adenosine on the immune response in cord and adult blood. Pediatr Res 2021; 90:989-997. [PMID: 33564128 DOI: 10.1038/s41390-020-01275-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Neonatal sepsis is a leading cause of neonatal morbidity and mortality, associated with immunosuppression. Myeloid-derived suppressor cells (MDSCs) are cells with immunosuppressive activity, present in high amounts in cord blood. Mechanisms regulating MDSC expansion are incompletely understood. Adenosine is a metabolite with immunoregulatory effects that are elevated in cord blood. METHODS Impact of adenosine on peripheral and cord blood mononuclear cells (PBMCs and CBMCs) was analysed by quantification of ectonucleotidases and adenosine receptor expression, MDSC induction from PBMCs and CBMCs, their suppressive capacity on T cell proliferation and effector enzyme expression by flow cytometry. RESULTS Cord blood monocytes mainly expressed CD39, while cord blood T cells expressed CD73. Adenosine-induced MDSCs from PBMCs induced indoleamine-2,3-dioxygenase (IDO) expression and enhanced arginase I expression in monocytes. Concerted action of IDO and ArgI led to effective inhibition of T cell proliferation. In addition, adenosine upregulated inhibitory A3 receptors on monocytes. CONCLUSION Adenosine acts by inducing MDSCs and upregulating inhibitory A3 receptors, probably as a mode of autoregulation. Thus, adenosine contributes to immunosuppressive status and may be a target for immunomodulation during pre- and postnatal development. IMPACT Immune effector cells, that is, monocytes, T cells and MDSCs from cord blood express ectonucleotidases CD39 and CD73 and may thus serve as a source for adenosine as an immunomodulatory metabolite. Adenosine mediates its immunomodulatory properties in cord blood by inducing MDSCs, and by modulating the inhibitory adenosine A3 receptor on monocytes. Adenosine upregulates expression of IDO in MDSCs and monocytes potentially contributing to their suppressive activity.
Collapse
Affiliation(s)
- Filip Ďurčo
- Department of Neonatology, University Children's Hospital, Tuebingen, Germany
| | | | - Christian F Poets
- Department of Neonatology, University Children's Hospital, Tuebingen, Germany
| | - Christian Gille
- Department of Neonatology, University Children's Hospital, Tuebingen, Germany.
| |
Collapse
|
15
|
Song D, Zhao M, Feng L, Wang P, Li Y, Li W. Salidroside attenuates acute lung injury via inhibition of inflammatory cytokine production. Biomed Pharmacother 2021; 142:111949. [PMID: 34325302 DOI: 10.1016/j.biopha.2021.111949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Acute lung injury is a fatal condition characterized by excessive inflammation responses. Salidroside, the active constituent of Rhodiola rosea, possesses properties including anti-oxidation, anti-aging, anti-inflammatory, anti-hypoxia, and anti-cancer activities. In the present study, Salidroside attenuated acute lung injury via inhibition of inflammatory cytokine production. Rats pre-treated with Salidroside showed attenuated lipopolysaccharide (LPS)-induced pathological damage and suppressed tumor necrosis factor-alpha (TNFα) and interleukin 6 (IL-6) secretion in the lung. Furthermore, flow cytometry showed that Salidroside reduced the production of TNFα and IL-6 in NR8383 alveolar macrophages. These findings suggest that Salidroside may attenuate LPS-induced acute lung injury.
Collapse
Affiliation(s)
- Dan Song
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Min Zhao
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Liuxiang Feng
- People's Hospital of Yulong Naxi Autonomous County of Lijiang City, Yulong Naxi Autonomous County 674100, Yunnan, China
| | - Pingyi Wang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Yimei Li
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Wenhua Li
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China; Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China.
| |
Collapse
|
16
|
Allard D, Allard B, Stagg J. On the mechanism of anti-CD39 immune checkpoint therapy. J Immunother Cancer 2021; 8:jitc-2019-000186. [PMID: 32098829 PMCID: PMC7057429 DOI: 10.1136/jitc-2019-000186] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2019] [Indexed: 12/26/2022] Open
Abstract
With the coming of age of cancer immunotherapy, the search for new therapeutic targets has led to the identification of immunosuppressive adenosine as an important regulator of antitumor immunity. This resulted in the development of selective inhibitors targeting various components of the adenosinergic pathway, including small molecules antagonists targeting the high affinity A2A adenosine receptor and low affinity A2B receptor, therapeutic monoclonal antibodies (mAbs) and small molecules targeting CD73 and therapeutic mAbs targeting CD39. As each regulator of the adenosinergic pathway present non-overlapping biologic functions, a better understanding of the mechanisms of action of each targeted approach should accelerate clinical translation and improve rational design of combination treatments. In this review, we discuss the potential mechanisms-of-action of anti-CD39 cancer therapy and potential toxicities that may emerge from sustained CD39 inhibition. Caution should be taken, however, in extrapolating data from gene-targeted mice to patients treated with blocking anti-CD39 agents. As phase I clinical trials are now underway, further insights into the mechanism of action and potential adverse events associated with anti-CD39 therapy are anticipated in coming years.
Collapse
Affiliation(s)
- David Allard
- Faculty of Pharmacy, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| | - Bertrand Allard
- Institut du Cancer de Montreal, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| | - John Stagg
- Faculty of Pharmacy, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada .,Institut du Cancer de Montreal, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Hanidziar D, Robson SC. Synapomorphic features of hepatic and pulmonary vasculatures include comparable purinergic signaling responses in host defense and modulation of inflammation. Am J Physiol Gastrointest Liver Physiol 2021; 321:G200-G212. [PMID: 34105986 PMCID: PMC8410108 DOI: 10.1152/ajpgi.00406.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatosplanchnic and pulmonary vasculatures constitute synapomorphic, highly comparable networks integrated with the external environment. Given functionality related to obligatory requirements of "feeding and breathing," these organs are subject to constant environmental challenges entailing infectious risk, antigenic and xenobiotic exposures. Host responses to these stimuli need to be both protective and tightly regulated. These functions are facilitated by dualistic, high-low pressure blood supply of the liver and lungs, as well as tolerogenic characteristics of resident immune cells and signaling pathways. Dysregulation in hepatosplanchnic and pulmonary blood flow, immune responses, and microbiome implicate common pathogenic mechanisms across these vascular networks. Hepatosplanchnic diseases, such as cirrhosis and portal hypertension, often impact lungs and perturb pulmonary circulation and oxygenation. The reverse situation is also noted with lung disease resulting in hepatic dysfunction. Others, and we, have described common features of dysregulated cell signaling during liver and lung inflammation involving extracellular purines (e.g., ATP, ADP), either generated exogenously or endogenously. These metabokines serve as danger signals, when released by bacteria or during cellular stress and cause proinflammatory and prothrombotic signals in the gut/liver-lung vasculature. Dampening of these danger signals and organ protection largely depends upon activities of vascular and immune cell-expressed ectonucleotidases (CD39 and CD73), which convert ATP and ADP into anti-inflammatory adenosine. However, in many inflammatory disorders involving gut, liver, and lung, these protective mechanisms are compromised, causing perpetuation of tissue injury. We propose that interventions that specifically target aberrant purinergic signaling might prevent and/or ameliorate inflammatory disorders of the gut/liver and lung axis.
Collapse
Affiliation(s)
- Dusan Hanidziar
- 1Department of Anesthesia, Critical Care and Pain Medicine, grid.32224.35Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Simon C. Robson
- 2Department of Anesthesia, Critical Care and Pain Medicine, Center for Inflammation Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts,3Department of Medicine, Division of Gastroenterology/Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Ehlers L, Kuppe A, Damerau A, Wilantri S, Kirchner M, Mertins P, Strehl C, Buttgereit F, Gaber T. Surface AMP deaminase 2 as a novel regulator modifying extracellular adenine nucleotide metabolism. FASEB J 2021; 35:e21684. [PMID: 34159634 DOI: 10.1096/fj.202002658rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Adenine nucleotides represent crucial immunomodulators in the extracellular environment. The ectonucleotidases CD39 and CD73 are responsible for the sequential catabolism of ATP to adenosine via AMP, thus promoting an anti-inflammatory milieu induced by the "adenosine halo". AMPD2 intracellularly mediates AMP deamination to IMP, thereby both enhancing the degradation of inflammatory ATP and reducing the formation of anti-inflammatory adenosine. Here, we show that this enzyme is expressed on the surface of human immune cells and its predominance may modify inflammatory states by altering the extracellular milieu. Surface AMPD2 (eAMPD2) expression on monocytes was verified by immunoblot, surface biotinylation, mass spectrometry, and immunofluorescence microscopy. Flow cytometry revealed enhanced monocytic eAMPD2 expression after TLR stimulation. PBMCs from patients with rheumatoid arthritis displayed significantly higher levels of eAMPD2 expression compared with healthy controls. Furthermore, the product of AMPD2-IMP-exerted anti-inflammatory effects, while the levels of extracellular adenosine were not impaired by an increased eAMPD2 expression. In summary, our study identifies eAMPD2 as a novel regulator of the extracellular ATP-adenosine balance adding to the immunomodulatory CD39-CD73 system.
Collapse
Affiliation(s)
- Lisa Ehlers
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ) Institute of the Leibniz Association, Berlin, Germany
| | - Aditi Kuppe
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ) Institute of the Leibniz Association, Berlin, Germany
| | - Alexandra Damerau
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ) Institute of the Leibniz Association, Berlin, Germany
| | - Siska Wilantri
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ) Institute of the Leibniz Association, Berlin, Germany
| | - Marieluise Kirchner
- BIH Core Unit Proteomics, Berlin Institute of Health (BIH) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Philipp Mertins
- BIH Core Unit Proteomics, Berlin Institute of Health (BIH) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ) Institute of the Leibniz Association, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ) Institute of the Leibniz Association, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ) Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
19
|
Huang YA, Chen JC, Wu CC, Hsu CW, Ko AMS, Chen LC, Kuo ML. Reducing Lung ATP Levels and Alleviating Asthmatic Airway Inflammation through Adeno-Associated Viral Vector-Mediated CD39 Expression. Biomedicines 2021; 9:biomedicines9060656. [PMID: 34201190 PMCID: PMC8228057 DOI: 10.3390/biomedicines9060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/04/2022] Open
Abstract
Asthma is a chronic respiratory inflammatory disease. Patients usually suffer long-term symptoms and high medical expenses. Extracellular ATP (eATP) has been identified as a danger signal in innate immunity and serves as a potent inflammatory mediator for asthma. Hydrolyzing eATP in lungs might be a potential approach to alleviate asthmatic inflammation. Recombinant adeno-associated virus (rAAV) vectors that contain tissue-specific cap protein have been demonstrated to efficiently transfer exogenous genes into the lung tissues. To test anti-inflammation efficacy of rAAV-mediated CD39 gene transfer, rAAV-CD39 was generated and applied to OVA-mediated asthmatic mice. BALB/c mice were sensitized intraperitoneally and challenged intratracheally with OVA and treated with rAAV-CD39. At the end of procedure, some inflammatory features were examined. rAAV-CD39 treatment downregulated the levels of pulmonary eATP by the rescued expression of CD39. Several asthmatic features, such as airway hyperresponsiveness, eosinophilia, mucin deposition, and IL-5/IL-13 production in the lungs were decreased in the rAAV-CD39-treated mice. Reduced IL-5/IL-13 production and increased frequency of CD4+FoxP3+ regulatory T cells were detected in draining lymph nodes of rAAV-CD39 treated mice. This evidence suggested that rAAV-mediated CD39 gene transfer attenuated the asthmatic airway inflammation locally. The results suggest that rAAV-CD39 might have therapeutic potential for asthma.
Collapse
Affiliation(s)
- Yung-An Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Jeng-Chang Chen
- Department of Surgery, Chang Gung Memorial Hospital-Linkou, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Wei Hsu
- Department of Otolaryngology—Head and Neck Surgery, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11574, Taiwan
| | - Albert Min-Shan Ko
- Department of Cardiovascular Diseases, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
| | - Li-Chen Chen
- Department of Pediatrics, Division of Allergy, Asthma, and Rheumatology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City 23664, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Cardiovascular Diseases, Chang Gung Memorial Hospital-Linkou, Taoyuan 33302, Taiwan;
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei City 23664, Taiwan
- Correspondence: ; Tel.: +886-3-2118800 (ext. 3319)
| |
Collapse
|
20
|
Missel A, Walenta L, Eubler K, Mundt N, Heikelä H, Pickl U, Trottmann M, Popper B, Poutanen M, Strauss L, Köhn FM, Kunz L, Spehr M, Mayerhofer A. Testicular adenosine acts as a pro-inflammatory molecule: role of testicular peritubular cells. Mol Hum Reprod 2021; 27:6276438. [PMID: 33993290 DOI: 10.1093/molehr/gaab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular ATP has been described to be involved in inflammatory cytokine production by human testicular peritubular cells (HTPCs). The ectonucleotidases ENTPD1 and NT5E degrade ATP and have been reported in rodent testicular peritubular cells. We hypothesized that if a similar situation exists in human testis, ATP metabolites may contribute to cytokine production. Indeed, ENTPD1 and NT5E were found in situ and in vitro in HTPCs. Malachite green assays confirmed enzyme activities in HTPCs. Pharmacological inhibition of ENTPD1 (by POM-1) significantly reduced pro-inflammatory cytokines evoked by ATP treatment, suggesting that metabolites of ATP, including adenosine, are likely involved. We focused on adenosine and detected three of the four known adenosine receptors in HTPCs. One, A2B, was also found in situ in peritubular cells of human testicular sections. The A2B agonist BAY60-6583 significantly elevated levels of IL6 and CXCL8, a result also obtained with adenosine and its analogue NECA. Results of siRNA-mediated A2B down-regulation support a role of this receptor. In mouse peritubular cells, in contrast to HTPCs, all four of the known adenosine receptors were detected; when challenged with adenosine, cytokine expression levels significantly increased. Organotypic short-term testis cultures yielded comparable results and indicate an overall pro-inflammatory action of adenosine in the mouse testis. If transferable to the in vivo situation, our results may implicate that interference with the generation of ATP metabolites or interference with adenosine receptors could reduce inflammatory events in the testis. These novel insights may provide new avenues for treatment of sterile inflammation in male subfertility and infertility.
Collapse
Affiliation(s)
- Annika Missel
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Lena Walenta
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Katja Eubler
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Nadine Mundt
- Institute of Biology II/Department of Chemosensation, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416, MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Hanna Heikelä
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | | | | - Bastian Popper
- Biomedical Center (BMC), Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Matti Poutanen
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Leena Strauss
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | | - Lars Kunz
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Marc Spehr
- Institute of Biology II/Department of Chemosensation, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416, MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Artur Mayerhofer
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| |
Collapse
|
21
|
Wang W, Chen NY, Ren D, Davies J, Philip K, Eltzschig HK, Blackburn MR, Akkanti B, Karmouty-Quintana H, Weng T. Enhancing Extracellular Adenosine Levels Restores Barrier Function in Acute Lung Injury Through Expression of Focal Adhesion Proteins. Front Mol Biosci 2021; 8:636678. [PMID: 33778007 PMCID: PMC7987656 DOI: 10.3389/fmolb.2021.636678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) is a clinical presentation of acute lung injury (ALI) with often fatal lung complication. Adenosine, a nucleoside generated following cellular stress provides protective effects in acute injury. The levels of extracellular adenosine can be depleted by equilibrative nucleoside transporters (ENTs). ENT inhibition by pharmaceutical agent dipyridamole promotes extracellular adenosine accumulation and is protective in ARDS. However, the therapeutic potential of dipyridamole in acute lung injury has not yet been evaluated. Methods: Adenosine acts on three adenosine receptors, the adenosine A1 (Adora1), A2a (Adora2a), the A2b (Adora2b) or the adenosine A3 (Adora 3) receptor. Accumulation of adenosine is usually required to stimulate the low-affinity Adora2b receptor. In order to investigate the effect of adenosine accumulation and the contribution of epithelial-specific ENT2 or adora2b expression in experimental ALI, dipyridamole, and epithelial specific ENT2 or Adora2b deficient mice were utilized. MLE12 cells were used to probe downstream Adora2b signaling. Adenosine receptors, transporters, and targets were determined in ARDS lungs. Results: ENT2 is mainly expressed in alveolar epithelial cells and is negatively regulated by hypoxia following tissue injury. Enhancing adenosine levels with ENT1/ENT2 inhibitor dipyridamole at a time when bleomycin-induced ALI was present, reduced further injury. Mice pretreated with the ADORA2B agonist BAY 60-6583 were protected from bleomycin-induced ALI by reducing vascular leakage (558.6 ± 50.4 vs. 379.9 ± 70.4, p < 0.05), total bronchoalveolar lavage fluid cell numbers (17.9 ± 1.8 to 13.4 ± 1.4 e4, p < 0.05), and neutrophil infiltration (6.42 ± 0.25 vs. 3.94 ± 0.29, p < 0.05). While mice lacking Adora2b in AECs were no longer protected by dipyridamole. We also identified occludin and focal adhesion kinase as downstream targets of ADORA2B, thus providing a novel mechanism for adenosine-mediated barrier protection. Similarly, we also observed similar enhanced ADORA2B (3.33 ± 0.67 to 16.12 ± 5.89, p < 0.05) and decreased occludin (81.2 ± 0.3 to 13.3 ± 0.4, p < 0.05) levels in human Acute respiratory distress syndrome lungs. Conclusion: We have highlighted a role of dipyridamole and adenosine signaling in preventing or treating ALI and identified Ent2 and Adora2b as key mediators in important for the resolution of ALI.
Collapse
Affiliation(s)
- Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning-yuan Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Dewei Ren
- Houston Methodist J.C. Walter Jr. Transplant Center, Houston Methodist Hospital, Houston, TX, United States
| | - Jonathan Davies
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Kemly Philip
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Michael R. Blackburn
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- UTHealth Pulmonary Center of Excellence, Houston, TX, United States
| | - Bindu Akkanti
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- UTHealth Pulmonary Center of Excellence, Houston, TX, United States
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- UTHealth Pulmonary Center of Excellence, Houston, TX, United States
| |
Collapse
|
22
|
Giuliani AL, Sarti AC, Di Virgilio F. Ectonucleotidases in Acute and Chronic Inflammation. Front Pharmacol 2021; 11:619458. [PMID: 33613285 PMCID: PMC7887318 DOI: 10.3389/fphar.2020.619458] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Ectonucleotidases are extracellular enzymes with a pivotal role in inflammation that hydrolyse extracellular purine and pyrimidine nucleotides, e.g., ATP, UTP, ADP, UDP, AMP and NAD+. Ectonucleotidases, expressed by virtually all cell types, immune cells included, either as plasma membrane-associated or secreted enzymes, are classified into four main families: 1) nucleoside triphosphate diphosphohydrolases (NTPDases), 2) nicotinamide adenine dinucleotide glycohydrolase (NAD glycohydrolase/ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1), 3) ecto-5′-nucleotidase (NT5E), and 4) ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs). Concentration of ATP, UTP and NAD+ can be increased in the extracellular space thanks to un-regulated, e.g., cell damage or cell death, or regulated processes. Regulated processes include secretory exocytosis, connexin or pannexin hemichannels, ATP binding cassette (ABC) transporters, calcium homeostasis modulator (CALMH) channels, the ATP-gated P2X7 receptor, maxi-anion channels (MACs) and volume regulated ion channels (VRACs). Hydrolysis of extracellular purine nucleotides generates adenosine, an important immunosuppressant. Extracellular nucleotides and nucleosides initiate or dampen inflammation via P2 and P1 receptors, respectively. All these agents, depending on their level of expression or activation and on the agonist concentration, are potent modulators of inflammation and key promoters of host defences, immune cells activation, pathogen clearance, tissue repair and regeneration. Thus, their knowledge is of great importance for a full understanding of the pathophysiology of acute and chronic inflammatory diseases. A selection of these pathologies will be briefly discussed here.
Collapse
Affiliation(s)
- Anna Lisa Giuliani
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alba Clara Sarti
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
Zeng J, Ning Z, Wang Y, Xiong H. Implications of CD39 in immune-related diseases. Int Immunopharmacol 2020; 89:107055. [PMID: 33045579 DOI: 10.1016/j.intimp.2020.107055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
Abstract
Extracellular adenosine triphosphate (eATP) mediates pro-inflammatory responses by recruiting and activating inflammatory cells. CD39 can hydrolyze eATP into adenosine monophosphate (AMP), while CD73 can convert AMP into the immunosuppressive nucleoside adenosine (ADO). CD39 is a rate-limiting enzyme in this cascade, which is regarded as an immunological switch shifting the ATP-mediated pro-inflammatory environment to the ADO- mediated anti-inflammatory status. The CD39 expression can be detected in a wide spectrum of immunocytes, which is under the influence of environmental and genetic factors. It is increasingly suggested that, CD39 participates in some pathophysiological processes, like inflammatory bowel disease (IBD), sepsis, multiple sclerosis (MS), allergic diseases, ischemia-reperfusion (I/R) injury, systemic lupus erythematosus (SLE), diabetes and cancer. Here, we focus on the current understanding of CD39 in immunity, and comprehensively illustrate the diverse CD39 functions within a variety of disorders.
Collapse
Affiliation(s)
- Jianrui Zeng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Yuzhong Wang
- Department of Neurology and Central Laboratory, Affiliated Hospital of Jining Medical University, Shandong 272000, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China.
| |
Collapse
|
24
|
Paganelli F, Gaudry M, Ruf J, Guieu R. Recent advances in the role of the adenosinergic system in coronary artery disease. Cardiovasc Res 2020; 117:1284-1294. [PMID: 32991685 DOI: 10.1093/cvr/cvaa275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/14/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine is an endogenous nucleoside that plays a major role in the physiology and physiopathology of the coronary artery system, mainly by activating its A2A receptors (A2AR). Adenosine is released by myocardial, endothelial, and immune cells during hypoxia, ischaemia, or inflammation, each condition being present in coronary artery disease (CAD). While activation of A2AR improves coronary blood circulation and leads to anti-inflammatory effects, down-regulation of A2AR has many deleterious effects during CAD. A decrease in the level and/or activity of A2AR leads to: (i) lack of vasodilation, which decreases blood flow, leading to a decrease in myocardial oxygenation and tissue hypoxia; (ii) an increase in the immune response, favouring inflammation; and (iii) platelet aggregation, which therefore participates, in part, in the formation of a fibrin-platelet thrombus after the rupture or erosion of the plaque, leading to the occurrence of acute coronary syndrome. Inflammation contributes to the development of atherosclerosis, leading to myocardial ischaemia, which in turn leads to tissue hypoxia. Therefore, a vicious circle is created that maintains and aggravates CAD. In some cases, studying the adenosinergic profile can help assess the severity of CAD. In fact, inducible ischaemia in CAD patients, as assessed by exercise stress test or fractional flow reserve, is associated with the presence of a reserve of A2AR called spare receptors. The purpose of this review is to present emerging experimental evidence supporting the existence of this adaptive adenosinergic response to ischaemia or inflammation in CAD. We believe that we have achieved a breakthrough in the understanding and modelling of spare A2AR, based upon a new concept allowing for a new and non-invasive CAD management.
Collapse
Affiliation(s)
- Franck Paganelli
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France.,Department of Cardiology, North Hospital, Chemin des Bourrely, F-13015 Marseille, France
| | - Marine Gaudry
- Department of Vascular Surgery, Timone Hospital, 278 Rue Saint Pierre, F-13005 Marseille, France
| | - Jean Ruf
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France
| | - Régis Guieu
- C2VN, INSERM, INRAE, Aix-Marseille University, Campus Santé Timone, Faculté de Pharmacie, 27 Bd Jean Moulin, F-13005 Marseille, France.,Laboratory of Biochemistry, Timone Hospital, 278 Rue Saint Pierre, F-13005 Marseille, France
| |
Collapse
|
25
|
Falcone C, Caracciolo M, Correale P, Macheda S, Vadalà EG, La Scala S, Tescione M, Danieli R, Ferrarelli A, Tarsitano MG, Romano L, De Lorenzo A. Can Adenosine Fight COVID-19 Acute Respiratory Distress Syndrome? J Clin Med 2020; 9:E3045. [PMID: 32967358 PMCID: PMC7564484 DOI: 10.3390/jcm9093045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) patients can develop interstitial pneumonia, which, in turn, can evolve into acute respiratory distress syndrome (ARDS). This is accompanied by an inflammatory cytokine storm. severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has proteins capable of promoting the cytokine storm, especially in patients with comorbidities, including obesity. Since currently no resolutive therapy for ARDS has been found and given the scientific literature regarding the use of adenosine, its application has been hypothesized. Through its receptors, adenosine is able to inhibit the acute inflammatory process, increase the protection capacity of the epithelial barrier, and reduce the damage due to an overactivation of the immune system, such as that occurring in cytokine storms. These features are known in ischemia/reperfusion models and could also be exploited in acute lung injury with hypoxia. Considering these hypotheses, a COVID-19 patient with unresponsive respiratory failure was treated with adenosine for compassionate use. The results showed a rapid improvement of clinical conditions, with negativity of SARS-CoV2 detection.
Collapse
Affiliation(s)
- Carmela Falcone
- Unit of Radiology, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (C.F.); (A.F.)
| | - Massimo Caracciolo
- Unit of Intensive Postoperative Therapy, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy;
| | - Pierpaolo Correale
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy;
| | - Sebastiano Macheda
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Eugenio Giuseppe Vadalà
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Stefano La Scala
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Marco Tescione
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Roberta Danieli
- Department of Human Sciences and Promotion of the Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Anna Ferrarelli
- Unit of Radiology, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (C.F.); (A.F.)
| | | | - Lorenzo Romano
- School of Specialization in Food Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
26
|
|
27
|
Wirsching E, Fauler M, Fois G, Frick M. P2 Purinergic Signaling in the Distal Lung in Health and Disease. Int J Mol Sci 2020; 21:E4973. [PMID: 32674494 PMCID: PMC7404078 DOI: 10.3390/ijms21144973] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The distal lung provides an intricate structure for gas exchange in mammalian lungs. Efficient gas exchange depends on the functional integrity of lung alveoli. The cells in the alveolar tissue serve various functions to maintain alveolar structure, integrity and homeostasis. Alveolar epithelial cells secrete pulmonary surfactant, regulate the alveolar surface liquid (ASL) volume and, together with resident and infiltrating immune cells, provide a powerful host-defense system against a multitude of particles, microbes and toxicants. It is well established that all of these cells express purinergic P2 receptors and that purinergic signaling plays important roles in maintaining alveolar homeostasis. Therefore, it is not surprising that purinergic signaling also contributes to development and progression of severe pathological conditions like pulmonary inflammation, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) and pulmonary fibrosis. Within this review we focus on the role of P2 purinergic signaling in the distal lung in health and disease. We recapitulate the expression of P2 receptors within the cells in the alveoli, the possible sources of ATP (adenosine triphosphate) within alveoli and the contribution of purinergic signaling to regulation of surfactant secretion, ASL volume and composition, as well as immune homeostasis. Finally, we summarize current knowledge of the role for P2 signaling in infectious pneumonia, ALI/ARDS and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
| | | | | | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (E.W.); (M.F.); (G.F.)
| |
Collapse
|
28
|
Analysis of purine receptor expression and functionality in alveolar epithelial cells. Purinergic Signal 2020; 16:213-229. [PMID: 32236789 DOI: 10.1007/s11302-020-09696-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Despite its fundamental role in providing an extensive surface for gas exchange, the alveolar epithelium (AE) serves as an immunological barrier through, e.g., the release of proinflammatory cytokines and secretion of surfactant to prevent alveolar collapse. Thus, AE is important for sustaining lung homeostasis. Extracellular ATP secreted by alveolar epithelial cells (AECs) is involved in physiological and pathological conditions and acts mainly through the activation of purine receptors (P2Rs). When studying P2R-mediated processes, primary isolated type II AECs (piAECs) still represent the gold standard in in vitro research, although their preparation is time-consuming and requires the sacrifice of many animals. Hence, cultivated immortalized and tumor-derived AEC lines may constitute a valuable alternative. In this work, we examined P2R expression and functionality in piAECs, in immortalized and tumor-derived AEC lines with the purpose of gaining a better understanding of purinergic signaling in different cell systems and assisting researchers in the choice of a suitable cell line with a certain P2R in demand. We combined mRNA and protein analysis to evaluate the expression of P2R. For pharmacological testing, we conducted calcium ([Ca2+]) measurements and siRNA receptor knockdown. Interestingly, the mRNA and protein levels of P2Y2, P2Y6, and P2X4 were detected on all cell lines. Concerning functionality, P2XR could be narrowed to L2 and piAECs while P2YR were active in all cell lines.
Collapse
|
29
|
Wang Y, Copeland J, Shin M, Chang Y, Venton BJ. CD73 or CD39 Deletion Reveals Different Mechanisms of Formation for Spontaneous and Mechanically Stimulated Adenosine and Sex Specific Compensations in ATP Degradation. ACS Chem Neurosci 2020; 11:919-928. [PMID: 32083837 DOI: 10.1021/acschemneuro.9b00620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adenosine is important for local neuromodulation, and rapid adenosine signaling can occur spontaneously or after mechanical stimulation, but little is known about how adenosine is formed in the extracellular space for those stimulations. Here, we studied mechanically stimulated and spontaneous adenosine to determine if rapid adenosine is formed by extracellular breakdown of adenosine triphosphate (ATP) using mice globally deficient in extracellular breakdown enzymes, either CD39 (nucleoside triphosphate diphosphohydrolase 1, NTPDase1) or CD73 (ecto-5'-nucleotidase). CD39 knockout (KO) mice have a lower frequency of spontaneous adenosine events than wild-type (WT, C57BL/6). Surprisingly, CD73KO mice demonstrate sex differences in spontaneous adenosine; males maintain similar event frequencies as WT, but females have significantly fewer events and lower concentrations. Examining the mRNA expression of other enzymes that metabolize ATP revealed tissue nonspecific alkaline phosphatase (TNAP) was upregulated in male CD73KO mice, but not secreted prostatic acid phosphatase (PAP) or transmembrane PAP. Thus, TNAP upregulation compensates for CD73 loss in males but not in females. These sex differences highlight that spontaneous adenosine is formed by metabolism of extracellular ATP by many enzymes. For mechanically stimulated adenosine, CD39KO or CD73KO did not change stimulation frequency, concentration, or t1/2. Thus, the mechanism of formation for mechanically stimulated adenosine is likely direct release of adenosine, different than spontaneous adenosine. Understanding these different mechanisms of rapid adenosine formation will help to develop pharmacological treatments that differentially target modes of rapid adenosine signaling, and all treatments should be studied in both sexes, given possible differences in extracellular ATP degradation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jeffrey Copeland
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Biology, Eastern Mennonite University, Harrisonburg, Virginia 22802, United States
| | - Mimi Shin
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Yuanyu Chang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
30
|
Ngamsri KC, Jans C, Putri RA, Schindler K, Gamper-Tsigaras J, Eggstein C, Köhler D, Konrad FM. Inhibition of CXCR4 and CXCR7 Is Protective in Acute Peritoneal Inflammation. Front Immunol 2020; 11:407. [PMID: 32210974 PMCID: PMC7076176 DOI: 10.3389/fimmu.2020.00407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Our previous studies revealed a pivotal role of the chemokine stromal cell-derived factor (SDF)-1 and its receptors CXCR4 and CXCR7 on migratory behavior of polymorphonuclear granulocytes (PMNs) in pulmonary inflammation. Thereby, the SDF-1-CXCR4/CXCR7-axis was linked with adenosine signaling. However, the role of the SDF-1 receptors CXCR4 and CXCR7 in acute inflammatory peritonitis and peritonitis-related sepsis still remained unknown. The presented study provides new insight on the mechanism of a selective inhibition of CXCR4 (AMD3100) and CXCR7 (CCX771) in two models of peritonitis and peritonitis-related sepsis by injection of zymosan and fecal solution. We observed an increased expression of SDF-1, CXCR4, and CXCR7 in peritoneal tissue and various organs during acute inflammatory peritonitis. Selective inhibition of CXCR4 and CXCR7 reduced PMN accumulation in the peritoneal fluid and infiltration of neutrophils in lung and liver tissue in both models. Both inhibitors had no anti-inflammatory effects in A2B knockout animals (A2B–/–). AMD3100 and CCX771 treatment reduced capillary leakage and increased formation of tight junctions as a marker for microvascular permeability in wild type animals. In contrast, both inhibitors failed to improve capillary leakage in A2B–/– animals, highlighting the impact of the A2B-receptor in SDF-1 mediated signaling. After inflammation, the CXCR4 and CXCR7 antagonist induced an enhanced expression of the protective A2B adenosine receptor and an increased activation of cAMP (cyclic adenosine mono phosphate) response element-binding protein (CREB), as downstream signaling pathway of A2B. The CXCR4- and CXCR7-inhibitor reduced the release of cytokines in wild type animals via decreased intracellular phosphorylation of ERK and NFκB p65. In vitro, CXCR4 and CXCR7 antagonism diminished the chemokine release of human cells and increased cellular integrity by enhancing the expression of tight junctions. These protective effects were linked with functional A2B-receptor signaling, confirming our in vivo data. In conclusion, our study revealed new protective aspects of the pharmacological modulation of the SDF-1-CXCR4/CXCR7-axis during acute peritoneal inflammation in terms of the two hallmarks PMN migration and barrier integrity. Both anti-inflammatory effects were linked with functional adenosine A2B-receptor signaling.
Collapse
Affiliation(s)
- Kristian-Christos Ngamsri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Christoph Jans
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Rizki A Putri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Katharina Schindler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Jutta Gamper-Tsigaras
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Claudia Eggstein
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - David Köhler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Franziska M Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Targeting CD39 Toward Activated Platelets Reduces Systemic Inflammation and Improves Survival in Sepsis: A Preclinical Pilot Study. Crit Care Med 2020; 47:e420-e427. [PMID: 30730441 DOI: 10.1097/ccm.0000000000003682] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Sepsis is associated with a systemic inflammatory reaction, which can result in a life-endangering organ dysfunction. Pro-inflammatory responses during sepsis are characterized by increased activation of leukocytes and platelets, formation of platelet-neutrophil aggregates, and cytokine production. Sequestration of platelet-neutrophil aggregates in the microvasculature contributes to tissue damage during sepsis. At present no effective therapeutic strategy to ameliorate these events is available. In this preclinical pilot study, a novel anti-inflammatory approach was evaluated, which targets nucleoside triphosphate hydrolase activity toward activated platelets via a recombinant fusion protein combining a single-chain antibody against activated glycoprotein IIb/IIIa and the extracellular domain of CD39 (targ-CD39). DESIGN Experimental animal study and cell culture study. SETTING University-based experimental laboratory. SUBJECTS Human dermal microvascular endothelial cells 1, human platelets and neutrophils, and C57BL/6NCrl mice. INTERVENTIONS Platelet-leukocyte-endothelium interactions were evaluated under inflammatory conditions in vitro and in a murine lipopolysaccharide-induced sepsis model in vivo. The outcome of polymicrobial sepsis was evaluated in a murine cecal ligation and puncture model. To evaluate the anti-inflammatory potential of activated platelet targeted nucleoside triphosphate hydrolase activity, we employed a potato apyrase in vitro and in vivo, as well as targ-CD39 and as a control, nontarg-CD39 in vivo. MEASUREMENTS AND MAIN RESULTS Under conditions of sepsis, agents with nucleoside triphosphate hydrolase activity decreased platelet-leukocyte-endothelium interaction, transcription of pro-inflammatory cytokines, microvascular platelet-neutrophil aggregate sequestration, activation marker expression on platelets and neutrophils contained in these aggregates, leukocyte extravasation, and organ damage. Targ-CD39 had the strongest effect on these variables and retained hemostasis in contrast to nontarg-CD39 and potato apyrase. Most importantly, targ-CD39 improved survival in the cecal ligation and puncture model to a stronger extent then nontarg-CD39 and potato apyrase. CONCLUSIONS Targeting nucleoside triphosphate hydrolase activity (CD39) toward activated platelets is a promising new treatment concept to decrease systemic inflammation and mortality of sepsis. This innovative therapeutic approach warrants further development toward clinical application.
Collapse
|
32
|
Sutton NR, Bouïs D, Mann KM, Rashid IM, McCubbrey AL, Hyman MC, Goldstein DR, Mei A, Pinsky DJ. CD73 Promotes Age-Dependent Accretion of Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:61-71. [PMID: 31619062 PMCID: PMC7956240 DOI: 10.1161/atvbaha.119.313002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE CD73 is an ectonucleotidase which catalyzes the conversion of AMP (adenosine monophosphate) to adenosine. Adenosine has been shown to be anti-inflammatory and vasorelaxant. The impact of ectonucleotidases on age-dependent atherosclerosis remains unclear. Our aim was to investigate the role of CD73 in age-dependent accumulation of atherosclerosis. Approach and results: Mice doubly deficient in CD73 and ApoE (apolipoprotein E; (cd73-/-/apoE-/-) were generated, and the extent of aortic atherosclerotic plaque was compared with apoE-/- controls at 12, 20, 32, and 52 weeks. By 12 weeks of age, cd73-/-/apoE-/- mice exhibited a significant increase in plaque (1.4±0.5% of the total vessel surface versus 0.4±0.1% in apoE-/- controls, P<0.005). By 20 weeks of age, this difference disappeared (2.9±0.4% versus 3.3±0.7%). A significant reversal in phenotype emerged at 32 weeks (9.8±1.2% versus 18.3±1.4%; P<0.0001) and persisted at the 52 week timepoint (22.4±2.1% versus 37.0±2.1%; P<0.0001). The inflammatory response to aging was found to be comparable between cd73-/-/apoE-/- mice and apoE-/- controls. A reduction in lipolysis in CD73 competent mice was observed, even with similar plasma lipid levels (cd73-/-/apoE-/- versus apoE-/- at 12 weeks [16.2±0.7 versus 9.5±1.4 nmol glycerol/well], 32 weeks [24.1±1.5 versus 7.4±0.4 nmol/well], and 52 weeks [13.8±0.62 versus 12.7±2.0 nmol/well], P<0.001). CONCLUSIONS At early time points, CD73 exerts a subtle antiatherosclerotic influence, but with age, the pattern reverses, and the presence of CD73 promoted suppression of lipid catabolism.
Collapse
Affiliation(s)
- Nadia R. Sutton
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Diane Bouïs
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Kris M. Mann
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Imran M. Rashid
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Alexandra L. McCubbrey
- Division of Pulmonary and Critical Care (A.L.M.), University of Michigan Medical Center, Ann Arbor
| | - Matt C. Hyman
- the Department of Molecular and Integrative Physiology (M.C.H., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Daniel R. Goldstein
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Annie Mei
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - David J. Pinsky
- From the Department of Internal Medicine, Division of Cardiovascular Medicine (N.R.S., D.B., K.M.M., A.M., I.M.R., D.R.G., D.J.P.), University of Michigan Medical Center, Ann Arbor
- the Department of Molecular and Integrative Physiology (M.C.H., D.J.P.), University of Michigan Medical Center, Ann Arbor
| |
Collapse
|
33
|
Le TTT, Berg NK, Harting MT, Li X, Eltzschig HK, Yuan X. Purinergic Signaling in Pulmonary Inflammation. Front Immunol 2019; 10:1633. [PMID: 31379836 PMCID: PMC6646739 DOI: 10.3389/fimmu.2019.01633] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Purine nucleotides and nucleosides are at the center of biologic reactions. In particular, adenosine triphosphate (ATP) is the fundamental energy currency of cellular activity and adenosine has been demonstrated to play essential roles in human physiology and pathophysiology. In this review, we examine the role of purinergic signaling in acute and chronic pulmonary inflammation, with emphasis on ATP and adenosine. ATP is released into extracellular space in response to cellular injury and necrosis. It is then metabolized to adenosine monophosphate (AMP) via ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and further hydrolyzed to adenosine via ecto-5'-nucleotidase (CD73). Adenosine signals via one of four adenosine receptors to exert pro- or anti-inflammatory effects. Adenosine signaling is terminated by intracellular transport by concentrative or equilibrative nucleoside transporters (CNTs and ENTs), deamination to inosine by adenosine deaminase (ADA), or phosphorylation back into AMP via adenosine kinase (AK). Pulmonary inflammatory and hypoxic conditions lead to increased extracellular ATP, adenosine diphosphate (ADP) and adenosine levels, which translates to increased adenosine signaling. Adenosine signaling is central to the pulmonary injury response, leading to various effects on inflammation, repair and remodeling processes that are either tissue-protective or tissue destructive. In the acute setting, particularly through activation of adenosine 2A and 2B receptors, adenosine signaling serves an anti-inflammatory, tissue-protective role. However, excessive adenosine signaling in the chronic setting promotes pro-inflammatory, tissue destructive effects in chronic pulmonary inflammation.
Collapse
Affiliation(s)
- Thanh-Thuy T. Le
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nathaniel K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew T. Harting
- Department of Pediatric Surgery, McGovern Medical School, Children's Memorial Hermann Hospital, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
34
|
Caiazzo E, Morello S, Carnuccio R, Ialenti A, Cicala C. The Ecto-5'-Nucleotidase/CD73 Inhibitor, α,β-Methylene Adenosine 5'-Diphosphate, Exacerbates Carrageenan-Induced Pleurisy in Rat. Front Pharmacol 2019; 10:775. [PMID: 31354490 PMCID: PMC6637294 DOI: 10.3389/fphar.2019.00775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/17/2019] [Indexed: 11/17/2022] Open
Abstract
The ecto-5’-nucleotidase (ecto-5’NT/CD73) represents a crucial enzyme for endogenous adenosine generation. Several findings have shown that CD73 plays an important role in regulating vascular permeability and immune cell function. Adenosine 5’-(α,β-methylene)diphosphate (APCP) is a CD73 inhibitor, widely used as pharmacological tool to investigate the role of CD73/adenosine pathway in several in vitro and in vivo models, although it has been also shown to inhibit other ectoenzymes involved in adenosinergic pathway. Here, we evaluated the effect of APCP in the development of inflammation in carrageenan-induced pleurisy model. We found that treatment with APCP (400 µg/rat) significantly increased cell accumulation, exudate formation, and pro-inflammatory cytokine content into the pleural cavity in the acute phase (4 h) of inflammation, with no differences in the sub-acute phase (72 h) except for the regulation of monocyte chemotactic protein-1 levels. In addition, cells collected by pleural lavage fluids of APCP-treated rats, 4 h following carrageenan injection, showed increased ability to migrate in vitro, both in presence and in absence of N-formyl-L-methionyl-L-leucyl-L-phenylalanine as chemotactic stimulus, compared to cells obtained by control rats. Our results demonstrate that APCP exacerbates the early phase of carrageenan-induced pleurisy by controlling pleural effusion and polymorphonuclear migration in vivo and ex vivo. This effect is likely dependent upon CD73 inhibition, although an inhibitory effect of other ectoenzymes cannot be ruled out.
Collapse
Affiliation(s)
- Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA, Italy
| | - Rosa Carnuccio
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| |
Collapse
|
35
|
Roldan CJ, Lo TC, Huh B. Recurrence of complex regional pain syndrome after administration of adenosine. Pain Manag 2019; 9:233-237. [PMID: 31140915 DOI: 10.2217/pmt-2018-0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: The effects of adenosine in acute chronic pain are not clear. Literature supports both a pronociceptive/inflammatory role of the A2aR/A2bR and antihyperalgesia/allodynia with A1Rs/A3Rs. Adenosine could participate in the reactivation of chronic regional pain syndrome (CRPS) through inflammatory pathways and via A2Rs. Plastic changes in the brain CRPS-related overlap with those seen in systemic inflammation and persist even after symptoms of CRPS resolve. Aim: To illustrate the hypothesis that intravenous adenosine can reactivate dormant CRPS. Case report: An individual with successfully treated CRPS developed supraventricular tachycardia, he was treated with intravenous adenosine. Shortly after a second dose, he developed severe pain at a lower limb from relapsed CRPS. Treatment included lumbar sympathetic block, physical therapy and pharmacological agents. Conclusion: Intravenous adenosine can reactivate dormant CRPS. Its potential pronociceptive role in CRPS calls for further studies to better elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Carlos J Roldan
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Emergency Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tony Ct Lo
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Billy Huh
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
36
|
Caiazzo E, Ialenti A, Cicala C. The relatively selective cyclooxygenase-2 inhibitor nimesulide: What's going on? Eur J Pharmacol 2019; 848:105-111. [PMID: 30689999 DOI: 10.1016/j.ejphar.2019.01.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
Nimesulide is a relatively selective cyclooxygenase (COX)-2 inhibitor, non-steroidal anti-inflammatory drug; it has been discovered in 1971 and firstly commercialized in Italy in 1985. There is much evidence that the pharmacological profile of nimesulide is peculiar and not shared with the other COX-2 selective inhibitors, suggesting that other molecular mechanisms besides inhibition of COX-2 derived prostaglandins are involved. Similarly, experimental data suggest that the gastrointestinal safety of nimesulide cannot be ascribed only to a COX-1 sparing effect. On the inflammatory process, the efficacy of nimesulide is dependent upon a wide spectrum of actions, due to the combination of effects on immune and non-immune cells. Early data demonstrated a central role for cyclic AMP (cAMP) in the anti-inflammatory effect of nimesulide; more recently, we have shown the involvement of the pathway ecto-5'-nucleotidase/adenosine A2A receptor. To date, the molecular mechanism(s) that confers uniqueness to nimesulide have not yet been defined. To go inside the mechanism of action of an existing drug, such as nimesulide, would be helpful to refine its therapeutic use but also to identify new targets for novel therapeutic anti-inflammatory approach. Here, we focus on accumulated evidence for a peculiar pharmacological profile of nimesulide.
Collapse
Affiliation(s)
- Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naples Federico II, via Domenico Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
37
|
Englert JA, Bobba C, Baron RM. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome. JCI Insight 2019; 4:e124061. [PMID: 30674720 PMCID: PMC6413834 DOI: 10.1172/jci.insight.124061] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) has high morbidity and mortality and arises after lung infection or infection at extrapulmonary sites. An aberrant host response to infection leads to disruption of the pulmonary alveolar-capillary barrier, resulting in lung injury characterized by hypoxemia, inflammation, and noncardiogenic pulmonary edema. Despite increased understanding of the molecular biology underlying sepsis-induced ARDS, there are no targeted pharmacologic therapies for this devastating condition. Here, we review the molecular underpinnings of sepsis-induced ARDS with a focus on relevant clinical and translational studies that point toward novel therapeutic strategies.
Collapse
Affiliation(s)
- Joshua A. Englert
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher Bobba
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Xu X, Zhu Q, Niu F, Zhang R, Wang Y, Wang W, Sun D, Wang X, Wang A. A2BAR activation attenuates acute lung injury by inhibiting alveolar epithelial cell apoptosis both in vivo and in vitro. Am J Physiol Cell Physiol 2018; 315:C558-C570. [PMID: 29898376 DOI: 10.1152/ajpcell.00294.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The epithelial barrier of the lung is destroyed during acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) due to the apoptosis of alveolar epithelial cells (AECs). Therefore, treatments that block AEC apoptosis might be a therapeutic strategy to ameliorate ALI. Based on recent evidence, A2B adenosine receptor (A2BAR) plays an important role in ALI in several different animal models, but its exact function in AECs has not been clarified. We investigated the role of A2BAR in AEC apoptosis in a mouse model of oleic acid (OA)-induced ALI and in hydrogen peroxide (H2O2)-induced AEC (A549 cells and MLE-12 cells) injury. Mice treated with BAY60-6583, a selective A2BAR agonist, showed lower AEC apoptosis rates than mice treated with OA. However, the role of BAY60-6583 in OA-induced ALI was attenuated by a specific blocker of A2BAR, PSB1115. A2BAR activation decreased H2O2-induced cell apoptosis in vitro, as characterized by the translocation of apoptotic proteins, the release of cytochrome c, and the activation of caspase-3 and poly (ADP ribose) polymerase 1 (PARP-1). In addition, apoptosis was required for the phosphorylation of ERK1/2, p38, and JNK. Importantly, compared with cells transfected with the A2BAR-siRNA, an ERK inhibitor or p38 inhibitor exhibited decreased apoptotic ratios and cleaved caspase-9 and cleaved PARP-1 levels, whereas the JNK inhibitor displayed increases in these parameters. In conclusion, A2BAR activation effectively attenuated OA-induced ALI by inhibiting AEC apoptosis and mitigated H2O2-induced AEC injury by suppressing the p38 and ERK1/2-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Xiaotao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qingwei Zhu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fangfang Niu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Rong Zhang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yan Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Wenying Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Dawei Sun
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xintao Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Aizhong Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
39
|
Abstract
The purpose of this study was to investigate the protective effects of Saikosaponin a (SSa), a triterpene saponin derived from Radix bupleuri, on lipopolysaccharide (LPS)-induced acute lung injury (ALI) using a murine model. The mice were given SSa 1 h after intranasal instillation of LPS. Then, lung histopathological examination, the wet/dry (W/D) ratio, myeloperoxidase (MPO), and inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were detected in this study. The results showed that SSa reduced lung pathological injury induced by LPS. Furthermore, LPS-induced lung W/D ratio, MPO activity, and inflammatory cytokines TNF-α and IL-1β in BALF were significantly inhibited by SSa. In addition, SSa suppressed LPS-induced NF-κB activation and NLRP3 inflammasome expression. In conclusion, we found that SSa played a critical anti-inflammatory effect through inhibition of NF-κB and NLRP3 signaling pathways and protected against LPS-induced ALI.
Collapse
Affiliation(s)
- Zhi-An Du
- Department of Intensive Care Units, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Mei-Na Sun
- Department of Intensive Care Units, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhan-Sheng Hu
- Department of Intensive Care Units, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
40
|
Cicko S, Köhler TC, Ayata CK, Müller T, Ehrat N, Meyer A, Hossfeld M, Zech A, Di Virgilio F, Idzko M. Extracellular ATP is a danger signal activating P2X7 receptor in a LPS mediated inflammation (ARDS/ALI). Oncotarget 2018; 9:30635-30648. [PMID: 30093975 PMCID: PMC6078145 DOI: 10.18632/oncotarget.25761] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/19/2018] [Indexed: 02/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threating lung condition resulting from a direct and indirect injury to the lungs [1, 2]. Pathophysiologically it is characterized by an acute alveolar damage, an increased permeability of the microvascular-barrier, leading to protein-rich pulmonary edema and subsequent impairment of arterial oxygenation and respiratory failure [1]. This study examined the role of extracellular ATP in recruiting inflammatory cells to the lung after induction of acute lung injury with lipopolysaccharide (LPS). However, the precise mechanism is poorly understood. Our objective was to investigate the functional role of the P2X7 receptor in the pathogenesis of acute respiratory distress syndrome (ARDS/ acute lung injury (ALI)) in vitro and in vivo. We show that intratracheally applied LPS causes an acute accumulation of ATP in the BALF (bronchoalveolar lavage) and lungs of mice. Prophylactic and therapeutic inhibition of P2X7R signalling by a specific antagonist and knock-out experiments was able to ameliorate the inflammatory response demonstrated by reduced ATP-levels, number of neutrophils and concentration of pro-inflammatory cytokine levels in the BALF. Experiments with chimeric mice showed that P2X7R expression on immune cells was responsible for the observed effect. Consistently, the inflammatory response is diminished only by a cell-type specific knockdown of P2X7 receptor on non-stationary immune cells. Since the results of BALF from patients with acute ARDS or pneumonia simulated the in vivo data after LPS exposure, the P2X7 receptor may be a new therapeutic target for treatment in acute respiratory distress syndrome (ARDS/ALI).
Collapse
Affiliation(s)
- Sanja Cicko
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | | | - Cemil Korcan Ayata
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | - Tobias Müller
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany.,Division of Pneumology, University Hospital RWTH Aachen, Aachen, Germany
| | - Nicolas Ehrat
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | - Anja Meyer
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | - Madelon Hossfeld
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | - Andreas Zech
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| | - Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Marco Idzko
- University Hospital Freiburg, Department of Pneumology, Freiburg, Germany
| |
Collapse
|
41
|
Knight JS, Mazza LF, Yalavarthi S, Sule G, Ali RA, Hodgin JB, Kanthi Y, Pinsky DJ. Ectonucleotidase-Mediated Suppression of Lupus Autoimmunity and Vascular Dysfunction. Front Immunol 2018; 9:1322. [PMID: 29942314 PMCID: PMC6004379 DOI: 10.3389/fimmu.2018.01322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/28/2018] [Indexed: 12/23/2022] Open
Abstract
Objectives CD39 and CD73 are surface enzymes that jut into the extracellular space where they mediate the step-wise phosphohydrolysis of the autocrine and paracrine danger signals ATP and ADP into anti-inflammatory adenosine. Given the role of vascular and immune cells' "purinergic halo" in maintaining homeostasis, we hypothesized that the ectonucleotidases CD39 and CD73 might play a protective role in lupus. Methods Lupus was modeled by intraperitoneal administration of pristane to three groups of mice: wild-type (WT), CD39-/-, and CD73-/-. After 36 weeks, autoantibodies, endothelial function, kidney disease, splenocyte activation/polarization, and neutrophil activation were characterized. Results As compared with WT mice, CD39-/- mice developed exaggerated splenomegaly in response to pristane, while both groups of ectonucleotidase-deficient mice demonstrated heightened anti-ribonucleoprotein production. The administration of pristane to WT mice triggered only subtle dysfunction of the arterial endothelium; however, both CD39-/- and CD73-/- mice demonstrated striking endothelial dysfunction following induction of lupus, which could be reversed by superoxide dismutase. Activated B cells and plasma cells were expanded in CD73-/- mice, while deficiency of either ectonucleotidase led to expansion of TH17 cells. CD39-/- and CD73-/- mice demonstrated exaggerated neutrophil extracellular trap release, while CD73-/- mice additionally had higher levels of plasma cell-free DNA. Conclusion These data are the first to link ectonucleotidases with lupus autoimmunity and vascular disease. New therapeutic strategies may harness purinergic nucleotide dissipation or signaling to limit the damage inflicted upon organs and blood vessels by lupus.
Collapse
Affiliation(s)
- Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Levi F Mazza
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Gautam Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Yogendra Kanthi
- Division of Cardiology, Ann Arbor Veterans Administration Healthcare System, Ann Arbor, MI, United States.,Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - David J Pinsky
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
42
|
Aliagas E, Muñoz-Esquerre M, Cuevas E, Careta O, Huertas D, López-Sánchez M, Escobar I, Dorca J, Santos S. Is the purinergic pathway involved in the pathology of COPD? Decreased lung CD39 expression at initial stages of COPD. Respir Res 2018; 19:103. [PMID: 29807526 PMCID: PMC5972409 DOI: 10.1186/s12931-018-0793-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Extracellular adenosine triphosphate (ATP) is up-regulated in the airways of patients with chronic obstructive pulmonary disease (COPD), resulting in increased inflammation, bronchoconstriction, and cough. Although extracellular ATP levels are tightly controlled by nucleoside triphosphate diphosphohydrolase-1 (NTPDase1; also known as CD39) in the lungs, the role of CD39 in the pathology of COPD is unknown. We hypothesized that alterations in the expression and activity of CD39 could be part of the mechanisms for initiating and perpetuating the disease. METHODS We analyzed CD39 gene and protein expression as well as ATPase enzyme activity in lung tissue samples of patients with COPD (n = 17), non-obstructed smokers (NOS) (n = 16), and never smokers (NS) (n = 13). Morphometry studies were performed to analyze pulmonary vascular remodeling. RESULTS There was significantly decreased CD39 gene expression in the lungs of the COPD group (1.17 [0.85-1.81]) compared with the NOS group (1.88 [1.35-4.41]) and NS group (3.32 [1.23-5.39]) (p = 0.037). This attenuation correlated with higher systemic inflammation and intimal thickening of muscular pulmonary arteries in the COPD group. Lung CD39 protein levels were also lower in the COPD group (0.34 [0.22-0.92]) compared with the NOS group (0.67 [0.32-1.06]) and NS group (0.95 [0.4-1.1) (p = 0.133). Immunohistochemistry showed that CD39 was downregulated in lung parenchyma, epithelial bronchial cells, and the endothelial cells of pulmonary muscular arteries in the COPD group. ATPase activity in human pulmonary structures was reduced in the lungs of patients with COPD. CONCLUSION An attenuation of CD39 expression and activity is presented in lung tissue of stable COPD patients, which could lead to pulmonary ATP accumulation, favoring the development of pulmonary inflammation and emphysema. This may be a mechanism underlying the development of COPD.
Collapse
Affiliation(s)
- Elisabet Aliagas
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mariana Muñoz-Esquerre
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ester Cuevas
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Oriol Careta
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Huertas
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marta López-Sánchez
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ignacio Escobar
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Thoracic Surgery, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Dorca
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Salud Santos
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain. .,Department of Respiratory Medicine, Unit of Chronic Obstructive Pulmonary Disease, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain. .,Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain. .,Research Network in Respiratory Diseases (CIBERES), Madrid, Spain. .,Department of Respiratory Medicine, Bellvitge University Hospital - IDIBELL, University of Barcelona, c/ Feixa Llarga s/n. CP 08907, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
43
|
The Role of Extracellular Adenosine Generation in the Development of Autoimmune Diseases. Mediators Inflamm 2018; 2018:7019398. [PMID: 29769837 PMCID: PMC5892213 DOI: 10.1155/2018/7019398] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/10/2018] [Accepted: 02/20/2018] [Indexed: 11/17/2022] Open
Abstract
Adenosine (ADO) is an immunosuppressive molecule, which suppresses the immune responses by interacting with specific receptors expressed by immune effector cells. ADO is produced from ATP through the enzymatic activities of CD39 and CD73. Alternatively, ADO can be generated starting from NAD+, which is metabolized by the concerted action of CD38, CD203a/PC-1, and CD73. The role of ADO in immunity has been characterized in the last years in physiology and in pathological settings. This review examines a panel of reports focused on the functions of ADO in the context of human autoimmune/inflammatory diseases and the selected animal models. The final aim is to consider the role of adenosinergic ectoenzymes and ADO receptors as novel therapeutic targets for selected diseases.
Collapse
|
44
|
Peres RS, Donate PB, Talbot J, Cecilio NT, Lobo PR, Machado CC, Lima KWA, Oliveira RD, Carregaro V, Nakaya HI, Cunha TM, Alves-Filho JC, Liew FY, Louzada-Junior P, Cunha FQ. TGF-β signalling defect is linked to low CD39 expression on regulatory T cells and methotrexate resistance in rheumatoid arthritis. J Autoimmun 2018; 90:49-58. [PMID: 29426578 DOI: 10.1016/j.jaut.2018.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 11/30/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune arthropathy characterized by chronic articular inflammation. Methotrexate (MTX) remains the first-line therapy for RA and its anti-inflammatory effect is associated with the maintenance of high levels of extracellular adenosine (ADO). Nonetheless, up to 40% of RA patients are resistant to MTX treatment and this is linked to a reduction of CD39 expression, an ectoenzyme involved in the generation of extracellular ADO by ATP metabolism, on circulating regulatory T cells (Tregs). However, the mechanism mediating the reduction of CD39 expression on Tregs is unknown. Here we demonstrated that the impairment in TGF-β signalling lead to the reduction of CD39 expression on Tregs that accounts for MTX resistance. TGF-β increases CD39 expression on Tregs via the activation of TGFBRII/TGFBRI, SMAD2 and the transcription factor CREB, which is activated in a p38-dependent manner and induces CD39 expression by promoting ENTPD1 gene transcription. Importantly, unresponsive patients to MTX (UR-MTX) show reduced expression of TGFBR2 and CREB1 and decreased levels of p-SMAD2 and p-CREB in Tregs compared to MTX-responsive patients (R-MTX). Furthermore, RA patients carrying at least one mutant allele for rs1431131 (AT or AA) of the TGFBR2 gene are significantly (p = 0.0006) associated with UR-MTX. Therefore, we have uncovered a molecular mechanism for the reduced CD39 expression on Tregs, and revealed potential targets for therapeutic intervention for MTX resistance.
Collapse
Affiliation(s)
- Raphael S Peres
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Paula B Donate
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jhimmy Talbot
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nerry T Cecilio
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Patricia R Lobo
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Caio C Machado
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kalil W A Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rene D Oliveira
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Foo Y Liew
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom; School of Biological and Basic Medical Sciences, Soochow University, Suzhou, 215006, China.
| | - Paulo Louzada-Junior
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
45
|
Lee JS, Yilmaz Ö. Unfolding Role of a Danger Molecule Adenosine Signaling in Modulation of Microbial Infection and Host Cell Response. Int J Mol Sci 2018; 19:E199. [PMID: 29315226 PMCID: PMC5796148 DOI: 10.3390/ijms19010199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/10/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
Ectonucleotidases CD39 and CD73, specific nucleotide metabolizing enzymes located on the surface of the host, can convert a pro-inflammatory environment driven by a danger molecule extracellular-ATP to an adenosine-mediated anti-inflammatory milieu. Accordingly, CD39/CD73 signaling have has strongly implicated in modulating the intensity, duration, and composition of purinergic danger signals delivered to host. Recent studies have eluted potential roles for CD39 and CD73 in selective triggering of a variety of host immune cells and molecules in the presence of pathogenic microorganisms or microbial virulence molecules. Growing evidence also suggests that CD39 and CD73 present complimentary, but likely differential, actions against pathogens to shape the course and severity of microbial infection as well as the associated immune response. Similarly, adenosine receptors A2A and A2B have been proposed to be major immunomodulators of adenosine signaling during chronic inflammatory conditions induced by opportunistic pathogens, such as oral colonizer Porphyromonas gingivalis. Therefore, we here review the recent studies that demonstrate how complex network of molecules in the extracellular adenosine signaling machinery and their interactions can reshape immune responses and may also be targeted by opportunistic pathogens to establish successful colonization in human mucosal tissues and modulate the host immune response.
Collapse
Affiliation(s)
- Jaden S Lee
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
| | - Özlem Yilmaz
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, 29425 Charleston, SC 29425, USA.
| |
Collapse
|
46
|
Yuan X, Lee JW, Bowser JL, Neudecker V, Sridhar S, Eltzschig HK. Targeting Hypoxia Signaling for Perioperative Organ Injury. Anesth Analg 2018; 126:308-321. [PMID: 28759485 PMCID: PMC5735013 DOI: 10.1213/ane.0000000000002288] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Perioperative organ injury has a significant impact on surgical outcomes and presents a leading cause of death in the United States. Recent research has pointed out an important role of hypoxia signaling in the protection from organ injury, including for example myocardial infarction, acute respiratory distress syndrome, acute kidney, or gut injury. Hypoxia induces the stabilization of hypoxia-inducible factors (HIFs), thereby leading to the induction of HIF target genes, which facilitates adaptive responses to low oxygen. In this review, we focus on current therapeutic strategies targeting hypoxia signaling in various organ injury models and emphasize potential clinical approaches to integrate these findings into the care of surgical patients. Conceptually, there are 2 options to target the HIF pathway for organ protection. First, drugs became recently available that promote the stabilization of HIFs, most prominently via inhibition of prolyl hydroxylase. These compounds are currently trialed in patients, for example, for anemia treatment or prevention of ischemia and reperfusion injury. Second, HIF target genes (such as adenosine receptors) could be activated directly. We hope that some of these approaches may lead to novel pharmacologic strategies to prevent or treat organ injury in surgical patients.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jae W. Lee
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Jessica L. Bowser
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Viola Neudecker
- Department of Anesthesiology, Clinic of the University of Munich, Munich, Germany
| | - Srikanth Sridhar
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, the University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
47
|
de Souza Xavier Costa N, Ribeiro Júnior G, dos Santos Alemany AA, Belotti L, Zati DH, Frota Cavalcante M, Matera Veras M, Ribeiro S, Kallás EG, Nascimento Saldiva PH, Dolhnikoff M, Ferraz da Silva LF. Early and late pulmonary effects of nebulized LPS in mice: An acute lung injury model. PLoS One 2017; 12:e0185474. [PMID: 28953963 PMCID: PMC5617199 DOI: 10.1371/journal.pone.0185474] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
Background and objective Acute respiratory distress syndrome (ARDS) has a high mortality rate of 35–46% depending on its severity. Animal models are crucial to better understand the pathophysiology of diseases, including ARDS. This study presents a feasible animal model of acute lung injury (ALI) using nebulized lipopolysaccharide (LPS) in a non-invasive approach, focusing on its short and long-term effects. Methods Mice received nebulized LPS or vehicle only (control group). Blood, BALF and lung tissue were collected 24 hours (LPS 24h) or 5 weeks (LPS 5w) after the nebulized LPS-induced lung injury. Inflammatory cytokines were assessed in the blood serum, BALF and lung tissue. Stereological analyses and remodeling changes were assessed by histology and immunohistochemistry at the specified time points. Results The LPS 24h group showed increased pro-inflammatory cytokine levels, intense cell influx, increased total septal volume, septal thickening and decreased surface density of the alveolar septa. The LPS 5w group showed persistent lung inflammation, septal thickening, increased total lung volume, accentuated collagen deposition, especially of collagen type I, and decreased MMP-2 protein expression. Conclusion We present a feasible, reproducible and non-invasive nebulized-LPS animal model that allows the assessment of both the acute and late phases of acute lung injury. The presence of lung remodeling with collagen deposition after 5 weeks makes it useful to study the pathophysiology, complications, and possible therapeutic intervention studies that aim to understand and reduce pulmonary fibrosis in the late phases of ALI.
Collapse
Affiliation(s)
- Natália de Souza Xavier Costa
- Laboratory of Experimental Air Pollution (LIM05), University of Sao Paulo—School of Medicine, São Paulo, São Paulo, Brazil
- * E-mail:
| | - Gabriel Ribeiro Júnior
- Laboratory of Experimental Air Pollution (LIM05), University of Sao Paulo—School of Medicine, São Paulo, São Paulo, Brazil
| | | | - Luciano Belotti
- Laboratory of Experimental Air Pollution (LIM05), University of Sao Paulo—School of Medicine, São Paulo, São Paulo, Brazil
| | - Douglas Hidalgo Zati
- Laboratory of Experimental Air Pollution (LIM05), University of Sao Paulo—School of Medicine, São Paulo, São Paulo, Brazil
| | - Marcela Frota Cavalcante
- Biochemistry Laboratory, University of Sao Paulo–School of Pharmaceutical Sciences, São Paulo, São Paulo, Brazil
| | - Mariana Matera Veras
- Laboratory of Experimental Air Pollution (LIM05), University of Sao Paulo—School of Medicine, São Paulo, São Paulo, Brazil
| | - Susan Ribeiro
- Laboratory of Clinical Immunology and Allergy (LIM60), University of Sao Paulo—School of Medicine, São Paulo, São Paulo, Brazil
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Esper Georges Kallás
- Laboratory of Clinical Immunology and Allergy (LIM60), University of Sao Paulo—School of Medicine, São Paulo, São Paulo, Brazil
| | | | - Marisa Dolhnikoff
- Laboratory of Experimental Air Pollution (LIM05), University of Sao Paulo—School of Medicine, São Paulo, São Paulo, Brazil
| | - Luiz Fernando Ferraz da Silva
- Laboratory of Experimental Air Pollution (LIM05), University of Sao Paulo—School of Medicine, São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Petit-Jentreau L, Tailleux L, Coombes JL. Purinergic Signaling: A Common Path in the Macrophage Response against Mycobacterium tuberculosis and Toxoplasma gondii. Front Cell Infect Microbiol 2017; 7:347. [PMID: 28824882 PMCID: PMC5545599 DOI: 10.3389/fcimb.2017.00347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/21/2017] [Indexed: 12/15/2022] Open
Abstract
Immune responses are essential for the protection of the host against external dangers or infections and are normally efficient in the clearance of invading microbes. However, some intracellular pathogens have developed strategies to replicate and survive within host cells resulting in latent infection associated with strong inflammation. This excessive response can cause cell and tissue damage and lead to the release of the intracellular content, in particular the nucleotide pool, into the extracellular space. Over the last decade, new studies have implicated metabolites from the purinergic pathway in shaping the host immune response against intracellular pathogens and proved their importance in the outcome of the infection. This review aims to summarize how the immune system employs the purinergic system either to fight the pathogen, or to control collateral tissue damage. This will be achieved by focusing on the macrophage response against two intracellular pathogens, the human etiologic agent of tuberculosis, Mycobacterium tuberculosis and the protozoan parasite, Toxoplasma gondii.
Collapse
Affiliation(s)
- Laetitia Petit-Jentreau
- Institute of Infection and Global Health, Department of Infection Biology, University of LiverpoolLiverpool, United Kingdom
| | - Ludovic Tailleux
- Mycobacterial Genetics Unit, Institut PasteurParis, France.,Unit for Integrated Mycobacterial Pathogenomics, Institut PasteurParis, France
| | - Janine L Coombes
- Institute of Infection and Global Health, Department of Infection Biology, University of LiverpoolLiverpool, United Kingdom
| |
Collapse
|
49
|
Maloney JP, Branchford BR, Brodsky GL, Cosmic MS, Calabrese DW, Aquilante CL, Maloney KW, Gonzalez JR, Zhang W, Moreau KL, Wiggins KL, Smith NL, Broeckel U, Di Paola J. The ENTPD1 promoter polymorphism -860 A > G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk. FASEB J 2017; 31:2771-2784. [PMID: 28302652 PMCID: PMC6137499 DOI: 10.1096/fj.201600344r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/26/2017] [Indexed: 11/11/2022]
Abstract
Ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1) degrades the purines ATP and ADP that are key regulators of inflammation and clotting. We hypothesized that NTPDase1 polymorphisms exist and that they regulate this pathway. We sequenced the ENTPD1 gene (encoding NTPDase1) in 216 subjects then assessed genotypes in 2 cohorts comprising 2213 humans to identify ENTPD1 polymorphisms associated with venous thromboembolism (VTE). The G allele of the intron 1 polymorphism rs3176891 was more common in VTE vs. controls (odds ratio 1.26-1.9); it did not affect RNA splicing, but it was in strong linkage disequilibrium with the G allele of the promoter polymorphism rs3814159, which increased transcriptional activity by 8-fold. Oligonucleotides containing the G allele of this promoter region bound nuclear extracts more avidly. Carriers of rs3176891 G had endothelial cells with increased NTPDase1 activity and protein expression, and had platelets with enhanced aggregation. Thus, the G allele of rs3176891 marks a haplotype associated with increased clotting and platelet aggregation attributable to a promoter variant associated with increased transcription, expression, and activity of NTPDase1. We term this gain-of-function phenotype observed with rs3814159 G "CD39 Denver."-Maloney, J. P., Branchford, B. R., Brodsky, G. L., Cosmic, M. S., Calabrese, D. W., Aquilante, C. L., Maloney, K. W., Gonzalez, J. R., Zhang, W., Moreau, K. L., Wiggins, K. L., Smith, N. L., Broeckel, U., Di Paola, J. The ENTPD1 promoter polymorphism -860 A > G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk.
Collapse
Affiliation(s)
- James P Maloney
- Division of Pulmonary and Critical Care Medicine, University of Colorado at Denver, Aurora, Colorado, USA;
- Denver Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Brian R Branchford
- Center for Cancer and Blood Disorders, University of Colorado at Denver, Aurora, Colorado, USA
| | - Gary L Brodsky
- Center for Cancer and Blood Disorders, University of Colorado at Denver, Aurora, Colorado, USA
| | - Maxwell S Cosmic
- Chest, Infectious Disease, and Critical Care Associates, Des Moines, Iowa, USA
| | - David W Calabrese
- Division of Pulmonary and Critical Care Medicine, University of Colorado at Denver, Aurora, Colorado, USA
- Denver Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Christina L Aquilante
- Pharmaceutical Sciences/School of Pharmacy, University of Colorado at Denver, Aurora, Colorado, USA
| | - Kelly W Maloney
- Center for Cancer and Blood Disorders, University of Colorado at Denver, Aurora, Colorado, USA
| | - Joseph R Gonzalez
- Otolaryngology-Head and Neck Surgery, University of Colorado at Denver, Aurora, Colorado, USA
| | - Weiming Zhang
- Biostatistics and Informatics/Colorado School of Public Health, University of Colorado at Denver, Aurora, Colorado, USA
| | - Kerrie L Moreau
- Division of Geriatric Medicine, University of Colorado at Denver, Aurora, Colorado, USA
| | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Seattle Epidemiologic Research and Information Center, Seattle, Washington, USA
- Veterans Affairs Office of Research and Development, Seattle, Washington, USA
- Group Health Research Institutes, Group Health Cooperative, Seattle, Washington, USA
| | - Ulrich Broeckel
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jorge Di Paola
- Center for Cancer and Blood Disorders, University of Colorado at Denver, Aurora, Colorado, USA
| |
Collapse
|
50
|
The Adenosinergic System as a Therapeutic Target in the Vasculature: New Ligands and Challenges. Molecules 2017; 22:molecules22050752. [PMID: 28481238 PMCID: PMC6154114 DOI: 10.3390/molecules22050752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/20/2022] Open
Abstract
Adenosine is an adenine base purine with actions as a modulator of neurotransmission, smooth muscle contraction, and immune response in several systems of the human body, including the cardiovascular system. In the vasculature, four P1-receptors or adenosine receptors—A1, A2A, A2B and A3—have been identified. Adenosine receptors are membrane G-protein receptors that trigger their actions through several signaling pathways and present differential affinity requirements. Adenosine is an endogenous ligand whose extracellular levels can reach concentrations high enough to activate the adenosine receptors. This nucleoside is a product of enzymatic breakdown of extra and intracellular adenine nucleotides and also of S-adenosylhomocysteine. Adenosine availability is also dependent on the activity of nucleoside transporters (NTs). The interplay between NTs and adenosine receptors’ activities are debated and a particular attention is given to the paramount importance of the disruption of this interplay in vascular pathophysiology, namely in hypertension., The integration of important functional aspects of individual adenosine receptor pharmacology (such as in vasoconstriction/vasodilation) and morphological features (within the three vascular layers) in vessels will be discussed, hopefully clarifying the importance of adenosine receptors/NTs for modulating peripheral mesenteric vascular resistance. In recent years, an increase interest in purine physiology/pharmacology has led to the development of new ligands for adenosine receptors. Some of them have been patented as having promising therapeutic activities and some have been chosen to undergo on clinical trials. Increased levels of endogenous adenosine near a specific subtype can lead to its activation, constituting an indirect receptor targeting approach either by inhibition of NT or, alternatively, by increasing the activity of enzymes responsible for ATP breakdown. These findings highlight the putative role of adenosinergic players as attractive therapeutic targets for cardiovascular pathologies, namely hypertension, heart failure or stroke. Nevertheless, several aspects are still to be explored, creating new challenges to be addressed in future studies, particularly the development of strategies able to circumvent the predicted side effects of these therapies.
Collapse
|