1
|
Piechowicz L, Kosznik-Kwaśnicka K, Jarzembowski T, Daca A, Necel A, Bonawenturczak A, Werbowy O, Stasiłojć M, Pałubicka A. Staphylococcus aureus Co-Infection in COVID-19 Patients: Virulence Genes and Their Influence on Respiratory Epithelial Cells in Light of Risk of Severe Secondary Infection. Int J Mol Sci 2024; 25:10050. [PMID: 39337536 PMCID: PMC11431965 DOI: 10.3390/ijms251810050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Pandemics from viral respiratory tract infections in the 20th and early 21st centuries were associated with high mortality, which was not always caused by a primary viral infection. It has been observed that severe course of infection, complications and mortality were often the result of co-infection with other pathogens, especially Staphylococcus aureus. During the COVID-19 pandemic, it was also noticed that patients infected with S. aureus had a significantly higher mortality rate (61.7%) compared to patients infected with SARS-CoV-2 alone. Our previous studies have shown that S. aureus strains isolated from patients with COVID-19 had a different protein profile than the strains in non-COVID-19 patients. Therefore, this study aims to analyze S. aureus strains isolated from COVID-19 patients in terms of their pathogenicity by analyzing their virulence genes, adhesion, cytotoxicity and penetration to the human pulmonary epithelial cell line A549. We have observed that half of the tested S. aureus strains isolated from patients with COVID-19 had a necrotizing effect on the A549 cells. The strains also showed greater variability in terms of their adhesion to the human cells than their non-COVID-19 counterparts.
Collapse
Affiliation(s)
- Lidia Piechowicz
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Debowa 25, 80-204 Gdansk, Poland
| | - Katarzyna Kosznik-Kwaśnicka
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Debowa 25, 80-204 Gdansk, Poland
| | - Tomasz Jarzembowski
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Debowa 25, 80-204 Gdansk, Poland
| | - Agnieszka Daca
- Department of Physiopathology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Debowa 25, 80-204 Gdansk, Poland
| | - Ada Bonawenturczak
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Olesia Werbowy
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Małgorzata Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Anna Pałubicka
- Specialist Hospital in Koscierzyna Sp. z o.o., Department of Laboratory and Microbiological Diagnostics, Koscierzyna, Alojzego Piechowskiego 36, 83-400 Koscierzyna, Poland
| |
Collapse
|
2
|
Chen R, Wang Z, Lin Q, Hou X, Jiang Y, Le Q, Liu X, Ma L, Wang F. Destabilization of fear memory by Rac1-driven engram-microglia communication in hippocampus. Brain Behav Immun 2024; 119:621-636. [PMID: 38670239 DOI: 10.1016/j.bbi.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Rac1 is a key regulator of the cytoskeleton and neuronal plasticity, and is known to play a critical role in psychological and cognitive brain disorders. To elucidate the engram specific Rac1 signaling in fear memory, a doxycycline (Dox)-dependent robust activity marking (RAM) system was used to label dorsal dentate gyrus (DG) engram cells in mice during contextual fear conditioning. Rac1 mRNA and protein levels in DG engram cells were peaked at 24 h (day 1) after fear conditioning and were more abundant in the fear engram cells than in the non-engram cells. Optogenetic activation of Rac1 in a temporal manner in DG engram cells before memory retrieval decreased the freezing level in the fear context. Optogenetic activation of Rac1 increased autophagy protein 7 (ATG7) expression in the DG engram cells and activated DG microglia. Microglia-specific transcriptomics and fluorescence in situ hybridization revealed that overexpression of ATG7 in the fear engram cells upregulated the mRNA of Toll-like receptor TLR2/4 in DG microglia. Knockdown of microglial TLR2/4 rescued fear memory destabilization induced by ATG7 overexpression or Rac1 activation in DG engram cells. These results indicate that Rac1-driven communications between engram cells and microglia contributes to contextual fear memory destabilization, and is mediated by ATG7 and TLR2/4, and suggest a novel mechanistic framework for the cytoskeletal regulator in fear memory interference.
Collapse
Affiliation(s)
- Ruyan Chen
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Zhilin Wang
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qing Lin
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Xutian Hou
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Yan Jiang
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qiumin Le
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Xing Liu
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Lan Ma
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Feifei Wang
- School of Basic Medicine Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Pharmacology Research Center, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addition Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China.
| |
Collapse
|
3
|
Ou-Yang P, Cai ZY, Zhang ZH. Molecular Regulation Mechanism of Microglial Autophagy in the Pathology of Alzheimer's Disease. Aging Dis 2023:AD.2023.0106. [PMID: 37163443 PMCID: PMC10389815 DOI: 10.14336/ad.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 05/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive accumulation of abnormal protein aggregates, neuronal loss, synaptic dysfunction, and neuroinflammation. Microglia are resident macrophages of the central nervous system (CNS). Evidence has shown that impaired microglial autophagy exerts considerable detrimental impact on the CNS, thus contributing to AD pathogenesis. This review highlights the association between microglial autophagy and AD pathology, with a focus on the inflammatory response, defective clearance, and propagation of Aβ and Tau, and synaptic dysfunction. Mechanistically, several lines of research support the roles of microglial receptors in autophagy regulation during AD. In light of accumulating evidence, a strategy for inducing microglial autophagy has great potential in AD drug development.
Collapse
Affiliation(s)
- Pei Ou-Yang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhi-Yu Cai
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
4
|
Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins (Basel) 2022; 14:toxins14070464. [PMID: 35878202 PMCID: PMC9318596 DOI: 10.3390/toxins14070464] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a very common Gram-positive bacterium, and S. aureus infections play an extremely important role in a variety of diseases. This paper describes the types of virulence factors involved, the inflammatory cells activated, the process of host cell death, and the associated diseases caused by S. aureus. S. aureus can secrete a variety of enterotoxins and other toxins to trigger inflammatory responses and activate inflammatory cells, such as keratinocytes, helper T cells, innate lymphoid cells, macrophages, dendritic cells, mast cells, neutrophils, eosinophils, and basophils. Activated inflammatory cells can express various cytokines and induce an inflammatory response. S. aureus can also induce host cell death through pyroptosis, apoptosis, necroptosis, autophagy, etc. This article discusses S. aureus and MRSA (methicillin-resistant S. aureus) in atopic dermatitis, psoriasis, pulmonary cystic fibrosis, allergic asthma, food poisoning, sarcoidosis, multiple sclerosis, and osteomyelitis. Summarizing the pathogenic mechanism of Staphylococcus aureus provides a basis for the targeted treatment of Staphylococcus aureus infection.
Collapse
|
5
|
Ascorbic acid along with ciprofloxacin regulates S. aureus induced microglial inflammatory responses and oxidative stress through TLR-2 and glucocorticoid receptor modulation. Inflammopharmacology 2022; 30:1303-1322. [PMID: 35704229 DOI: 10.1007/s10787-022-01012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/13/2022] [Indexed: 11/05/2022]
Abstract
Microglial inflammatory responses play a central role in the pathogenesis of S. aureus induced brain infections. Upon activation, microglia produces free radicals (ROS/RNS) and disrupts the cellular antioxidant defense to combat invading microorganisms. Despite conventional antibiotic or steroid therapy, microglial over-activation could not be controlled. So, an attempt had been taken by using a natural antioxidant ascorbic acid along with ciprofloxacin to regulate microglial over-activation by involving TLR-2 and glucocorticoid receptor (GR) in an in-vitro cell culture-based study. Combinatorial treatment during TLR-2 neutralization effectively reduced the bacterial burden at 60 min compared to the GR blocking condition (p < 0.05). Moreover, the infection-induced H2O2, O2.-, and NO release in microglial cell culture was diminished possibly by enhancing SOD and catalase activities in the same condition (p < 0.05). The arginase activity was markedly increased after TLR-2 blocking in the combinatorial group compared to single treatments (p < 0.05). Experimental results indicated that combinatorial treatment may act through up-regulating GR expression by augmenting endogenous corticosterone levels. However, better bacterial clearance could further suppress the TLR-2 mediated pro-inflammatory NF-κB signaling. From Western blot analysis, it was concluded that ciprofloxacin-ascorbic acid combination in presence of anti-TLR-2 antibody exhibited 81.25% inhibition of TLR-2 expression while the inhibition for GR was 3.57% with respect to the infected group. Therefore, during TLR-2 blockade ascorbic acid combination might be responsible for the restoration of redox balance in microglia via modulating TLR-2/GR interaction. The combination treatment could play a major role in the neuroendocrine-immune regulation of S. aureus induced microglial activation.
Collapse
|
6
|
Lapaquette P, Bizeau JB, Acar N, Bringer MA. Reciprocal interactions between gut microbiota and autophagy. World J Gastroenterol 2021; 27:8283-8301. [PMID: 35068870 PMCID: PMC8717019 DOI: 10.3748/wjg.v27.i48.8283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
A symbiotic relationship has set up between the gut microbiota and its host in the course of evolution, forming an interkingdom consortium. The gut offers a favorable ecological niche for microbial communities, with the whole body and external factors (e.g., diet or medications) contributing to modulating this microenvironment. Reciprocally, the gut microbiota is important for maintaining health by acting not only on the gut mucosa but also on other organs. However, failure in one or another of these two partners can lead to the breakdown in their symbiotic equilibrium and contribute to disease onset and/or progression. Several microbial and host processes are devoted to facing up the stress that could alter the symbiosis, ensuring the resilience of the ecosystem. Among these processes, autophagy is a host catabolic process integrating a wide range of stress in order to maintain cell survival and homeostasis. This cytoprotective mechanism, which is ubiquitous and operates at basal level in all tissues, can be rapidly down- or up-regulated at the transcriptional, post-transcriptional, or post-translational levels, to respond to various stress conditions. Because of its sensitivity to all, metabolic-, immune-, and microbial-derived stimuli, autophagy is at the crossroad of the dialogue between changes occurring in the gut microbiota and the host responses. In this review, we first delineate the modulation of host autophagy by the gut microbiota locally in the gut and in peripheral organs. Then, we describe the autophagy-related mechanisms affecting the gut microbiota. We conclude this review with the current challenges and an outlook toward the future interventions aiming at modulating host autophagy by targeting the gut microbiota.
Collapse
Affiliation(s)
- Pierre Lapaquette
- UMR PAM A 02.102, University Bourgogne Franche-Comté, Agrosup Dijon, Dijon 21000, France
| | - Jean-Baptiste Bizeau
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| | - Marie-Agnès Bringer
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon 21000, France
| |
Collapse
|
7
|
Wang M, Fan Z, Han H. Autophagy in Staphylococcus aureus Infection. Front Cell Infect Microbiol 2021; 11:750222. [PMID: 34692566 PMCID: PMC8529010 DOI: 10.3389/fcimb.2021.750222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus aureus is an invasive, facultative intracellular pathogen that can colonize niches in various host organisms, making it difficult for the host immune system to completely eliminate. Host autophagy is an intracellular clearance pathway involved in degrading S. aureus. Whereas the accessory gene regulatory system of S. aureus that controls virulence factors could resist the host immune defenses by evading and even utilizing autophagy. This article reviews the interaction between autophagy and S. aureus, providing insights on how to use these mechanisms to improve S. aureus infection control.
Collapse
Affiliation(s)
- Mengyao Wang
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ziyao Fan
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hongbing Han
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Eshraghi M, Adlimoghaddam A, Mahmoodzadeh A, Sharifzad F, Yasavoli-Sharahi H, Lorzadeh S, Albensi BC, Ghavami S. Alzheimer's Disease Pathogenesis: Role of Autophagy and Mitophagy Focusing in Microglia. Int J Mol Sci 2021; 22:3330. [PMID: 33805142 PMCID: PMC8036323 DOI: 10.3390/ijms22073330] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurological disorder, and currently, there is no cure for it. Several pathologic alterations have been described in the brain of AD patients, but the ultimate causative mechanisms of AD are still elusive. The classic hallmarks of AD, including amyloid plaques (Aβ) and tau tangles (tau), are the most studied features of AD. Unfortunately, all the efforts targeting these pathologies have failed to show the desired efficacy in AD patients so far. Neuroinflammation and impaired autophagy are two other main known pathologies in AD. It has been reported that these pathologies exist in AD brain long before the emergence of any clinical manifestation of AD. Microglia are the main inflammatory cells in the brain and are considered by many researchers as the next hope for finding a viable therapeutic target in AD. Interestingly, it appears that the autophagy and mitophagy are also changed in these cells in AD. Inside the cells, autophagy and inflammation interact in a bidirectional manner. In the current review, we briefly discussed an overview on autophagy and mitophagy in AD and then provided a comprehensive discussion on the role of these pathways in microglia and their involvement in AD pathogenesis.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA;
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Aida Adlimoghaddam
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; (A.A.); (B.C.A.)
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;
| | - Farzaneh Sharifzad
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (F.S.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (F.S.); (H.Y.-S.)
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Benedict C. Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; (A.A.); (B.C.A.)
- Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| |
Collapse
|
9
|
Welcome MO, Mastorakis NE. The taste of neuroinflammation: Molecular mechanisms linking taste sensing to neuroinflammatory responses. Pharmacol Res 2021; 167:105557. [PMID: 33737243 DOI: 10.1016/j.phrs.2021.105557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Evidence indicates a critical role of neuroinflammatory response as an underlying pathophysiological process in several central nervous system disorders, including neurodegenerative diseases. However, the molecular mechanisms that trigger neuroinflammatory processes are not fully known. The discovery of bitter taste receptors in regions other than the oral cavity substantially increased research interests on their functional roles in extra-oral tissues. It is now widely accepted that bitter taste receptors, for instance, in the respiratory, intestinal, reproductive and urinary tracts, are crucial not only for sensing poisonous substances, but also, act as immune sentinels, mobilizing defense mechanisms against pathogenic aggression. The relatively recent discovery of bitter taste receptors in the brain has intensified research investigation on the functional implication of cerebral bitter taste receptor expression. Very recent data suggest that responses of bitter taste receptors to neurotoxins and microbial molecules, under normal condition, are necessary to prevent neuroinflammatory reactions. Furthermore, emerging data have revealed that downregulation of key components of the taste receptor signaling cascade leads to increased oxidative stress and inflammasome signaling in neurons that ultimately culminate in neuroinflammation. Nevertheless, the mechanisms that link taste receptor mediated surveillance of the extracellular milieu to neuroinflammatory responses are not completely understood. This review integrates new data on the molecular mechanisms that link bitter taste receptor sensing to neuroinflammatory responses. The role of bitter taste receptor-mediated sensing of toxigenic substances in brain disorders is also discussed. The therapeutic significance of targeting these receptors for potential treatment of neurodegenerative diseases is also highlighted.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| | | |
Collapse
|
10
|
He ZH, Pan S, Zheng HW, Fang QJ, Hill K, Sha SH. Treatment With Calcineurin Inhibitor FK506 Attenuates Noise-Induced Hearing Loss. Front Cell Dev Biol 2021; 9:648461. [PMID: 33777956 PMCID: PMC7994600 DOI: 10.3389/fcell.2021.648461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Attenuation of noise-induced hair cell loss and noise-induced hearing loss (NIHL) by treatment with FK506 (tacrolimus), a calcineurin (CaN/PP2B) inhibitor used clinically as an immunosuppressant, has been previously reported, but the downstream mechanisms of FK506-attenuated NIHL remain unknown. Here we showed that CaN immunolabeling in outer hair cells (OHCs) and nuclear factor of activated T-cells isoform c4 (NFATc4/NFAT3) in OHC nuclei are significantly increased after moderate noise exposure in adult CBA/J mice. Consequently, treatment with FK506 significantly reduces moderate-noise-induced loss of OHCs and NIHL. Furthermore, induction of reactive oxygen species (ROS) by moderate noise was significantly diminished by treatment with FK506. In agreement with our previous finding that autophagy marker microtubule-associated protein light chain 3B (LC3B) does not change in OHCs under conditions of moderate-noise-induced permanent threshold shifts, treatment with FK506 increases LC3B immunolabeling in OHCs after exposure to moderate noise. Additionally, prevention of NIHL by treatment with FK506 was partially abolished by pretreatment with LC3B small interfering RNA. Taken together, these results indicate that attenuation of moderate-noise-induced OHC loss and hearing loss by FK506 treatment occurs not only via inhibition of CaN activity but also through inhibition of ROS and activation of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Su-Hua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
11
|
Wang F, Jiang Z, Lou B, Duan F, Qiu S, Cheng Z, Ma X, Yang Y, Lin X. αB-Crystallin Alleviates Endotoxin-Induced Retinal Inflammation and Inhibits Microglial Activation and Autophagy. Front Immunol 2021; 12:641999. [PMID: 33777038 PMCID: PMC7991093 DOI: 10.3389/fimmu.2021.641999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
αB-Crystallin, a member of the small heat shock protein (sHSP) family, plays an immunomodulatory and neuroprotective role by inhibiting microglial activation in several diseases. However, its effect on endotoxin-induced uveitis (EIU) is unclear. Autophagy may be associated with microglial activation, and αB-crystallin is involved in the regulation of autophagy in some cells. The role of αB-crystallin in microglial autophagy is unknown. This study aimed to explore the role of αB-crystallin on retinal microglial autophagy, microglial activation, and neuroinflammation in both cultured BV2 cells and the EIU mouse model. Our results show that αB-crystallin reduced the release of typical proinflammatory cytokines at both the mRNA and protein level, inhibited microglial activation in morphology, and suppressed the expression of autophagy-related molecules and the number of autophagolysosomes in vitro. In the EIU mouse model, αB-crystallin treatment alleviated the release of ocular inflammatory cytokines and the representative signs of inflammation, reduced the apoptosis of ganglion cells, and rescued retinal inflammatory structural and functional damage, as evaluated by optical coherence tomographic and electroretinography. Taken together, these results indicate that αB-crystallin inhibits the activation of microglia and supresses microglial autophagy, ultimately reducing endotoxin-induced neuroinflammation. In conclusion, αB-crystallin provides a novel and promising option for affecting microglial autophagy and alleviating symptoms of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Fangyu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhaoxin Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fang Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Suo Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhixing Cheng
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinqi Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
TLR-2 neutralization potentiates microglial M1 to M2 switching by the combinatorial treatment of ciprofloxacin and dexamethasone during S. aureus infection. J Neuroimmunol 2020; 344:577262. [DOI: 10.1016/j.jneuroim.2020.577262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
|
13
|
Porte Alcon S, Gorojod RM, Kotler ML. Kinetic and protective role of autophagy in manganese-exposed BV-2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118787. [PMID: 32592735 DOI: 10.1016/j.bbamcr.2020.118787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Manganese (Mn) plays an important role in many physiological processes. Nevertheless, Mn accumulation in the brain can cause a parkinsonian-like syndrome known as manganism. Unfortunately, the therapeutic options for this disease are scarce and of limited efficacy. For this reason, a great effort is being made to understand the cellular and molecular mechanisms involved in Mn toxicity in neuronal and glial cells. Even though evidence indicates that Mn activates autophagy in microglia, the consequences of this activation in cell death remain unknown. In this study, we demonstrated a key role of reactive oxygen species in Mn-induced damage in microglial cells. These species generated by Mn2+ induce lysosomal alterations, LMP, cathepsins release and cell death. Besides, we described for the first time the kinetic of Mn2+-induced autophagy in BV-2 microglial cells and its relevance to cell fate. We found that Mn promotes a time-dependent increase in LC3-II and p62 expression levels, suggesting autophagy activation. Possibly, cells trigger autophagy to neutralize the risks associated with lysosomal rupture. In addition, pre-treatment with both Rapamycin and Melatonin enhanced autophagy and retarded Mn2+ cytotoxicity. In summary, our results demonstrated that, despite the damage inflicted on a subset of lysosomes, the autophagic pathway plays a protective role in Mn-induced microglial cell death. We propose that 2 h Mn2+ exposure will not induce disturbances in the autophagic flux. However, as time passes, the accumulated damage inside the cell could trigger a dysfunction of this mechanism. These findings may represent a valuable contribution to future research concerning manganism therapies.
Collapse
Affiliation(s)
- Soledad Porte Alcon
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Mónica Lidia Kotler
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
14
|
Zhao H, Wang Y, Li B, Zheng T, Liu X, Hu BH, Che J, Zhao T, Chen J, Hatzoglou M, Zhang X, Fan Z, Zheng Q. Role of Endoplasmic Reticulum Stress in Otitis Media. Front Genet 2020; 11:495. [PMID: 32536938 PMCID: PMC7267009 DOI: 10.3389/fgene.2020.00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 04/20/2020] [Indexed: 11/19/2022] Open
Abstract
Endoplasmic reticulum (ER) stress occurs in many inflammatory responses. Here, we investigated the role of ER stress and its associated apoptosis in otitis media (OM) to elucidate the mechanisms of OM and the signaling crosstalk between ER stress and other cell damage pathways, including inflammatory cytokines and apoptosis. We examined the expression of inflammatory cytokine- and ER stress-related genes by qRT-PCR, Western blotting, and immunohistochemistry (IHC) in the middle ear of C57BL/6J mice after challenge with peptidoglycan polysaccharide (PGPS), an agent inducing OM. We also evaluated the effect of the suppression of ER stress with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor. The study revealed the upregulation of ER stress- and apoptosis-related gene expression after the PGPS treatment, specifically ATF6, CHOP, BIP, caspase-12, and caspase-3. TUDCA treatment of PGPS-treated mice decreased OM; reduced the expression of CHOP, BIP, and caspase 3; and significantly decreased the proinflammatory gene expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). These results suggest that PGPS triggers ER stress and downstream proinflammatory gene expression in OM and that inhibition of ER stress alleviates OM. We propose that ER stress plays a critical role in inflammation and cell death, leading to the development of OM and points to ER stress inhibition as a potential therapeutic approach for the prevention of OM.
Collapse
Affiliation(s)
- Hongchun Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Yanfei Wang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Xiuzhen Liu
- Clinical Laboratory, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Juan Che
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Tong Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Jun Chen
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Maria Hatzoglou
- Department of Genetics, Case Western Reserve University, Cleveland, OH, United States
| | - Xiaolin Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingyin Zheng
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
15
|
Jure I, De Nicola AF, Encinas JM, Labombarda F. Spinal Cord Injury Leads to Hippocampal Glial Alterations and Neural Stem Cell Inactivation. Cell Mol Neurobiol 2020; 42:197-215. [PMID: 32537668 DOI: 10.1007/s10571-020-00900-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
The hippocampus encodes spatial and contextual information involved in memory and learning. The incorporation of new neurons into hippocampal networks increases neuroplasticity and enhances hippocampal-dependent learning performances. Only few studies have described hippocampal abnormalities after spinal cord injury (SCI) although cognitive deficits related to hippocampal function have been reported in rodents and even humans. The aim of this study was to characterize in further detail hippocampal changes in the acute and chronic SCI. Our data suggested that neurogenesis reduction in the acute phase after SCI could be due to enhanced death of amplifying neural progenitors (ANPs). In addition, astrocytes became reactive and microglial cells increased their number in almost all hippocampal regions studied. Glial changes resulted in a non-inflammatory response as the mRNAs of the major pro-inflammatory cytokines (IL-1β, TNFα, IL-18) remained unaltered, but CD200R mRNA levels were downregulated. Long-term after SCI, astrocytes remained reactive but on the other hand, microglial cell density decreased. Also, glial cells induced a neuroinflammatory environment with the upregulation of IL-1β, TNFα and IL-18 mRNA expression and the decrease of CD200R mRNA. Neurogenesis reduction may be ascribed at later time points to inactivation of neural stem cells (NSCs) and inhibition of ANP proliferation. The number of granular cells and CA1 pyramidal neurons decreased only in the chronic phase. The release of pro-inflammatory cytokines at the chronic phase might involve neurogenesis reduction and neurodegeneration of hippocampal neurons. Therefore, SCI led to hippocampal changes that could be implicated in cognitive deficits observed in rodents and humans.
Collapse
Affiliation(s)
- Ignacio Jure
- Laboratory of Neuroendocrine Biochemistry, IBYME-CONICET., Instituto de Biologia Y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, IBYME-CONICET., Instituto de Biologia Y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Human Biochemistry, School of Medicine, Buenos Aires University, Paraguay 2155, C1121A6B, Buenos Aires, Argentina
| | - Juan Manuel Encinas
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience. Sede Bldg. Campus, UPV/EHU, Barrio Sarriena S/N, 48940, Leioa, Spain
| | - Florencia Labombarda
- Laboratory of Neuroendocrine Biochemistry, IBYME-CONICET., Instituto de Biologia Y Medicina Experimental, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina. .,Department of Human Biochemistry, School of Medicine, Buenos Aires University, Paraguay 2155, C1121A6B, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Dey R, Bishayi B. Dexamethasone along with ciprofloxacin modulates S. aureus induced microglial inflammation via glucocorticoid (GC)-GC receptor-mediated pathway. Microb Pathog 2020; 145:104227. [PMID: 32360190 DOI: 10.1016/j.micpath.2020.104227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
Abstract
Microglial inflammation is the hallmark of S. aureus induced brain abscesses. Conventional antibiotic therapy could not regulate inflammation and the use of steroids in CNS infection remained controversial. To address this issue the effect of dexamethasone along with ciprofloxacin on microglial inflammation has been attempted both in glucocorticoid receptor (GR) opened and blocked condition. We have investigated the effects of ciprofloxacin (0.24 μg/ml, pre-treatment) and dexamethasone (150 nM, pre-treatment) in combination with murine microglia infected with S. aureus for 30, 60 and 90 min by either keeping GR opened or blocked with GR antagonist RU486. Alterations in cellular motility, intracellular killing assay, free radical production, antioxidant enzyme activities, corticosterone, and cytokine levels were determined. The expressions of TLR-2, GR, and other inflammatory markers were determined in terms of this combinatorial treatment. Combination treatment significantly (p < 0.05) reduced the bacterial burden of microglia only when GR remained open and effectively suppressed S. aureus induced oxidative stress by augmenting SOD and catalase enzyme activity and suppressing other pro-inflammatory markers at 90 min. Arginase activity, a critical determinant of microglial polarization was found to be higher after treatment at 60 and 90 min. This situation was reversed when this combination treatment was applied by keeping GR blocked using GR antagonist RU486. Therefore, it can be concluded that combination treatment of ciprofloxacin and dexamethasone could regulate S. aureus induced microglial activation, in the presence of functional GR via utilizing glucocorticoid (GC)-GR pathway and ultimately confers protection to the host from brain inflammation.
Collapse
Affiliation(s)
- Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Calcutta, West Bengal, India.
| |
Collapse
|
17
|
Toll-Like Receptor 2–Mediated Autophagy Promotes Microglial Cell Death by Modulating the Microglial M1/M2 Phenotype. Inflammation 2019; 43:701-711. [DOI: 10.1007/s10753-019-01152-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Dey R, Bishayi B. Dexamethasone exhibits its anti-inflammatory effects in S. aureus induced microglial inflammation via modulating TLR-2 and glucocorticoid receptor expression. Int Immunopharmacol 2019; 75:105806. [PMID: 31401378 DOI: 10.1016/j.intimp.2019.105806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/31/2023]
Abstract
Microglial inflammation plays crucial role in the pathogenesis of CNS infections including brain abscesses. Staphylococcus aureus (S. aureus) is considered as one of the major causative agents of brain abscesses. Due to the emergence of multidrug resistant bacteria the available treatment options including conventional antibiotics and steroid therapy become ineffective in terms of inflammation regulation which warrants further investigation to resolve this health issue. Microglial TLR-2 plays important roles in the bacterial recognition as well as induction of inflammation whereas glucocorticoid receptor (GR) triggers anti-inflammatory pathways in presence of glucocorticoids (GCs). The main objective of this study was to figure out the interdependency between TLR-2 and GR in presence of exogenous dexamethasone during microglial inflammation as an alternative therapeutic approach. Experiments were done either in TLR-2 neutralized condition or GR blocked condition in presence of dexamethasone. Free radicals production, arginase, superoxide dismutase (SOD), catalase enzyme activities and corticosterone concentration were measured along with Western blot analysis of TLR-2, GR and other inflammatory molecules. The results suggested that dexamethasone pre-treatment in TLR-2 neutralized condition efficiently reduces the inflammatory consequences of S. aureus induced microglial inflammation through up regulating GR expression. During TLR-2 blocking dexamethasone exerted its potent anti-inflammatory activities via suppressing reactive oxygen species (ROS), NO production and up regulating arginase, SOD and catalase activities at the time point of 90 min. Further in-vivo experiments are needed to conclude that dexamethasone could resolve brain inflammation possibly through microglial phenotypic switching from pro-inflammatory M1 to anti-inflammatory M2.
Collapse
Affiliation(s)
- Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University College of Science and Technology, Calcutta, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University College of Science and Technology, Calcutta, West Bengal, India.
| |
Collapse
|
19
|
Bussi C, Peralta Ramos JM, Arroyo DS, Gallea JI, Ronchi P, Kolovou A, Wang JM, Florey O, Celej MS, Schwab Y, Ktistakis NT, Iribarren P. Alpha-synuclein fibrils recruit TBK1 and OPTN to lysosomal damage sites and induce autophagy in microglial cells. J Cell Sci 2018; 131:jcs226241. [PMID: 30404831 PMCID: PMC6518333 DOI: 10.1242/jcs.226241] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023] Open
Abstract
Autophagic dysfunction and protein aggregation have been linked to several neurodegenerative disorders, but the exact mechanisms and causal connections are not clear and most previous work was done in neurons and not in microglial cells. Here, we report that exogenous fibrillary, but not monomeric, alpha-synuclein (AS, also known as SNCA) induces autophagy in microglial cells. We extensively studied the dynamics of this response using both live-cell imaging and correlative light-electron microscopy (CLEM), and found that it correlates with lysosomal damage and is characterised by the recruitment of the selective autophagy-associated proteins TANK-binding kinase 1 (TBK1) and optineurin (OPTN) to ubiquitylated lysosomes. In addition, we observed that LC3 (MAP1LC3B) recruitment to damaged lysosomes was dependent on TBK1 activity. In these fibrillar AS-treated cells, autophagy inhibition impairs mitochondrial function and leads to microglial cell death. Our results suggest that microglial autophagy is induced in response to lysosomal damage caused by persistent accumulation of AS fibrils. Importantly, triggering of the autophagic response appears to be an attempt at lysosomal quality control and not for engulfment of fibrillar AS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Claudio Bussi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Javier M Peralta Ramos
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Daniela S Arroyo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Jose I Gallea
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Paolo Ronchi
- EMBL, Electron Microscopy Core Facility, Heidelberg 69117, Germany
| | | | - Ji M Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 20982, USA
| | - Oliver Florey
- Babraham Institute, Signalling Programme, Cambridge CB22 3AT, UK
| | - Maria S Celej
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Yannick Schwab
- EMBL, Electron Microscopy Core Facility, Heidelberg 69117, Germany
- EMBL, Cell Biology and Biophysics Unit, Heidelberg 69117, Germany
| | | | - Pablo Iribarren
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
20
|
Immune Cells After Ischemic Stroke Onset: Roles, Migration, and Target Intervention. J Mol Neurosci 2018; 66:342-355. [DOI: 10.1007/s12031-018-1173-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/14/2018] [Indexed: 01/09/2023]
|
21
|
Zhao X, Tang X, Guo N, An Y, Chen X, Shi C, Wang C, Li Y, Li S, Xu H, Liu M, Wang Y, Yu L. Biochanin a Enhances the Defense Against Salmonella enterica Infection Through AMPK/ULK1/mTOR-Mediated Autophagy and Extracellular Traps and Reversing SPI-1-Dependent Macrophage (MΦ) M2 Polarization. Front Cell Infect Microbiol 2018; 8:318. [PMID: 30271755 PMCID: PMC6142880 DOI: 10.3389/fcimb.2018.00318] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022] Open
Abstract
A novel treatment regimen for bacterial infections is the pharmacological enhancement of the host's immune defenses. We demonstrated that biochanin A (BCA), an isoflavone constituent in some plants, could enhance both intra- and extracellular bactericidal activity of host cells. First, BCA could induce a complete autophagic response in nonphagocytic cells (HeLa) or macrophages (MΦ) via the AMPK/ULK1/mTOR pathway and Beclin-1-dependent manner, and BCA enhanced the killing of invading Salmonella by autophagy through reinforcing ubiquitinated adapter protein (LRSAM1, NDP52 and p62)-mediated recognition of intracellular bacteria and through the formation of autophagolysosomes. Second, we demonstrated that BCA could enhance the release of MΦ extracellular traps (METs) to remove extracellular Salmonella also via the AMPK/ULK1/mTOR pathway, not through reactive oxygen species (ROS) pathway. Furtherly, in a Salmonella-infected mouse model, BCA treatment increased intra- and extracellular bactericidal activity through the strengthening autophagy and MET production, respectively, in peritoneal MΦ, liver and spleen tissue. Additionally, our findings showed that BCA downregulated SPI-1 (Salmonella pathogenicity island 1) expression during Salmonella infection in vitro and in vivo to reverse the MΦ M2 polarization, which was different from the MΦ M1 phenotype caused by most of bacteria infection. Together, these findings suggest that BCA has an immunomodulatory effect on Salmonella-infected host cells and enhances their bactericidal activity in vitro and in vivo through autophagy, extracellular traps and regulation of MΦ polarization.
Collapse
Affiliation(s)
- Xingchen Zhao
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China.,Department of Food Quality and Safety, College of Food Science and Engineering, Tonghua Normal University, Tonghua, China
| | - Xudong Tang
- Key Lab for New Drug Research of TCM, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Na Guo
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yanan An
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiangrong Chen
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Ce Shi
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Chao Wang
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Yan Li
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Shulin Li
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Hongyue Xu
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yang Wang
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| | - Lu Yu
- Key Laboratory for Zoonosis Research, Department of Infectious Diseases, First Hospital of Jilin University, Ministry of Education, College of Veterinary Medicine, College of Food Science and Engineering, Institute of Zoonosis, Jilin University, Changchun, China
| |
Collapse
|
22
|
Luteoloside Protects the Uterus from Staphylococcus aureus-Induced Inflammation, Apoptosis, and Injury. Inflammation 2018; 41:1702-1716. [DOI: 10.1007/s10753-018-0814-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Arroyo DS, Gaviglio EA, Peralta Ramos JM, Bussi C, Avalos MP, Cancela LM, Iribarren P. Phosphatidyl-Inositol-3 Kinase Inhibitors Regulate Peptidoglycan-Induced Myeloid Leukocyte Recruitment, Inflammation, and Neurotoxicity in Mouse Brain. Front Immunol 2018; 9:770. [PMID: 29719536 PMCID: PMC5914281 DOI: 10.3389/fimmu.2018.00770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Acute brain injury leads to the recruitment and activation of immune cells including resident microglia and infiltrating peripheral myeloid cells (MC), which contribute to the inflammatory response involved in neuronal damage. We previously reported that TLR2 stimulation by peptidoglycan (PGN) from Staphylococcus aureus, in vitro and in vivo, induced microglial cell activation followed by autophagy induction. In this report, we evaluated if phosphatidyl-inositol-3 kinase (PI3K) pharmacological inhibitors LY294200 and 3-methyladenine (3-MA) can modulate the innate immune response to PGN in the central nervous system. We found that injection of PGN into the mouse brain parenchyma (caudate putamen) triggered an inflammatory reaction, which involved activation of microglial cells, recruitment of infiltrating MC to injection site, production of pro-inflammatory mediators, and neuronal injury. In addition, we observed the accumulation of LC3B+ CD45+ cells and colocalization of LC3B and lysosomal-associated membrane protein 1 in brain cells. Besides, we found that pharmacological inhibitors of PI3K, including the classical autophagy inhibitor 3-MA, reduced the recruitment of MC, microglial cell activation, and neurotoxicity induced by brain PGN injection. Collectively, our results suggest that PI3K pathways and autophagic response may participate in the PGN-induced microglial activation and MC recruitment to the brain. Thus, inhibition of these pathways could be therapeutically targeted to control acute brain inflammatory conditions.
Collapse
Affiliation(s)
- Daniela S Arroyo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Emilia A Gaviglio
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Javier M Peralta Ramos
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudio Bussi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria P Avalos
- Departamento de Farmacología (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Liliana M Cancela
- Departamento de Farmacología (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Iribarren
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
24
|
Role of Autophagy in Auditory System Development and Survival. JOURNAL OF OTORHINOLARYNGOLOGY, HEARING AND BALANCE MEDICINE 2018. [DOI: 10.3390/ohbm1010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
25
|
Combination treatment of celecoxib and ciprofloxacin attenuates live S. aureus induced oxidative damage and inflammation in murine microglia via regulation of cytokine balance. J Neuroimmunol 2018; 316:23-39. [DOI: 10.1016/j.jneuroim.2017.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/08/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
|
26
|
Role of LRRK2 in manganese-induced neuroinflammation and microglial autophagy. Biochem Biophys Res Commun 2018; 498:171-177. [PMID: 29408508 DOI: 10.1016/j.bbrc.2018.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022]
Abstract
Overexposure to manganese (Mn) leads to manganism and neurotoxicity induced by Mn is the focus of recent research. Microglia play a vital role in Mn-induced neurotoxicity, and our previous studies firstly showed that Mn could stimulate activation of microglia, leading to the neuroinflammation, and inhibition of microglial inflammation effectively attenuated Mn-induced death of dopamine neurons. However, the detailed mechanism of manganese-induced neuroinflammation is still unclear. Leucine rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of many neurodegenerative disorders. Recent studies have indicated that LRRK2, which is highly expressed in microglia, plays a specific role in microglia and autophagy process. In this paper, we try to find the effect of LRRK2 on Mn-triggered neuroinflammation and its possible mechanism in vivo and in vitro. By establishing a Mn exposure animal model, our studies found that Mn exposure could induce dopaminergic neurons damage and activate microglia. Activated microglia triggered neuroinflammation by releasing multiple inflammatory cytokines, and the expression of LRRK2 was upregulated in vivo and in vitro. We also found that Mn exposure induced autophagy dysfunction in vivo and in vitro. Next, we used LRRK2 siRNA and LRRK2-IN-1 to inhibit the expression of LRRK2, and found that inhibition of LRRK2 could not only decrease the expression of inflammatory cytokines, but also recover autophagic function of microglia. Our investigation not only reveals the role of LRRK2 in Mn-induced neuroinflammation but also sheds light on the prevention and protection of manganism.
Collapse
|
27
|
Nguyen TTN, Seo E, Choi J, Le OTT, Kim JY, Jou I, Lee SY. Phosphatidylinositol 4-phosphate 5-kinase α contributes to Toll-like receptor 2-mediated immune responses in microglial cells stimulated with lipoteichoic acid. Cell Signal 2017; 38:159-170. [DOI: 10.1016/j.cellsig.2017.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/21/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022]
|
28
|
Li H, Wu J, Shen H, Yao X, Liu C, Pianta S, Han J, Borlongan CV, Chen G. Autophagy in hemorrhagic stroke: Mechanisms and clinical implications. Prog Neurobiol 2017; 163-164:79-97. [PMID: 28414101 DOI: 10.1016/j.pneurobio.2017.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/13/2017] [Accepted: 04/08/2017] [Indexed: 02/07/2023]
Abstract
Accumulating evidence advances the critical role of autophagy in brain pathology after stroke. Investigations employing autophagy induction or inhibition using pharmacological tools or autophagy-related gene knockout mice have recently revealed the biological significance of intact and functional autophagy in stroke. Most of the reported cases attest to a pro-survival role for autophagy in stroke, by facilitating removal of damaged proteins and organelles, which can be recycled for energy generation and cellular defenses. However, these observations are difficult to reconcile with equally compelling evidence demonstrating stroke-induced upregulation of brain cell death index that parallels enhanced autophagy. This begs the question of whether drug-induced autophagy during stroke culminates in improved or worsened pathological outcomes. A corollary fascinating hypothesis, but presents as a tricky conundrum, involves the effects of autophagy on cell death and inflammation, which are two main culprits in the disease progression of stroke-induced brain injury. Evidence has extended the roles of autophagy in inflammation via cytokine regulation in an unconventional secretion manner or by targeting inflammasomes for degradation. Moreover, in the recently concluded Vancouver Autophagy Symposium (VAS) held in 2014, the potential of selective autophagy for clinical treatment has been recognized. The role of autophagy in ischemic stroke has been reviewed previously in detail. Here, we evaluate the strength of laboratory and clinical evidence by providing a comprehensive summary of the literature on autophagy, and thereafter we offer our perspectives on exploiting autophagy as a drug target for cerebral ischemia, especially in hemorrhagic stroke.
Collapse
Affiliation(s)
- Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University,188 Shizi Street, Suzhou 215006, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University,188 Shizi Street, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University,188 Shizi Street, Suzhou 215006, China
| | - Xiyang Yao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University,188 Shizi Street, Suzhou 215006, China
| | - Chenglin Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University,188 Shizi Street, Suzhou 215006, China
| | - S Pianta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida Morsani College of Medicine,12901 Bruce B Downs Blvd Tampa, FL 33612 USA
| | - J Han
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida Morsani College of Medicine,12901 Bruce B Downs Blvd Tampa, FL 33612 USA
| | - C V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida Morsani College of Medicine,12901 Bruce B Downs Blvd Tampa, FL 33612 USA
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University,188 Shizi Street, Suzhou 215006, China.
| |
Collapse
|
29
|
Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death. Sci Rep 2017; 7:43153. [PMID: 28256519 PMCID: PMC5335665 DOI: 10.1038/srep43153] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a fundamental cellular homeostatic mechanism, whereby cells autodigest parts of their cytoplasm for removal or turnover. Neurodegenerative disorders are associated with autophagy dysregulation, and drugs modulating autophagy have been successful in several animal models. Microglial cells are phagocytes in the central nervous system (CNS) that become activated in pathological conditions and determine the fate of other neural cells. Here, we studied the effects of autophagy on the production of pro-inflammatory molecules in microglial cells and their effects on neuronal cells. We observed that both trehalose and rapamycin activate autophagy in BV2 microglial cells and down-regulate the production of pro-inflammatory cytokines and nitric oxide (NO), in response to LPS and alpha-synuclein. Autophagy also modulated the phosphorylation of p38 and ERK1/2 MAPKs in BV2 cells, which was required for NO production. These actions of autophagy modified the impact of microglial activation on neuronal cells, leading to suppression of neurotoxicity. Our results demonstrate a novel role for autophagy in the regulation of microglial cell activation and pro-inflammatory molecule secretion, which may be important for the control of inflammatory responses in the CNS and neurotoxicity.
Collapse
|
30
|
Kim YJ, Tian C, Kim J, Shin B, Choo OS, Kim YS, Choung YH. Autophagic flux, a possible mechanism for delayed gentamicin-induced ototoxicity. Sci Rep 2017; 7:41356. [PMID: 28145495 PMCID: PMC5286410 DOI: 10.1038/srep41356] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics including gentamicin (GM) induce delayed ototoxic effects such as hearing loss after long-term use, unlike the early-onset ototoxicity caused by cisplatin. The purpose of the study was to identify the mechanism of the delayed GM-induced ototoxicity by exploring the role of autophagy in vitro and in vivo. Treating HEI-OC1 auditory cells with GM led to a time-dependent increase of the autophagosome marker LC3-II, which was accompanied by cell death. In contrast, cisplatin and penicillin caused a rapid increase and had no effect on LC3-II levels, respectively. LC3-II-expressing autophagosomes co-localized with the labeled GM. GM-treated autophagosomes expressed reduced levels of Rab7, which is necessary for the fusion of autophagosomes with lysosomes. When the autophagic flux enhancer rapamycin was applied to GM-treated cells, Rab7 and the lysosomal enzyme cathepsin D were upregulated, and increased cell survival was observed. In animal studies, the intraperitoneal injection of GM worsened hearing thresholds and induced the accumulation of LC3 in the organ of Corti. This hearing impairment was attenuated by rapamycin. These findings suggest that the delayed onset-ototoxicity of GM may be closely related to the accumulation of autophagosomes via impaired autophagy. This GM-induced auditory cell death could be inhibited by enhancing autophagic flux.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Chunjie Tian
- Department of Otolaryngology, Dali Bai Autonomous Prefecture People's Hospital, Renminnan road 35, Dali, Yunnan 671000, China
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Beomyong Shin
- Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Oak-Sung Choo
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea.,Department of Medical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - You-Sun Kim
- Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea.,Department of Medical Sciences, Ajou University Graduate School of Medicine, San 5 Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
31
|
Upregulated TLR3 Promotes Neuropathic Pain by Regulating Autophagy in Rat With L5 Spinal Nerve Ligation Model. Neurochem Res 2016; 42:634-643. [DOI: 10.1007/s11064-016-2119-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/20/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022]
|
32
|
Wang Y, Zhang K, Shi X, Wang C, Wang F, Fan J, Shen F, Xu J, Bao W, Liu M, Yu L. Critical role of bacterial isochorismatase in the autophagic process induced by Acinetobacter baumannii in mammalian cells. FASEB J 2016; 30:3563-3577. [PMID: 27432399 PMCID: PMC5024702 DOI: 10.1096/fj.201500019r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
A recent study reported that Acinetobacter baumannii could induce
autophagy, but the recognition and clearance mechanism of intracytosolic A.
baumannii in the autophagic process and the molecular mechanism of
autophagy induced by the pathogen remains unknown. In this study, we first
demonstrated that invading A. baumannii induced a complete,
ubiquitin-mediated autophagic response that is dependent upon septins SEPT2 and SEPT9
in mammalian cells. We also demonstrated that autophagy induced by A.
baumannii was Beclin-1 dependent via the
AMPK/ERK/mammalian target of rapamycin pathway. Of interest, we found that the
isochorismatase mutant strain had significantly decreased siderophore-mediated ferric
iron acquisition ability and had a reduced the ability to induce autophagy. We
verified that isochorismatase was required for the recognition of intracytosolic
A. baumannii mediated by septin cages, ubiquitinated proteins,
and ubiquitin-binding adaptor proteins p62 and NDP52 in autophagic response. We also
confirmed that isochorismatase was required for the clearance of invading A.
baumannii by autophagy in vitro and in the mouse model
of infection. Together, these findings provide insight into the distinctive
recognition and clearance of intracytosolic A. baumannii by
autophagy in host cells, and that isochorismatase plays a critical role in the
A. baumannii–induced autophagic process.—Wang, Y.,
Zhang, K., Shi, X., Wang, C., Wang, F., Fan, J., Shen, F., Xu, J., Bao, W., Liu, M.,
Yu, L. Critical role of bacterial isochorismatase in the autophagic process induced
by Acinetobacter baumannii in mammalian cells.
Collapse
Affiliation(s)
- Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Institute of Zoonosis, Ministry of Medical Sciences, Changchun, China
| | - Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Institute of Zoonosis, Ministry of Medical Sciences, Changchun, China
| | - Xiaochen Shi
- Department of Infectious Diseases, First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Institute of Zoonosis, Ministry of Medical Sciences, Changchun, China
| | - Chao Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Institute of Zoonosis, Ministry of Medical Sciences, Changchun, China
| | - Feng Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Institute of Zoonosis, Ministry of Medical Sciences, Changchun, China
| | - Junwen Fan
- Laboratory Animal Center, Academy of Military Medical Sciences, Beijing, China
| | - Fengge Shen
- Department of Infectious Diseases, First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Institute of Zoonosis, Ministry of Medical Sciences, Changchun, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jiancheng Xu
- College of Veterinary Medicine and Animal Science, Jilin University, Changchun, China
| | - Wanguo Bao
- Department of Infectious Diseases, First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Institute of Zoonosis, Ministry of Medical Sciences, Changchun, China
| | - Mingyuan Liu
- Department of Infectious Diseases, First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Institute of Zoonosis, Ministry of Medical Sciences, Changchun, China; Department of Clinical Laboratory, First Hospital of Jilin University, Changchun, China; and
| | - Lu Yu
- Department of Infectious Diseases, First Hospital of Jilin University, Key Laboratory for Zoonosis Research, Institute of Zoonosis, Ministry of Medical Sciences, Changchun, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
33
|
Guo ML, Liao K, Periyasamy P, Yang L, Cai Y, Callen SE, Buch S. Cocaine-mediated microglial activation involves the ER stress-autophagy axis. Autophagy 2016; 11:995-1009. [PMID: 26043790 DOI: 10.1080/15548627.2015.1052205] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases.
Collapse
Key Words
- 3-MA, 3-methyladenine
- ATF6, activating transcription factor 6
- ATG5, autophagy-related 5
- BCL2, B-cell CLL/lymphoma 2
- BECN1
- BECN1, Beclin 1, autophagy related
- Baf1, bafilomycin A1
- CCL2, chemokine (C-C motif) ligand 2
- DAPI: 4, 6-diamidino-2-phenylindole, dihydrochloride
- DDIT3, DNA-damage-inducible transcript 3
- EGFP, enhanced green fluorescent protein
- EIF2AK3, eukaryotic translation initiation factor 2-α kinase 3
- EIF2S1, eukaryotic translation initiation factor 2, subunit 1 α, 35kDa
- ER stress
- ER, endoplasmic reticulum
- ERN1, endoplasmic reticulum to nucleus signaling 1
- HIV, human immunodeficiency virus
- IL1B, interleukin 1, β
- IL6, interleukin 6
- MAP1LC3B
- MAP1LC3B, microtubule-associated protein 1 light chain 3
- METH, methamphetamine
- MTOR, mechanistic target of rapamycin
- NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
- PBN, N-tert-butyl-α-phenylnitrone
- PPP1R3A, protein phosphatase 1, regulatory subunit 3A
- PtdIns3K, class III phosphatidylinositol 3-kinase
- ROS, reactive oxygen species
- RPS6, ribosomal protein S6
- TLR4, toll-like receptor 4
- TNF, tumor necrosis factor
- autophagy
- cocaine
- microglial cells
- neuroinflammation
- rPMCs, rat primary microglial cells
- wort, wortmannin
Collapse
Affiliation(s)
- Ming-Lei Guo
- a Department of Pharmacology and Experimental Neuroscience; Nebraska Medical Center; University of Nebraska Medical Center ; Omaha , NE , USA
| | | | | | | | | | | | | |
Collapse
|
34
|
The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience 2016; 319:155-67. [PMID: 26827945 DOI: 10.1016/j.neuroscience.2016.01.035] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 01/05/2023]
Abstract
Microglia have multiple functions in regulating homeostasis in the central nervous system (CNS), and microglial inflammation is thought to play a role in the etiology of the neurodegenerative diseases. When endogenous or exogenous stimuli trigger disorders in microenvironmental homeostasis in CNS, microglia critically determine the fate of other neural cells. Recently, it was reported that autophagy might influence inflammation and activation of microglia. Though the interaction between autophagy and macrophages has been reported and reviewed in length, the role of autophagy in microglia has yet to be reviewed. Herein, we will highlight recent advances on the emerging role of autophagy in microglia, focusing on the regulation of autophagy during microglial inflammation, and the possible mechanism involved.
Collapse
|
35
|
Zhang X, Zheng T, Sang L, Apisa L, Zhao H, Fu F, Wang Q, Wang Y, Zheng Q. Otitis media induced by peptidoglycan-polysaccharide (PGPS) in TLR2-deficient (Tlr2(-/-)) mice for developing drug therapy. INFECTION GENETICS AND EVOLUTION 2015; 35:194-203. [PMID: 26296608 DOI: 10.1016/j.meegid.2015.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Toll like receptor 2 (TLR2) signaling can regulate the pathogenesis of otitis media (OM). However, the precise role of TLR2 signaling in OM has not been clarified due to the lack of an optimal animal model. Peptidoglycan-polysaccharide (PGPS) of the bacterial cell wall can induce inflammation by activating the TLR2 signaling. This study aimed at examining the pathogenic characteristics of OM induced by PGPS in Tlr2(-/-) mice, and the potential therapeutic effect of sodium aescinate (SA) in this model. METHODS Wild-type (WT) and Tlr2(-/-) mice were inoculated with streptococcal PGPS into their middle ears (MEs) and treated intravenously with vehicle or SA daily beginning at 3days prior to PGPS for 6 consecutive days. The pathologic changes of individual mice were evaluated longitudinally. RESULTS In comparison with WT mice, Tlr2(-/-) mice were susceptible to PGPS-induced OM. Tlr2(-/-) mice displayed greater hearing loss, tympanic membrane damage, ME mucosal thickening, longer inflammation state, cilia and goblet cell loss. SA-treatment decreased neutrophil infiltration, modulated TLR2-related gene expression and improved ciliary organization. CONCLUSIONS PGPS induced a relatively stable OM in Tlr2(-/-) mice, providing a new model for OM research. Treatment with SA mitigated the pathogenic damage in the ME and may be valuable for intervention of OM.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai 264003, Shandong, PR China; Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tihua Zheng
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Lu Sang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Luke Apisa
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hongchun Zhao
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou 256600, Shandong, PR China
| | - Fenghua Fu
- Department of Pharmacology, School of Pharmacy, Yantai University, Yantai 264003, Shandong, PR China
| | - Qingzhu Wang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai 264003, Shandong, PR China
| | - Yanfei Wang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou 256600, Shandong, PR China.
| | - Qingyin Zheng
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai 264003, Shandong, PR China; Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
36
|
Abstract
Autophagy is a conserved catabolic process that delivers the cytosol and cytosolic constituents to the lysosome. Its fundamental role is to maintain cellular homeostasis and to protect cells from varying insults, including misfolded proteins and damaged organelles. Beyond these roles, the highly specialized cells of the brain have further adapted autophagic pathways to suit their distinct needs. In this review, we briefly summarize our current understanding of the different forms of autophagy and then offer a closer look at how these pathways impact neuronal and glial functions. The emerging evidence indicates that not only are autophagy pathways essential for neural health, but they have a direct impact on developmental and neurodegenerative processes. Taken together, as we unravel the complex roles autophagy pathways play, we will gain the necessary insight to modify these pathways to protect the human brain and treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Ai Yamamoto
- Departments of Neurology, Pathology, and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032;
| | | |
Collapse
|
37
|
Yang K, Wang J, Xiang AP, Zhan X, Wang Y, Wu M, Huang X. Functional RIG-I-like receptors control the survival of mesenchymal stem cells. Cell Death Dis 2013; 4:e967. [PMID: 24336087 PMCID: PMC3877571 DOI: 10.1038/cddis.2013.504] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 01/09/2023]
Abstract
Because of their potent regenerative and immunomodulatory properties, mesenchymal stem cells (MSCs) have promising therapeutic benefits in clinical treatment of inflammatory and infectious diseases. Recent studies suggest that many biological activities of MSCs are largely determined by pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs). However, the role of PRRs in regulating the survival of MSCs remains unknown. In the present study, we examined the viability of MSCs after stimulation of distinct PRRs. Activation of TLRs by direct addition with their respective ligands showed no significant effect on the survival of MSCs, whereas transfection with double-stranded RNA (dsRNA) resulted in marked cell death in MSCs. Transfection of dsRNA upregulated cytosolic retinoic acid inducible gene I (RIG-I)-like receptors (RLRs), including RIG-I and melanoma differentiation-associated antigen 5 (MDA5). Moreover, transfection of dsRNA activated downstream transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB), as well as induced the expression of interferon-β (IFN-β) and pro-inflammatory cytokine interleukin 6 (IL-6) via RLR signaling. Furthermore, we found that transfection of dsRNA triggered both extrinsic and intrinsic apoptotic responses via RLRs. However, ectopic expression of RIG-I or MDA5 was not sufficient to induce apoptosis of MSCs without dsRNA transfection. Our study also revealed that IκB kinase α/β (IKKα/β) was required for RLR-mediated apoptosis in MSCs, while TANK-binding kinase 1 (TBK1)/IKKɛ served a pro-survival role. Moreover, neither overexpression of B-cell lymphoma 2 (Bcl2) nor neutralizing autocrined IFN-β reduced RLR-mediated apoptosis. In addition, autophagy was induced upon activation of RLRs, however, blocking autophagy did not rescue MSCs from the dsRNA-induced cell death. To the best of our knowledge, this is the first study to explore the role of RLRs in controlling the survival of MSCs, which may provide a clue to understand the pathogenesis of viral infection in MSCs.
Collapse
Affiliation(s)
- K Yang
- 1] Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou 510080, China [2] Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - J Wang
- 1] Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou 510080, China [2] Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - A P Xiang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, Guangzhou 510080, China
| | - X Zhan
- 1] Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou 510080, China [2] Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Y Wang
- 1] Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou 510080, China [2] Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - M Wu
- 1] Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou 510080, China [2] Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - X Huang
- 1] Department of Immunology, Zhongshan School of Medicine, Institute of Human Virology, Sun Yat-sen University, Guangzhou 510080, China [2] Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China [3] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
38
|
Vázquez-Villoldo N, Domercq M, Martín A, Llop J, Gómez-Vallejo V, Matute C. P2X4 receptors control the fate and survival of activated microglia. Glia 2013; 62:171-84. [PMID: 24254916 DOI: 10.1002/glia.22596] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/02/2013] [Accepted: 10/16/2013] [Indexed: 01/22/2023]
Abstract
Microglia, the resident immune cells of the central nervous system, responds to brain disarrangements by becoming activated to contend with brain damage. Here we show that the expression of P2X4 receptors is upregulated in inflammatory foci and in activated microglia in the spinal cord of rats with experimental autoimmune encephalomyelitis (EAE) as well as in the optic nerve of multiple sclerosis patients. To study the role of P2X4 receptors in microgliosis, we activated microglia with LPS in vitro and in vivo. We observed that P2X4 receptor activity in vitro was increased in LPS-activated microglia as assessed by patch-clamp recordings. In addition, P2X4 receptor blockade significantly reduced microglial membrane ruffling, TNFα secretion and morphological changes, as well as LPS-induced microglial cell death. Accordingly, neuroinflammation provoked by LPS injection in vivo induced a rapid microglial loss in the spinal cord that was totally prevented or potentiated by P2X4 receptor blockade or facilitation, respectively. Within the brain, microglia in the hippocampal dentate gyrus showed particular vulnerability to LPS-induced neuroinflammation. Thus, microglia processes in this region retracted as early as 2 h after injection of LPS and died around 24 h later, two features which were prevented by blocking P2X4 receptors. Together, these data suggest that P2X4 receptors contribute to controlling the fate of activated microglia and its survival.
Collapse
Affiliation(s)
- Nuria Vázquez-Villoldo
- Departamento de Neurociencias, Universidad del País Vasco-UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain, Achucarro Basque Center for Neuroscience-UPV/EHU, 48170, Zamudio, Spain, Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Autophagy in inflammation, infection, neurodegeneration and cancer. Int Immunopharmacol 2013; 18:55-65. [PMID: 24262302 DOI: 10.1016/j.intimp.2013.11.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 10/31/2013] [Accepted: 11/05/2013] [Indexed: 02/02/2023]
Abstract
In its classical form, autophagy is an essential, homeostatic process by which cytoplasmic components are degraded in a double-membrane-bound autophagosome in response to starvation. Paradoxically, although autophagy is primarily a protective process for the cell, it can also play a role in cell death. The roles of autophagy bridge both the innate and adaptive immune systems and autophagic dysfunction is associated with inflammation, infection, neurodegeneration and cancer. In this review, we discuss the contribution of autophagy to inflammatory, infectious and neurodegenerative diseases, as well as cancer.
Collapse
|
40
|
van Bergenhenegouwen J, Plantinga TS, Joosten LAB, Netea MG, Folkerts G, Kraneveld AD, Garssen J, Vos AP. TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors. J Leukoc Biol 2013; 94:885-902. [PMID: 23990624 DOI: 10.1189/jlb.0113003] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
TLRs play a major role in microbe-host interactions and innate immunity. Of the 10 functional TLRs described in humans, TLR2 is unique in its requirement to form heterodimers with TLR1 or TLR6 for the initiation of signaling and cellular activation. The ligand specificity of TLR2 heterodimers has been studied extensively, using specific bacterial and synthetic lipoproteins to gain insight into the structure-function relationship, the minimal active motifs, and the critical dependence on TLR1 or TLR6 for activation. Different from that for specific well-defined TLR2 agonists, recognition of more complex ligands like intact microbes or molecules from endogenous origin requires TLR2 to interact with additional coreceptors. A breadth of data has been published on ligand-induced interactions of TLR2 with additional pattern recognition receptors such as CD14, scavenger receptors, integrins, and a range of other receptors, all of them important factors in TLR2 function. This review summarizes the roles of TLR2 in vivo and in specific immune cell types and integrates this information with a detailed review of our current understanding of the roles of specific coreceptors and ligands in regulating TLR2 functions. Understanding how these processes affect intracellular signaling and drive functional immune responses will lead to a better understanding of host-microbe interactions and will aid in the design of new agents to target TLR2 function in health and disease.
Collapse
|