1
|
Sandovici I, Fernandez-Twinn DS, Campbell N, Cooper WN, Sekita Y, Zvetkova I, Ferland-McCollough D, Prosser HM, Oyama LM, Pantaleão LC, Cimadomo D, Barbosa de Queiroz K, Cheuk CSK, Smith NM, Kay RG, Antrobus R, Hoelle K, Ma MKL, Smith NH, Geyer SH, Reissig LF, Weninger WJ, Siddle K, Willis AE, Lam BYH, Bushell M, Ozanne SE, Constância M. Overexpression of Igf2-derived Mir483 inhibits Igf1 expression and leads to developmental growth restriction and metabolic dysfunction in mice. Cell Rep 2024; 43:114750. [PMID: 39283743 PMCID: PMC7617298 DOI: 10.1016/j.celrep.2024.114750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/04/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Mir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo. We find that Mir483 expression is dependent on Igf2 transcription and the regulation of the Igf2/H19 imprinting control region. Transgenic Mir483 overexpression in utero causes fetal, but not placental, growth restriction through insulin-like growth factor 1 (IGF1) and IGF2 and also causes cardiovascular defects leading to fetal death. Overexpression of Mir483 post-natally results in growth stunting through IGF1 repression, increased hepatic lipid production, and excessive adiposity. IGF1 infusion rescues the post-natal growth restriction. Our findings provide insights into the function of Mir483 as a growth suppressor and metabolic regulator and suggest that it evolved within the INS-IGF2-H19 transcriptional region to limit excessive tissue growth through repression of IGF signaling.
Collapse
Affiliation(s)
- Ionel Sandovici
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Niamh Campbell
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Wendy N Cooper
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Yoichi Sekita
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ilona Zvetkova
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | | | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
| | - Lila M Oyama
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Departmento de Fisiologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Lucas C Pantaleão
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Danilo Cimadomo
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Karina Barbosa de Queiroz
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Cecilia S K Cheuk
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Nicola M Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Richard G Kay
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Marcella K L Ma
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Noel H Smith
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Stefan H Geyer
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Lukas F Reissig
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang J Weninger
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University of Vienna, Vienna, Austria
| | - Kenneth Siddle
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Anne E Willis
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, UK
| | - Susan E Ozanne
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Mohsin F, Javaid S, Tariq M, Mustafa M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int Immunopharmacol 2024; 139:112713. [PMID: 39047451 DOI: 10.1016/j.intimp.2024.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Diabetic foot ulcer (DFU) is a foremost cause of amputation in diabetic patients. Consequences of DFU include infections, decline in limb function, hospitalization, amputation, and in severe cases, death. Immune cells including macrophages, regulatory T cells, fibroblasts and other damage repair cells work in sync for effective healing and in establishment of a healthy skin barrier post-injury. Immune dysregulation during the healing of wounds can result in wound chronicity. Hyperglycemic conditions in diabetic patients influence the pathophysiology of wounds by disrupting the immune system as well as promoting neuropathy and ischemic conditions, making them difficult to heal. Chronic wound microenvironment is characterized by increased expression of matrix metalloproteinases, reactive oxygen species as well as pro-inflammatory cytokines, resulting in persistent inflammation and delayed healing. Novel treatment modalities including growth factor therapies, nano formulations, microRNA based treatments and skin grafting approaches have significantly augmented treatment efficiency, demonstrating creditable efficacy in clinical practices. Advancements in local treatments as well as invasive methodologies, for instance formulated wound dressings, stem cell applications and immunomodulatory therapies have been successful in targeting the complex pathophysiology of chronic wounds. This review focuses on elucidating the intricacies of emerging physical and non-physical therapeutic interventions, delving into the realm of advanced wound care and comprehensively summarizing efficacy of evidence-based therapies for DFU currently available.
Collapse
Affiliation(s)
- Fatima Mohsin
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Sheza Javaid
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Mishal Tariq
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| |
Collapse
|
3
|
Song B, Qian J, Fu J. Research progress and potential application of microRNA and other non-coding RNAs in forensic medicine. Int J Legal Med 2024; 138:329-350. [PMID: 37770641 DOI: 10.1007/s00414-023-03091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
At present, epigenetic markers have been extensively studied in various fields and have a high value in forensic medicine due to their unique mode of inheritance, which does not involve DNA sequence alterations. As an epigenetic phenomenon that plays an important role in gene expression, non-coding RNAs (ncRNAs) act as key factors mediating gene silencing, participating in cell division, and regulating immune response and other important biological processes. With the development of molecular biology, genetics, bioinformatics, and next-generation sequencing (NGS) technology, ncRNAs such as microRNA (miRNA), circular RNA (circRNA), long non-coding RNA (lncRNA), and P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) are increasingly been shown to have potential in the practice of forensic medicine. NcRNAs, mainly miRNA, may provide new strategies and methods for the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. In this review, we describe the research progress and application status of ncRNAs, mainly miRNA, and other ncRNAs such as circRNA, lncRNA, and piRNA, in forensic practice, including the identification of tissues and body fluids, cause-of-death analysis, time-related estimation, age estimation, and the identification of monozygotic twins. The close links between ncRNAs and forensic medicine are presented, and their research values and application prospects in forensic medicine are also discussed.
Collapse
Affiliation(s)
- Binghui Song
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Qian
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Precision Medicine and DNA Forensic Medicine, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Forensic DNA, the Judicial Authentication Center, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Li Y, Wang Z, Ishmael D, Lvy Y. The potential of using non-coding RNAs in forensic science applications. Forensic Sci Res 2023; 8:98-106. [PMID: 37621455 PMCID: PMC10445561 DOI: 10.1093/fsr/owad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 01/29/2023] [Indexed: 08/26/2023] Open
Abstract
With the continuous development and integration of molecular biology and forensic science, non-coding RNAs (ncRNAs), especially ncRNAs with regulatory functions such as microRNA, long non-coding RNA, and circular RNA, have recently been actively explored by forensic scholars. In this study, we review the literature on these ncRNAs in various fields of forensic science, including postmortem interval determination, wound age estimation, forensic age assessment, cause of death analysis, and body fluid identification, aiming to evaluate the current research and provide a perspective for future applications.
Collapse
Affiliation(s)
- Yawen Li
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhuoqun Wang
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dikeledi Ishmael
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yehui Lvy
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
5
|
Deka Dey A, Yousefiasl S, Kumar A, Dabbagh Moghaddam F, Rahimmanesh I, Samandari M, Jamwal S, Maleki A, Mohammadi A, Rabiee N, Cláudia Paiva‐Santos A, Tamayol A, Sharifi E, Makvandi P. miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: Biogenesis, mechanisms, and delivery nanocarriers. Bioeng Transl Med 2023; 8:e10343. [PMID: 36684081 PMCID: PMC9842058 DOI: 10.1002/btm2.10343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs) as therapeutic agents have attracted increasing interest in the past decade owing to their significant effectiveness in treating a wide array of ailments. These polymerases II-derived noncoding RNAs act through post-transcriptional controlling of different proteins and their allied pathways. Like other areas of medicine, researchers have utilized miRNAs for managing acute and chronic wounds. The increase in the number of patients suffering from either under-healing or over-healing wound demonstrates the limited efficacy of the current wound healing strategies and dictates the demands for simpler approaches with greater efficacy. Various miRNA can be designed to induce pathway beneficial for wound healing. However, the proper design of miRNA and its delivery system for wound healing applications are still challenging due to their limited stability and intracellular delivery. Therefore, new miRNAs are required to be identified and their delivery strategy needs to be optimized. In this review, we discuss the diverse roles of miRNAs in various stages of wound healing and provide an insight on the most recent findings in the nanotechnology and biomaterials field, which might offer opportunities for the development of new strategies for this chronic condition. We also highlight the advances in biomaterials and delivery systems, emphasizing their challenges and resolutions for miRNA-based wound healing. We further review various biovectors (e.g., adenovirus and lentivirus) and abiotic materials such as organic and inorganic nanomaterials, along with dendrimers and scaffolds, as the delivery systems for miRNA-based wound healing. Finally, challenges and opportunities for translation of miRNA-based strategies into clinical applications are discussed.
Collapse
Affiliation(s)
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityPunjabIndia
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100RomeItaly
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterCardiovascular Research Institute, Isfahan University of Medical SciencesIsfahanIran
| | | | - Sumit Jamwal
- Department of Psychiatry, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of PharmacyZanjan University of Medical SciencesZanjanIran
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjanIran
- Cancer Research CentreShahid Beheshti University of Medical SciencesTehranIran
| | | | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - Ana Cláudia Paiva‐Santos
- Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
- LAQV, REQUIMTE, Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
| | - Ali Tamayol
- Department of Biomedical EngineeringUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials InterfacesPontederaItaly
- School of Chemistry, Damghan UniversityDamghanIran
| |
Collapse
|
6
|
Maiese A, Manetti AC, Iacoponi N, Mezzetti E, Turillazzi E, Di Paolo M, La Russa R, Frati P, Fineschi V. State-of-the-Art on Wound Vitality Evaluation: A Systematic Review. Int J Mol Sci 2022; 23:6881. [PMID: 35805886 PMCID: PMC9266385 DOI: 10.3390/ijms23136881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
The vitality demonstration refers to determining if an injury has been caused ante- or post-mortem, while wound age means to evaluate how long a subject has survived after the infliction of an injury. Histology alone is not enough to prove the vitality of a lesion. Recently, immunohistochemistry, biochemistry, and molecular biology have been introduced in the field of lesions vitality and age demonstration. The study was conducted according to the preferred reporting items for systematic review (PRISMA) protocol. The search terms were "wound", "lesion", "vitality", "evaluation", "immunohistochemistry", "proteins", "electrolytes", "mRNAs", and "miRNAs" in the title, abstract, and keywords. This evaluation left 137 scientific papers. This review aimed to collect all the knowledge on vital wound demonstration and provide a temporal distribution of the methods currently available, in order to determine the age of lesions, thus helping forensic pathologists in finding a way through the tangled jungle of wound vitality evaluation.
Collapse
Affiliation(s)
- Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Alice Chiara Manetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Naomi Iacoponi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Emanuela Turillazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.M.); (A.C.M.); (N.I.); (E.M.); (E.T.); (M.D.P.)
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Institute of Legal Medicine, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy;
| |
Collapse
|
7
|
Stunf Pukl S. Are miRNAs Dynamic Biomarkers in Keratoconus? A Review of the Literature. Genes (Basel) 2022; 13:genes13040588. [PMID: 35456395 PMCID: PMC9025197 DOI: 10.3390/genes13040588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Aim: A review of miRNA (microRNA) profiling studies in keratoconus. Methods: Literature search strategy—PubMed central database, using miRNA or microRNA and keratoconus as keywords. Results: Eleven experimental or clinical studies on humans regarding miRNA and keratoconus, published in English between 2009 and 2020 were retrieved. Conclusion: The publications regarding the role of miRNAs in keratoconus are scarce and diverse but provide some valuable information about potential new mechanisms of keratoconus development and progression. The cornea expresses almost 300 different miRNAs, 18 of which are specific, and miR-184 is by far the most abundant, with expression restricted to central basal and suprabasal epithelial cells. Mutations in the seed region of MIR184 were proved to be rare and nonspecific in patients with isolated keratoconus. Overall, in keratoconus, a total of 29 miRNAs were upregulated, and 11 were downregulated. It appeared that miR-143-3p, miR-182-5p, and miR-92a-3p were highly expressed, while the miRNAs connected to cell–cell junction, cell division, and motor activity were downregulated. In less advanced forms, altered expression of four miRNAs—miR-151a-3p, miR-194-5p, miR-195-5p, miR-185-5p—was proved in the cone epithelium; in contrast, in advanced keratoconus, the expression of miR-151a-3p and miR-194-5p remained altered, changes in the expression of miR-195 and miR-185 were not reported, and the expression of miR-138-5p, miR-146b-5p, miR-28-5p, and miR-181a-2-3p was also altered in the corneal epithelium. Keratoconus is a dynamic process of corneal stromal thinning that might result from a dynamic miRNA expression in the corneal epithelium exposed to environmental and behavioral factors causing repetitive traumas. Further experimental studies are needed to prove this hypothesis.
Collapse
Affiliation(s)
- Spela Stunf Pukl
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; ; Tel.: +386-41-382-487
- Eye Hospital, University Clinical Center Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Hao Y, Yang L, Liu Y, Ye Y, Wang J, Yu C, Yan H, Xing Y, Jia Z, Hu C, Zuo H, Li Y. mmu-miR-145a-5p Accelerates Diabetic Wound Healing by Promoting Macrophage Polarization Toward the M2 Phenotype. Front Med (Lausanne) 2022; 8:775523. [PMID: 34993211 PMCID: PMC8724056 DOI: 10.3389/fmed.2021.775523] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
Diabetic wounds are recalcitrant to healing. One of the important characteristics of diabetic trauma is impaired macrophage polarization with an excessive inflammatory response. Many studies have described the important regulatory roles of microRNAs (miRNAs) in macrophage differentiation and polarization. However, the differentially expressed miRNAs involved in wound healing and their effects on diabetic wounds remain to be further explored. In this study, we first identified differentially expressed miRNAs in the inflammation, tissue formation and reconstruction phases in wound healing using Illumina sequencing and RT-qPCR techniques. Thereafter, the expression of musculus (mmu)-miR-145a-5p (“miR-145a-5p” for short) in excisional wounds of diabetic mice was identified. Finally, expression of miR-145a-5p was measured to determine its effects on macrophage polarization in murine RAW 264.7 macrophage cells and wound healing in diabetic mice. We identified differentially expressed miRNAs at different stages of wound healing, ten of which were further confirmed by RT-qPCR. Expression of miR-145a-5p in diabetic wounds was downregulated during the tissue formation stage. Furthermore, we observed that miR-145a-5p blocked M1 macrophage polarization while promoting M2 phenotype activation in vitro. Administration of miR-145a-5p mimics during initiation of the repair phase significantly accelerated wound healing in db/db diabetic mice. In conclusion, our findings suggest that rectifying macrophage function using miR-145a-5p overexpression accelerates diabetic chronic wound healing.
Collapse
Affiliation(s)
- Yanhui Hao
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Leilei Yang
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Ying Liu
- Department of Basic Medicine, Chengde Medical College, Chengde, China
| | - Yumeng Ye
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Jiayu Wang
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Chao Yu
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Hua Yan
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yuan Xing
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zhaoqian Jia
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Cuicui Hu
- Academy of Life Sciences, Anhui Medical University, Hefei, China
| | - Hongyan Zuo
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yang Li
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences (AMMS), Beijing, China.,Academy of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Manetti AC, Maiese A, Baronti A, Mezzetti E, Frati P, Fineschi V, Turillazzi E. MiRNAs as New Tools in Lesion Vitality Evaluation: A Systematic Review and Their Forensic Applications. Biomedicines 2021; 9:1731. [PMID: 34829960 PMCID: PMC8615694 DOI: 10.3390/biomedicines9111731] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Wound vitality demonstration is one of the most challenging fields in forensic pathology. In recent years, researchers focused on the application of histological and immunohistochemical staining in this sphere of study. It is based on the detection of inflammation, red cell infiltration, and tissue alterations at the histological examination, all of which are supposedly present in antemortem rather than post-mortem wounds. Nevertheless, some doubts about the reliability of those markers have arisen. Furthermore, the lack of a standardized protocol and the operator dependency of this approach make the proper interpretation of its results difficult. Moreover, a differential miRNAs expression has been demonstrated in antemortem and post-mortem wounds. Herein, a systematic review concerning the current knowledge about the use of miRNAs in lesion vitality evaluation is carried out, to encourage researchers to deepen this peculiar study area. A compendium about the potential miRNAs that may be further investigated as vitality markers is also provided. The aim is to collect all available data about this topic to direct further studies on this field and highlight the future applications of miRNAs in forensic pathology. We found 20 articles and a total of 51 miRNAs that are involved in inflammation and wound healing. Further studies are certainly needed to deepen the role of miRNAs in inflammatory processes in lesioned skin and to evaluate their reliability in distinguishing between antemortem and post-mortem lesions.
Collapse
Affiliation(s)
- Alice Chiara Manetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Arianna Baronti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy;
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00186 Rome, Italy;
| | - Emanuela Turillazzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Section of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (A.C.M.); (A.M.); (A.B.); (E.M.); (E.T.)
| |
Collapse
|
10
|
MicroRNAs in shaping the resolution phase of inflammation. Semin Cell Dev Biol 2021; 124:48-62. [PMID: 33934990 DOI: 10.1016/j.semcdb.2021.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
Inflammation is a host defense mechanism orchestrated through imperative factors - acute inflammatory responses mediated by cellular and molecular events leading to activation of defensive immune subsets - to marginalize detrimental injury, pathogenic agents and infected cells. These potent inflammatory events, if uncontrolled, may cause tissue damage by perturbing homeostasis towards immune dysregulation. A parallel host mechanism operates to contain inflammatory pathways and facilitate tissue regeneration. Thus, resolution of inflammation is an effective moratorium on the pro-inflammatory pathway to avoid the tissue damage inside the host and leads to reestablishment of tissue homeostasis. Dysregulation of the resolution pathway can have a detrimental impact on tissue functionality and contribute to the diseased state. Multiple reports have suggested peculiar dynamics of miRNA expression during various pro- and anti-inflammatory events. The roles of miRNAs in the regulation of immune responses are well-established. However, understanding of miRNA regulation of the resolution phase of events in infection or wound healing models, which is sometimes misconstrued as anti-inflammatory signaling, remains limited. Due to the deterministic role of miRNAs in pro-inflammatory and anti-inflammatory pathways, in this review we have provided a broad perspective on the putative role of miRNAs in the resolution of inflammation and explored their imminent role in therapeutics.
Collapse
|
11
|
Castro-Vega LJ, Calsina B, Burnichon N, Drossart T, Martínez-Montes ÁM, Verkarre V, Amar L, Bertherat J, Rodríguez-Antona C, Favier J, Robledo M, Gimenez-Roqueplo AP. Overexpression of miR-483-5p is confined to metastases and linked to high circulating levels in patients with metastatic pheochromocytoma/paraganglioma. Clin Transl Med 2020; 10:e260. [PMID: 33377638 PMCID: PMC7752161 DOI: 10.1002/ctm2.260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Luis Jaime Castro-Vega
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Nelly Burnichon
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France.,Genetics Department, Assistance Publique-Hôpitaux de Paris, Hôpital européen Georges Pompidou, Paris, France
| | - Tom Drossart
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France.,Genetics Department, Assistance Publique-Hôpitaux de Paris, Hôpital européen Georges Pompidou, Paris, France
| | - Ángel M Martínez-Montes
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Virginie Verkarre
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France.,Department of Pathology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Laurence Amar
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France.,Hypertension unit, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Jérôme Bertherat
- Paris University, INSERM, Institut Cochin, Paris, France.,Rare Adrenal Cancer Network COMETE, Paris, France
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Judith Favier
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Anne-Paule Gimenez-Roqueplo
- INSERM, PARCC, Equipe labellisée par la Ligue contre le cancer, Paris University, Paris, France.,Genetics Department, Assistance Publique-Hôpitaux de Paris, Hôpital européen Georges Pompidou, Paris, France.,Rare Adrenal Cancer Network COMETE, Paris, France
| |
Collapse
|
12
|
Zhai M, Zhu Y, Yang M, Mao C. Human Mesenchymal Stem Cell Derived Exosomes Enhance Cell-Free Bone Regeneration by Altering Their miRNAs Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001334. [PMID: 33042751 PMCID: PMC7539212 DOI: 10.1002/advs.202001334] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Indexed: 01/05/2023]
Abstract
Implantation of stem cells for tissue regeneration faces significant challenges such as immune rejection and teratoma formation. Cell-free tissue regeneration thus has a potential to avoid these problems. Stem cell derived exosomes do not cause immune rejection or generate malignant tumors. Here, exosomes that can induce osteogenic differentiation of human mesenchymal stem cells (hMSCs) are identified and used to decorate 3D-printed titanium alloy scaffolds to achieve cell-free bone regeneration. Specifically, the exosomes secreted by hMSCs osteogenically pre-differentiated for different times are used to induce the osteogenesis of hMSCs. It is discovered that pre-differentiation for 10 and 15 days leads to the production of osteogenic exosomes. The purified exosomes are then loaded into the scaffolds. It is found that the cell-free exosome-coated scaffolds regenerate bone tissue as efficiently as hMSC-seeded exosome-free scaffolds within 12 weeks. RNA-sequencing suggests that the osteogenic exosomes induce the osteogenic differentiation by using their cargos, including upregulated osteogenic miRNAs (Hsa-miR-146a-5p, Hsa-miR-503-5p, Hsa-miR-483-3p, and Hsa-miR-129-5p) or downregulated anti-osteogenic miRNAs (Hsa-miR-32-5p, Hsa-miR-133a-3p, and Hsa-miR-204-5p), to activate the PI3K/Akt and MAPK signaling pathways. Consequently, identification of osteogenic exosomes secreted by pre-differentiated stem cells and the use of them to replace stem cells represent a novel cell-free bone regeneration strategy.
Collapse
Affiliation(s)
- Mengmeng Zhai
- Department of Chemistry and BiochemistryStephenson Life Sciences Research CenterUniversity of OklahomaNormanOK73019USA
| | - Ye Zhu
- Department of Chemistry and BiochemistryStephenson Life Sciences Research CenterUniversity of OklahomaNormanOK73019USA
| | - Mingying Yang
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Chuanbin Mao
- Department of Chemistry and BiochemistryStephenson Life Sciences Research CenterUniversity of OklahomaNormanOK73019USA
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027China
| |
Collapse
|
13
|
Liu J, Shu B, Zhou Z, Xu Y, Liu Y, Wang P, Xiong K, Xie J. Involvement of miRNA203 in the proliferation of epidermal stem cells during the process of DM chronic wound healing through Wnt signal pathways. Stem Cell Res Ther 2020; 11:348. [PMID: 32787903 PMCID: PMC7422611 DOI: 10.1186/s13287-020-01829-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/24/2020] [Accepted: 07/13/2020] [Indexed: 11/10/2022] Open
Abstract
Background The biological role of miR-203 and the underlying mechanisms on the proliferation of epidermal stem cells (ESCs) have not yet been reported during the progression of chronic wound healing in diabetes mellitus. Our previous studies have observed that the expression of miR-203 showed a marked upregulation and ESC proliferation capacity was impaired in diabetes mellitus skin wounds in rats. Methods Wound models were established in normal rats and rats with type 2 diabetes. Expression level of miR-203 and the alteration of ESCs’ number and function were detected. ESCs were isolated from the back skin of fetal rats to assess the effects of glucose in vitro. An antagomir to miR-203 was used to assess its effect on ESCs. Using microarray analysis, we further identified potential target genes and signaling pathways of miR-203. Results We found that high glucose significantly upregulated the expression of miR-203 and subsequently reduced the number of ESCs and impaired their proliferation capacity. Meanwhile, over-expression of miR-203 reduced the ESCs’ numbers and impaired the proliferation capacity via downregulation of the Notch and Wnt signaling pathways. Conversely, inhibition of miR-203 enhanced the proliferation capacity. Additionally, silencing miR-203 in skin of rats with type 2 diabetes accelerated wound healing and improved healing quality via the upregulation of the Notch and Wnt signaling pathways. Finally, over-expression of miR-203 downregulated genes ROCK2, MAPK8, MAPK9, and PRKCA. Conclusion Our findings demonstrated that induced expression of miR-203 by high glucose in type 2 diabetic rats decreased the number of ESCs and impaired ESC proliferation capacity via downregulating genes related to Notch and Wnt signaling pathways, resulting in a delayed wound healing.
Collapse
Affiliation(s)
- Jian Liu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou City, 510080, Guangdong Province, People's Republic of China
| | - Bin Shu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou City, 510080, Guangdong Province, People's Republic of China
| | - Ziheng Zhou
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou City, 510080, Guangdong Province, People's Republic of China
| | - Yingbin Xu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou City, 510080, Guangdong Province, People's Republic of China
| | - Yiling Liu
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou City, 510080, Guangdong Province, People's Republic of China
| | - Peng Wang
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou City, 510080, Guangdong Province, People's Republic of China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Yuexiu District, Guangzhou City, 510080, Guangdong Province, People's Republic of China.
| |
Collapse
|
14
|
Zhang J, He Y, Yan X, Chen S, He M, Lei Y, Zhang J, Gongol B, Gu M, Miao Y, Bai L, Cui X, Wang X, Zhang Y, Fan F, Li Z, Shen Y, Chou C, Huang H, Malhotra A, Rabinovitch M, Jing Z, Shyy JY. MicroRNA-483 amelioration of experimental pulmonary hypertension. EMBO Mol Med 2020; 12:e11303. [PMID: 32324970 PMCID: PMC7207157 DOI: 10.15252/emmm.201911303] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/30/2022] Open
Abstract
Endothelial dysfunction is critically involved in the pathogenesis of pulmonary arterial hypertension (PAH) and that exogenously administered microRNA may be of therapeutic benefit. Lower levels of miR-483 were found in serum from patients with idiopathic pulmonary arterial hypertension (IPAH), particularly those with more severe disease. RNA-seq and bioinformatics analyses showed that miR-483 targets several PAH-related genes, including transforming growth factor-β (TGF-β), TGF-β receptor 2 (TGFBR2), β-catenin, connective tissue growth factor (CTGF), interleukin-1β (IL-1β), and endothelin-1 (ET-1). Overexpression of miR-483 in ECs inhibited inflammatory and fibrogenic responses, revealed by the decreased expression of TGF-β, TGFBR2, β-catenin, CTGF, IL-1β, and ET-1. In contrast, inhibition of miR-483 increased these genes in ECs. Rats with EC-specific miR-483 overexpression exhibited ameliorated pulmonary hypertension (PH) and reduced right ventricular hypertrophy on challenge with monocrotaline (MCT) or Sugen + hypoxia. A reversal effect was observed in rats that received MCT with inhaled lentivirus overexpressing miR-483. These results indicate that PAH is associated with a reduced level of miR-483 and that miR-483 might reduce experimental PH by inhibition of multiple adverse responses.
Collapse
Affiliation(s)
- Jin Zhang
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Yangyang He
- State Key Laboratory of Cardiovascular disease & FuWai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xiaosong Yan
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Shanshan Chen
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Ming He
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
| | - Yuyang Lei
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Jiao Zhang
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
- Department of CardiologyFirst Affiliated HospitalXi'an Jiaotong UniversityXianChina
| | - Brendan Gongol
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
| | - Mingxia Gu
- Department of Pediatrics (Cardiology)Cardiovascular Institute and Wall Center for Pulmonary Vascular DiseasesStanford University School of MedicineStanfordCAUSA
| | - Yifei Miao
- Department of Pediatrics (Cardiology)Cardiovascular Institute and Wall Center for Pulmonary Vascular DiseasesStanford University School of MedicineStanfordCAUSA
| | - Liang Bai
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Xiaopei Cui
- Department of Geriatric MedicineQilu Hospital of Shandong UniversityJinanChina
| | - Xiaojian Wang
- State Key Laboratory of Cardiovascular disease & FuWai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yixin Zhang
- State Key Laboratory of Cardiovascular disease & FuWai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Fenling Fan
- Department of CardiologyFirst Affiliated HospitalXi'an Jiaotong UniversityXianChina
| | - Zhao Li
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
| | - Yuan Shen
- Department of Epidemiology and Health StatisticsSchool of Public HealthXi'an Jiaotong UniversityXianChina
| | - Chih‐Hung Chou
- Department of Biological Science and TechnologyNational Chiao Tung UniversityHsinchuTaiwan
| | - Hsien‐Da Huang
- Warshel Institute for Computational BiologySchool of Life and Health SciencesThe Chinese University of Hong KongShenzhenChina
| | - Atul Malhotra
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
| | - Marlene Rabinovitch
- Department of Pediatrics (Cardiology)Cardiovascular Institute and Wall Center for Pulmonary Vascular DiseasesStanford University School of MedicineStanfordCAUSA
| | - Zhi‐Cheng Jing
- Department of Cardiology & Key Lab of Pulmonary Vascular MedicinePeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - John Y‐J Shyy
- Cardiovascular Research Center, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterKey Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXianChina
- Department of MedicineUniversity of CaliforniaSan DiegoLa JollaCAUSA
| |
Collapse
|
15
|
Wang F, Wang D, Song M, Zhou Q, Liao R, Wang Y. MiRNA-155-5p Reduces Corneal Epithelial Permeability by Remodeling Epithelial Tight Junctions during Corneal Wound Healing. Curr Eye Res 2019; 45:904-913. [PMID: 31852252 DOI: 10.1080/02713683.2019.1707229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Corneal epithelial cells play a vital role in the function of the cornea by forming a physical barrier to protect the eye from invasion by external pathogenic agents. A recent study showed that miR-155 promotes cutaneous wound healing. However, its function in corneal epithelial wound healing is unknown. The present study examined whether miR-155-5p reduces corneal epithelial permeability by remodeling epithelial tight junctions during corneal wound healing. MATERIALS AND METHODS Rat corneal wounds were produced by removing the central corneal epithelium with a blunt scalpel blade under a dissecting microscope. One eye of each rat was treated with topical miR-155-5p, and the other eye was treated with topical agomir negative control for 3 days before and after corneal epithelial wounding. Corneal epithelial permeability was assessed by the macromolecular osmosis method. Expression of zona occludens 1 (ZO-1), occludin, and myosin light chain kinase (MLCK) and phosphorylation of myosin light chain (MLC) were detected by Western blot. Human corneal epithelial (HCE) cells were cultured in the upper chamber of Transwell filters, and transepithelial electrical resistance (TER) was measured using a voltohmmeter. The distribution of ZO-1 and occludin in HCE cells treated with miR-155-5p was determined by immunofluorescence. RESULTS miR-155-5p significantly promoted the repair of corneal epithelial injury and reduced the permeability of the corneal epithelium. It significantly decreased expression of MLCK and phosphorylation of MLC and increased expression of the tight junction proteins ZO-1 and occludin in corneal epithelial cells during corneal wound healing. miR-155-5p significantly increased TER, decreased MLCK expression and MLC phosphorylation, increased ZO-1 and occludin expression, and promoted anchoring of tight junction proteins in the cell membrane and remodeling in HEC cells. CONCLUSIONS Our results suggest that miR-155-5p reduced corneal permeability and accelerated the recovery of corneal epithelial wounds by decreasing the expression of MLCK and phosphorylation of MLC and by remodeling tight junctions.
Collapse
Affiliation(s)
- Feng Wang
- Department of Ophthalmology, The First Affiliated Hospital, Anhui Medical University , Hefei, Anhui, P.R.China.,Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University , Hefei, Anhui, P.R.China
| | - Duomei Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University , Hefei, Anhui, P.R.China
| | - Meng Song
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University , Hefei, Anhui, P.R.China
| | - Qing Zhou
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University , Hefei, Anhui, P.R.China
| | - Rongfeng Liao
- Department of Ophthalmology, The First Affiliated Hospital, Anhui Medical University , Hefei, Anhui, P.R.China
| | - Yuan Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University , Hefei, Anhui, P.R.China
| |
Collapse
|
16
|
Knockout of MicroRNA-155 Ameliorates the Th17/Th9 Immune Response and Promotes Wound Healing. Curr Med Sci 2019; 39:954-964. [PMID: 31845227 DOI: 10.1007/s11596-019-2128-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 10/20/2019] [Indexed: 01/15/2023]
Abstract
MiRNAs are integral for maintaining immune homeostasis and self-tolerance. In this study, qPCR analyses were performed to determine which miRNAs play an important role in wound healing. Next, an experiment in a model of wound healing was performed, and histology, mRNA expression and T-cell subpopulations in wound tissue were analyzed. The accelerated experiments were performed by local injection of either rIL-17A and/or rIL-9 after wound healing. In vitro, the differentiation of Th17/Th9 in miR-155+/+ or miR-155-/- mice was investigated, and the target genes of miR155 were analyzed. From our findings, miR-155-/- in mice promoted wound healing and weakened T cell-mediated inflammation, especially in IL-17/IL-9, and less severe skin fibrosis developed in the mice. rIL-17A and/or rIL-9 could exacerbate inflammatory injury and delay wound healing. We also demonstrated that miR-155-/- led to a defect in the differentiation of Th17/Th9 in vitro, and this effect of IL-17/IL-9 might be related to the expression of C-maf, which is a target gene of miR155. MiR-155 regulated IL-17/IL-9-related inflammation in wound healing and might be a potential therapeutic target to attenuate the inflammatory response in wound tissue and promote the closure of wound injuries.
Collapse
|
17
|
Hong G, Han X, He W, Xu J, Sun P, Shen Y, Wei Q, Chen Z. Analysis of circulating microRNAs aberrantly expressed in alcohol-induced osteonecrosis of femoral head. Sci Rep 2019; 9:18926. [PMID: 31831773 PMCID: PMC6908598 DOI: 10.1038/s41598-019-55188-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023] Open
Abstract
Serum miRNAs are potential biomarkers for predicting the progress of bone diseases, but little is known about miRNAs in alcohol-induced osteonecrosis of femoral head (AIONFH). This study evaluated disease-prevention value of specific serum miRNA expression profiles in AIONFH. MiRNA PCR Panel was taken to explore specific miRNAs in serum of AIONFH cases. The top differentially miRNAs were further validated by RT-qPCR assay in serum and bone tissues of two independent cohorts. Their biofunction and target genes were predicted by bioinformatics databases. Target genes related with angiogenesis and osteogenesis were quantified by RT-qPCR in necrotic bone tissue. Our findings demonstrated that multiple miRNAs were evaluated to be differentially expressed with high dignostic values. MiR-127-3p, miR-628-3p, and miR-1 were downregulated, whereas miR-885-5p, miR-483-3p, and miR-483-5p were upregulated in serum and bone samples from the AIONFH patients compared to those from the normal control individuals (p < 0.01). The predicted target genes of the indicated miRNAs quantified by qRT-PCR, including IGF2, PDGFA, RUNX2, PTEN, and VEGF, were presumed to be altered in necrotic bone tissue of AIONFH patients. The presence of five altered miRNAs in AIONFH patients may serve as non-invasive biomarkers and potential therapeutic targets for the early diagnosis of AIONFH.
Collapse
Affiliation(s)
- Guoju Hong
- Devision of Orthopeadic Surgery, the University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Xiaorui Han
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510641, P.R. China
| | - Wei He
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510080, P.R. China
| | - Yingshan Shen
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China
| | - Qiushi Wei
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
| | - Zhenqiu Chen
- Department of Orthopedic, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
- Hip Preserving Ward, No. 3 Orthopaedic Region, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, P.R. China.
| |
Collapse
|
18
|
Xiao Y, Guo Q, Jiang TJ, Yuan Y, Yang L, Wang GW, Xiao WF. miR‑483‑3p regulates osteogenic differentiation of bone marrow mesenchymal stem cells by targeting STAT1. Mol Med Rep 2019; 20:4558-4566. [PMID: 31702021 PMCID: PMC6797999 DOI: 10.3892/mmr.2019.10700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/15/2019] [Indexed: 01/14/2023] Open
Abstract
Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is regulated by a variety of intracellular regulatory factors including osterix, runt-related transcription factor 2 (RUNX2), bone morphogenetic proteins and transforming growth factorβ. Recent studies have shown that microRNAs (miRs) serve a crucial role in this process. In the present study, miR-483-3p levels were significantly increased during osteogenic differentiation of mouse and human BMSCs. Overexpression of miR-483-3p promoted osteogenic differentiation, whereas inhibition of miR-483-3p reversed these effects. miR-483-3p regulated osteogenic differentiation of BMSCs by targeting STAT1, and thus enhancing RUNX2 transcriptional activity and RUNX2 nuclear translocation. In vivo, overexpression of miR-483-3p using a BMSC-specific aptamer delivery system stimulated bone formation in aged mice. Therefore, the present study suggested that miR-483-3p promoted osteogenic differentiation of BMSCs by targeting STAT1, and miR-483-3 prepresent a potential therapeutic target for age-related bone loss.
Collapse
Affiliation(s)
- Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tie-Jian Jiang
- Department of Endocrinology, Endocrinology Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Yuan
- Department of Endocrinology, Endocrinology Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| | - Li Yang
- Department of Endocrinology, Endocrinology Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guang-Wei Wang
- Department of Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Wen-Feng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
19
|
Ren B, Wang H, Ren L, Yangdan C, Zhou Y, Fan H, Lv Y. Screening for microRNA-based diagnostic markers in hepatic alveolar echinococcosis. Medicine (Baltimore) 2019; 98:e17156. [PMID: 31517861 PMCID: PMC6750324 DOI: 10.1097/md.0000000000017156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aims to screen differentially expressed host miRNAs that could be used as diagnostic markers for liver alveolar echinococcosis (LAE).Differentially expressed miRNAs were first screened by miRNA microarray in liver tissues from2 LAE patients and normal liver tissues from 3 LAE patients, followed by qRT-PCR validation in 15 LAE tissues and 15 normal tissues. Target genes of differentially expressed miRNAs were predicted using Targetscan, PITA and microRNAorg database, and the overlapped predicted target genes were analyzed by GO and KEGG.The hsa-miR-1237-3p, hsa-miR-33b-3p, and hsa-miR-483-3p were up-regulated whereas the hsa-miR-4306 was down-regulated in LAE tissues compared with normal controls (P < .05). The expression change of miR-483-3p was further confirmed in both liver tissues and plasma. Several predicted targets of miR-1237-3p, miR-4306, and miR-483-3p were related to DNA-dependent transcriptional regulation, developmental regulation of multicellular organisms, and biological functions such as cellular immune responses (T cell proliferation). The overlapped predicted target genes of the 4 differentially expressed miRNAs were enriched in mRNA surveillance, cancer signaling pathway, intestinal immune network, and other signal pathways.Our results indicate that miR-483-3p is a potential marker for the diagnosis of LAE, and targets of this miRNA could be the focus of further studies.
Collapse
Affiliation(s)
- Bin Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Haijiu Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Li Ren
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Cairang Yangdan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Ying Zhou
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| |
Collapse
|
20
|
Goodarzi G, Maniati M, Qujeq D. The role of microRNAs in the healing of diabetic ulcers. Int Wound J 2019; 16:621-633. [PMID: 30821119 PMCID: PMC7949391 DOI: 10.1111/iwj.13070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small protected molecules with a length of 18 to 25 nucleotides. Many studies have recently been conducted on miRNAs, illustrating their role in regulating many biological, physiological, and pathological activities, such as maintaining cellular signalling and regulating cellular pathways. The main role of miRNAs is to regulate the expression of genes after translation, which can lead to the destruction or suppression of translation by binding to mRNAs. As any change in the regulation of miRNAs is associated with several physiological abnormalities, such as type 2 diabetes and its complications, these molecules can be used for therapeutic purposes or as biomarkers for the diagnosis of diseases such as diabetes and its complications. In this review article, we will discuss important findings about the miRNAs and the role of these molecules in different phases of the wound-healing process of chronic wounds, especially diabetic ulcer.
Collapse
Affiliation(s)
- Golnaz Goodarzi
- Department of Medical Biochemistry and Biotechnology, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Mahmood Maniati
- School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research InstituteBabol University of Medical SciencesBabolIran
- Dental Materials Research Center, Institute of HealthBabol University of Medical SciencesBabolIran
- Cancer Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
- Department of Clinical Biochemistry, School of MedicineBabol University of Medical SciencesBabolIran
| |
Collapse
|
21
|
Khosravi L, Sajjad Sisakhtnezhad, Akrami H. Placenta Growth Factor Influences miR-483-5p, miR-483-3p, miR-4669 and miR-16-5p Expression in MKN-45-Derived Spheroid Body-Forming Cells. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Kuschnerus K, Straessler ET, Müller MF, Lüscher TF, Landmesser U, Kränkel N. Increased Expression of miR-483-3p Impairs the Vascular Response to Injury in Type 2 Diabetes. Diabetes 2019; 68:349-360. [PMID: 30257976 DOI: 10.2337/db18-0084] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/13/2018] [Indexed: 11/13/2022]
Abstract
Aggravated endothelial injury and impaired endothelial repair capacity contribute to the high cardiovascular risk in patients with type 2 diabetes (T2D), but the underlying mechanisms are still incompletely understood. Here we describe the functional role of a mature form of miRNA (miR) 483-3p, which limits endothelial repair capacity in patients with T2D. Expression of human (hsa)-miR-483-3p was higher in endothelial-supportive M2-type macrophages (M2MΦs) and in the aortic wall of patients with T2D than in control subjects without diabetes. Likewise, the murine (mmu)-miR-483* was higher in T2D than in nondiabetic murine carotid samples. Overexpression of miR-483-3p increased endothelial and macrophage apoptosis and impaired reendothelialization in vitro. The inhibition of hsa-miR-483-3p in human T2D M2MΦs transplanted to athymic nude mice (NMRI-Foxn1ν/Foxn1ν ) or systemic inhibition of mmu-miR-483* in B6.BKS(D)-Leprdb /J diabetic mice rescued diabetes-associated impairment of reendothelialization in the murine carotid-injury model. We identified the endothelial transcription factor vascular endothelial zinc finger 1 (VEZF1) as a direct target of miR-483-3p. VEZF1 expression was reduced in aortae of diabetic mice and upregulated in diabetic murine aortae upon systemic inhibition of mmu-483*. The miRNA miR-483-3p is a critical regulator of endothelial integrity in patients with T2D and may represent a therapeutic target to rescue endothelial regeneration after injury in patients with T2D.
Collapse
Affiliation(s)
- Kira Kuschnerus
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Elisabeth T Straessler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Maja F Müller
- University Hospital Zurich, Department of Cardiology, Zürich, Switzerland
| | - Thomas F Lüscher
- University Hospital Zurich, Department of Cardiology, Zürich, Switzerland
- Center of Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Ulf Landmesser
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- University Hospital Zurich, Department of Cardiology, Zürich, Switzerland
- Center of Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Nicolle Kränkel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Center of Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Jiang Y, Luan Y, Chang H, Chen G. The diagnostic and prognostic value of plasma microRNA-125b-5p in patients with multiple myeloma. Oncol Lett 2018; 16:4001-4007. [PMID: 30128020 DOI: 10.3892/ol.2018.9128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/31/2018] [Indexed: 12/15/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs) contributes to the progression and outcomes of several types of tumor, while circulating miRNAs have been reported to act as biomarkers for several types of cancer. To identify specific circulating miRNAs associated with multiple myeloma (MM), a miRNA microarray analysis was used, which identified 8 upregulated miRNAs and 4 downregulated miRNAs in the plasma of 6 patients with MM compared with 6 healthy individuals. Based on the microarray results, the 8 miRNAs (miR-125b-5p, miR-483-3p, miR-4326, miR-6894-3p, miR-4498, miR-490-3p, miR-7155-5p and miR-937-3p), which were notably upregulated in MM patients were chosen for a second clinical study in 20 healthy controls and 35 patients with MM using reverse transcription- quantitative polymerase chain reaction. Receiver operating characteristic analysis demonstrated that miR-125b-5p and miR-490-3p displayed considerable diagnostic accuracy for MM with areas under the curve of 0.954 (P<0.001) and 0.866 (P=0.028), respectively. In addition, the plasma level of miR-125b-5p was associated with the international staging system disease stage. Patients with higher levels of plasma miR-125b-5p had a significantly shorter event-free survival. However, miR-490-3p levels were not associated with event-free survival (P>0.05). In summary, miR-125b-5p may serve as a potential clinical biomarker for MM.
Collapse
Affiliation(s)
- Yanxia Jiang
- Hematology Department, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yajing Luan
- Department of Basic Medical Sciences, Tianjin Medical University, Tianjin 300000, P.R. China
| | - Hong Chang
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Toronto, ON M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Guoan Chen
- Hematology Department, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
24
|
The Glucose-Regulated MiR-483-3p Influences Key Signaling Pathways in Cancer. Cancers (Basel) 2018; 10:cancers10060181. [PMID: 29867024 PMCID: PMC6025222 DOI: 10.3390/cancers10060181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023] Open
Abstract
The hsa-mir-483 gene, located within the IGF2 locus, transcribes for two mature microRNAs, miR-483-5p and miR-483-3p. This gene, whose regulation is mediated by the the CTNNB1/USF1 complex, shows an independent expression from its host gene IGF2. The miR-483-3p affects the Wnt/β-catenin, the TGF-β, and the TP53 signaling pathways by targeting several genes as CTNNB1, SMAD4, IGF1, and BBC3. Accordingly, miR-483-3p is associated with various tissues specific physiological properties as insulin and melanin production, as well as with cellular physiological functions such as wounding, differentiation, proliferation, and survival. Deregulation of miR-483-3p is observed in different types of cancer, and its overexpression can inhibit the pro-apoptotic pathway induced by the TP53 target effectors. As a result, the oncogenic characteristics of miR-483-3p are linked to the effect of some of the most relevant cancer-related genes, TP53 and CTNNB1, as well as to one of the most important cancer hallmark: the aberrant glucose metabolism of tumor cells. In this review, we summarize the recent findings regarding the miR-483-3p, to elucidate its functional role in physiological and pathological contexts, focusing overall on its involvement in cancer and in the TP53 pathway.
Collapse
|
25
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|
26
|
Moghal ETB, Venkatesh K, Sen D. The delta opioid peptide D-Alanine 2, Leucine 5 Enkephaline (DADLE)-induces neuroprotection through cross-talk between the UPR and pro-survival MAPK-NGF-Bcl2 signaling pathways via modulation of several micro-RNAs in SH-SY5Y cells subjected to ER stress. Cell Biol Int 2018; 42:543-569. [DOI: 10.1002/cbin.10923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Erfath Thanjeem Begum Moghal
- Cellular and Molecular Therapeutics Laboratory; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT); Vellore Tamil Nadu 632014 India
| | - Katari Venkatesh
- Cellular and Molecular Therapeutics Laboratory; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT); Vellore Tamil Nadu 632014 India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory; Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT); Vellore Tamil Nadu 632014 India
| |
Collapse
|
27
|
Luan A, Hu MS, Leavitt T, Brett EA, Wang KC, Longaker MT, Wan DC. Noncoding RNAs in Wound Healing: A New and Vast Frontier. Adv Wound Care (New Rochelle) 2018; 7:19-27. [PMID: 29344431 DOI: 10.1089/wound.2017.0765] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022] Open
Abstract
Significance: Wound healing requires a highly orchestrated coordination of processes that are not yet fully understood. Therefore, available clinical therapies are thus far limited in their efficacy in preventing and treating both chronic wounds and scars. Current gene-based therapeutics is largely based on our understanding of the protein-coding genome and proteins involved in known wound healing pathways. Recent Advances: Noncoding RNAs such as microRNAs and long noncoding RNAs have recently been found to be significant modulators of gene expression in diverse cellular pathways. Research has now implicated noncoding RNAs in nearly every stage of the wound healing process, suggesting that they may serve as clinical therapeutic targets. Noncoding RNAs are critical regulators in processes such as angiogenesis and cutaneous cell migration and proliferation, including classically described biological pathways previously attributed to mostly protein constituents. Critical Issues: The complexity and diversity of the interactions of noncoding RNAs with their targets and other binding partners require thorough characterization and understanding of their functions before they may be altered to modulate human wound healing pathways. Future Directions: Research in the area of noncoding RNAs continues to rapidly expand our understanding of their potential roles in physiological and pathological wound healing. Coupled with improving technologies to enhance or suppress target noncoding RNA in vivo, these advances hold great promise in the development of new therapies for wound healing.
Collapse
Affiliation(s)
- Anna Luan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael S. Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Tripp Leavitt
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Elizabeth A. Brett
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
- Department of Plastic and Hand Surgery, Technical University, Munich, Munich, Germany
| | - Kevin C. Wang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
28
|
Li X, Guo L, Liu Y, Su Y, Xie Y, Du J, Wang S, Wang H, Liu Y. MicroRNA-21 promotes wound healing via the Smad7-Smad2/3-Elastin pathway. Exp Cell Res 2017; 362:245-251. [PMID: 29154818 DOI: 10.1016/j.yexcr.2017.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/22/2022]
Abstract
Wound healing is regulated by a complex network of cells, molecules, and cytokines, as well as microRNAs (miRNAs). miRNAs were confirmed to influence the wound healing process, and miR-21, an important member of the miRNA family, was also shown to regulate wound healing. The aim of the present study was to investigate the role of miR-21 in the wound healing process and the possible underlying cell signaling pathways. We isolated GMSCs from WT and miR-21-KO mouse gingiva. Flow cytometric analysis and immunocytofluorescense staining were used to identify the GMSCs acquired from WT and miR-21-KO mice. RT-PCR, western blot analysis and immunohistofluorescence staining were performed to examine the expression of extracellular matrix components and key proteins of cell signaling pathways. TargetScan and pmiR-RB-REPORT vectors were used to verify that Smad7 was a direct target of miR-21. Compared to WT mice, miR-21-KO mice showed slower wound healing. RT-PCR and western blot analysis indicated that Elastin expression was downregulated in miR-21-deficient samples. We confirmed that Smad7 was a direct target of miR-21. miR-21 knockout resulted in increased expression of Smad7 and impaired phosphorylation of the Smad2/3 complex. The expression of the Smad7-Smad2/3-Elastin axis in palate tissues sections acquired from WT and miR-21-KO mice showed the same trend. Based on all these results, we demonstrated that miR-21 promoted the wound healing process via the Smad7-Smad2/3-Elastin pathway.
Collapse
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, PR China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China
| | - Yingying Su
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, PR China
| | - Yongmei Xie
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China
| | - Songling Wang
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, School of Stomatology, Capital Medical University, PR China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, PR China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, PR China.
| |
Collapse
|
29
|
Ross K. Towards topical microRNA-directed therapy for epidermal disorders. J Control Release 2017; 269:136-147. [PMID: 29133119 DOI: 10.1016/j.jconrel.2017.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 01/09/2023]
Abstract
There remains an unmet dermatological need for innovative topical agents that achieve better longterm outcomes with fewer side effects. Modulation of the expression and activity of microRNA (miRNAs) represents an emerging translational framework for the development of such innovative therapies because changes in the expression of one miRNA can have wide-ranging effects on diverse cellular processes associated with disease. In this short review, the roles of miRNA in epidermal development, psoriasis, cutaneous squamous cell carcinoma and re-epithelisation are highlighted. Consideration is given to the delivery of oligonucleotides that mimic or inhibit miRNA function using vehicles such as cell penetrating peptides, spherical nucleic acids, deformable liposomes and liquid crystalline nanodispersions. Formulation of miRNA-directed oligonucleotides with such skin-penetrating epidermal agents will drive the development of RNA-based cutaneous therapeutics for deployment as primary or adjuvant therapies for epidermal disorders.
Collapse
Affiliation(s)
- Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
30
|
From Inflammation to Current and Alternative Therapies Involved in Wound Healing. Int J Inflam 2017; 2017:3406215. [PMID: 28811953 PMCID: PMC5547704 DOI: 10.1155/2017/3406215] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/01/2017] [Accepted: 06/06/2017] [Indexed: 02/08/2023] Open
Abstract
Wound healing is a complex event that develops in three overlapping phases: inflammatory, proliferative, and remodeling. These phases are distinct in function and histological characteristics. However, they depend on the interaction of cytokines, growth factors, chemokines, and chemical mediators from cells to perform regulatory events. In this article, we will review the pathway in the skin healing cascade, relating the major chemical inflammatory mediators, cellular and molecular, as well as demonstrating the local and systemic factors that interfere in healing and disorders associated with tissue repair deficiency. Finally, we will discuss the current therapeutic interventions in the wounds treatment, and the alternative therapies used as promising results in the development of new products with healing potential.
Collapse
|
31
|
Mulholland EJ, Dunne N, McCarthy HO. MicroRNA as Therapeutic Targets for Chronic Wound Healing. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:46-55. [PMID: 28918046 PMCID: PMC5485763 DOI: 10.1016/j.omtn.2017.06.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/15/2022]
Abstract
Wound healing is a highly complex biological process composed of three overlapping phases: inflammation, proliferation, and remodeling. Impairments at any one or more of these stages can lead to compromised healing. MicroRNAs (miRs) are non-coding RNAs that act as post-transcriptional regulators of multiple proteins and associated pathways. Thus, identification of the appropriate miR involved in the different phases of wound healing could reveal an effective third-generation genetic therapy in chronic wound care. Several miRs have been shown to be upregulated or downregulated during the wound healing process. This article examines the biological processes involved in wound healing, the miR involved at each stage, and how expression levels are modulated in the chronic wound environment. Key miRs are highlighted as possible therapeutic targets, either through underexpression or overexpression, and the healing benefits are interrogated. These are prime miR candidates that could be considered as a gene therapy option for patients suffering from chronic wounds. The success of miR as a gene therapy, however, is reliant on the development of an appropriate delivery system that must be designed to overcome both extracellular and intracellular barriers.
Collapse
Affiliation(s)
- Eoghan J Mulholland
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Nicholas Dunne
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.
| | - Helen O McCarthy
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
32
|
Wang S, Tang L, Zhou Q, Lu D, Duan W, Chen C, Huang L, Tan Y. miR-185/P2Y6Axis Inhibits Angiotensin II-Induced Human Aortic Vascular Smooth Muscle Cell Proliferation. DNA Cell Biol 2017; 36:377-385. [DOI: 10.1089/dna.2016.3605] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Shunmin Wang
- The Graduate Institute, Hunan University of Chinese Medicine, Changsha City, China
- Department of Cardiovascular, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Lujun Tang
- The Graduate Institute, Hunan University of Chinese Medicine, Changsha City, China
| | - Qian Zhou
- The Graduate Institute, Hunan University of Chinese Medicine, Changsha City, China
| | - Duomei Lu
- The Graduate Institute, Hunan University of Chinese Medicine, Changsha City, China
| | - Wulei Duan
- The Graduate Institute, Hunan University of Chinese Medicine, Changsha City, China
| | - Cheng Chen
- The Graduate Institute, Hunan University of Chinese Medicine, Changsha City, China
| | - Lu Huang
- Department of Cardiovascular, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yuansheng Tan
- Department of Cardiovascular, First College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Cardiovascular, College of Integrated Traditional Chinese and Western Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| |
Collapse
|
33
|
Yang L, Zheng Z, Zhou Q, Bai X, Fan L, Yang C, Su L, Hu D. miR-155 promotes cutaneous wound healing through enhanced keratinocytes migration by MMP-2. J Mol Histol 2017; 48:147-155. [DOI: 10.1007/s10735-017-9713-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022]
|
34
|
He M, Chen Z, Martin M, Zhang J, Sangwung P, Woo B, Tremoulet AH, Shimizu C, Jain MK, Burns JC, Shyy JYJ. miR-483 Targeting of CTGF Suppresses Endothelial-to-Mesenchymal Transition: Therapeutic Implications in Kawasaki Disease. Circ Res 2017; 120:354-365. [PMID: 27923814 PMCID: PMC5391835 DOI: 10.1161/circresaha.116.310233] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/01/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022]
Abstract
RATIONALE Endothelial-mesenchymal transition (EndoMT) is implicated in myofibroblast-like cell-mediated damage to the coronary arterial wall in acute Kawasaki disease (KD) patients, as evidenced by positive staining for connective tissue growth factor (CTGF) and EndoMT markers in KD autopsy tissues. However, little is known about the molecular basis of EndoMT involved in KD. OBJECTIVE We investigated the microRNA (miRNA) regulation of CTGF and the consequent EndoMT in KD pathogenesis. As well, the modulation of this process by statin therapy was studied. METHODS AND RESULTS Sera from healthy children and KD subjects were incubated with human umbilical vein endothelial cells. Cardiovascular disease-related miRNAs, CTGF, and EndoMT markers were quantified using reverse transcriptase quantitative polymerase chain reaction, ELISA, and Western blotting. Compared with healthy controls, human umbilical vein endothelial cell incubated with sera from acute KD patients had decreased miR-483, increased CTGF, and increased EndoMT markers. Bioinformatics analysis followed by functional validation demonstrated that Krüppel-like factor 4 (KLF4) transactivates miR-483, which in turn targets the 3' untranslated region of CTGF mRNA. Overexpression of KLF4 or pre-miR-483 suppressed, whereas knockdown of KLF4 or anti-miR-483 enhanced, CTGF expression in endothelial cells in vitro and in vivo. Furthermore, atorvastatin, currently being tested in a phase I/IIa clinical trial in KD children, induced KLF4-miR-483, which suppressed CTGF and EndoMT in endothelial cells. CONCLUSIONS KD sera suppress the KLF4-miR-483 axis in endothelial cells, leading to increased expression of CTGF and induction of EndoMT. This detrimental process in the endothelium may contribute to coronary artery abnormalities in KD patients. Statin therapy may benefit acute KD patients, in part, through the restoration of KLF4-miR-483 expression. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01431105.
Collapse
Affiliation(s)
- Ming He
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Zhen Chen
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Marcy Martin
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Jin Zhang
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Panjamaporn Sangwung
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Brian Woo
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Adriana H Tremoulet
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Chisato Shimizu
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Mukesh K Jain
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.)
| | - Jane C Burns
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.).
| | - John Y-J Shyy
- From the Cardiovascular Research Center, Key Laboratory of Environment and Genes Related to Diseases (M.H., J.Z., J.Y.-J.S.), Department of Rheumatology, First Affiliated Hospital (M.H.), Xi'an Jiaotong University Health Science Center, China; Division of Cardiology, Department of Medicine (M.H., Z.C., M.M., B.W., J.Y.-J.S.) and Department of Pediatrics (A.H.T., C.S., J.C.B.), University of California, San Diego; Rady Children's Hospital, San Diego, CA (A.H.T., J.C.B.); Division of Biochemistry and Molecular Biology, University of California, Riverside (M.M.); and Case Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cardiovascular Research Center, Cleveland, OH (P.S., M.K.J.).
| |
Collapse
|
35
|
Arrighetti N, Cossa G, De Cecco L, Stucchi S, Carenini N, Corna E, Gandellini P, Zaffaroni N, Perego P, Gatti L. PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells. Toxicol Appl Pharmacol 2016; 310:9-19. [DOI: 10.1016/j.taap.2016.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 12/19/2022]
|
36
|
Xiang Y, Song Y, Li Y, Zhao D, Ma L, Tan L. miR-483 is Down-Regulated in Polycystic Ovarian Syndrome and Inhibits KGN Cell Proliferation via Targeting Insulin-Like Growth Factor 1 (IGF1). Med Sci Monit 2016; 22:3383-3393. [PMID: 27662007 PMCID: PMC5040236 DOI: 10.12659/msm.897301] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Polycystic ovarian syndrome (PCOS) is a common metabolic disorder in premenopausal woman, characterized by hyperandrogenism, oligoanovulation, and insulin resistance. microRNAs play pivotal roles in regulating key factors of PCOS. However, relevant research remains limited. This study aimed to reveal the role and potential mechanism of miR-483 in PCOS. Material/Methods PCOS patients (n=20) were recruited for detecting miR-483 expression in lesion and normal ovary cortex. Human granulosa-like tumor cell line KGN was used to alter miR-483 expression by cell transfection. Cell viability and proliferation were analyzed by MTT assay and colony formation assay, and cell cycle was detected by flow cytometry. Interaction between miR-483 and IGF1 was verified by luciferase reporter assay. KGN cells were further treated by insulin to investigate the relationship between miR-483 and insulin. Results miR-483 was significantly down-regulated in lesion ovary cortex from PCOS patients (P<0.001). In KGN cells, overexpression of miR-483 inhibited cell viability and proliferation, and induced cell cycle arrest. miR-483 also inhibited CCNB1, CCND1, and CDK2. miR-483 sponge induced the opposite effects. miR-483 directly targeted IGF1 3′UTR, and IGF1 promoted KGN cell proliferation and reversed miR-483-inhibited cell viability. Insulin treatment in KGN cells inhibited miR-483, and promoted IGF1 and cell proliferation. Conclusions These results suggest that miR-483 is a PCOS suppressor inhibiting cell proliferation, possibly via targeting IGF1, and that it is involved in insulin-induced cell proliferation. miR-483 is a potential alternative for diagnosing and treating PCOS.
Collapse
Affiliation(s)
- Yungai Xiang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yan Li
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Dongmei Zhao
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Liying Ma
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Li Tan
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
37
|
Tomé-Carneiro J, Crespo MC, Iglesias-Gutierrez E, Martín R, Gil-Zamorano J, Tomas-Zapico C, Burgos-Ramos E, Correa C, Gómez-Coronado D, Lasunción MA, Herrera E, Visioli F, Dávalos A. Hydroxytyrosol supplementation modulates the expression of miRNAs in rodents and in humans. J Nutr Biochem 2016; 34:146-55. [PMID: 27322812 DOI: 10.1016/j.jnutbio.2016.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/04/2016] [Accepted: 05/19/2016] [Indexed: 12/19/2022]
Abstract
Dietary microRNAs (miRNAs) modulation could be important for health and wellbeing. Part of the healthful activities of polyphenols might be due to a modulation of miRNAs' expression. Among the most biologically active polyphenols, hydroxytyrosol (HT) has never been studied for its actions on miRNAs. We investigated whether HT could modulate the expression of miRNAs in vivo. We performed an unbiased intestinal miRNA screening in mice supplemented (for 8 weeks) with nutritionally relevant amounts of HT. HT modulated the expression of several miRNAs. Analysis of other tissues revealed consistent HT-induced modulation of only few miRNAs. Also, HT administration increased triglycerides levels. Acute treatment with HT and in vitro experiments provided mechanistic insights. The HT-induced expression of one miRNA was confirmed in healthy volunteers supplemented with HT in a randomized, double-blind and placebo-controlled trial. HT consumption affects specific miRNAs' expression in rodents and humans. Our findings suggest that the modulation of miRNAs' action through HT consumption might partially explain its healthful activities and might be pharmanutritionally exploited in current therapies targeting endogenous miRNAs. However, the effects of HT on triglycerides warrant further investigations.
Collapse
Affiliation(s)
- Joao Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - María Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - Eduardo Iglesias-Gutierrez
- Department of Functional Biology (Physiology), University of Oviedo, Oviedo 33003, Spain; Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Roberto Martín
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - Judit Gil-Zamorano
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - Cristina Tomas-Zapico
- Department of Functional Biology (Physiology), University of Oviedo, Oviedo 33003, Spain
| | - Emma Burgos-Ramos
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain; Área de Bioquímica, Universidad de Castilla-La-Mancha, Toledo 45071, Spain
| | - Carlos Correa
- Unidad de Cirugía Experimental, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Miguel A Lasunción
- Servicio de Bioquímica Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Emilio Herrera
- Department of Biochemistry and Chemistry, Faculties of Pharmacy and Medicine, Universidad San Pablo CEU, Madrid 28668, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain; Department of Molecular Medicine, University of Padova, Padova 35121, Italy.
| | - Alberto Dávalos
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain.
| |
Collapse
|
38
|
Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 2016; 73:3861-85. [PMID: 27180275 PMCID: PMC5021733 DOI: 10.1007/s00018-016-2268-0] [Citation(s) in RCA: 934] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 02/08/2023]
Abstract
The ability to rapidly restore the integrity of a broken skin barrier is critical and is the ultimate goal of therapies for hard-to-heal-ulcers. Unfortunately effective treatments to enhance healing and reduce scarring are still lacking. A deeper understanding of the physiology of normal repair and of the pathology of delayed healing is a prerequisite for the development of more effective therapeutic interventions. Transition from the inflammatory to the proliferative phase is a key step during healing and accumulating evidence associates a compromised transition with wound healing disorders. Thus, targeting factors that impact this phase transition may offer a rationale for therapeutic development. This review summarizes mechanisms regulating the inflammation-proliferation transition at cellular and molecular levels. We propose that identification of such mechanisms will reveal promising targets for development of more effective therapies.
Collapse
|
39
|
Wang T, Zhao N, Long S, Ge L, Wang A, Sun H, Ran X, Zou Z, Wang J, Su Y. Downregulation of miR-205 in migrating epithelial tongue facilitates skin wound re-epithelialization by derepressing ITGA5. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1443-52. [PMID: 27169579 DOI: 10.1016/j.bbadis.2016.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/14/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
Keratinocyte migration is essential for re-epithelialization during skin wound healing, but the molecular mechanisms regulating this cellular response remain to be completely clarified. Here we show that keratinocyte-specific miR-205 is significantly downregulated in the leading edge of the migrating epithelial tongue after skin injury in mice. In HaCaT keratinocytes, miR-205 could be downregulated by TGF-β1 stimulation. And similar to the effect of TGF-β1, miR-205 knockdown could promote keratinocyte migration in wound scratch model in vitro. Furthermore, topical inhibition of miR-205 by administrating Pluronic gel containing antagomir-205 could accelerate re-epithelialization in mouse skin wound model in vivo. Moreover, we identified integrin alpha 5 (ITGA5) as one key functional miR-205 target in the re-epithelialization process and epidermal downregulation of miR-205 may desilence ITGA5 to promote keratinocyte migration. And knockdown of ITGA5 would abolish the pro-migratory effects of miR-205 inhibition in vitro. What's more, we found dysregulation of miR-205 and its target ITGA5 in epidermis of clinical chronic wound samples with persistence of high level miR-205 and absence of ITGA5. Our findings indicate that downregulation of miR-205 in the leading migrating keratinocytes is critical for re-epithelialization and miR-205 may be a potential therapeutic target for chronic wounds.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Na Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Shuang Long
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Lan Ge
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Aiping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Huiqin Sun
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xinze Ran
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Zhongmin Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
40
|
Amin R, Morita-Fujimura Y, Tawarayama H, Semba K, Chiba N, Fukumoto M, Ikawa S. ΔNp63α induces quiescence and downregulates the BRCA1 pathway in estrogen receptor-positive luminal breast cancer cell line MCF7 but not in other breast cancer cell lines. Mol Oncol 2015; 10:575-93. [PMID: 26704768 DOI: 10.1016/j.molonc.2015.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/10/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022] Open
Abstract
Despite apparent resection of tumors, breast cancer patients often suffer relapse due to remnant dormant tumor cells. Although quiescence of cancer stem cells is thought as one of the mechanisms regulating dormancy, the mechanism underlying quiescence is unclear. Since ΔNp63α, an isoform of p51/p63, is crucial in the maintenance of stem cells within mammary epithelium, we investigated its roles in the regulation of dormancy in normal and malignant breast cells. Inducible expression of ΔNp63α in MCF7 estrogen receptor positive (ER+) luminal breast cancer cells led to quiescence and acquisition of progenitor-like properties. Judging from mRNA-microRNA microarray analysis, activation of bone morphogenetic protein (BMP) signaling and inhibition of Wnt signaling emerged as prominent mechanisms underlying ΔNp63α-dependent induction of quiescence and acquisition of stemness in MCF7. More interestingly, through Ingenuity Pathway analysis, we found for the first time that BRCA1 pathway was the most significantly downregulated pathway by ΔNp63α expression in quiescent MCF7 cells, where miR-205 was a downstream mediator. Furthermore, ΔNp63α-expressing MCF7 cells exhibited resistance to paclitaxel and doxorubicin. Expression of ΔNp63α in normal MCF10A basal cells increased proliferation and stemness, but did not affect more aggressive luminal (T47D) and basal (MDA-MB-231) cells with p53 mutation. Gene expression datasets analyses suggested that ΔNp63 expression is associated with relapse-free survival of luminal A/B-type patients, but not of the other subtypes. Our results established a cell type-specific function of ΔNp63α in induction of quiescence and downregulation of the BRCA1 pathway which suggested a role of ΔNp63α in the dormancy of luminal breast cancers.
Collapse
Affiliation(s)
- Ruhul Amin
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan; Department of Pathology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Yuiko Morita-Fujimura
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan; Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan
| | - Hiroshi Tawarayama
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Shuntaro Ikawa
- Department of Project Programs, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan.
| |
Collapse
|
41
|
Fahs F, Bi X, Yu FS, Zhou L, Mi QS. New insights into microRNAs in skin wound healing. IUBMB Life 2015; 67:889-96. [PMID: 26596866 DOI: 10.1002/iub.1449] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022]
Abstract
Chronic wounds are a major burden to overall healthcare cost and patient morbidity. Chronic wounds affect a large portion of the US, and billions of healthcare dollars are spent in their treatment and management. microRNAs (miRNAs) are small, noncoding double-stranded RNAs that post-transcriptionally downregulate the expression of protein-coding genes. Studies have identified miRNAs involved in all three phases of wound healing including inflammation, proliferation, and remodeling. Some miRNAs have been demonstrated in vitro with primary keratinocyte wound healing model and in vivo with mouse wound healing model through regulation of miRNA expression to affect the wound healing process. This review updates the current miRNAs involved in wound healing and discusses the future therapeutic implications and research directions.
Collapse
Affiliation(s)
- Fatima Fahs
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA.,Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Xinling Bi
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA.,Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Dermatology, Changhai Hospital, Shanghai, China
| | - Fu-Shin Yu
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Zhou
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA.,Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Qing-Sheng Mi
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, USA.,Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
42
|
Bhattacharya S, Aggarwal R, Singh VP, Ramachandran S, Datta M. Downregulation of miRNAs during Delayed Wound Healing in Diabetes: Role of Dicer. Mol Med 2015; 21:847-860. [PMID: 26602065 DOI: 10.2119/molmed.2014.00186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/02/2015] [Indexed: 12/11/2022] Open
Abstract
Delayed wound healing is a major complication associated with diabetes and is a result of a complex interplay among diverse deregulated cellular parameters. Although several genes and pathways have been identified to be mediating impaired wound closure, the role of microRNAs (miRNAs) in these events is not very well understood. Here, we identify an altered miRNA signature in the prolonged inflammatory phase in a wound during diabetes, with increased infiltration of inflammatory cells in the basal layer of the epidermis. Nineteen miRNAs were downregulated in diabetic rat wounds (as compared with normal rat wound, d 7 postwounding) together with inhibited levels of the central miRNA biosynthesis enzyme, Dicer, suggesting that in wounds of diabetic rats, the decreased levels of Dicer are presumably responsible for miRNA downregulation. Compared with unwounded skin, Dicer levels were significantly upregulated 12 d postwounding in normal rats, and this result was notably absent in diabetic rats that showed impaired wound closure. In a wound-healing specific quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) array, 10 genes were significantly altered in the diabetic rat wound and included growth factors and collagens. Network analyses demonstrated significant interactions and correlations between the miRNA predicted targets (regulators) and the 10 wound-healing specific genes, suggesting altered miRNAs might fine-tune the levels of these genes that determine wound closure. Dicer inhibition prevented HaCaT cell migration and affected wound closure. Altered levels of Dicer and miRNAs are critical during delayed wound closure and offer promising targets to address the issue of impaired wound healing.
Collapse
Affiliation(s)
- Sushant Bhattacharya
- Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi, India
| | - Rangoli Aggarwal
- Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi, India
| | - Vijay Pal Singh
- Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi, India
| | - Srinivasan Ramachandran
- Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi, India
| | - Malabika Datta
- Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
43
|
Evaluation of MicroRNAs Regulating Anoikis Pathways and Its Therapeutic Potential. BIOMED RESEARCH INTERNATIONAL 2015; 2015:716816. [PMID: 26587543 PMCID: PMC4637442 DOI: 10.1155/2015/716816] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/07/2015] [Indexed: 12/29/2022]
Abstract
Dysregulation of microRNAs (miRNAs) has been implicated in almost every known survival mechanisms utilized by cancer cells. One of such mechanisms, anoikis resistance, plays a pivotal role in enabling metastasis by allowing cancer cells to circumvent cell death induced by lack of attachment. Understanding how miRNAs regulate the various anoikis pathways has become the research question of increasing number of studies published in the past years. Through these studies, a growing list of miRNAs has been identified to be important players in promoting either anoikis or resistance to anoikis. In this review, we will be focusing on these miRNAs and how the findings from those studies can contribute to novel therapeutic strategies against cancer progression. We will be examining miRNAs that have been found to promote anoikis sensitivity in numerous cancer types followed by miRNAs that inhibit anoikis. In addition, we will also be taking a look at major signaling pathways involved in the action of the each of these miRNAs to gain a better understanding on how miRNAs regulate anoikis.
Collapse
|
44
|
Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O. Stem Cells in Skin Regeneration, Wound Healing, and Their Clinical Applications. Int J Mol Sci 2015; 16:25476-501. [PMID: 26512657 PMCID: PMC4632811 DOI: 10.3390/ijms161025476] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022] Open
Abstract
The skin is the largest organ of the body and has an array of functions. Skin compartments, epidermis, and hair follicles house stem cells that are indispensable for skin homeostasis and regeneration. These stem cells also contribute to wound repair, resulting in restoration of tissue integrity and function of damaged tissue. Unsuccessful wound healing processes often lead to non-healing wounds. Chronic wounds are caused by depletion of stem cells and a variety of other cellular and molecular mechanisms, many of which are still poorly understood. Current chronic wound therapies are limited, so the search to develop better therapeutic strategies is ongoing. Adult stem cells are gaining recognition as potential candidates for numerous skin pathologies. In this review, we will discuss epidermal and other stem cells present in the skin, and highlight some of the therapeutic applications of epidermal stem cells and other adult stem cells as tools for cell/scaffold-based therapies for non-healing wounds and other skin disorders. We will also discuss emerging concepts and offer some perspectives on how skin tissue-engineered products can be optimized to provide efficacious therapy in cutaneous repair and regeneration.
Collapse
Affiliation(s)
- Nkemcho Ojeh
- Faculty of Medical Sciences, the University of the West Indies, Cave Hill Campus, P.O. Box 64, Bridgetown BB 11000, St. Michael, Barbados; E-Mail:
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, 1600 NW 10th Avenue, RMSB, Room 2023-A, Miami, FL 33136, USA; E-Mails: (I.P.); (M.T.-C.)
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, 1600 NW 10th Avenue, RMSB, Room 2023-A, Miami, FL 33136, USA; E-Mails: (I.P.); (M.T.-C.)
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller Medical School, 1600 NW 10th Avenue, RMSB, Room 2023-A, Miami, FL 33136, USA; E-Mails: (I.P.); (M.T.-C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-305-243-7295; Fax: +1-305-243-6191
| |
Collapse
|
45
|
Emmerling VV, Fischer S, Stiefel F, Holzmann K, Handrick R, Hesse F, Hörer M, Kochanek S, Otte K. Temperature-sensitive miR-483 is a conserved regulator of recombinant protein and viral vector production in mammalian cells. Biotechnol Bioeng 2015; 113:830-41. [DOI: 10.1002/bit.25853] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/15/2015] [Accepted: 10/08/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Verena V. Emmerling
- Department of Gene Therapy; Ulm University; Ulm Germany
- Rentschler Biotechnologie GmbH; Erwin-Rentschler-Str. 21; Laupheim Germany
| | - Simon Fischer
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| | - Fabian Stiefel
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| | | | - René Handrick
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| | - Friedemann Hesse
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| | - Markus Hörer
- Rentschler Biotechnologie GmbH; Erwin-Rentschler-Str. 21; Laupheim Germany
- VBBio Consultant; Auf dem Berg 17; Laupheim Germany
| | | | - Kerstin Otte
- Institute of Applied Biotechnology; Biberach University of Applied Sciences; Hubertus-Liebrecht-Str. 35 88400 Biberach Germany
| |
Collapse
|
46
|
Liu H, French BA, Li J, Tillman B, French SW. Altered regulation of miR-34a and miR-483-3p in alcoholic hepatitis and DDC fed mice. Exp Mol Pathol 2015; 99:552-7. [PMID: 26403328 DOI: 10.1016/j.yexmp.2015.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 01/05/2023]
Abstract
MicroRNAs are small noncoding RNAs that negatively regulate gene expression by binding to the untranslated regions of their target mRNAs. Deregulation of miRNAs is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of miR-34a and miR-483-3p by RNA sequencing (RNA-Seq) analyses. Real-time PCR further shows a 3- and 6-fold upregulation (respectively) of miR-34a in the AH livers and in the livers of DDC re-fed mice, while miR-483-3p was significantly downregulated in AH and DDC re-fed mice livers. This indicates that miR-34a and miR-483-3p may be crucial for liver MDB formation. P53 mRNA was found to be significantly downregulated both in the AH livers and in the livers of DDC re-fed mice, indicating that the upregulation of miR-34a is permitted by the decrease of p53 in AH since miR-34a is a main target of p53. Overexpression of miR-34a leads to an increase of p53 targets such as p27, which inhibits the cell cycle leading to cell cycle arrest. Importantly, BRCA1 is a target gene of miR-483-3p by RNA-Seq analyses and the downregulation of miR-483-3p may be the mechanism for liver MDB formation since the BRCA1 signal was markedly upregulated in AH livers. These results constitute a demonstration of the altered regulation of miR-34a and miR-483-3p in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by miR-34a and miR-483-3p in AH.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Barbara A French
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Jun Li
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Brittany Tillman
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Samuel W French
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA.
| |
Collapse
|
47
|
Abstract
Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and nanocarriers for corneal drug delivery are discussed. Attention is also paid to problems in wound healing understanding and treatment, such as lack of specific epithelial stem cell markers, reliable identification of stem cells, efficient prevention of haze and stromal scar formation, lack of data on wound regulating microRNAs in keratocytes and endothelial cells, as well as virtual lack of targeted systems for drug and gene delivery to select corneal cells.
Collapse
Affiliation(s)
- Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
48
|
Miller KJ, Brown DA, Ibrahim MM, Ramchal TD, Levinson H. MicroRNAs in skin tissue engineering. Adv Drug Deliv Rev 2015; 88:16-36. [PMID: 25953499 DOI: 10.1016/j.addr.2015.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/04/2015] [Accepted: 04/25/2015] [Indexed: 01/08/2023]
Abstract
35.2 million annual cases in the U.S. require clinical intervention for major skin loss. To meet this demand, the field of skin tissue engineering has grown rapidly over the past 40 years. Traditionally, skin tissue engineering relies on the "cell-scaffold-signal" approach, whereby isolated cells are formulated into a three-dimensional substrate matrix, or scaffold, and exposed to the proper molecular, physical, and/or electrical signals to encourage growth and differentiation. However, clinically available bioengineered skin equivalents (BSEs) suffer from a number of drawbacks, including time required to generate autologous BSEs, poor allogeneic BSE survival, and physical limitations such as mass transfer issues. Additionally, different types of skin wounds require different BSE designs. MicroRNA has recently emerged as a new and exciting field of RNA interference that can overcome the barriers of BSE design. MicroRNA can regulate cellular behavior, change the bioactive milieu of the skin, and be delivered to skin tissue in a number of ways. While it is still in its infancy, the use of microRNAs in skin tissue engineering offers the opportunity to both enhance and expand a field for which there is still a vast unmet clinical need. Here we give a review of skin tissue engineering, focusing on the important cellular processes, bioactive mediators, and scaffolds. We further discuss potential microRNA targets for each individual component, and we conclude with possible future applications.
Collapse
|
49
|
Wang C, Sun Y, Wu H, Yu S, Zhang L, Meng Y, Liu M, Yang H, Liu P, Mao X, Lu Z, Chen J. Elevated miR-483-3p expression is an early event and indicates poor prognosis in pancreatic ductal adenocarcinoma. Tumour Biol 2015; 36:9447-56. [PMID: 26124009 DOI: 10.1007/s13277-015-3690-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023] Open
Abstract
MiR-483-3p has been reported to be widely involved in diverse human malignancies. However, the exact role of miR-483-3p remains elusive in pancreatic ductal adenocarcinoma (PDAC). The objective of this study is to determine the expression pattern and clinical implications of miR-483-3p in PDAC. MiR-483-3p levels were evaluated by locked nucleic acid-in situ hybridization (LNA-ISH) in a tissue microarray including 63 PDAC tumors and 10 normal pancreatic tissues, followed by evaluation in an independent set of 117 pairs of matched PDAC tumors and adjacent tumor-free pancreatic tissues. Expression of miR-483-3p was further evaluated in pancreatic intra-epithelial neoplasias (PanINs) and chronic pancreatitis (CP). The impact of miR-483-3p on cell proliferation, growth, and anchorage-independent colony formation was also assessed in vitro and in vivo. Microarray analysis revealed that miR-483-3p was positively stained in 61 (96.8 %) PDAC samples, but not detectable in normal pancreatic duct tissue. In the 117 PDAC samples, 100 % were miR-483-3p positive, with 55.6 % (65/117) strongly positive, compared to only 13.7 % (16/117) weakly positive in adjacent normal pancreatic duct tissues. MiR-483-3p expression was associated with tumor grading (p < 0.05) and was an independent predictor of poor overall survival in multivariate analysis (HR = 2.584; 95 % CI = 1.268-5.264). Moreover, from PanIN1 to PanIN3, the rate of strong miR-483-3p-positive staining was 0 % (0/39), 14.8 % (4/27), and 87.5 % (14/16), respectively. Six (54.5 %) CP samples were only weakly stained for miR-483-3p. Inhibition of miR-483-3p suppressed cell proliferation, growth, and colony formation in vitro and decreased tumor cell growth in nude mouse xenografts in vivo. These results suggest that aberrant miR-483-3p expression is an early event in PDAC tumorigenesis and is associated with tumor differentiation and prognosis. It also may be a potential target for PDAC molecular therapeutics.
Collapse
Affiliation(s)
- Cuiping Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China.,Department of Pathology, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 100730, China
| | - Yang Sun
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Li Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Yunxiao Meng
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Mingyang Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Haiyan Yang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Pingping Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Xinxin Mao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Zhaohui Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China.
| |
Collapse
|
50
|
Chen Z, Dai T, Chen X, Tan L, Shi C. Activation and regulation of the granulation tissue derived cells with stemness-related properties. Stem Cell Res Ther 2015; 6:85. [PMID: 25925316 PMCID: PMC4446126 DOI: 10.1186/s13287-015-0070-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 10/23/2014] [Accepted: 03/30/2015] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Skin as the largest and easily accessible organ of the body represents an abundant source of adult stem cells. Among them, dermal stem cells hold great promise in tissue repair and the skin granulation tissue has been recently proposed as a promising source of dermal stem cells, but their biological characteristics have not been well investigated. METHODS The 5-bromo-2'-deoxyuridine (BrdU) lineage tracing approach was employed to chase dermal stem cells in vivo. Granulation tissue derived cells (GTCs) were isolated and their in vitro proliferation, self-renewing, migration, and multi-differentiation capabilities were assessed. Combined radiation and skin wound model was used to investigate the therapeutic effects of GTCs. MicroRNA-21 (miR-21) antagomir was used to antagonize miR-21 expression. Reactive oxygen species (ROS) were scavenged by N-acetyl cysteine (NAC). RESULTS The quiescent dermal stem/progenitor cells were activated to proliferate upon injury and enriched in granulation tissues. GTCs exhibited enhanced proliferation, colony formation and multi-differentiation capacities. Topical transplantation of GTCs into the combined radiation and skin wound mice accelerated wound healing and reduced tissue fibrosis. Blockade of the miR-21 expression in GTCs inhibited cell migration and differentiation, but promoted cell proliferation and self-renewing at least partially via a ROS dependent pathway. CONCLUSIONS The granulation tissue may represent an alternative adult stem cell source in tissue replacement therapy and miR-21 mediated ROS generation negatively regulates the stemness-related properties of granulation tissue derived cells.
Collapse
Affiliation(s)
- Zelin Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Tingyu Dai
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Xia Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Li Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|