1
|
Harding AT, Crossen AJ, Reedy JL, Basham KJ, Hepworth OW, Zhang Y, Shah VS, Harding HB, Surve MV, Simaku P, Kwaku GN, Jensen KN, Otto Y, Ward RA, Thompson GR, Klein BS, Rajagopal J, Sen P, Haber AL, Vyas JM. Single-cell analysis of human airway epithelium identifies cell type-specific responses to Aspergillus and Coccidioides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612147. [PMID: 39314271 PMCID: PMC11418999 DOI: 10.1101/2024.09.09.612147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Respiratory fungal infections pose a significant threat to human health. Animal models do not fully recapitulate human disease, necessitating advanced models to study human-fungal pathogen interactions. In this study, we utilized primary human airway epithelial cells (hAECs) to recapitulate the lung environment in vitro and investigate cellular responses to two diverse, clinically significant fungal pathogens, Aspergillus fumigatus and Coccidioides posadasii. To understand the mechanisms of early pathogenesis for both fungi, we performed single-cell RNA sequencing of infected hAECs. Analysis revealed that both fungi induced cellular stress and cytokine production. However, the cell subtypes affected and specific pathways differed between fungi, with A. fumigatus and C. posadasii triggering protein-folding-related stress in ciliated cells and hypoxia responses in secretory cells, respectively. This study represents one of the first reports of single-cell transcriptional analysis of hAECs infected with either A. fumigatus or C. posadasii, providing a vital dataset to dissect the mechanism of disease and potentially identify targetable pathways.
Collapse
Affiliation(s)
- Alfred T. Harding
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge MA
- Department of Microbiology, Harvard Medical School, Cambridge MA
| | - Arianne J. Crossen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kyle J. Basham
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Olivia W. Hepworth
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yanting Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Viral S. Shah
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Hannah Brown Harding
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manalee V. Surve
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patricia Simaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Geneva N. Kwaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kristine Nolling Jensen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yohana Otto
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca A. Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - George R. Thompson
- Division of Infectious Diseases, and Departments of Internal Medicine and Medical Microbiology and Immunology, University of California-Davis, Sacramento, CA, USA
| | - Bruce S. Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jayaraj Rajagopal
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Pritha Sen
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Transplant, Oncology, and Immunocompromised Host Group, Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adam L. Haber
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
2
|
Jiang X, Wang H, Nie K, Gao Y, Chen S, Tang Y, Wang Z, Su H, Dong H. Targeting lipid droplets and lipid droplet-associated proteins: a new perspective on natural compounds against metabolic diseases. Chin Med 2024; 19:120. [PMID: 39232826 PMCID: PMC11373146 DOI: 10.1186/s13020-024-00988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Lipid droplet (LD) is a metabolically active organelle, which changes dynamically with the metabolic state and energy requirements of cells. Proteins that either insert into the LD phospholipid monolayer or are present in the cytoplasm, playing a crucial role in lipid homeostasis and signaling regulation, are known as LD-associated proteins. METHODS The keywords "lipid droplets" and "metabolic diseases" were used to obtain literature on LD metabolism and pathological mechanism. After searching databases including Scopus, OVID, Web of Science, and PubMed from 2013 to 2024 using terms like "lipid droplets", "lipid droplet-associated proteins", "fatty liver disease", "diabetes", "diabetic kidney disease", "obesity", "atherosclerosis", "hyperlipidemia", "natural drug monomers" and "natural compounds", the most common natural compounds were identified in about 954 articles. Eventually, a total of 91 studies of 10 natural compounds reporting in vitro or in vivo studies were refined and summarized. RESULTS The most frequently used natural compounds include Berberine, Mangostin, Capsaicin, Caffeine, Genistein, Epigallocatechin-3-gallate, Chlorogenic acid, Betaine, Ginsenoside, Resveratrol. These natural compounds interact with LD-associated proteins and help ameliorate abnormal LDs in various metabolic diseases. CONCLUSION Natural compounds involved in the regulation of LDs and LD-associated proteins hold promise for treating metabolic diseases. Further research into these interactions may lead to new therapeutic applications.
Collapse
Affiliation(s)
- Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Safi R, Menéndez P, Pol A. Lipid droplets provide metabolic flexibility for cancer progression. FEBS Lett 2024; 598:1301-1327. [PMID: 38325881 DOI: 10.1002/1873-3468.14820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
A hallmark of cancer cells is their remarkable ability to efficiently adapt to favorable and hostile environments. Due to a unique metabolic flexibility, tumor cells can grow even in the absence of extracellular nutrients or in stressful scenarios. To achieve this, cancer cells need large amounts of lipids to build membranes, synthesize lipid-derived molecules, and generate metabolic energy in the absence of other nutrients. Tumor cells potentiate strategies to obtain lipids from other cells, metabolic pathways to synthesize new lipids, and mechanisms for efficient storage, mobilization, and utilization of these lipids. Lipid droplets (LDs) are the organelles that collect and supply lipids in eukaryotes and it is increasingly recognized that the accumulation of LDs is a new hallmark of cancer cells. Furthermore, an active role of LD proteins in processes underlying tumorigenesis has been proposed. Here, by focusing on three major classes of LD-resident proteins (perilipins, lipases, and acyl-CoA synthetases), we provide an overview of the contribution of LDs to cancer progression and discuss the role of LD proteins during the proliferation, invasion, metastasis, apoptosis, and stemness of cancer cells.
Collapse
Affiliation(s)
- Rémi Safi
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
- Consorcio Investigación Biomédica en Red de Cancer, CIBER-ONC, ISCIII, Barcelona, Spain
- Spanish Network for Advanced Cell Therapies (TERAV), Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Spain
| |
Collapse
|
4
|
Li L, Lixia D, Gan G, Li J, Yang L, Wu Y, Fang Z, Zhang X. Astrocytic HILPDA promotes lipid droplets generation to drive cognitive dysfunction in mice with sepsis-associated encephalopathy. CNS Neurosci Ther 2024; 30:e14758. [PMID: 38757390 PMCID: PMC11099789 DOI: 10.1111/cns.14758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
AIMS Sepsis-associated encephalopathy (SAE) is manifested as a spectrum of disturbed cerebral function ranging from mild delirium to coma. However, the pathogenesis of SAE has not been clearly elucidated. Astrocytes play important roles in maintaining the function and metabolism of the brain. Most recently, it has been demonstrated that disorders of lipid metabolism, especially lipid droplets (LDs) dyshomeostasis, are involved in a variety of neurodegenerative diseases. The aim of this study was to investigate whether LDs are involved in the underlying mechanism of SAE. METHODS The open field test, Y-maze test, and contextual fear conditioning test (CFCT) were used to test cognitive function in SAE mice. Lipidomics was utilized to investigate alterations in hippocampal lipid metabolism in SAE mice. Western blotting and immunofluorescence labeling were applied for the observation of related proteins. RESULTS In the current study, we found that SAE mice showed severe cognitive dysfunction, including spatial working and contextual memory. Meanwhile, we demonstrated that lipid metabolism was widely dysregulated in the hippocampus by using lipidomic analysis. Furthermore, western blotting and immunofluorescence confirmed that LDs accumulation in hippocampal astrocytes was involved in the pathological process of cognitive dysfunction in SAE mice. We verified that LDs can be inhibited by specifically suppress hypoxia-inducible lipid droplet-associated protein (HILPDA) in astrocytes. Meanwhile, cognitive dysfunction in SAE was ameliorated by reducing A1 astrocyte activation and inhibiting presynaptic membrane transmitter release. CONCLUSION The accumulation of astrocytic lipid droplets plays a crucial role in the pathological process of SAE. HILPDA is an attractive therapeutic target for lipid metabolism regulation and cognitive improvement in septic patients.
Collapse
Affiliation(s)
- Ling Li
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of PediatricXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Du Lixia
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Guifen Gan
- Department of Critical Care MedicineQinghai University Affiliated HospitalXiningQinghaiChina
| | - Jin Li
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Lin Yang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - You Wu
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| | - Zongping Fang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Department of Critical Care MedicineShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Xijing Zhang
- Department of Critical Care MedicineXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care UnitXijing HospitalFourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
5
|
Hu J, Wang SG, Hou Y, Chen Z, Liu L, Li R, Li N, Zhou L, Yang Y, Wang L, Wang L, Yang X, Lei Y, Deng C, Li Y, Deng Z, Ding Y, Kuang Y, Yao Z, Xun Y, Li F, Li H, Hu J, Liu Z, Wang T, Hao Y, Jiao X, Guan W, Tao Z, Ren S, Chen K. Multi-omic profiling of clear cell renal cell carcinoma identifies metabolic reprogramming associated with disease progression. Nat Genet 2024; 56:442-457. [PMID: 38361033 PMCID: PMC10937392 DOI: 10.1038/s41588-024-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a complex disease with remarkable immune and metabolic heterogeneity. Here we perform genomic, transcriptomic, proteomic, metabolomic and spatial transcriptomic and metabolomic analyses on 100 patients with ccRCC from the Tongji Hospital RCC (TJ-RCC) cohort. Our analysis identifies four ccRCC subtypes including De-clear cell differentiated (DCCD)-ccRCC, a subtype with distinctive metabolic features. DCCD cancer cells are characterized by fewer lipid droplets, reduced metabolic activity, enhanced nutrient uptake capability and a high proliferation rate, leading to poor prognosis. Using single-cell and spatial trajectory analysis, we demonstrate that DCCD is a common mode of ccRCC progression. Even among stage I patients, DCCD is associated with worse outcomes and higher recurrence rate, suggesting that it cannot be cured by nephrectomy alone. Our study also suggests a treatment strategy based on subtype-specific immune cell infiltration that could guide the clinical management of ccRCC.
Collapse
Affiliation(s)
- Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Hou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi Li
- Shanghai Luming Biotech, Shanghai, China
| | - Nisha Li
- Shanghai Luming Biotech, Shanghai, China
- Shanghai OE Biotech, Shanghai, China
| | - Lijie Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Yang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liping Wang
- Department of Pathology, Baylor Scott & White Medical Center, Temple, TX, USA
| | - Liang Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Yang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Lei
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqi Deng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyao Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhong Ding
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchun Kuang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Philadelphia, PA, USA
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shancheng Ren
- Department of Urology, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Wang S, Lu Y, Chi T, Zhang Y, Zhao Y, Guo H, Feng L. Identification of ferroptosis-related genes in type 2 diabetes mellitus based on machine learning. Immun Inflamm Dis 2023; 11:e1036. [PMID: 37904700 PMCID: PMC10566453 DOI: 10.1002/iid3.1036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM), which has a high incidence and several harmful consequences, poses a severe danger to human health. Research on the function of ferroptosis in T2DM is increasing. This study uses bioinformatics techniques identify new diagnostic T2DM biomarkers associated with ferroptosis. METHODS To identify ferroptosis-related genes (FRGs) that are differentially expressed between T2DM patients and healthy individuals, we first obtained T2DM sequencing data and FRGs from the Gene Expression Omnibus (GEO) database and FerrDb database. Then, drug-gene interaction networks and competitive endogenous RNA (ceRNA) networks linked to the marker genes were built after marker genes were filtered by two machine learning algorithms (LASSO and SVM-RFE algorithms). Finally, to confirm the expression of marker genes, the GSE76895 dataset was utilized. The protein and RNA expression of some marker genes in T2DM and nondiabetic tissues was also examined by Western blotting, immunohistochemistry (IHC), immunofluorescence (IF) and quantitative real-time PCR (qRT-PCR). RESULTS We obtained 58 differentially expressed genes (DEGs) associated with ferroptosis. GO and KEGG enrichment analyses showed that these DEGs were significantly enriched in hypoxia and ferroptosis. Subsequently, eight marker genes (SCD, CD44, HIF1A, BCAT2, MTF1, HILPDA, NR1D2, and MYCN) were screened by LASSO and SVM-RFE machine learning algorithms, and a model was constructed based on these eight genes. This model also has high diagnostic power. In addition, based on these eight genes, we obtained 48 drugs and constructed a complex ceRNA network map. Finally, Western blotting, IHC, IF, and qRT-PCR results of clinical samples further confirmed the results of public databases. CONCLUSIONS The diagnosis and aetiology of T2DM can be greatly aided by eight FRGs, providing novel therapeutic avenues.
Collapse
Affiliation(s)
- Sen Wang
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| | - Yongpan Lu
- Department of Plastic Surgery, The First Clinical Medical College, Shandong University of Traditional Chinese MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalJinanShandongChina
| | - Tingting Chi
- Department of Acupuncture and RehabilitationThe Affiliated Qingdao Hai Ci Hospital of Qingdao University (West Hospital Area)QingdaoShandongChina
| | - Yixin Zhang
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| | - Yuli Zhao
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| | - Huimin Guo
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| | - Li Feng
- Department of Medical Ultrasound, Shandong Medicine and Health Key Laboratory of Abdominal Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qian Foshan HospitalShandong First Medical UniversityJinanShandongChina
| |
Collapse
|
7
|
Hu Y, Zhao Y, Li P, Lu H, Li H, Ge J. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023; 68:1954-1974. [PMID: 37541793 DOI: 10.1016/j.scib.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
As an emerging discipline, panvascular diseases are a set of vascular diseases with atherosclerosis as the common pathogenic hallmark, which mostly affect vital organs like the heart, brain, kidney, and limbs. As the major responser to the most common stressor in the vasculature (hypoxia)-hypoxia-inducible factors (HIFs), and the primary regulator of pressure and oxygen delivery in the vasculature-vascular smooth muscle cells (VSMCs), their own multifaceted nature and their interactions with each other are fascinating. Abnormally active VSMCs (e.g., atherosclerosis, pulmonary hypertension) or abnormally dysfunctional VSMCs (e.g., aneurysms, vascular calcification) are associated with HIFs. These widespread systemic diseases also reflect the interdisciplinary nature of panvascular medicine. Moreover, given the comparable proliferative characteristics exhibited by VSMCs and cancer cells, and the delicate equilibrium between angiogenesis and cancer progression, there is a pressing need for more accurate modulation targets or combination approaches to bolster the effectiveness of HIF targeting therapies. Based on the aforementioned content, this review primarily focused on the significance of integrating the overall and local perspectives, as well as temporal and spatial balance, in the context of the HIF signaling pathway in VSMC-related panvascular diseases. Furthermore, the review discussed the implications of HIF-targeting drugs on panvascular disorders, while considering the trade-offs involved.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
8
|
Wahlund CJ, Çaglayan S, Czarnewski P, Hansen JB, Snir O. Sustained and intermittent hypoxia differentially modulate primary monocyte immunothrombotic responses to IL-1β stimulation. Front Immunol 2023; 14:1240597. [PMID: 37753073 PMCID: PMC10518394 DOI: 10.3389/fimmu.2023.1240597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Venous thromboembolism (VTE) is a leading cause of preventable deaths in hospitals, and its incidence is not decreasing despite extensive efforts in clinical and laboratory research. Venous thrombi are primarily formed in the valve pockets of deep veins, where activated monocytes play a crucial role in bridging innate immune activation and hemostatic pathways through the production of inflammatory cytokines, chemokines, and tissue factor (TF) - a principal initiator of coagulation. In the valve pocket inflammation and hypoxia (sustained/intermittent) coexist, however their combined effects on immunothrombotic processes are poorly understood. Inflammation is strongly associated with VTE, while the additional contribution of hypoxia remains largely unexplored. To investigate this, we modelled the intricate conditions of the venous valve pocket using a state-of-the-art hypoxia chamber with software-controlled oxygen cycling. We comprehensively studied the effects of sustained and intermittent hypoxia alone, and in combination with VTE-associated inflammatory stimuli on primary monocytes. TF expression and activity was measured in monocytes subjected to sustained and intermittent hypoxia alone, or in combination with IL-1β. Monocyte responses were further analyzed in detailed by RNA sequencing and validated by ELISA. Stimulation with IL-1β alone promoted both transcription and activity of TF. Interestingly, the stimulatory effect of IL-1β on TF was attenuated by sustained hypoxia, but not by intermittent hypoxia. Our transcriptome analysis further confirmed that sustained hypoxia limited the pro-inflammatory response induced by IL-1β, and triggered a metabolic shift in monocytes. Intermittent hypoxia alone had a modest effect on monocyte transcript. However, in combination with IL-1β intermittent hypoxia significantly altered the expression of 2207 genes and enhanced the IL-1β-stimulatory effects on several chemokine and interleukin genes (e.g., IL-19, IL-24, IL-32, MIF), as well as genes involved in coagulation (thrombomodulin) and fibrinolysis (VEGFA, MMP9, MMP14 and PAI-1). Increased production of CCL2, IL-6 and TNF following stimulation with intermittent hypoxia and IL-1β was confirmed by ELISA. Our findings provide valuable insights into how the different hypoxic profiles shape the immunothrombotic response of monocytes and shed new light on the early events in the pathogenesis of venous thrombosis.
Collapse
Affiliation(s)
- Casper J.E. Wahlund
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Safak Çaglayan
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Paulo Czarnewski
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Science for Life Laboratory, Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Stockholm University, Stockholm, Sweden
| | - John-Bjarne Hansen
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Omri Snir
- Thrombosis Research Group (TREC), Department of Clinical Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
9
|
Bombarda-Rocha V, Silva D, Badr-Eddine A, Nogueira P, Gonçalves J, Fresco P. Challenges in Pharmacological Intervention in Perilipins (PLINs) to Modulate Lipid Droplet Dynamics in Obesity and Cancer. Cancers (Basel) 2023; 15:4013. [PMID: 37568828 PMCID: PMC10417315 DOI: 10.3390/cancers15154013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1-5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity.
Collapse
Affiliation(s)
- Victória Bombarda-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Allal Badr-Eddine
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
| | - Patrícia Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Povero D, Chen Y, Johnson SM, McMahon CE, Pan M, Bao H, Petterson XMT, Blake E, Lauer KP, O'Brien DR, Yu Y, Graham RP, Taner T, Han X, Razidlo GL, Liu J. HILPDA promotes NASH-driven HCC development by restraining intracellular fatty acid flux in hypoxia. J Hepatol 2023; 79:378-393. [PMID: 37061197 PMCID: PMC11238876 DOI: 10.1016/j.jhep.2023.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/23/2023] [Accepted: 03/26/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND & AIMS The prevalence of non-alcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC) is rising rapidly, yet its underlying mechanisms remain unclear. Herein, we aim to determine the role of hypoxia-inducible lipid droplet associated protein (HILPDA)/hypoxia-inducible gene 2 (HIG2), a selective inhibitor of intracellular lipolysis, in NASH-driven HCC. METHODS The clinical significance of HILPDA was assessed in human NASH-driven HCC specimens by immunohistochemistry and transcriptomics analyses. The oncogenic effect of HILPDA was assessed in human HCC cells and in 3D epithelial spheroids upon exposure to free fatty acids and either normoxia or hypoxia. Lipidomics profiling of wild-type and HILPDA knockout HCC cells was assessed via shotgun and targeted approaches. Wild-type (Hilpdafl/fl) and hepatocyte-specific Hilpda knockout (HilpdaΔHep) mice were fed a Western diet and high sugar in drinking water while receiving carbon tetrachloride to induce NASH-driven HCC. RESULTS In patients with NASH-driven HCC, upregulated HILPDA expression is strongly associated with poor survival. In oxygen-deprived and lipid-loaded culture conditions, HILPDA promotes viability of human hepatoma cells and growth of 3D epithelial spheroids. Lack of HILPDA triggered flux of polyunsaturated fatty acids to membrane phospholipids and of saturated fatty acids to ceramide synthesis, exacerbating lipid peroxidation and apoptosis in hypoxia. The apoptosis induced by HILPDA deficiency was reversed by pharmacological inhibition of ceramide synthesis. In our experimental mouse model of NASH-driven HCC, HilpdaΔHep exhibited reduced hepatic steatosis and tumorigenesis but increased oxidative stress in the liver. Single-cell analysis supports a dual role of hepatic HILPDA in protecting HCC cells and facilitating the establishment of a pro-tumorigenic immune microenvironment in NASH. CONCLUSIONS Hepatic HILPDA is a pivotal oncometabolic factor in the NASH liver microenvironment and represents a potential novel therapeutic target. IMPACT AND IMPLICATIONS Non-alcoholic steatohepatitis (NASH, chronic metabolic liver disease caused by buildup of fat, inflammation and damage in the liver) is emerging as the leading risk factor and the fastest growing cause of hepatocellular carcinoma (HCC), the most common form of liver cancer. While curative therapeutic options exist for HCC, it frequently presents at a late stage when such options are no longer effective and only systemic therapies are available. However, systemic therapies are still associated with poor efficacy and some side effects. In addition, no approved drugs are available for NASH. Therefore, understanding the underlying metabolic alterations occurring during NASH-driven HCC is key to identifying new cancer treatments that target the unique metabolic needs of cancer cells.
Collapse
Affiliation(s)
- Davide Povero
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA; Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Scott M Johnson
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Cailin E McMahon
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Meixia Pan
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hanmei Bao
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xuan-Mai T Petterson
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Emily Blake
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Kimberly P Lauer
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Daniel R O'Brien
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Yue Yu
- Metabolomics Core, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Rondell P Graham
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Timucin Taner
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | - Xianlin Han
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; Departments of Surgery and Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA; Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
12
|
Zhao Y, He S, Huang J, Liu M. Genome-Wide Association Analysis of Muscle pH in Texel Sheep × Altay Sheep F 2 Resource Population. Animals (Basel) 2023; 13:2162. [PMID: 37443959 DOI: 10.3390/ani13132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
pH was one of the important meat quality traits, which was an important factor affecting the storage/shelf life and quality of meat in meat production. In order to find a way to extend the storage/shelf life, the pH values (pH45min, pH24h, pH48h and pH72h) of the longissimus dorsi muscles in F2 individuals of 462 Texel sheep × Altay sheep were determined, genotyping was performed using Illumina Ovine SNP 600 K BeadChip and whole genome resequencing technology, a genome-wide association analysis (GWAS) was used to screen the candidate genes and molecular markers for pH values related to the quality traits of mutton, and the effects of population stratification were detected by Q-Q plots. The results showed that the pH population stratification analysis did not find significant systemic bias, and there was no obvious population stratification effect. The results of the association analysis showed that 28 SNPs significantly associated with pH reached the level of genomic significance. The candidate gene associated with pH45min was identified as the CCDC92 gene by gene annotation and a search of the literature. Candidate genes related to pH24h were KDM4C, TGFB2 and GOT2 genes. The candidate genes related to pH48h were MMP12 and MMP13 genes. The candidate genes related to pH72h were HILPDA and FAT1 genes. Further bioinformatics analyses showed 24 gene ontology terms and five signaling pathways that were significantly enriched (p ≤ 0.05). Many terms and pathways were related to cellular components, processes of protein modification, the activity of protein dimerization and hydrolase activity. These identified SNPs and genes could provide useful information about meat and the storage/shelf life of meat, thereby extending the storage/shelf life and quality of meat.
Collapse
Affiliation(s)
- Yilong Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
- College of Animal Science and Technology, Xinjiang Agricultural Vocational and Technical College, Changji 831100, China
| | - Sangang He
- Biotechnology Institute, Xinjiang Academy of Animal Science, Urumqi 830013, China
| | | | - Mingjun Liu
- Biotechnology Institute, Xinjiang Academy of Animal Science, Urumqi 830013, China
| |
Collapse
|
13
|
Fernandez-Checa JC, Torres S, Garcia-Ruiz C. Hilpda, A New Player In Nash-Driven Hcc, Links Hypoxia Signaling With Ceramide Synthesis. J Hepatol 2023:S0168-8278(23)00337-9. [PMID: 37207912 DOI: 10.1016/j.jhep.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Affiliation(s)
- Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi I Sunyer (IDIBAPS), Barcelona; CIBEREHD, Madrid, Spain; Department of Medicine, Keck School of Division of Gastrointestinal and Liver Disease,Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi I Sunyer (IDIBAPS), Barcelona; CIBEREHD, Madrid, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi I Sunyer (IDIBAPS), Barcelona; CIBEREHD, Madrid, Spain; Department of Medicine, Keck School of Division of Gastrointestinal and Liver Disease,Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
14
|
Kragesteen BK, Giladi A, David E, Halevi S, Geirsdóttir L, Lempke OM, Li B, Bapst AM, Xie K, Katzenelenbogen Y, Dahl SL, Sheban F, Gurevich-Shapiro A, Zada M, Phan TS, Avellino R, Wang SY, Barboy O, Shlomi-Loubaton S, Winning S, Markwerth PP, Dekalo S, Keren-Shaul H, Kedmi M, Sikora M, Fandrey J, Korneliussen TS, Prchal JT, Rosenzweig B, Yutkin V, Racimo F, Willerslev E, Gur C, Wenger RH, Amit I. The transcriptional and regulatory identity of erythropoietin producing cells. Nat Med 2023; 29:1191-1200. [PMID: 37106166 DOI: 10.1038/s41591-023-02314-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023]
Abstract
Erythropoietin (Epo) is the master regulator of erythropoiesis and oxygen homeostasis. Despite its physiological importance, the molecular and genomic contexts of the cells responsible for renal Epo production remain unclear, limiting more-effective therapies for anemia. Here, we performed single-cell RNA and transposase-accessible chromatin (ATAC) sequencing of an Epo reporter mouse to molecularly identify Epo-producing cells under hypoxic conditions. Our data indicate that a distinct population of kidney stroma, which we term Norn cells, is the major source of endocrine Epo production in mice. We use these datasets to identify the markers, signaling pathways and transcriptional circuits characteristic of Norn cells. Using single-cell RNA sequencing and RNA in situ hybridization in human kidney tissues, we further provide evidence that this cell population is conserved in humans. These preliminary findings open new avenues to functionally dissect EPO gene regulation in health and disease and may serve as groundwork to improve erythropoiesis-stimulating therapies.
Collapse
Affiliation(s)
- Bjørt K Kragesteen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Amir Giladi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Eyal David
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shahar Halevi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Laufey Geirsdóttir
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Olga M Lempke
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Baoguo Li
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas M Bapst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Ken Xie
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Sophie L Dahl
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Fadi Sheban
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Gurevich-Shapiro
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Division of Haematology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mor Zada
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Truong San Phan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Roberto Avellino
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shuang-Yin Wang
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Barboy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Shlomi-Loubaton
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandra Winning
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Snir Dekalo
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Urology Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hadas Keren-Shaul
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Kedmi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Sikora
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Josef T Prchal
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Barak Rosenzweig
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Urology, Sheba Medical Center, Ramat Gan, Israel
| | - Vladimir Yutkin
- Department of Urology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fernando Racimo
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eske Willerslev
- GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Chamutal Gur
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Centre of Competence in Research 'Kidney.CH', University of Zurich, Zurich, Switzerland
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Caligiuri I, Vincenzo C, Asano T, Kumar V, Rizzolio F. The metabolic crosstalk between PIN1 and the tumour microenvironment. Semin Cancer Biol 2023; 91:143-157. [PMID: 36871635 DOI: 10.1016/j.semcancer.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) is a member of a family of peptidyl-prolyl isomerases that specifically recognizes and binds phosphoproteins, catalyzing the rapid cis-trans isomerization of phosphorylated serine/threonine-proline motifs, which leads to changes in the structures and activities of the targeted proteins. Through this complex mechanism, PIN1 regulates many hallmarks of cancer including cell autonomous metabolism and the crosstalk with the cellular microenvironment. Many studies showed that PIN1 is largely overexpressed in cancer turning on a set of oncogenes and abrogating the function of tumor suppressor genes. Among these targets, recent evidence demonstrated that PIN1 is involved in lipid and glucose metabolism and accordingly, in the Warburg effect, a characteristic of tumor cells. As an orchestra master, PIN1 finely tunes the signaling pathways allowing cancer cells to adapt and take advantage from a poorly organized tumor microenvironment. In this review, we highlight the trilogy among PIN1, the tumor microenvironment and the metabolic program rewiring.
Collapse
Affiliation(s)
- Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Canzonieri Vincenzo
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Tomochiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, Uttar Pradesh, India.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30123 Venezia, Italy.
| |
Collapse
|
16
|
Heng H, Li D, Su W, Liu X, Yu D, Bian Z, Li J. Exploration of comorbidity mechanisms and potential therapeutic targets of rheumatoid arthritis and pigmented villonodular synovitis using machine learning and bioinformatics analysis. Front Genet 2023; 13:1095058. [PMID: 36685864 PMCID: PMC9853060 DOI: 10.3389/fgene.2022.1095058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease. Pigmented villonodular synovitis (PVNS) is a tenosynovial giant cell tumor that can involve joints. The mechanisms of co-morbidity between the two diseases have not been thoroughly explored. Therefore, this study focused on investigating the functions, immunological differences, and potential therapeutic targets of common genes between RA and PVNS. Methods: Through the dataset GSE3698 obtained from the Gene Expression Omnibus (GEO) database, the differentially expressed genes (DEGs) were screened by R software, and weighted gene coexpression network analysis (WGCNA) was performed to discover the modules most relevant to the clinical features. The common genes between the two diseases were identified. The molecular functions and biological processes of the common genes were analyzed. The protein-protein interaction (PPI) network was constructed using the STRING database, and the results were visualized in Cytoscape software. Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) logistic regression and random forest (RF) were utilized to identify hub genes and predict the diagnostic efficiency of hub genes as well as the correlation between immune infiltrating cells. Results: We obtained a total of 107 DEGs, a module (containing 250 genes) with the highest correlation with clinical characteristics, and 36 common genes after taking the intersection. Moreover, using two machine learning algorithms, we identified three hub genes (PLIN, PPAP2A, and TYROBP) between RA and PVNS and demonstrated good diagnostic performance using ROC curve and nomogram plots. Single sample Gene Set Enrichment Analysis (ssGSEA) was used to analyze the biological functions in which three genes were mostly engaged. Finally, three hub genes showed a substantial association with 28 immune infiltrating cells. Conclusion: PLIN, PPAP2A, and TYROBP may influence RA and PVNS by modulating immunity and contribute to the diagnosis and therapy of the two diseases.
Collapse
Affiliation(s)
- Hongquan Heng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dazhuang Li
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Xinyue Liu
- Department of Radiology, Wangjiang Hospital of Sichuan University, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China,*Correspondence: Daojiang Yu, ; Zhengjun Bian, ; Jian Li,
| | - Zhengjun Bian
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China,*Correspondence: Daojiang Yu, ; Zhengjun Bian, ; Jian Li,
| | - Jian Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Daojiang Yu, ; Zhengjun Bian, ; Jian Li,
| |
Collapse
|
17
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
18
|
Abdalla SS, Harb AA, Almasri IM, Bustanji YK. The interaction of TRPV1 and lipids: Insights into lipid metabolism. Front Physiol 2022; 13:1066023. [PMID: 36589466 PMCID: PMC9797668 DOI: 10.3389/fphys.2022.1066023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a non-selective ligand-gated cation channel with high permeability for Ca2+, has received considerable attention as potential therapeutic target for the treatment of several disorders including pain, inflammation, and hyperlipidemia. In particular, TRPV1 regulates lipid metabolism by mechanisms that are not completely understood. Interestingly, TRPV1 and lipids regulate each other in a reciprocal and complex manner. This review surveyed the recent literature dealing with the role of TRPV1 in the hyperlipidemia-associated metabolic syndrome. Besides TRPV1 structure, molecular mechanisms underlying the regulatory effect of TRPV1 on lipid metabolism such as the involvement of uncoupling proteins (UCPs), ATP-binding cassette (ABC) transporters, peroxisome proliferation-activated receptors (PPAR), sterol responsive element binding protein (SREBP), and hypoxia have been discussed. Additionally, this review extends our understanding of the lipid-dependent modulation of TRPV1 activity through affecting both the gating and the expression of TRPV1. The regulatory role of different classes of lipids such as phosphatidylinositol (PI), cholesterol, estrogen, and oleoylethanolamide (OEA), on TRPV1 has also been addressed.
Collapse
Affiliation(s)
- Shtaywy S. Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan,*Correspondence: Shtaywy S. Abdalla,
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ihab M. Almasri
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Gaza, Palestine
| | - Yasser K. Bustanji
- Department of Biopharmaceuticals and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
19
|
Bezawork-Geleta A, Dimou J, Watt MJ. Lipid droplets and ferroptosis as new players in brain cancer glioblastoma progression and therapeutic resistance. Front Oncol 2022; 12:1085034. [PMID: 36591531 PMCID: PMC9797845 DOI: 10.3389/fonc.2022.1085034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
A primary brain tumor glioblastoma is the most lethal of all cancers and remains an extremely challenging disease. Apparent oncogenic signaling in glioblastoma is genetically complex and raised at any stage of the disease's progression. Many clinical trials have shown that anticancer drugs for any specific oncogene aberrantly expressed in glioblastoma show very limited activity. Recent discoveries have highlighted that alterations in tumor metabolism also contribute to disease progression and resistance to current therapeutics for glioblastoma, implicating an alternative avenue to improve outcomes in glioblastoma patients. The roles of glucose, glutamine and tryptophan metabolism in glioblastoma pathogenesis have previously been described. This article provides an overview of the metabolic network and regulatory changes associated with lipid droplets that suppress ferroptosis. Ferroptosis is a newly discovered type of nonapoptotic programmed cell death induced by excessive lipid peroxidation. Although few studies have focused on potential correlations between tumor progression and lipid droplet abundance, there has recently been increasing interest in identifying key players in lipid droplet biology that suppress ferroptosis and whether these dependencies can be effectively exploited in cancer treatment. This article discusses how lipid droplet metabolism, including lipid synthesis, storage, and use modulates ferroptosis sensitivity or tolerance in different cancer models, focusing on glioblastoma.
Collapse
Affiliation(s)
- Ayenachew Bezawork-Geleta
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - James Dimou
- Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Matthew J. Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Karagiota A, Chachami G, Paraskeva E. Lipid Metabolism in Cancer: The Role of Acylglycerolphosphate Acyltransferases (AGPATs). Cancers (Basel) 2022; 14:cancers14010228. [PMID: 35008394 PMCID: PMC8750616 DOI: 10.3390/cancers14010228] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Rapidly proliferating cancer cells reprogram lipid metabolism to keep the balance between fatty acid uptake, synthesis, consumption, and storage as triacylglycerides (TAG). Acylglycerolphosphate acyltransferases (AGPATs)/lysophosphatidic acid acyltransferases (LPAATs) are a family of enzymes that catalyze the synthesis of phosphatidic acid (PA), an intermediate in TAG synthesis, a signaling molecule, and a precursor of phospholipids. Importantly, the expression of AGPATs has been linked to diverse physiological and pathological phenotypes, including cancer. In this review, we present an overview of lipid metabolism reprogramming in cancer cells and give insight into the expression of AGPAT isoforms as well as their association with cancers, parameters of tumor biology, patient classification, and prognosis. Abstract Altered lipid metabolism is an emerging hallmark of aggressive tumors, as rapidly proliferating cancer cells reprogram fatty acid (FA) uptake, synthesis, storage, and usage to meet their increased energy demands. Central to these adaptive changes, is the conversion of excess FA to neutral triacylglycerides (TAG) and their storage in lipid droplets (LDs). Acylglycerolphosphate acyltransferases (AGPATs), also known as lysophosphatidic acid acyltransferases (LPAATs), are a family of five enzymes that catalyze the conversion of lysophosphatidic acid (LPA) to phosphatidic acid (PA), the second step of the TAG biosynthesis pathway. PA, apart from its role as an intermediate in TAG synthesis, is also a precursor of glycerophospholipids and a cell signaling molecule. Although the different AGPAT isoforms catalyze the same reaction, they appear to have unique non-overlapping roles possibly determined by their distinct tissue expression and substrate specificity. This is best exemplified by the role of AGPAT2 in the development of type 1 congenital generalized lipodystrophy (CGL) and is also manifested by recent studies highlighting the involvement of AGPATs in the physiology and pathology of various tissues and organs. Importantly, AGPAT isoform expression has been shown to enhance proliferation and chemoresistance of cancer cells and correlates with increased risk of tumor development or aggressive phenotypes of several types of tumors.
Collapse
Affiliation(s)
- Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.K.); (G.C.)
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.K.); (G.C.)
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
- Correspondence:
| |
Collapse
|
21
|
Wei X, Hou Y, Long M, Jiang L, Du Y. Molecular mechanisms underlying the role of hypoxia-inducible factor-1 α in metabolic reprogramming in renal fibrosis. Front Endocrinol (Lausanne) 2022; 13:927329. [PMID: 35957825 PMCID: PMC9357883 DOI: 10.3389/fendo.2022.927329] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Renal fibrosis is the result of renal tissue damage and repair response disorders. If fibrosis is not effectively blocked, it causes loss of renal function, leading to chronic renal failure. Metabolic reprogramming, which promotes cell proliferation by regulating cellular energy metabolism, is considered a unique tumor cell marker. The transition from oxidative phosphorylation to aerobic glycolysis is a major feature of renal fibrosis. Hypoxia-inducible factor-1 α (HIF-1α), a vital transcription factor, senses oxygen status, induces adaptive changes in cell metabolism, and plays an important role in renal fibrosis and glucose metabolism. This review focuses on the regulation of proteins related to aerobic glycolysis by HIF-1α and attempts to elucidate the possible regulatory mechanism underlying the effects of HIF-1α on glucose metabolism during renal fibrosis, aiming to provide new ideas for targeted metabolic pathway intervention in renal fibrosis.
Collapse
Affiliation(s)
- Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Department of Physical Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yujun Du,
| |
Collapse
|
22
|
Adipose Triglyceride Lipase in Hepatic Physiology and Pathophysiology. Biomolecules 2021; 12:biom12010057. [PMID: 35053204 PMCID: PMC8773762 DOI: 10.3390/biom12010057] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
The liver is extremely active in oxidizing triglycerides (TG) for energy production. An imbalance between TG synthesis and hydrolysis leads to metabolic disorders in the liver, including excessive lipid accumulation, oxidative stress, and ultimately liver damage. Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme that catalyzes the first step of TG breakdown to glycerol and fatty acids. Although its role in controlling lipid homeostasis has been relatively well-studied in the adipose tissue, heart, and skeletal muscle, it remains largely unknown how and to what extent ATGL is regulated in the liver, responds to stimuli and regulators, and mediates disease progression. Therefore, in this review, we describe the current understanding of the structure–function relationship of ATGL, the molecular mechanisms of ATGL regulation at translational and post-translational levels, and—most importantly—its role in lipid and glucose homeostasis in health and disease with a focus on the liver. Advances in understanding the molecular mechanisms underlying hepatic lipid accumulation are crucial to the development of targeted therapies for treating hepatic metabolic disorders.
Collapse
|
23
|
Cai L, Ying M, Wu H. Microenvironmental Factors Modulating Tumor Lipid Metabolism: Paving the Way to Better Antitumoral Therapy. Front Oncol 2021; 11:777273. [PMID: 34888248 PMCID: PMC8649922 DOI: 10.3389/fonc.2021.777273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic reprogramming is one of the emerging hallmarks of cancer and is driven by both the oncogenic mutations and challenging microenvironment. To satisfy the demands of energy and biomass for rapid proliferation, the metabolism of various nutrients in tumor cells undergoes important changes, among which the aberrant lipid metabolism has gained increasing attention in facilitating tumor development and metastasis in the past few years. Obstacles emerged in the aspect of application of targeting lipid metabolism for tumor therapy, due to lacking of comprehensive understanding on its regulating mechanism. Tumor cells closely interact with stromal niche, which highly contributes to metabolic rewiring of critical nutrients in cancer cells. This fact makes the impact of microenvironment on tumor lipid metabolism a topic of renewed interest. Abundant evidence has shown that many factors existing in the tumor microenvironment can rewire multiple signaling pathways and proteins involved in lipid metabolic pathways of cancer cells. Hence in this review, we summarized the recent progress on the understanding of microenvironmental factors regulating tumor lipid metabolism, and discuss the potential of modulating lipid metabolism as an anticancer approach.
Collapse
Affiliation(s)
- Limeng Cai
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Kotlyarov S, Bulgakov A. Lipid Metabolism Disorders in the Comorbid Course of Nonalcoholic Fatty Liver Disease and Chronic Obstructive Pulmonary Disease. Cells 2021; 10:2978. [PMID: 34831201 PMCID: PMC8616072 DOI: 10.3390/cells10112978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently among the most common liver diseases. Unfavorable data on the epidemiology of metabolic syndrome and obesity have increased the attention of clinicians and researchers to the problem of NAFLD. The research results allow us to emphasize the systemicity and multifactoriality of the pathogenesis of liver parenchyma lesion. At the same time, many aspects of its classification, etiology, and pathogenesis remain controversial. Local and systemic metabolic disorders are also a part of the pathogenesis of chronic obstructive pulmonary disease and can influence its course. The present article analyzes the metabolic pathways mediating the links of impaired lipid metabolism in NAFLD and chronic obstructive pulmonary disease (COPD). Free fatty acids, cholesterol, and ceramides are involved in key metabolic and inflammatory pathways underlying the pathogenesis of both diseases. Moreover, inflammation and lipid metabolism demonstrate close links in the comorbid course of NAFLD and COPD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia;
| | | |
Collapse
|
25
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
26
|
Losartan Prevents Hepatic Steatosis and Macrophage Polarization by Inhibiting HIF-1α in a Murine Model of NAFLD. Int J Mol Sci 2021; 22:ijms22157841. [PMID: 34360607 PMCID: PMC8346090 DOI: 10.3390/ijms22157841] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Hypoxia and hepatosteatosis microenvironments are fundamental traits of nonalcoholic fatty liver disease (NAFLD). Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that controls the cellular response to hypoxia and is activated in hepatocytes of patients with NAFLD, whereas the route and regulation of lipid droplets (LDs) and macrophage polarization related to systemic inflammation in NAFLD is unknown. Losartan is an angiotensin II receptor antagonist, that approved portal hypertension and related HIF-1α pathways in hepatic injury models. Here, we show that losartan in a murine model of NAFLD significantly decreased hepatic de novo lipogenesis (DNL) as well as suppressed lipid droplets (LDs), LD-associated proteins, perilipins (PLINs), and cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector (CIDE) family in liver and epididymal white adipose tissues (EWAT) of ob/ob mice. Obesity-mediated macrophage M1 activation was also required for HIF-1α expression in the liver and EWAT of ob/ob mice. Administration of losartan significantly diminishes obesity-enhanced macrophage M1 activation and suppresses hepatosteatosis. Moreover, HIF-1α-mediated mitochondrial dysfunction was reversed in ob/ob mice treated with losartan. Together, the regulation of HIF-1α controls LDs protein expression and macrophage polarization, which highlights a potential target for losartan in NAFLD.
Collapse
|
27
|
The Propensity of the Human Liver to Form Large Lipid Droplets Is Associated with PNPLA3 Polymorphism, Reduced INSIG1 and NPC1L1 Expression and Increased Fibrogenetic Capacity. Int J Mol Sci 2021; 22:ijms22116100. [PMID: 34198853 PMCID: PMC8200978 DOI: 10.3390/ijms22116100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
In nonalcoholic steatohepatitis animal models, an increased lipid droplet size in hepatocytes is associated with fibrogenesis. Hepatocytes with large droplet (Ld-MaS) or small droplet (Sd-MaS) macrovesicular steatosis may coexist in the human liver, but the factors associated with the predominance of one type over the other, including hepatic fibrogenic capacity, are unknown. In pre-ischemic liver biopsies from 225 consecutive liver transplant donors, we retrospectively counted hepatocytes with Ld-MaS and Sd-MaS and defined the predominant type of steatosis as involving ≥50% of steatotic hepatocytes. We analyzed a donor Patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 polymorphism, hepatic expression of proteins involved in lipid metabolism by RT-PCR, hepatic stellate cell (HSC) activation by α-SMA immunohistochemistry and, one year after transplantation, histological progression of fibrosis due to Hepatitis C Virus (HCV) recurrence. Seventy-four livers had no steatosis, and there were 98 and 53 with predominant Ld-MaS and Sd-MaS, respectively. In linear regression models, adjusted for many donor variables, the percentage of steatotic hepatocytes affected by Ld-MaS was inversely associated with hepatic expression of Insulin Induced Gene 1 (INSIG-1) and Niemann-Pick C1-Like 1 gene (NPC1L1) and directly with donor PNPLA3 variant M, HSC activation and progression of post-transplant fibrosis. In humans, Ld-MaS formation by hepatocytes is associated with abnormal PNPLA3-mediated lipolysis, downregulation of both the intracellular cholesterol sensor and cholesterol reabsorption from bile and increased hepatic fibrogenesis.
Collapse
|
28
|
Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. Int J Mol Sci 2021; 22:ijms22115703. [PMID: 34071836 PMCID: PMC8199012 DOI: 10.3390/ijms22115703] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
In order to meet the high energy demand, a metabolic reprogramming occurs in cancer cells. Its role is crucial in promoting tumor survival. Among the substrates in demand, oxygen is fundamental for bioenergetics. Nevertheless, tumor microenvironment is frequently characterized by low-oxygen conditions. Hypoxia-inducible factor 1 (HIF-1) is a pivotal modulator of the metabolic reprogramming which takes place in hypoxic cancer cells. In the hub of cellular bioenergetics, mitochondria are key players in regulating cellular energy. Therefore, a close crosstalk between mitochondria and HIF-1 underlies the metabolic and functional changes of cancer cells. Noteworthy, HIF-1 represents a promising target for novel cancer therapeutics. In this review, we summarize the molecular mechanisms underlying the interplay between HIF-1 and energetic metabolism, with a focus on mitochondria, of hypoxic cancer cells.
Collapse
|
29
|
Shen D, Gao Y, Huang Q, Xuan Y, Yao Y, Gu L, Huang Y, Zhang Y, Li P, Fan Y, Tang L, Du S, Wu S, Wang H, Wang C, Gong H, Pang Y, Ma X, Wang B, Zhang X. E2F1 promotes proliferation and metastasis of clear cell renal cell carcinoma via activation of SREBP1-dependent fatty acid biosynthesis. Cancer Lett 2021; 514:48-62. [PMID: 34019961 DOI: 10.1016/j.canlet.2021.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022]
Abstract
Enhanced synthesis or uptake of lipids contributes to rapid cancer cell proliferation and tumor progression. In recent years, cell cycle regulators have been shown to be involved in the control of lipid synthesis, in addition to their classical function of controlling the cell cycle. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and is characterized by lipid-rich cytoplasmic deposition. However, the relationship between altered lipid metabolism and tumor progression in ccRCC is poorly understood. Here, we demonstrated that E2F transcription factor 1 (E2F1), in addition to its key role in regulating the cell cycle, induces extensive lipid accumulation and elevated levels of lipogenic enzymes in ccRCC cells by upregulating sterol regulatory element-binding protein 1 (SREBP1). E2F1 knockdown or SREBP1 suppression attenuated fatty acid (FA) de novo synthesis, cell proliferation and epithelial-mesenchymal transition (EMT) in ccRCC cells. Furthermore, overexpression of E2F1 promoted lipid storage, tumor growth and metastasis in a mouse xenograft model, whereas E2F1 downregulation or SREBP1 inhibition reversed these effects. In ccRCC patients, high levels of E2F1 and SREBP1 were associated with increased lipid accumulation and correlated with poor prognosis. Our results demonstrate that E2F1 can increase proliferation and metastasis through SREBP1-induced aberrant lipid metabolism, which is a novel critical signaling mechanism driving human ccRCC progression.
Collapse
Affiliation(s)
- Donglai Shen
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Yu Gao
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Qingbo Huang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Yundong Xuan
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Yuanxin Yao
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Liangyou Gu
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China.
| | - Yan Huang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Yu Zhang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Pin Li
- Department of Pediatric Urology, Bayi Children's Hospital Affiliated to the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100007, PR China.
| | - Yang Fan
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Lu Tang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Songliang Du
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China; School of Medicine, Nankai University, Tianjin, 300071, PR China.
| | - Shengpan Wu
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Hanfeng Wang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Chenfeng Wang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Huijie Gong
- Department of Urology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, PR China.
| | - Yuewen Pang
- Department of Urology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, PR China.
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Baojun Wang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| |
Collapse
|
30
|
Tan SK, Mahmud I, Fontanesi F, Puchowicz M, Neumann CKA, Griswold AJ, Patel R, Dispagna M, Ahmed HH, Gonzalgo ML, Brown JM, Garrett TJ, Welford SM. Obesity-Dependent Adipokine Chemerin Suppresses Fatty Acid Oxidation to Confer Ferroptosis Resistance. Cancer Discov 2021; 11:2072-2093. [PMID: 33757970 DOI: 10.1158/2159-8290.cd-20-1453] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/15/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by accumulation of neutral lipids and adipogenic transdifferentiation. We assessed adipokine expression in ccRCC and found that tumor tissues and patient plasma exhibit obesity-dependent elevations of the adipokine chemerin. Attenuation of chemerin by several approaches led to significant reduction in lipid deposition and impairment of tumor cell growth in vitro and in vivo. A multi-omics approach revealed that chemerin suppresses fatty acid oxidation, preventing ferroptosis, and maintains fatty acid levels that activate hypoxia-inducible factor 2α expression. The lipid coenzyme Q and mitochondrial complex IV, whose biogeneses are lipid-dependent, were found to be decreased after chemerin inhibition, contributing to lipid reactive oxygen species production. Monoclonal antibody targeting chemerin led to reduced lipid storage and diminished tumor growth, demonstrating translational potential of chemerin inhibition. Collectively, the results suggest that obesity and tumor cells contribute to ccRCC through the expression of chemerin, which is indispensable in ccRCC biology. SIGNIFICANCE: Identification of a hypoxia-inducible factor-dependent adipokine that prevents fatty acid oxidation and causes escape from ferroptosis highlights a critical metabolic dependency unique in the clear cell subtype of kidney cancer. Targeting lipid metabolism via inhibition of a soluble factor is a promising pharmacologic approach to expand therapeutic strategies for patients with ccRCC.See related commentary by Reznik et al., p. 1879.This article is highlighted in the In This Issue feature, p. 1861.
Collapse
Affiliation(s)
- Sze Kiat Tan
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Iqbal Mahmud
- Department of Pathology, Immunology and Laboratory Medicine, UF Health, UF Health Cancer Center, Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, College of Medicine, University of Florida, Gainesville, Florida
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Michelle Puchowicz
- Department of Pediatrics, Metabolic Phenotyping Core, Pediatric Obesity Program, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Chase K A Neumann
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Rutulkumar Patel
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Marco Dispagna
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Hamzah H Ahmed
- Department of Pathology, Immunology and Laboratory Medicine, UF Health, UF Health Cancer Center, Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, College of Medicine, University of Florida, Gainesville, Florida.,Diagnostic Radiology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mark L Gonzalgo
- Department of Urology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio.,Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Center for Microbiome and Human Health, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, UF Health, UF Health Cancer Center, Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, College of Medicine, University of Florida, Gainesville, Florida
| | - Scott M Welford
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
31
|
van Dierendonck XAMH, de la Rosa Rodriguez MA, Georgiadi A, Mattijssen F, Dijk W, van Weeghel M, Singh R, Borst JW, Stienstra R, Kersten S. HILPDA Uncouples Lipid Droplet Accumulation in Adipose Tissue Macrophages from Inflammation and Metabolic Dysregulation. Cell Rep 2021; 30:1811-1822.e6. [PMID: 32049012 DOI: 10.1016/j.celrep.2020.01.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 01/15/2023] Open
Abstract
Obesity leads to a state of chronic, low-grade inflammation that features the accumulation of lipid-laden macrophages in adipose tissue. Here, we determined the role of macrophage lipid-droplet accumulation in the development of obesity-induced adipose-tissue inflammation, using mice with myeloid-specific deficiency of the lipid-inducible HILPDA protein. HILPDA deficiency markedly reduced intracellular lipid levels and accumulation of fluorescently labeled fatty acids. Decreased lipid storage in HILPDA-deficient macrophages can be rescued by inhibition of adipose triglyceride lipase (ATGL) and is associated with increased oxidative metabolism. In diet-induced obese mice, HILPDA deficiency does not alter inflammatory and metabolic parameters, despite markedly reducing lipid accumulation in macrophages. Overall, we find that HILPDA is a lipid-inducible, physiological inhibitor of ATGL-mediated lipolysis in macrophages and uncouples lipid storage in adipose tissue macrophages from inflammation and metabolic dysregulation. Our data question the contribution of lipid droplet accumulation in adipose tissue macrophages in obesity-induced inflammation and metabolic dysregulation.
Collapse
Affiliation(s)
- Xanthe A M H van Dierendonck
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein 8, 6525 GA Nijmegen, the Netherlands
| | - Montserrat A de la Rosa Rodriguez
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Anastasia Georgiadi
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Frits Mattijssen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Wieneke Dijk
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 505D, Bronx, NY 10461, USA
| | - Jan Willem Borst
- Laboratory of Biochemistry, Microspectroscopy Research Facility, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein 8, 6525 GA Nijmegen, the Netherlands.
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
32
|
Matsushita Y, Nakagawa H, Koike K. Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat. Cancers (Basel) 2021; 13:474. [PMID: 33530546 PMCID: PMC7865757 DOI: 10.3390/cancers13030474] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Lipids in our body, which are mainly composed of fatty acids, triacylglycerides, sphingolipids, phospholipids, and cholesterol, play important roles at the cellular level. In addition to being energy sources and structural components of biological membranes, several types of lipids serve as signaling molecules or secondary messengers. Metabolic reprogramming has been recognized as a hallmark of cancer, but changes in lipid metabolism in cancer have received less attention compared to glucose or glutamine metabolism. However, recent innovations in mass spectrometry- and chromatography-based lipidomics technologies have increased our understanding of the role of lipids in cancer. Changes in lipid metabolism, so-called "lipid metabolic reprogramming", can affect cellular functions including the cell cycle, proliferation, growth, and differentiation, leading to carcinogenesis. Moreover, interactions between cancer cells and adjacent immune cells through altered lipid metabolism are known to support tumor growth and progression. Characterization of cancer-specific lipid metabolism can be used to identify novel metabolic targets for cancer treatment, and indeed, several clinical trials are currently underway. Thus, we discuss the latest findings on the roles of lipid metabolism in cancer biology and introduce current advances in lipidomics technologies, focusing on their applications in cancer research.
Collapse
Affiliation(s)
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.M.); (K.K.)
| | | |
Collapse
|
33
|
Sheng Y, Li J, Yang Y, Lu Y. Hypoxia-inducible lipid droplet-associated (HILPDA) facilitates the malignant phenotype of lung adenocarcinoma cells in vitro through modulating cell cycle pathways. Tissue Cell 2021; 70:101495. [PMID: 33535136 DOI: 10.1016/j.tice.2021.101495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/10/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hypoxia-inducible lipid droplet-associated (HILPDA) is considered to have tumorigenic activity, but its function in lung adenocarcinoma (LUAD) is rarely known. This work aimed to assess the regulatory functions as well as the in-depth mechanism of HILPDA in LUAD. METHODS The expression of HILPDA in LUAD tissues was analyzed based on TCGA database, and then qRT-PCR was performed to confirm the HILPDA expression in LUAD cell lines. Kaplan-Meier analysis was used to measure the correlation of HILPDA expression and overall survival in patients with LUAD. Then, Cell-Counting Kit-8 (CCK-8), colony formation and transwell assays were performed to detect cell proliferation, invasion and migration. Moreover, the pathways closely related to the high HILPDA expression was analyzed by Kyoto Encyclopedia of genes and Genomes (KEGG) analysis. The levels of Cell cycle pathway-related proteins were assessed using western blotting. RESULTS Herein, we revealed that HILPDA was expressed at high levels in LUAD tissues and cell lines, and LUAD patients with the higher HILPDA expression presented the shorter survival time. Down-regulation of HILPDA in Calu-3 cells can retard cell proliferation, migration and invasion as well as arrest cells in the G1 phase, whereas overexpression of HILPDA in A549 cells presented a marked promotion on these phenotypes. Moreover, we surveyed that knockdown of HILPDA restrained the activation of cell cycle pathway, while up-regulation of HILPDA led to opponent outcomes. CONCLUSIONS In summing, HILPDA may act as an oncogenic factor in LUAD cells via modulating cell cycle pathway, which represent a novel biomarker of tumorigenesis in LUAD patients.
Collapse
Affiliation(s)
- Yanrui Sheng
- Department of Clinical Laboratory, Jining No.1 People's Hospital, Jining, PR China
| | - Jinlong Li
- Department of Respiratory Medicine, Suixi County Hospital, Huaibei, PR China
| | - Yanna Yang
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Yingyun Lu
- Department of Rehabilitation Medicine, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
34
|
de la Rosa Rodriguez MA, Deng L, Gemmink A, van Weeghel M, Aoun ML, Warnecke C, Singh R, Borst JW, Kersten S. Hypoxia-inducible lipid droplet-associated induces DGAT1 and promotes lipid storage in hepatocytes. Mol Metab 2021; 47:101168. [PMID: 33465519 PMCID: PMC7881268 DOI: 10.1016/j.molmet.2021.101168] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Objective Storage of triglycerides in lipid droplets is governed by a set of lipid droplet-associated proteins. One of these lipid droplet-associated proteins, hypoxia-inducible lipid droplet-associated (HILPDA), was found to impair lipid droplet breakdown in macrophages and cancer cells by inhibiting adipose triglyceride lipase. Here, we aimed to better characterize the role and mechanism of action of HILPDA in hepatocytes. Methods We performed studies in HILPDA-deficient and HILPDA-overexpressing liver cells, liver slices, and mice. The functional role and physical interactions of HILPDA were investigated using a variety of biochemical and microscopic techniques, including real-time fluorescence live-cell imaging and Förster resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM). Results Levels of HILPDA were markedly induced by fatty acids in several hepatoma cell lines. Hepatocyte-specific deficiency of HILPDA in mice modestly but significantly reduced hepatic triglycerides in mice with non-alcoholic steatohepatitis. Similarly, deficiency of HILPDA in mouse liver slices and primary hepatocytes reduced lipid storage and accumulation of fluorescently-labeled fatty acids in lipid droplets, respectively, which was independent of adipose triglyceride lipase. Fluorescence microscopy showed that HILPDA partly colocalizes with lipid droplets and with the endoplasmic reticulum, is especially abundant in perinuclear areas, and mainly associates with newly added fatty acids. Real-time fluorescence live-cell imaging further revealed that HILPDA preferentially localizes to lipid droplets that are being remodeled. Overexpression of HILPDA in liver cells increased the activity of diacylglycerol acyltransferases (DGAT) and DGAT1 protein levels, concurrent with increased lipid storage. Confocal microscopy coupled to FRET-FLIM analysis demonstrated that HILPDA physically interacts with DGAT1 in living liver cells. The stimulatory effect of HILPDA on lipid storage via DGAT1 was corroborated in adipocytes. Conclusions Our data indicate that HILPDA physically interacts with DGAT1 and increases DGAT activity. Our findings suggest a novel regulatory mechanism by which fatty acids promote triglyceride synthesis and storage. HILPDA expression is induced by fatty acids in hepatoma cells. HILPDA deficiency modestly decreases liver triglyceride storage in mice with NASH. HILPDA preferentially associates with newly synthesized lipid droplets and active lipid droplets. HILPDA promotes lipid storage at least in part independently of ATGL. HILPDA physically interacts and induces DGAT1.
Collapse
Affiliation(s)
- Montserrat A de la Rosa Rodriguez
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Lei Deng
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Anne Gemmink
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center+, Maastricht, 6200 MD, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands
| | - Marie Louise Aoun
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 505D, Bronx, NY, 10461, USA
| | - Christina Warnecke
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Rajat Singh
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 505D, Bronx, NY, 10461, USA
| | - Jan Willem Borst
- Laboratory of Biochemistry, Microspectroscopy Research Facility, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands.
| |
Collapse
|
35
|
Zheng M, Wang W, Liu J, Zhang X, Zhang R. Lipid Metabolism in Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:49-69. [PMID: 33740243 DOI: 10.1007/978-981-33-6785-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolic reprogramming is one of the most critical hallmarks in cancer cells. In the past decades, mounting evidence has demonstrated that, besides the Warburg Effect, lipid metabolism dysregulation is also one of the essential characteristics of cancer cell metabolism. Lipids are water-insoluble molecules with diverse categories of phosphoglycerides, triacylglycerides, sphingolipids, sterols, etc. As the major utilization for energy storage, fatty acids are the primary building blocks for synthesizing triacylglycerides. And phosphoglycerides, sphingolipids, and sterols are the main components constructing biological membranes. More importantly, lipids play essential roles in signal transduction by functioning as second messengers or hormones. Much evidence has shown specific alterations of lipid metabolism in cancer cells. Consequently, the structural configuration of biological membranes, the energy homeostasis under nutrient stress, and the abundance of lipids in the intracellular signal transduction are affected by these alterations. Furthermore, lipid droplets accumulate in cancer cells and function adaptively to different types of harmful stress. This chapter reviews the regulation, functions, and therapeutic benefits of targeting lipid metabolism in cancer cells. Overall, this chapter highlights the significance of exploring more potential therapeutic strategies for malignant diseases by unscrambling lipid metabolism regulation in cancer cells.
Collapse
Affiliation(s)
- Minhua Zheng
- Department of Medical Genetics and Developmental Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wei Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, People's Republic of China.
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
36
|
Povero D, Johnson SM, Liu J. Hypoxia, hypoxia-inducible gene 2 (HIG2)/HILPDA, and intracellular lipolysis in cancer. Cancer Lett 2020; 493:71-79. [PMID: 32818550 PMCID: PMC11218043 DOI: 10.1016/j.canlet.2020.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/27/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
Tumor tissues are chronically exposed to hypoxia owing to aberrant vascularity. Hypoxia induces metabolic alterations in cancer, thereby promoting aggressive malignancy and metastasis. While previous efforts largely focused on adaptive responses in glucose and glutamine metabolism, recent studies have begun to yield important insight into the hypoxic regulation of lipid metabolic reprogramming in cancer. Emerging evidence points to lipid droplet (LD) accumulation as a hallmark of hypoxic cancer cells. One critical underlying mechanism involves the inhibition of adipose triglyceride lipase (ATGL)-mediated intracellular lipolysis by a small protein encoded by hypoxia-inducible gene 2 (HIG2), also known as hypoxia inducible lipid droplet associated (HILPDA). In this review we summarize and discuss recent key findings on hypoxia-dependent regulation of metabolic adaptations especially lipolysis in cancer. We also pose several questions and hypotheses pertaining to the metabolic impact of lipolytic regulation in cancer under hypoxia and during hypoxia-reoxygenation transition.
Collapse
Affiliation(s)
- Davide Povero
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Division of Endocrinology, Rochester, MN, 55905, USA
| | - Scott M Johnson
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Mayo Clinic College of Medicine & Science, Rochester, MN, 55905, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jun Liu
- From Department of Biochemistry and Molecular Biology, Rochester, MN, 55905, USA; Division of Endocrinology, Rochester, MN, 55905, USA.
| |
Collapse
|
37
|
Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics. Biochem J 2020; 477:985-1008. [PMID: 32168372 DOI: 10.1042/bcj20190468] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Fatty acids (FAs) are stored safely in the form of triacylglycerol (TAG) in lipid droplet (LD) organelles by professional storage cells called adipocytes. These lipids are mobilized during adipocyte lipolysis, the fundamental process of hydrolyzing TAG to FAs for internal or systemic energy use. Our understanding of adipocyte lipolysis has greatly increased over the past 50 years from a basic enzymatic process to a dynamic regulatory one, involving the assembly and disassembly of protein complexes on the surface of LDs. These dynamic interactions are regulated by hormonal signals such as catecholamines and insulin which have opposing effects on lipolysis. Upon stimulation, patatin-like phospholipase domain containing 2 (PNPLA2)/adipocyte triglyceride lipase (ATGL), the rate limiting enzyme for TAG hydrolysis, is activated by the interaction with its co-activator, alpha/beta hydrolase domain-containing protein 5 (ABHD5), which is normally bound to perilipin 1 (PLIN1). Recently identified negative regulators of lipolysis include G0/G1 switch gene 2 (G0S2) and PNPLA3 which interact with PNPLA2 and ABHD5, respectively. This review focuses on the dynamic protein-protein interactions involved in lipolysis and discusses some of the emerging concepts in the control of lipolysis that include allosteric regulation and protein turnover. Furthermore, recent research demonstrates that many of the proteins involved in adipocyte lipolysis are multifunctional enzymes and that lipolysis can mediate homeostatic metabolic signals at both the cellular and whole-body level to promote inter-organ communication. Finally, adipocyte lipolysis is involved in various diseases such as cancer, type 2 diabetes and fatty liver disease, and targeting adipocyte lipolysis is of therapeutic interest.
Collapse
|
38
|
Zhang D, Xu X, Ye Q. Metabolism and immunity in breast cancer. Front Med 2020; 15:178-207. [PMID: 33074528 DOI: 10.1007/s11684-020-0793-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is one of the most common malignancies that seriously threaten women's health. In the process of the malignant transformation of breast cancer, metabolic reprogramming and immune evasion represent the two main fascinating characteristics of cancer and facilitate cancer cell proliferation. Breast cancer cells generate energy through increased glucose metabolism. Lipid metabolism contributes to biological signal pathways and forms cell membranes except energy generation. Amino acids act as basic protein units and metabolic regulators in supporting cell growth. For tumor-associated immunity, poor immunogenicity and heightened immunosuppression cause breast cancer cells to evade the host's immune system. For the past few years, the complex mechanisms of metabolic reprogramming and immune evasion are deeply investigated, and the genes involved in these processes are used as clinical therapeutic targets for breast cancer. Here, we review the recent findings related to abnormal metabolism and immune characteristics, regulatory mechanisms, their links, and relevant therapeutic strategies.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
39
|
Ritz MF, Jenoe P, Bonati L, Engelter S, Lyrer P, Peters N. Combined Transcriptomic and Proteomic Analyses of Cerebral Frontal Lobe Tissue Identified RNA Metabolism Dysregulation as One Potential Pathogenic Mechanism in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). Curr Neurovasc Res 2020; 16:481-493. [PMID: 31657685 DOI: 10.2174/1567202616666191023111059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cerebral small vessel disease (SVD) is an important cause of stroke and vascular cognitive impairment (VCI), leading to subcortical ischemic vascular dementia. As a hereditary form of SVD with early onset, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) represents a pure form of SVD and may thus serve as a model disease for SVD. To date, underlying molecular mechanisms linking vascular pathology and subsequent neuronal damage in SVD are incompletely understood. OBJECTIVE We performed comparative transcriptional profiling microarray and proteomic analyses on post-mortem frontal lobe specimen from 2 CADASIL patients and 5 non neurologically diseased controls in order to identify dysregulated pathways potentially involved in the development of tissue damage in CADASIL. METHODS Transcriptional microarray analysis of material extracted from frontal grey and white matter (WM) identified subsets of up- or down-regulated genes enriched into biological pathways mostly in WM areas. Proteomic analysis of these regions also highlighted cellular processes identified by dysregulated proteins. RESULTS Discrepancies between proteomic and transcriptomic data were observed, but a number of pathways were commonly associated with genes and corresponding proteins, such as: "ribosome" identified by upregulated genes and proteins in frontal cortex or "spliceosome" associated with down-regulated genes and proteins in frontal WM. CONCLUSION This latter finding suggests that defective expression of spliceosomal components may alter widespread splicing profile, potentially inducing expression abnormalities that could contribute to cerebral WM damage in CADASIL.
Collapse
Affiliation(s)
- Marie-Françoise Ritz
- Department of Biomedicine, Brain Tumor Biology Laboratory, University of Basel, and University Hospital of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Paul Jenoe
- Proteomics Core Facility, Biocenter, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Leo Bonati
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Stefan Engelter
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland.,Neurorehabilitation Unit, University of Basel and University Center for Medicine of Aging, Felix Platter Hospital, Burgfelderstrasse 101, 4055 Basel, Switzerland
| | - Philippe Lyrer
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Nils Peters
- Department of Neurology and Stroke Center, University Hospital Basel and University of Basel, Petersgraben 4, 4031 Basel, Switzerland.,Neurorehabilitation Unit, University of Basel and University Center for Medicine of Aging, Felix Platter Hospital, Burgfelderstrasse 101, 4055 Basel, Switzerland
| |
Collapse
|
40
|
Liparulo I, Bergamini C, Bortolus M, Calonghi N, Gasparre G, Kurelac I, Masin L, Rizzardi N, Rugolo M, Wang W, Aleo SJ, Kiwan A, Torri C, Zanna C, Fato R. Coenzyme Q biosynthesis inhibition induces HIF-1α stabilization and metabolic switch toward glycolysis. FEBS J 2020; 288:1956-1974. [PMID: 32898935 DOI: 10.1111/febs.15561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/16/2020] [Accepted: 09/03/2020] [Indexed: 12/28/2022]
Abstract
Coenzyme Q10 (CoQ, ubiquinone) is a redox-active lipid endogenously synthesized by the cells. The final stage of CoQ biosynthesis is performed at the mitochondrial level by the 'complex Q', where coq2 is responsible for the prenylation of the benzoquinone ring of the molecule. We report that the competitive coq2 inhibitor 4-nitrobenzoate (4-NB) decreased the cellular CoQ content and caused severe impairment of mitochondrial function in the T67 human glioma cell line. In parallel with the reduction in CoQ biosynthesis, the cholesterol level increased, leading to significant perturbation of the plasma membrane physicochemical properties. We show that 4-NB treatment did not significantly affect the cell viability, because of an adaptive metabolic rewiring toward glycolysis. Hypoxia-inducible factor 1α (HIF-1α) stabilization was detected in 4-NB-treated cells, possibly due to the contribution of both reduction in intracellular oxygen tension and ROS overproduction. Exogenous CoQ supplementation partially recovered cholesterol content, HIF-1α degradation, and ROS production, whereas only weakly improved the bioenergetic impairment induced by the CoQ depletion. Our data provide new insights on the effect of CoQ depletion and contribute to shed light on the pathogenic mechanisms of ubiquinone deficiency syndrome.
Collapse
Affiliation(s)
- Irene Liparulo
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | | | - Natalia Calonghi
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences - DIMEC, University of Bologna, Italy
| | - Luca Masin
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Michela Rugolo
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Wenping Wang
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Serena J Aleo
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Alisar Kiwan
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Italy
| | - Cristian Torri
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Italy
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| | - Romana Fato
- Department of Pharmacy and Biotechnology-FABIT, University of Bologna, Italy
| |
Collapse
|
41
|
Zhang J, Ma J, Zhou X, Hu S, Ge L, Sun J, Li P, Long K, Jin L, Tang Q, Liu L, Li X, Shuai S, Li M. Comprehensive Analysis of mRNA and lncRNA Transcriptomes Reveals the Differentially Hypoxic Response of Preadipocytes During Adipogenesis. Front Genet 2020; 11:845. [PMID: 32849828 PMCID: PMC7425071 DOI: 10.3389/fgene.2020.00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022] Open
Abstract
Local hypoxia has recently been reported to occur in the white adipose tissue (WAT) microenvironment during obesity. Adipocytes have a unique life cycle that reflects the different stages of adipogenesis in the WAT niche. Long non-coding RNAs (lncRNAs) play an important role in the cellular response to hypoxia. However, the differentially hypoxic responses of preadipocytes during adipogenesis and the potential role of lncRNAs in this process remain to be elucidated. Here, we evaluated the differentially hypoxic responses of primary hamster preadipocytes during adipogenesis and analyzed mRNA and lncRNA expression in same Ribo-Zero RNA-seq libraries. Hypoxia induced HIF-1α protein during adipogenesis and caused divergent changes of cell phenotypes. A total of 10,318 mRNAs were identified to be expressed in twenty libraries (five timepoints), and 3,198 differentially expressed mRNAs (DE mRNAs) were detected at five timepoints (hypoxia vs. normoxia). Functional enrichment analysis revealed the shared and specific hypoxia response pathways in the different stages of adipogenesis. Hypoxia differentially modulated the expression profile of adipose-associated genes, including adipokines, lipogenesis, lipolysis, hyperplasia, hypertrophy, inflammatory, and extracellular matrix. We also identified 4,296 lncRNAs that were expressed substantially and detected 1,431 DE lncRNAs at five timepoints. Two, 3, 5, 13, and 50 DE mRNAs at D0, D1, D3, D7, and D11, respectively, were highly correlated and locus-nearby DE lncRNAs and mainly involved in the cell cycle, vesicle-mediated transport, and mitochondrion organization. We identified 28 one-to-one lncRNA-mRNA pairs that might be closely related to adipocyte functions, such as ENSCGRT00015041780-Hilpda, TU2105-Cdsn, and TU17588-Ltbp3. These lncRNAs may represent the crucial regulation axis in the cellular response to hypoxia during adipogenesis. This study dissected the effects of hypoxia in the cell during adipogenesis, uncovered novel regulators potentially associated with WAT function, and may provide a new viewpoint for interpretation and treatment of obesity.
Collapse
Affiliation(s)
- Jinwei Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jideng Ma
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiankun Zhou
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Silu Hu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China.,Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Xi Nan Gynecological Hospital, Chengdu, China
| | - Keren Long
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Long Jin
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qianzi Tang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lingyan Liu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xuewei Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Surong Shuai
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
42
|
de la Rosa Rodriguez MA, Kersten S. Regulation of lipid droplet homeostasis by hypoxia inducible lipid droplet associated HILPDA. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158738. [PMID: 32417386 DOI: 10.1016/j.bbalip.2020.158738] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022]
Abstract
Nearly all cell types have the ability to store excess energy as triglycerides in specialized organelles called lipid droplets. The formation and degradation of lipid droplets is governed by a diverse set of enzymes and lipid droplet-associated proteins. One of the lipid droplet-associated proteins is Hypoxia Inducible Lipid Droplet Associated (HILPDA). HILPDA was originally discovered in a screen to identify novel hypoxia-inducible proteins. Apart from hypoxia, levels of HILPDA are induced by fatty acids and adrenergic agonists. HILPDA is a small protein of 63 amino acids in humans and 64 amino acids in mice. Inside cells, HILPDA is located in the endoplasmic reticulum and around lipid droplets. Gain- and loss-of-function experiments have demonstrated that HILPDA promotes lipid storage in hepatocytes, macrophages and cancer cells. HILPDA increases lipid droplet accumulation at least partly by inhibiting triglyceride hydrolysis via ATGL and stimulating triglyceride synthesis via DGAT1. Overall, HILPDA is a novel regulatory signal that adjusts triglyceride storage and the intracellular availability of fatty acids to the external fatty acid supply and the capacity for oxidation.
Collapse
Affiliation(s)
- Montserrat A de la Rosa Rodriguez
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
43
|
Hofer P, Taschler U, Schreiber R, Kotzbeck P, Schoiswohl G. The Lipolysome-A Highly Complex and Dynamic Protein Network Orchestrating Cytoplasmic Triacylglycerol Degradation. Metabolites 2020; 10:E147. [PMID: 32290093 PMCID: PMC7240967 DOI: 10.3390/metabo10040147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
The catabolism of intracellular triacylglycerols (TAGs) involves the activity of cytoplasmic and lysosomal enzymes. Cytoplasmic TAG hydrolysis, commonly termed lipolysis, is catalyzed by the sequential action of three major hydrolases, namely adipose triglyceride lipase, hormone-sensitive lipase, and monoacylglycerol lipase. All three enzymes interact with numerous protein binding partners that modulate their activity, cellular localization, or stability. Deficiencies of these auxiliary proteins can lead to derangements in neutral lipid metabolism and energy homeostasis. In this review, we summarize the composition and the dynamics of the complex lipolytic machinery we like to call "lipolysome".
Collapse
Affiliation(s)
- Peter Hofer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Petra Kotzbeck
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| |
Collapse
|
44
|
Schley G, Grampp S, Goppelt-Struebe M. Inhibition of oxygen-sensing prolyl hydroxylases increases lipid accumulation in human primary tubular epithelial cells without inducing ER stress. Cell Tissue Res 2020; 381:125-140. [PMID: 32189058 PMCID: PMC7306052 DOI: 10.1007/s00441-020-03186-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022]
Abstract
The role of the hypoxia-inducible transcription factor (HIF) pathway in renal lipid metabolism is largely unknown. As HIF stabilizing prolyl hydroxylase (PHD) inhibitors are currently investigated in clinical trials for the treatment of renal anemia, we studied the effects of genetic deletion and pharmacological inhibition of PHDs on renal lipid metabolism in transgenic mice and human primary tubular epithelial cells (hPTEC). Tubular cell-specific deletion of HIF prolyl hydroxylase 2 (Phd2) increased the size of Oil Red-stained lipid droplets in mice. In hPTEC, the PHD inhibitors (PHDi) DMOG and ICA augmented lipid accumulation, which was visualized by Oil Red staining and assessed by microscopy and an infrared imaging system. PHDi-induced lipid accumulation required the exogenous availability of fatty acids and was observed in both proximal and distal hPTEC. PHDi treatment was not associated with structural features of cytotoxicity in contrast to treatment with the immunosuppressant cyclosporine A (CsA). PHDi and CsA differentially upregulated the expression of the lipid droplet-associated genes PLIN2, PLIN4 and HILPDA. Both PHDi and CsA activated AMP-activated protein kinase (AMPK) indicating the initiation of a metabolic stress response. However, only CsA triggered endoplasmic reticulum (ER) stress as determined by the increased mRNA expression of multiple ER stress markers but CsA-induced ER stress was not linked to lipid accumulation. Our data raise the possibility that PHD inhibition may protect tubular cells from toxic free fatty acids by trapping them as triacylglycerides in lipid droplets. This mechanism might contribute to the renoprotective effects of PHDi in experimental kidney diseases.
Collapse
Affiliation(s)
- Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Loschgestrasse 8, 91054, Erlangen, Germany.
| | - Steffen Grampp
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Loschgestrasse 8, 91054, Erlangen, Germany
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Loschgestrasse 8, 91054, Erlangen, Germany
| |
Collapse
|
45
|
Tan SK, Welford SM. Lipid in Renal Carcinoma: Queen Bee to Target? Trends Cancer 2020; 6:448-450. [PMID: 32459999 DOI: 10.1016/j.trecan.2020.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer subtype, characterized by a lipid storage phenotype. We found that carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of mitochondrial fatty acid (FA) transport, is repressed by hypoxia-inducible factors (HIFs), reducing FA oxidation (FAO). Altering lipid metabolism may be a new therapeutic avenue in ccRCC.
Collapse
Affiliation(s)
- Sze Kiat Tan
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Scott M Welford
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
46
|
Kulminskaya N, Oberer M. Protein-protein interactions regulate the activity of Adipose Triglyceride Lipase in intracellular lipolysis. Biochimie 2020; 169:62-68. [DOI: 10.1016/j.biochi.2019.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022]
|
47
|
Cholesterol Prevents Hypoxia-Induced Hypoglycemia by Regulation of a Metabolic Ketogenic Shift. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5829357. [PMID: 31612075 PMCID: PMC6755303 DOI: 10.1155/2019/5829357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/11/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022]
Abstract
Blood cholesterol levels have been connected to high-altitude adaptation. In the present study, we treated mice with high-cholesterol diets following exposure to acute hypoxic stress and evaluated the effects of the diets on whole-body, liver glucose, and liver fat metabolism. For rapid cholesterol liver uptake, 6-week-old male C57BL/J6 mice were fed with high-cholesterol/cholic acid (CH) diet for 6 weeks and then were exposed to gradual oxygen level reduction for 1 h and hypoxia at 7% oxygen for additional 1 hour using a hypoxic chamber. Animals were than sacrificed, and metabolic markers were evaluated. Hypoxic treatment had a strong hypoglycemic effect that was completely blunted by CH treatment. Decreases in gluconeogenesis and glycogenolysis as well as an increase in ketone body formation were observed. Such changes indicate a metabolic shift from glucose to fat utilization due to activation of the inducible nitric oxide synthase/AMPK axis in the CH-treated animals. Increased ketogenesis was also observed in vitro in hepatocytes after cholesterol treatment. In conclusion, our results show for the first time that cholesterol contributes to metabolic shift and adaptation to hypoxia in vivo and in vitro through induction of HIF-1α and iNOS expression.
Collapse
|
48
|
VandeKopple MJ, Wu J, Auer EN, Giaccia AJ, Denko NC, Papandreou I. HILPDA Regulates Lipid Metabolism, Lipid Droplet Abundance, and Response to Microenvironmental Stress in Solid Tumors. Mol Cancer Res 2019; 17:2089-2101. [PMID: 31308147 DOI: 10.1158/1541-7786.mcr-18-1343] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 01/05/2023]
Abstract
Accumulation of lipid droplets has been observed in an increasing range of tumors. However, the molecular determinants of this phenotype and the impact of the tumor microenvironment on lipid droplet dynamics are not well defined. The hypoxia-inducible and lipid droplet associated protein HILPDA is known to regulate lipid storage and physiologic responses to feeding conditions in mice, and was recently shown to promote hypoxic lipid droplet formation through inhibition of the rate-limiting lipase adipose triglyceride lipase (ATGL). Here, we identify fatty acid loading and nutrient deprivation-induced autophagy as stimuli of HILPDA-dependent lipid droplet growth. Using mouse embryonic fibroblasts and human tumor cells, we found that genetic ablation of HILPDA compromised hypoxia-fatty acid- and starvation-induced lipid droplet formation and triglyceride storage. Nutrient deprivation upregulated HILPDA protein posttranscriptionally by a mechanism requiring autophagic flux and lipid droplet turnover, independent of HIF1 transactivation. Mechanistically, loss of HILPDA led to elevated lipolysis, which could be corrected by inhibition of ATGL. Lipidomic analysis revealed not only quantitative but also qualitative differences in the glycerolipid and phospholipid profile of HILPDA wild-type and knockout cells, indicating additional HILPDA functions affecting lipid metabolism. Deletion studies of HILPDA mutants identified the N-terminal hydrophobic domain as sufficient for targeting to lipid droplets and restoration of triglyceride storage. In vivo, HILPDA-ablated cells showed decreased intratumoral triglyceride levels and impaired xenograft tumor growth associated with elevated levels of apoptosis. IMPLICATIONS: Tumor microenvironmental stresses induce changes in lipid droplet dynamics via HILPDA. Regulation of triglyceride hydrolysis is crucial for cell homeostasis and tumor growth.
Collapse
Affiliation(s)
- Matthew J VandeKopple
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jinghai Wu
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Erich N Auer
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Nicholas C Denko
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ioanna Papandreou
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.
| |
Collapse
|
49
|
Yang Z, Jiang S, Lu C, Ji T, Yang W, Li T, Lv J, Hu W, Yang Y, Jin Z. SOX11: friend or foe in tumor prevention and carcinogenesis? Ther Adv Med Oncol 2019; 11:1758835919853449. [PMID: 31210798 PMCID: PMC6547177 DOI: 10.1177/1758835919853449] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Sex-determining region Y-related high-mobility-group box transcription factor 11
(SOX11) is an essential member of the SOX transcription factors and has been
highlighted as an important regulator in embryogenesis. SOX11 studies have only
recently shifted focus from its role in embryogenesis and development to its
function in disease. In particular, the role of SOX11 in carcinogenesis has
become of major interest in the field. SOX11 expression is elevated in a wide
variety of tumors. In many cancers, dysfunctional expression of SOX11 has been
correlated with increased cancer cell survival, inhibited cell differentiation,
and tumor progression through the induction of metastasis and angiogenesis.
Nevertheless, in a limited number of malignancies, SOX11 has also been
identified to function as a tumor suppressor. Herein, we review the correlation
between the expression of SOX11 and tumor behaviors. We also summarize the
mechanisms underlying the regulation of SOX11 expression and activity in
pathological conditions. In particular, we focus on the pathological processes
of cancer targeted by SOX11 and discuss whether SOX11 is protective or
detrimental during tumor progression. Moreover, SOX11 is highlighted as a
clinical biomarker for the diagnosis and prognosis of various human cancer. The
information reviewed here should assist in future experimental designs and
emphasize the potential of SOX11 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| |
Collapse
|
50
|
Zhao Q, Sun D, Li Y, Qin J, Yan J. Integrated analyses of lncRNAs microarray profiles and mRNA-lncRNA coexpression in smooth muscle cells under hypoxic and normoxic conditions. Biosci Rep 2019; 39:BSR20181783. [PMID: 30850398 PMCID: PMC6443952 DOI: 10.1042/bsr20181783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 01/23/2023] Open
Abstract
Hypoxia may cause abnormal proliferation and migration of the vascular smooth muscle cells (VSMCs) from the media to the intima. This contributes to vessel narrowing and accelerates the process of atherosclerosis. The association of the aberrant expression of long noncoding RNAs (lncRNAs) with the development and progression of atherosclerosis is well known; however, it is not well investigated in hypoxic VSMCs. Using a microarray approach, we identified 1056 and 2804 differentially expressed lncRNAs and mRNAs, respectively, in hypoxic and normoxic mouse aorta smooth muscle (MOVAS) cells. Of them, we randomly chose several lncRNAs and validated the microarray data using the quantitative PCR (qPCR) assay. Advanced bioinformatics analyses indicated that the up-regulated mRNAs were mainly involved in inflammatory responses, lipid metabolism, clearance of amyloid-β peptide, citrate cycle (TCA cycle), TGF-β signaling, and chemokine signaling. The down-regulated mRNAs were mainly involved in the apoptosis pathway, glycerolipid metabolism, Wnt signaling pathway, and MAPK signaling pathway. The constructed coexpression network indicated interactions between 87 lncRNAs and ten mRNAs. In addition, we demonstrated that the silence of lncRNA NONMMUT002434 expression could abrogate the migration and proliferation of smooth muscle cells dramatically. Our data provide comprehensive evidence on the differential expression of lncRNAs and mRNAs in hypoxic MOVAS cells, which may be valuable biomarkers for atherosclerotic diseases, and thereby facilitating diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Qinshuo Zhao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Dating Sun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuanyuan Li
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jin Qin
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - JiangTao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|