1
|
Lin F, Masterson E, Gilbertson TA. Adiponectin Signaling Modulates Fat Taste Responsiveness in Mice. Nutrients 2024; 16:3704. [PMID: 39519538 PMCID: PMC11547430 DOI: 10.3390/nu16213704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Adiponectin, the most abundant peptide hormone secreted by adipocytes, is a well-known homeostatic factor regulating lipid metabolism and insulin sensitivity. It has been shown that the adiponectin receptor agonist AdipoRon selectively enhances cellular responses to fatty acids in human taste cells, and adiponectin selectively increases taste behavioral responses to intralipid in mice. However, the molecular mechanism underlying the physiological effects of adiponectin on fat taste in mice remains unclear. CONCLUSIONS Here we define AdipoR1 as the mediator responsible for the enhancement role of adiponectin/AdipoRon on fatty acid-induced responses in mouse taste bud cells. METHODS AND RESULTS Calcium imaging data demonstrate that AdipoRon enhances linoleic acid-induced calcium responses in a dose-dependent fashion in mouse taste cells isolated from circumvallate and fungiform papillae. Similar to human taste cells, the enhancement role of AdipoRon on fatty acid-induced responses was impaired by co-administration of an AMPK inhibitor (Compound C) or a CD36 inhibitor (SSO). Utilizing Adipor1-deficient animals, we determined that the enhancement role of AdipoRon/adiponectin is dependent on AdipoR1, since AdipoRon/adiponectin failed to increase fatty acid-induced calcium responses in taste bud cells isolated from these mice. Brief-access taste tests were performed to determine whether AdipoRon's enhancement role was correlated with any differences in taste behavioral responses to fat. Although AdipoRon enhances the cellular responses of taste bud cells to fatty acids, it does not appear to alter fat taste behavior in mice. However, fat-naïve Adipor1-/- animals were indifferent to increasing concentrations of intralipid, suggesting that adiponectin signaling may have profound effects on the ability of mice to detect fatty acids in the absence of previous exposure to fatty acids and fat-containing diets.
Collapse
Affiliation(s)
- Fangjun Lin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (F.L.); (E.M.)
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Emeline Masterson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (F.L.); (E.M.)
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Timothy A. Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
2
|
Prajapati A, Rana D, Rangra S, Jindal AB, Benival D. Current Status of Therapeutic Peptides for the Management of Diabetes Mellitus. Int J Pept Res Ther 2024; 30:13. [DOI: 10.1007/s10989-024-10590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 01/04/2025]
|
3
|
Cogan B, Cooper JA. Differential effects of nutritive and non-nutritive sweet mouth rinsing on appetite in adults with obesity. Appetite 2024; 193:107133. [PMID: 38000768 DOI: 10.1016/j.appet.2023.107133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Excessive added sugar intake has been associated with obesity; however, the effect of dietary sweetness on energy intake (EI) and appetite in adults with and without obesity has not yet been determined. OBJECTIVE To assess the effect of mouth rinses with and without energy and sweetness on measures of appetite, and to compare responses between subjects with body mass index (BMI) between 18.5 and 24.9 kg/m2 or ≥30 kg/m2. METHODS In this randomized, double-blind crossover study, 39 subjects (age 23±5y; 17 male, 22 female; BMI 18.5-24.9 kg/m2: n = 21; ≥30 kg/m2: n = 18) performed modified sham-feeding (MSF) with a mouth rinse containing either sucrose, sucralose, maltodextrin, or water for 2min before expectorating the solution. Blood sampling and subjective appetite assessments occurred at baseline (-5) and 15, 30, 60, and 90min post-MSF. After, EI was assessed at a buffet meal and post-meal appetite ratings were assessed hourly for 3h. RESULTS Post-MSF ghrelin increased for water vs. maltodextrin (water: p = 0.03). Post-MSF cholecystokinin increased following maltodextrin-MSF (p = 0.03) and sucralose-MSF (p = 0.005) vs. sucrose for those with BMI:18.5-24.9 kg/m2 only. There was greater post-MSF desire to eat in response to water vs. sucrose (p = 0.03) and reduced fullness with sucralose for those with BMI≥30 vs. 18.5-24.9 kg/m2 (p < 0.001). There was no difference in EI at the buffet meal by mouth rinse (p = 0.98) or by BMI (p = 0.12). However, there was greater post-meal fullness following sucralose-MSF vs. water (p = 0.03) and sucrose (p = 0.004) for those with BMI≥30 vs. 18.5-24.9 kg/m2. CONCLUSION Sucralose rinsing led to greater cephalic phase CCK release in adults with a BMI:18.5-24.9 kg/m2 only; however, ghrelin responses to unsweetened rinses were energy-specific for all adults. As subsequent EI was unaffected, further investigation of cephalic phase appetite is warranted.
Collapse
Affiliation(s)
- Betsy Cogan
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Jamie A Cooper
- Department of Kinesiology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Lin F, Liu Y, Rudeski-Rohr T, Dahir N, Calder A, Gilbertson TA. Adiponectin Enhances Fatty Acid Signaling in Human Taste Cells by Increasing Surface Expression of CD36. Int J Mol Sci 2023; 24:ijms24065801. [PMID: 36982874 PMCID: PMC10059208 DOI: 10.3390/ijms24065801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Adiponectin, a key metabolic hormone, is secreted into the circulation by fat cells where it enhances insulin sensitivity and stimulates glucose and fatty acid metabolism. Adiponectin receptors are highly expressed in the taste system; however, their effects and mechanisms of action in the modulation of gustatory function remain unclear. We utilized an immortalized human fungiform taste cell line (HuFF) to investigate the effect of AdipoRon, an adiponectin receptor agonist, on fatty acid-induced calcium responses. We showed that the fat taste receptors (CD36 and GPR120) and taste signaling molecules (Gα-gust, PLCβ2, and TRPM5) were expressed in HuFF cells. Calcium imaging studies showed that linoleic acid induced a dose-dependent calcium response in HuFF cells, and it was significantly reduced by the antagonists of CD36, GPR120, PLCβ2, and TRPM5. AdipoRon administration enhanced HuFF cell responses to fatty acids but not to a mixture of sweet, bitter, and umami tastants. This enhancement was inhibited by an irreversible CD36 antagonist and by an AMPK inhibitor but was not affected by a GPR120 antagonist. AdipoRon increased the phosphorylation of AMPK and the translocation of CD36 to the cell surface, which was eliminated by blocking AMPK. These results indicate that AdipoRon acts to increase cell surface CD36 in HuFF cells to selectively enhance their responses to fatty acids. This, in turn, is consistent with the ability of adiponectin receptor activity to alter taste cues associated with dietary fat intake.
Collapse
Affiliation(s)
- Fangjun Lin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Yan Liu
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Trina Rudeski-Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Naima Dahir
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Ashley Calder
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Timothy A Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
5
|
Effects of Supplementation with Bee Pollen and Propolis on Growth Performance and Serum Metabolites of Rabbits: A Meta-Analysis. Animals (Basel) 2023; 13:ani13030439. [PMID: 36766327 PMCID: PMC9913143 DOI: 10.3390/ani13030439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The objective of this study was to evaluate the effects of bee pollen (BP) and propolis (PRO) supplementation on rabbits' productive performance and serum metabolites through a meta-analysis. Sixteen peer-reviewed publications were included in the data set. The rabbit strains used in the studies included in the data set were New Zealand White, V-line, Rex, and V-line crosses. Weighted mean differences (WMD) between treatments supplemented with BP or PRO and control treatments were used to assess the magnitude of the effect. BP supplementation decreased (p < 0.001) daily feed intake (DFI) and feed conversion ratio (FCR); however, increased (p < 0.001) average daily gain (ADG) and hot carcass yield (HCY). PRO supplementation reduced DFI (p = 0.041) and FCR (p < 0.001), and increased ADG (p < 0.001) and HCY (p = 0.005). In blood serum, BP supplementation increased total antioxidant capacity (TAC; p = 0.002) and decreased serum creatinine concentration (p = 0.049). Likewise, decreased serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) were detected in response to BP supplementation (p < 0.05). PRO supplementation increased the TAC in blood serum (p = 0.018); however, decreased serum concentrations of AST, ALT, and MDA were observed (p < 0.05). In conclusion, BP or PRO supplementation can be used as a natural growth promoter in rabbits, and both can also improve rabbits' antioxidant status. However, BP or PRO supplementation does not affect rabbits' renal or hepatic health status.
Collapse
|
6
|
Orzuna-Orzuna JF, Dorantes-Iturbide G, Lara-Bueno A, Chay-Canul AJ, Miranda-Romero LA, Mendoza-Martínez GD. Meta-analysis of flavonoids use into beef and dairy cattle diet: Performance, antioxidant status, ruminal fermentation, meat quality, and milk composition. Front Vet Sci 2023; 10:1134925. [PMID: 36876000 PMCID: PMC9975267 DOI: 10.3389/fvets.2023.1134925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
The objective of this study was to evaluate the effects of dietary supplementation with flavonoids (FLAs) on animal performance, diet digestibility, antioxidant status in blood serum, rumen parameters, meat quality, and milk composition in beef and dairy cattle through a meta-analysis. Thirty-six peer-reviewed publications were included in the data set. The weighted mean differences (WMD) between the FLAs treatments and the control treatment were used to assess the effect size. Dietary supplementation with FLAs decreased feed conversion ratio (WMD = -0.340 kg/kg; p = 0.050) and increased (p < 0.05) dry matter intake (WMD = 0.191 kg/d), dry matter digestibility (WMD = 15.283 g/kg of DM), and daily weight gain (WMD = 0.061 kg/d). In blood serum, FLAs supplementation decreased the serum concentration of malondialdehyde (WMD = -0.779 nmol/mL; p < 0.001) and increased (p < 0.01) the serum concentration of superoxide dismutase (WMD = 8.516 U/mL), glutathione peroxidase (WMD = 12.400 U/mL) and total antioxidant capacity (WMD = 0.771 U/mL). A higher ruminal propionate concentration (WMD = 0.926 mol/100 mol; p = 008) was observed in response to FLAs supplementation. In meat, the dietary inclusion of FLAs decreased (p < 0.05) shear force (WMD = -1.018 kgf/cm2), malondialdehyde content (WMD = -0.080 mg/kg of meat), and yellowness (WMD = -0.460). Supplementation with FLAs decreased milk somatic cell count (WMD = -0.251 × 103 cells/mL; p < 0.001) and increased (p < 0.01) milk production (WMD = 1.348 kg/d), milk protein content (WMD = 0.080/100 g) and milk fat content (WMD = 0.142/100 g). In conclusion, dietary supplementation with FLAs improves animal performance and nutrient digestibility in cattle. In addition, FLAs improve the antioxidant status in blood serum and the quality of meat and milk.
Collapse
|
7
|
Jaime-Lara RB, Brooks BE, Vizioli C, Chiles M, Nawal N, Ortiz-Figueroa RSE, Livinski AA, Agarwal K, Colina-Prisco C, Iannarino N, Hilmi A, Tejeda HA, Joseph PV. A systematic review of the biological mediators of fat taste and smell. Physiol Rev 2023; 103:855-918. [PMID: 36409650 PMCID: PMC9678415 DOI: 10.1152/physrev.00061.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Taste and smell play a key role in our ability to perceive foods. Overconsumption of highly palatable energy-dense foods can lead to increased caloric intake and obesity. Thus there is growing interest in the study of the biological mediators of fat taste and associated olfaction as potential targets for pharmacologic and nutritional interventions in the context of obesity and health. The number of studies examining mechanisms underlying fat taste and smell has grown rapidly in the last 5 years. Therefore, the purpose of this systematic review is to summarize emerging evidence examining the biological mechanisms of fat taste and smell. A literature search was conducted of studies published in English between 2014 and 2021 in adult humans and animal models. Database searches were conducted using PubMed, EMBASE, Scopus, and Web of Science for key terms including fat/lipid, taste, and olfaction. Initially, 4,062 articles were identified through database searches, and a total of 84 relevant articles met inclusion and exclusion criteria and are included in this review. Existing literature suggests that there are several proteins integral to fat chemosensation, including cluster of differentiation 36 (CD36) and G protein-coupled receptor 120 (GPR120). This systematic review will discuss these proteins and the signal transduction pathways involved in fat detection. We also review neural circuits, key brain regions, ingestive cues, postingestive signals, and genetic polymorphism that play a role in fat perception and consumption. Finally, we discuss the role of fat taste and smell in the context of eating behavior and obesity.
Collapse
Affiliation(s)
- Rosario B. Jaime-Lara
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Brianna E. Brooks
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Carlotta Vizioli
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mari Chiles
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,4Section of Neuromodulation and Synaptic Integration, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Nafisa Nawal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Rodrigo S. E. Ortiz-Figueroa
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alicia A. Livinski
- 3NIH Library, Office of Research Services, Office of the Director, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Khushbu Agarwal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Claudia Colina-Prisco
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Natalia Iannarino
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Aliya Hilmi
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Hugo A. Tejeda
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Paule V. Joseph
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,2Section of Sensory Science and Metabolism, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
8
|
Hurley MM, Smith KR, Harris C, Goodman EJ, Carnell S, Kamath V, Moran TH, Steele KE. Investigating relationships between post-prandial gut hormone responses and taste liking ratings prior to and following bariatric surgery: a pilot study. Int J Obes (Lond) 2022; 46:2114-2119. [PMID: 36045151 PMCID: PMC10805172 DOI: 10.1038/s41366-022-01214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Alterations in gut hormone secretion and reported changes in taste preferences have been suggested to contribute to the weight-reducing effects of bariatric surgery. However, a link between changes in gut hormone secretion and taste preferences following bariatric surgery has yet to be elucidated. METHODS Here we examined the potential relationships between gut hormone responses (GLP-1 and PYY3-36 peak, ghrelin trough) to a test meal of Ensure and liking ratings for taste mixtures varying in sugar and fat content before and following bariatric surgery (vertical sleeve gastrectomy (VSG): N = 4; Roux-en Y gastric bypass (RYGB): N = 8). RESULTS Significant increases in GLP-1 and PYY3-36 peak and a significant drop in ghrelin trough were observed following surgery. Pre- and postoperation, patients with higher postprandial GLP-1 or PYY3-36 peaks gave lower liking ratings for mixtures containing a combination of fat and sugar (half and half + 20% added sugar) whereas, for the combined surgery analyses, no relationships were found with solutions comprised of high fat (half and half + 0% sugar), predominantly high sugar (skim milk + 20% added sugar), or low fat and low sugar (skim milk + 0% added sugar). Within the RYGB patients, patients with the greatest increase in postprandial GLP-1 peak from preoperation to postoperation also demonstrated the greatest decrease in liking for half & half + 20% added sugar and skim milk + 20% added sugar, but not the unsweetened version of each solution. No pre- or postoperative relationship between ghrelin and liking ratings were observed. CONCLUSION Gut hormone responses following bariatric surgery may contribute to taste processing of sugar+fat mixtures and together influence weight loss.
Collapse
Affiliation(s)
- Matthew M Hurley
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberly R Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Civonnia Harris
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan J Goodman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vidyulata Kamath
- Division of Medical Psychology, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberley E Steele
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
The Neural Code for Taste in the Nucleus of the Solitary Tract of Rats with Obesity Following Roux-En-Y Gastric Bypass Surgery. Nutrients 2022; 14:nu14194129. [PMID: 36235781 PMCID: PMC9570596 DOI: 10.3390/nu14194129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Previous work has shown that taste responses in the nucleus tractus solitarius (NTS; the first central relay for gustation) are blunted in rats with diet-induced obesity (DIO). Here, we studied whether these effects could be reversed by Roux-en-Y gastric bypass (RYGB) surgery, an effective treatment for obesity. Rats were fed a high energy diet (60% kcal fat; HED) both before and after undergoing RYGB. Electrophysiological responses from NTS cells in unrestrained rats were recorded as they licked tastants from a lick spout. Sweet, salty, and umami tastes, as well as their naturalistic counterparts, were presented. Results were compared with those of lean rats from a previous study. As with DIO rats, NTS cells in RYGB rats were more narrowly tuned, showed weaker responses, and less lick coherence than those in lean rats. Both DIO and RYGB rats licked at a slower rate than lean rats and paused more often during a lick bout. However, unlike DIO rats, the proportion of taste cells in RYGB rats was similar to that in lean rats. Our data show that, despite being maintained on a HED after surgery, RYGB can induce a partial recovery of the deficits seen in the NTS of DIO rats.
Collapse
|
10
|
Supplementing Citrus aurantium Flavonoid Extract in High-Fat Finishing Diets Improves Animal Behavior and Rumen Health and Modifies Rumen and Duodenum Epithelium Gene Expression in Holstein Bulls. Animals (Basel) 2022; 12:ani12151972. [PMID: 35953962 PMCID: PMC9367586 DOI: 10.3390/ani12151972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
One hundred and forty-six bulls (178.2 ± 6.64 kg BW and 146.0 ± 0.60 d of age) were randomly allocated to one of eight pens and assigned to control (C) or citrus flavonoid (BF) treatments (Citrus aurantium, Bioflavex CA, HTBA, S.L.U., Barcelona, Spain, 0.4 kg per ton of Bioflavex CA). At the finishing phase, the dietary fat content of the concentrate was increased (58 to 84 g/kg DM). Concentrate intake was recorded daily, and BW and animal behavior by visual scan, fortnightly. After 168 d, bulls were slaughtered, carcass data were recorded, and rumen and duodenum epithelium samples were collected. Performance data were not affected by treatment, except for the growing phase where concentrate intake (p < 0.05) was lesser in the BF compared with the C bulls. Agonistic and sexual behaviors were more frequent (p < 0.01) in the C than in the BF bulls. In the rumen epithelium, in contrast to duodenum, gene expression of some bitter taste receptors (7, 16, 39) and other genes related to behavior and inflammation was higher (p < 0.05) in the BF compared with the C bulls. Supplementing citrus flavonoids in high-fat finishing diets to Holstein bulls reduces growing concentrate consumption and improves animal welfare.
Collapse
|
11
|
Wessels AG. Influence of the Gut Microbiome on Feed Intake of Farm Animals. Microorganisms 2022; 10:microorganisms10071305. [PMID: 35889024 PMCID: PMC9315566 DOI: 10.3390/microorganisms10071305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/04/2022] Open
Abstract
With the advancement of microbiome research, the requirement to consider the intestinal microbiome as the “last organ” of an animal emerged. Through the production of metabolites and/or the stimulation of the host’s hormone and neurotransmitter synthesis, the gut microbiota can potentially affect the host’s eating behavior both long and short-term. Based on current evidence, the major mediators appear to be short-chain fatty acids (SCFA), peptide hormones such as peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), as well as the amino acid tryptophan with the associated neurotransmitter serotonin, dopamine and γ-Aminobutyrate (GABA). The influence appears to extend into central neuronal networks and the expression of taste receptors. An interconnection of metabolic processes with mechanisms of taste sensation suggests that the gut microbiota may even influence the sensations of their host. This review provides a summary of the current status of microbiome research in farm animals with respect to general appetite regulation and microbiota-related observations made on the influence on feed intake. This is briefly contrasted with the existing findings from research with rodent models in order to identify future research needs. Increasing our understanding of appetite regulation could improve the management of feed intake, feed frustration and anorexia related to unhealthy conditions in farm animals.
Collapse
Affiliation(s)
- Anna Grete Wessels
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
12
|
Staníková D, Krajčovičová L, Demková L, Forišek-Paulová P, Slobodová L, Vitariušová E, Tichá L, Ukropcová B, Staník J, Ukropec J. Food preferences and thyroid hormones in children and adolescents with obesity. Front Psychiatry 2022; 13:962949. [PMID: 35935441 PMCID: PMC9354398 DOI: 10.3389/fpsyt.2022.962949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Thyroid hormones profoundly affect energy metabolism but their interrelation with food preference, which might contribute to childhood obesity development, are much less understood. In this study, we investigated if thyroid hormone levels are associated with specific modulation of food preference and potentially linked to the level of obesity in children and adolescents. METHODS Interrelations between food preference and peripheral thyroid activity were examined in a population of 99 non-obese and 101 obese children and adolescents (12.8 ± 3.6 years of age, 111/89 F/M) randomly selected from the patients of the Obesity and Metabolic Disease Out-patient Research Unit at National Institute for Children's Diseases in Bratislava in a period between December 2017 and March 2020. RESULTS Children and adolescents with obesity had a lower preference for food rich in high sucrose and high-complex carbohydrates, while the preference for protein and fat-containing food and that for dietary fibers did not differ between obese and nonobese. In adolescents with obesity, free thyroxine (FT4) correlated positively with the preference for a high protein and high fat-rich diet, irrespective of the fatty acid unsaturation level. Moreover, FT4 correlated negatively with the preference for dietary fibers, which has been also exclusively found in obese adolescents. Individuals with obesity with higher FT4 levels had higher systemic levels of AST and ALT than the population with lower FT4. Multiple regression analysis with age, sex, BMI-SDS, and FT4 as covariates revealed that FT4 and male gender are the major predictors of variability in the preference for a diet high in protein, fat, and monounsaturated fatty acids. FT4 was the sole predictor of the preference for a diet containing saturated and polyunsaturated fatty acids as well as for a diet low in fiber. CONCLUSION The link between free thyroxin levels and dietary preference for food rich in fat and protein is present exclusively in individuals with obesity. Higher serum FT4 was linked with elevated AST and ALT in children and adolescents with obesity, and FT4 was the best predictor for preference for food rich in fat and low in fiber. This may indicate that FT4 could contribute to the development of childhood obesity and its complications by modulating food preference.
Collapse
Affiliation(s)
- Daniela Staníková
- Department of Pediatrics, Medical Faculty of Comenius University, National Institute for Children's Diseases, Bratislava, Slovakia
| | - Lea Krajčovičová
- Department of Pediatrics, Medical Faculty of Comenius University, National Institute for Children's Diseases, Bratislava, Slovakia
| | - Linda Demková
- Department of Pediatrics, Medical Faculty of Comenius University, National Institute for Children's Diseases, Bratislava, Slovakia
| | - Petronela Forišek-Paulová
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Slobodová
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eva Vitariušová
- Department of Pediatrics, Medical Faculty of Comenius University, National Institute for Children's Diseases, Bratislava, Slovakia
| | - Lubica Tichá
- Department of Pediatrics, Medical Faculty of Comenius University, National Institute for Children's Diseases, Bratislava, Slovakia
| | - Barbara Ukropcová
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.,Medical Faculty of Comenius University, Institute of Pathophysiology, Bratislava, Slovakia
| | - Juraj Staník
- Department of Pediatrics, Medical Faculty of Comenius University, National Institute for Children's Diseases, Bratislava, Slovakia.,Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Ukropec
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
13
|
Khramova DS, Popov SV. A secret of salivary secretions: Multimodal effect of saliva in sensory perception of food. Eur J Oral Sci 2021; 130:e12846. [PMID: 34935208 DOI: 10.1111/eos.12846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/12/2021] [Indexed: 01/15/2023]
Abstract
Saliva plays multifunctional roles in oral cavity. Even though its importance for the maintenance of oral health has long been established, the role of saliva in food perception has attracted increasing attention in recent years. We encourage researchers to discover the peculiarity of this biological fluid and aim to combine the data concerning all aspects of the saliva influence on the sensory perception of food. This review presents saliva as a unique material, which modulates food perception due to constant presence of saliva in the mouth and thanks to its composition. Therefore, we highlight the salivary components that contribute to these effects. Moreover, this review is an attempt to structure the effects of saliva on perception of different food categories, where the mechanisms of salivary impact in perception of liquid, semi-solid, and solid foods are revealed. Finally, we emphasize that the large inter-individual variability in salivary composition and secretion appear to contribute to the fact that everyone experiences food in their own way. Therefore, the design of the sensory studies should consider the properties of volunteers' saliva and also carefully monitor the experimental conditions that affect salivary composition and flow rate.
Collapse
Affiliation(s)
- Daria S Khramova
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Russia
| | - Sergey V Popov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Russia
| |
Collapse
|
14
|
Malone IG, Hunter BK, Rossow HL, Herzog H, Zolotukhin S, Munger SD, Dotson CD. Y1 receptors modulate taste-related behavioral responsiveness in male mice to prototypical gustatory stimuli. Horm Behav 2021; 136:105056. [PMID: 34509673 PMCID: PMC8640844 DOI: 10.1016/j.yhbeh.2021.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Mammalian taste bud cells express receptors for numerous peptides implicated elsewhere in the body in the regulation of metabolism, nutrient assimilation, and satiety. The perturbation of several peptide signaling pathways in the gustatory periphery results in changes in behavioral and/or physiological responsiveness to subsets of taste stimuli. We previously showed that Peptide YY (PYY) - which is present in both saliva and in subsets of taste cells - can affect behavioral taste responsiveness and reduce food intake and body weight. Here, we investigated the contributions of taste bud-localized receptors for PYY and the related Neuropeptide Y (NPY) on behavioral taste responsiveness. Y1R, but not Y2R, null mice show reduced responsiveness to sweet, bitter, and salty taste stimuli in brief-access taste tests; similar results were seen when wildtype mice were exposed to Y receptor antagonists in the taste stimuli. Finally, mice in which the gene encoding the NPY propeptide was deleted also showed reduced taste responsiveness to sweet and bitter taste stimuli. Collectively, these results suggest that Y1R signaling, likely through its interactions with NPY, can modulate peripheral taste responsiveness in mice.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Brianna K Hunter
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Heidi L Rossow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | - Sergei Zolotukhin
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Steven D Munger
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Cedrick D Dotson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
15
|
Nielsen MS, Ritz C, Chenchar A, Bredie WLP, Gillum MP, Sjödin A. Does FGF21 Mediate the Potential Decrease in Sweet Food Intake and Preference Following Bariatric Surgery? Nutrients 2021; 13:nu13113840. [PMID: 34836096 PMCID: PMC8624965 DOI: 10.3390/nu13113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
The liver-derived hormone fibroblast growth factor 21 (FGF21) has recently been linked to preference for sweet-tasting food. We hypothesized, that surgery-induced changes in FGF21 could mediate the reduction in sweet food intake and preference following bariatric surgery. Forty participants (35 females) with severe obesity (BMI ≥ 35 kg/m2) scheduled for roux-en-y gastric bypass (n = 30) or sleeve gastrectomy (n = 10) were included. Pre- and postprandial responses of intact plasma FGF21 as well as intake of sweet-tasting food assessed at a buffet meal test, the hedonic evaluation of sweet taste assessed using an apple juice with added sucrose and visual analog scales, and sweet taste sensitivity were assessed before and 6 months after bariatric surgery. In a cross-sectional analysis pre-surgery, pre- and postprandial intact FGF21 levels were negatively associated with the hedonic evaluation of a high-sucrose juice sample (p = 0.03 and p = 0.02). However, no changes in pre- (p = 0.24) or postprandial intact FGF21 levels were found 6 months after surgery (p = 0.11), and individual pre- to postoperative changes in pre- and postprandial intact FGF21 levels were not found to be associated with changes in intake of sweet foods, the hedonic evaluation of sweet taste or sweet taste sensitivity (all p ≥ 0.10). In conclusion, we were not able to show an effect of bariatric surgery on circulating FGF21, and individual postoperative changes in FGF21 were not found to mediate an effect of surgery on sweet food intake and preference.
Collapse
Affiliation(s)
- Mette S. Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (M.S.N.); (A.C.); (M.P.G.)
| | - Christian Ritz
- National Institute of Public Health, University of Southern Denmark, 1455 Copenhagen, Denmark;
| | - Anne Chenchar
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (M.S.N.); (A.C.); (M.P.G.)
- School of Pharmacy, College of Health Science, University of Wyoming, Laramie, WY 82071, USA
| | - Wender L. P. Bredie
- Department of Food Science, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark;
| | - Matthew P. Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (M.S.N.); (A.C.); (M.P.G.)
| | - Anders Sjödin
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958 Frederiksberg, Denmark
- Correspondence:
| |
Collapse
|
16
|
Abstract
Gut microbiota has emerged as a major metabolically active organ with critical functions in both health and disease. The trillions of microorganisms hosted by the gastrointestinal tract are involved in numerous physiological and metabolic processes including modulation of appetite and regulation of energy in the host spanning from periphery to the brain. Indeed, bacteria and their metabolic byproducts are working in concert with the host chemosensory signaling pathways to affect both short- and long-term ingestive behavior. Sensing of nutrients and taste by specialized G protein-coupled receptor cells is important in transmitting food-related signals, optimizing nutrition as well as in prevention and treatment of several diseases, notably obesity, diabetes and associated metabolic disorders. Further, bacteria metabolites interact with specialized receptors cells expressed by gut epithelium leading to taste and appetite response changes to nutrients. This review describes recent advances on the role of gut bacteria in taste perception and functions. It further discusses how intestinal dysbiosis characteristic of several pathological conditions may alter and modulate taste preference and food consumption via changes in taste receptor expression.
Collapse
|
17
|
Single nucleotide polymorphism in CD36: Correlation to peptide YY levels in obese and non-obese adults. Clin Nutr 2021; 40:2707-2715. [PMID: 33933736 DOI: 10.1016/j.clnu.2021.02.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND & AIMS Human beings are often driven to exhibit dietary preference according to their hedonic characteristics. Though previous studies proposed that the fat taste preference of an obese individual was associated with BMI, the perception of fat taste differs for every individual. The genetic variation among populations in taste receptor genes such as CD36 may be a contributing factor for this difference. Satiety peptides can also play a role in the regulation of fat taste perception. Generally, this hormone helps us to feel the sense of satiety. METHODS We have analysed the relationship among oro-gustatory perception of dietary lipids, salivary peptide-YY and genetic polymorphism in CD36. Oral fatty acid sensitivity analysis was performed by alternative forced choice method. Salivary peptide-YY concentration was analysed by ELISA and single nucleotide polymorphism (SNP) in CD36 gene was determined by Real-Time PCR experiments. RESULTS We observed that the SNP at rs1761667 of CD36 and oral detection threshold for linoleic acid (LA) are associated with choice of food, lipid profiles, peptide-YY as well as adiposity parameters in obese population. Obese peoples had significantly low levels of peptide YY than people with BMI less than 25. These factors possibly play a role in preference for energy rich diets, development of obesity and associated complications. CONCLUSION This study provides a solid foundation for understanding the alterations in the dietary fat intake and levels of peptide-YY, which are associated with polymorphism in fat taste receptor. This is the first report that shows a significant relationship between the satiety hormone level, SNP in CD36 gene and oral fat detection threshold in human subjects.
Collapse
|
18
|
Crosson SM, Marques A, Dib P, Dotson CD, Munger SD, Zolotukhin S. Taste Receptor Cells in Mice Express Receptors for the Hormone Adiponectin. Chem Senses 2020; 44:409-422. [PMID: 31125082 DOI: 10.1093/chemse/bjz030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The metabolic hormone adiponectin is secreted into the circulation by adipocytes and mediates key biological functions, including insulin sensitivity, adipocyte development, and fatty acid oxidation. Adiponectin is also abundant in saliva, where its functions are poorly understood. Here we report that murine taste receptor cells (TRCs) express specific adiponectin receptors and may be a target for salivary adiponectin. This is supported by the presence of all three known adiponectin receptors in transcriptomic data obtained by RNA-seq analysis of purified circumvallate (CV) taste buds. As well, immunohistochemical analysis of murine CV papillae showed that two adiponectin receptors, ADIPOR1 and T-cadherin, are localized to subsets of TRCs. Immunofluorescence for T-cadherin was primarily co-localized with the Type 2 TRC marker phospholipase C β2, suggesting that adiponectin signaling could impact sweet, bitter, or umami taste signaling. However, adiponectin null mice showed no differences in behavioral lick responsiveness compared with wild-type controls in brief-access lick testing. AAV-mediated overexpression of adiponectin in the salivary glands of adiponectin null mice did result in a small but significant increase in behavioral lick responsiveness to the fat emulsion Intralipid. Together, these results suggest that salivary adiponectin can affect TRC function, although its impact on taste responsiveness and peripheral taste coding remains unclear.
Collapse
Affiliation(s)
- Sean M Crosson
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida, Gainesville, FL, USA.,Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - Andrew Marques
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, USA
| | - Peter Dib
- Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA.,Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, USA
| | - Cedrick D Dotson
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Steven D Munger
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA.,Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism; University of Florida, Gainesville, FL, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Rohde K, Schamarek I, Blüher M. Consequences of Obesity on the Sense of Taste: Taste Buds as Treatment Targets? Diabetes Metab J 2020; 44:509-528. [PMID: 32431111 PMCID: PMC7453985 DOI: 10.4093/dmj.2020.0058] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Premature obesity-related mortality is caused by cardiovascular and pulmonary diseases, type 2 diabetes mellitus, physical disabilities, osteoarthritis, and certain types of cancer. Obesity is caused by a positive energy balance due to hyper-caloric nutrition, low physical activity, and energy expenditure. Overeating is partially driven by impaired homeostatic feedback of the peripheral energy status in obesity. However, food with its different qualities is a key driver for the reward driven hedonic feeding with tremendous consequences on calorie consumption. In addition to visual and olfactory cues, taste buds of the oral cavity process the earliest signals which affect the regulation of food intake, appetite and satiety. Therefore, taste buds may play a crucial role how food related signals are transmitted to the brain, particularly in priming the body for digestion during the cephalic phase. Indeed, obesity development is associated with a significant reduction in taste buds. Impaired taste bud sensitivity may play a causal role in the pathophysiology of obesity in children and adolescents. In addition, genetic variation in taste receptors has been linked to body weight regulation. This review discusses the importance of taste buds as contributing factors in the development of obesity and how obesity may affect the sense of taste, alterations in food preferences and eating behavior.
Collapse
Affiliation(s)
- Kerstin Rohde
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| | - Imke Schamarek
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
- Medical Department III (Endocrinology, Nephrology and Rheumatology), University of Leipzig, Leipzig, Germany
| |
Collapse
|
20
|
Sensing Senses: Optical Biosensors to Study Gustation. SENSORS 2020; 20:s20071811. [PMID: 32218129 PMCID: PMC7180777 DOI: 10.3390/s20071811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
The five basic taste modalities, sweet, bitter, umami, salty and sour induce changes of Ca2+ levels, pH and/or membrane potential in taste cells of the tongue and/or in neurons that convey and decode gustatory signals to the brain. Optical biosensors, which can be either synthetic dyes or genetically encoded proteins whose fluorescence spectra depend on levels of Ca2+, pH or membrane potential, have been used in primary cells/tissues or in recombinant systems to study taste-related intra- and intercellular signaling mechanisms or to discover new ligands. Taste-evoked responses were measured by microscopy achieving high spatial and temporal resolution, while plate readers were employed for higher throughput screening. Here, these approaches making use of fluorescent optical biosensors to investigate specific taste-related questions or to screen new agonists/antagonists for the different taste modalities were reviewed systematically. Furthermore, in the context of recent developments in genetically encoded sensors, 3D cultures and imaging technologies, we propose new feasible approaches for studying taste physiology and for compound screening.
Collapse
|
21
|
Jones ES, Nunn N, Chambers AP, Østergaard S, Wulff BS, Luckman SM. Modified Peptide YY Molecule Attenuates the Activity of NPY/AgRP Neurons and Reduces Food Intake in Male Mice. Endocrinology 2019; 160:2737-2747. [PMID: 31074796 PMCID: PMC6806261 DOI: 10.1210/en.2019-00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/06/2019] [Indexed: 01/15/2023]
Abstract
To study the effects of an analog of the gut-produced hormone peptide YY (PYY3-36), which has increased selectivity for the Y2 receptor; specifically, to record its effects on food intake and on hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neuron activity. NNC0165-1273, a modified form of the peptide hormone PYY3-36 with potent selectivity at Y2 receptor (>5000-fold over Y1, 1250-fold over Y4, and 650-fold over Y5 receptor), was tested in vivo and in vitro in mouse models. NNC0165-1273 has fivefold lower relative affinity for Y2 compared with PYY3-36, but >250-, 192-, and 400-fold higher selectivity, respectively, for the Y1, Y4, and Y5 receptors. NNC0165-1273 produced a reduction in nighttime feeding at a dose at which PYY3-36 loses efficacy. The normal behavioral satiety sequence observed suggests that NNC0165-1273 is not nauseating and, instead, reduces food intake by producing early satiety. Additionally, NNC0165-1273 blocked ghrelin-induced cFos expression in NPY/AgRP neurons. In vitro electrophysiological recordings showed that, opposite to ghrelin, NNC0165-1273 hyperpolarized NPY/AgRP neurons and reduced action potential frequency. Administration of NNC0165-1273 via subcutaneous osmotic minipump caused a dose-dependent decrease in body weight and fat mass in an obese mouse model. Finally, NNC0165-1273 attenuated the feeding response when NPY/AgRP neurons were activated using ghrelin or more selectively with designer receptors. NNC0165-1273 is nonnauseating and stimulates a satiety response through, at least in part, a direct action on hypothalamic NPY/AgRP neurons. Modification of PYY3-36 to produce compounds with increased affinity to Y2 receptors may be useful as antiobesity therapies in humans.
Collapse
Affiliation(s)
- Edward S Jones
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nicolas Nunn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Adam P Chambers
- GLP-1 & T2D Pharmacology, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Søren Østergaard
- Research Chemistry 2, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Birgitte S Wulff
- Obesity Research, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Simon M Luckman
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
22
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2433] [Impact Index Per Article: 405.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Behrens M, Meyerhof W. A role for taste receptors in (neuro)endocrinology? J Neuroendocrinol 2019; 31:e12691. [PMID: 30712315 DOI: 10.1111/jne.12691] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
The sense of taste is positioned at the forefront when it comes to the interaction of our body with foodborne chemicals. However, the role of our taste system, and in particular its associated taste receptors, is not limited to driving food preferences leading to ingestion or rejection before other organs take over responsibility for nutrient digestion, absorption and metabolic regulation. Taste sensory elements do much more. On the one hand, extra-oral taste receptors from the brain to the gut continue to sense nutrients and noxious substances after ingestion and, on the other hand, the nutritional state feeds back on the taste system. This intricate regulatory network is orchestrated by endocrine factors that are secreted in response to taste receptor signalling and, in turn regulate the taste receptor cells themselves. The present review summarises current knowledge on the endocrine regulation of the taste perceptual system and the release of hunger/satiety regulating factors by gastrointestinal taste receptors. Furthermore, the regulation of blood glucose levels via the activation of pancreatic sweet taste receptors and subsequent insulin secretion, as well as the influence of bitter compounds on thyroid hormone release, is addressed. Finally, the central effects of tastants are discussed briefly.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
24
|
Abstract
BACKGROUND Alterations in taste perception and preferences may contribute to dietary changes and subsequent weight loss following bariatric surgery. METHODS A systematic search was performed to identify all articles investigating gustation, olfaction, and sensory perception in both animal and human studies following bariatric procedures. RESULTS Two hundred fifty-five articles were identified after database searches, bibliography inclusions and deduplication. Sixty-one articles were included. These articles provide evidence supporting changes in taste perception and hedonic taste following bariatric procedures. Taste sensitivity to sweet and fatty stimuli appears to increase post-operatively. Additionally, patients also have a reduced hedonic response to these stimuli. CONCLUSIONS Available evidence suggests that there is a change in taste perception following bariatric procedures, which may contribute to long-term maintenance of weight loss following surgery.
Collapse
Affiliation(s)
- Kasim Ahmed
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Nicholas Penney
- Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Ara Darzi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sanjay Purkayastha
- Department of Surgery and Cancer, Imperial College London, London, UK
- Imperial Weight Centre, St Mary's Hospital, London, UK
| |
Collapse
|
25
|
Damrau C, Toshima N, Tanimura T, Brembs B, Colomb J. Octopamine and Tyramine Contribute Separately to the Counter-Regulatory Response to Sugar Deficit in Drosophila. Front Syst Neurosci 2018; 11:100. [PMID: 29379421 PMCID: PMC5775261 DOI: 10.3389/fnsys.2017.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
All animals constantly negotiate external with internal demands before and during action selection. Energy homeostasis is a major internal factor biasing action selection. For instance, in addition to physiologically regulating carbohydrate mobilization, starvation-induced sugar shortage also biases action selection toward food-seeking and food consumption behaviors (the counter-regulatory response). Biogenic amines are often involved when such widespread behavioral biases need to be orchestrated. In mammals, norepinephrine (noradrenalin) is involved in the counterregulatory response to starvation-induced drops in glucose levels. The invertebrate homolog of noradrenalin, octopamine (OA) and its precursor tyramine (TA) are neuromodulators operating in many different neuronal and physiological processes. Tyrosine-ß-hydroxylase (tßh) mutants are unable to convert TA into OA. We hypothesized that tßh mutant flies may be aberrant in some or all of the counter-regulatory responses to starvation and that techniques restoring gene function or amine signaling may elucidate potential mechanisms and sites of action. Corroborating our hypothesis, starved mutants show a reduced sugar response and their hemolymph sugar concentration is elevated compared to control flies. When starved, they survive longer. Temporally controlled rescue experiments revealed an action of the OA/TA-system during the sugar response, while spatially controlled rescue experiments suggest actions also outside of the nervous system. Additionally, the analysis of two OA- and four TA-receptor mutants suggests an involvement of both receptor types in the animals' physiological and neuronal response to starvation. These results complement the investigations in Apis mellifera described in our companion paper (Buckemüller et al., 2017).
Collapse
Affiliation(s)
- Christine Damrau
- Neurobiologie, Fachbereich Biologie-Chemie-Pharmazie, Institut für Biologie - Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Naoko Toshima
- Division of Biological Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Teiichi Tanimura
- Division of Biological Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Björn Brembs
- Neurobiologie, Fachbereich Biologie-Chemie-Pharmazie, Institut für Biologie - Neurobiologie, Freie Universität Berlin, Berlin, Germany.,Institute of Zoology - Neurogenetics, University of Regensburg, Regensburg, Germany
| | - Julien Colomb
- Neurobiologie, Fachbereich Biologie-Chemie-Pharmazie, Institut für Biologie - Neurobiologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Zapata RC, Singh A, Chelikani PK. Peptide YY mediates the satiety effects of diets enriched with whey protein fractions in male rats. FASEB J 2018; 32:850-861. [PMID: 29042449 DOI: 10.1096/fj.201700519rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dairy proteins-whey protein, in particular-are satiating and often recommended for weight control; however, little is known about the mechanisms by which whey protein and its components promote satiety and weight loss. We used diet-induced obese rats to determine whether the hypophagic effects of diets that are enriched with whey and its fractions, lactalbumin and lactoferrin, are mediated by the gut hormone, peptide YY (PYY). We demonstrate that high protein diets that contain whey, lactalbumin, and lactoferrin decreased food intake and body weight with a concurrent increase in PYY mRNA abundance in the colon and/or plasma PYY concentrations. Of importance, blockade of PYY neuropeptide Y receptor subtype 2 (Y2) receptors with a peripherally restricted antagonist attenuated the hypophagic effects of diets that are enriched with whey protein fractions. Diets that are enriched with whey fractions were less preferred; however, in a modified conditioned taste preference test, PYY Y2 receptor blockade induced hyperphagia of a lactoferrin diet, but caused a reduction in preference for Y2 antagonist-paired flavor, which suggested that PYY signaling is important for lactoferrin-induced satiety, but not essential for preference for lactoferrin-enriched diets. Taken together, these data provide evidence that the satiety of diets that are enriched with whey protein components is mediated, in part, via enhanced PYY secretion and action in obese male rats.-Zapata, R. C., Singh, A., Chelikani, P. K. Peptide YY mediates the satiety effects of diets enriched with whey protein fractions in male rats.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arashdeep Singh
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Association between Salivary Leptin Levels and Taste Perception in Children. J Nutr Metab 2017; 2017:7260169. [PMID: 28811937 PMCID: PMC5546129 DOI: 10.1155/2017/7260169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/22/2017] [Indexed: 12/14/2022] Open
Abstract
The satiety inducing hormone leptin acts not only at central nervous system but also at peripheral level. Leptin receptors are found in several sense related organs, including the mouth. A role of leptin in sweet taste response has been suggested but, until now, studies have been based on in vitro experiments, or in assessing the levels of the hormone in circulation. The present study investigated whether the levels of leptin in saliva are related to taste perception in children and whether Body Mass Index (BMI) affects such relationship. Sweet and bitter taste sensitivity was assessed for 121 children aged 9-10 years and unstimulated whole saliva was collected for leptin quantification, using ELISA technique. Children females with lower sweet taste sensitivity presented higher salivary leptin levels, but this is only in the normal weight ones. For bitter taste, association between salivary leptin and caffeine threshold detection was observed only in preobese boys, with higher levels of salivary hormone in low sensitive individuals. This study is the first presenting evidences of a relationship between salivary leptin levels and taste perception, which is sex and BMI dependent. The mode of action of salivary leptin at taste receptor level should be elucidated in future studies.
Collapse
|
28
|
Spector AC, le Roux CW, Munger SD, Travers SP, Sclafani A, Mennella JA. Proceedings of the 2015 ASPEN Research Workshop-Taste Signaling. JPEN J Parenter Enteral Nutr 2016; 41:113-124. [PMID: 26598504 DOI: 10.1177/0148607115617438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article summarizes research findings from 6 experts in the field of taste and feeding that were presented at the 2015 American Society for Parenteral and Enteral Nutrition Research Workshop. The theme was focused on the interaction of taste signals with those of a postingestive origin and how this contributes to regulation of food intake through both physiological and learning processes. Gastric bypass results in exceptional loss of fat mass and increases in circulating levels of key gut peptides, some of which are also expressed along with their cognate receptors in taste buds. Changes in taste preference and food selection in both bariatric surgery patients and rodent models have been reported. Accordingly, the effects of this surgery on taste-related behavior were examined. The conservation of receptor and peptide signaling mechanisms in gustatory and extraoral tissues was discussed in the context of taste responsiveness and the regulation of metabolism. New findings detailing the features of neural circuits between the caudal nucleus of the solitary tract (NST), receiving visceral input from the vagus nerve, and the rostral NST, receiving taste input, were discussed, as was how early life experience with taste stimuli and learned associations between flavor and postoral consequences of nutrients can exert potent and long-lasting effects on feeding.
Collapse
Affiliation(s)
- Alan C Spector
- 1 Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Carel W le Roux
- 2 Diabetes Complications Research Centre, Conway Institute, University College, Dublin, Ireland
| | - Steven D Munger
- 3 Department of Pharmacology and Therapeutics; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism; Center for Smell and Taste, University of Florida, Gainesville, Florida, USA
| | - Susan P Travers
- 4 Division of Biosciences, College of Dentistry, Ohio State University, Columbus, Ohio, USA
| | - Anthony Sclafani
- 5 Department of Psychology, Brooklyn College of the City University of New York, New York, New York, USA
| | - Julie A Mennella
- 6 Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Fernández-Aranda F, Agüera Z, Fernández-García JC, Garrido-Sanchez L, Alcaide-Torres J, Tinahones FJ, Giner-Bartolomé C, Baños RM, Botella C, Cebolla A, de la Torre R, Fernández-Real JM, Ortega FJ, Frühbeck G, Gómez-Ambrosi J, Granero R, Islam MA, Jiménez-Murcia S, Tárrega S, Menchón JM, Fagundo AB, Sancho C, Estivill X, Treasure J, Casanueva FF. Smell-taste dysfunctions in extreme weight/eating conditions: analysis of hormonal and psychological interactions. Endocrine 2016. [PMID: 26198367 DOI: 10.1007/s12020-015-0684-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
(1) The objective of this study is to analyze differences in smell-taste capacity between females in extreme weight/eating conditions (EWC) and (2) to explore the interaction between smell/taste capacity, gastric hormones, eating behavior and body mass index (BMI). The sample comprised 239 females in EWC [64 Anorexia nervosa (AN) and 80 age-matched healthy-weight controls, and 59 obese and 36 age-matched healthy-weight controls]. Smell and taste assessments were performed through "Sniffin' Sticks" and "Taste Strips," respectively. The assessment measures included the eating disorders inventory-2, the symptom check list 90-revised, and The Dutch Eating Behavior Questionnaire, as well as peptides from the gastrointestinal tract [Ghrelin, peptide YY, cholecystokinin]. Smell capacity was differentially associated across EWC groups. Smell was clearly impaired in obese participants and increased in AN (hyposmia in Obesity was 54.3 and 6.4 % in AN), but taste capacity did not vary across EWC. Ghrelin levels were significantly decreased in obese subjects and were related to smell impairment. EWC individuals showed a distinct smell profile and circulating ghrelin levels compared to controls. Smell capacity and ghrelin may act as moderators of emotional eating and BMI.
Collapse
Affiliation(s)
- Fernando Fernández-Aranda
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, c/Feixa Llarga s/n, 08907, Barcelona, Spain.
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain.
| | - Zaida Agüera
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, c/Feixa Llarga s/n, 08907, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Jose C Fernández-García
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Lourdes Garrido-Sanchez
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Juan Alcaide-Torres
- Department of Diabetes, Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Cristina Giner-Bartolomé
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, c/Feixa Llarga s/n, 08907, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Rosa M Baños
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Psychological, Personality, Evaluation and Treatment of the University of Valencia, Valencia, Spain
| | - Cristina Botella
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Basic Psychology, Clinic and Psychobiology of the University Jaume I, Castellón, Spain
| | - Ausias Cebolla
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Basic Psychology, Clinic and Psychobiology of the University Jaume I, Castellón, Spain
| | - Rafael de la Torre
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Integrated Pharmacology and Systems Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Jose M Fernández-Real
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdlBGi) Hospital Dr Josep Trueta, Girona, Spain
| | - Francisco J Ortega
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdlBGi) Hospital Dr Josep Trueta, Girona, Spain
| | - Gema Frühbeck
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra - IdiSNA, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra - IdiSNA, Pamplona, Spain
| | - Roser Granero
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Departament of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona, Spain
| | - Mohamed A Islam
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, c/Feixa Llarga s/n, 08907, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, c/Feixa Llarga s/n, 08907, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Salomé Tárrega
- Departament of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona, Spain
| | - José M Menchón
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, c/Feixa Llarga s/n, 08907, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- CIBER de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Ana B Fagundo
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, c/Feixa Llarga s/n, 08907, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Carolina Sancho
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, c/Feixa Llarga s/n, 08907, Barcelona, Spain
| | - Xavier Estivill
- Center for Genomic Regulation (CRG) and Pompeu Fabra University (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Janet Treasure
- Eating Disorders Unit, Institute of Psychiatry, King's College, London, UK
| | - Felipe F Casanueva
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
- Endocrine Division, Department of Medicine, Complejo Hospitalario U. de Santiago, Santiago de Compostela University, Choupana Street sn, PO Box 563, 15780, Santiago, Spain.
| |
Collapse
|
30
|
Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane. Nat Commun 2016; 7:10423. [PMID: 26804245 PMCID: PMC4737753 DOI: 10.1038/ncomms10423] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/09/2015] [Indexed: 12/17/2022] Open
Abstract
The dopaminergic system is essential for cognitive processes, including reward, attention and motor control. In addition to DA release and availability of synaptic DA receptors, timing and magnitude of DA neurotransmission depend on extracellular DA-level regulation by the dopamine transporter (DAT), the membrane expression and trafficking of which are highly dynamic. Data presented here from real-time TIRF (TIRFM) and confocal microscopy coupled with surface biotinylation and electrophysiology suggest that changes in the membrane potential alone, a universal yet dynamic cellular property, rapidly alter trafficking of DAT to and from the surface membrane. Broadly, these findings suggest that cell-surface DAT levels are sensitive to membrane potential changes, which can rapidly drive DAT internalization from and insertion into the cell membrane, thus having an impact on the capacity for DAT to regulate extracellular DA levels. The dopaminergic system has important roles in a number of cognitive process. Here, the authors use detailed analysis of dopamine transporter trafficking to show its levels at the cell surface are sensitive to changes in membrane potential.
Collapse
|
31
|
Loper HB, La Sala M, Dotson C, Steinle N. Taste perception, associated hormonal modulation, and nutrient intake. Nutr Rev 2016; 73:83-91. [PMID: 26024495 DOI: 10.1093/nutrit/nuu009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
It is well known that taste perception influences food intake. After ingestion, gustatory receptors relay sensory signals to the brain, which segregates, evaluates, and distinguishes the stimuli, leading to the experience known as "flavor." It is well accepted that five taste qualities – sweet, salty, bitter, sour, and umami – can be perceived by animals. In this review, the anatomy and physiology of human taste buds, the hormonal modulation of taste function, the importance of genetic chemosensory variation, and the influence of gustatory functioning on macronutrient selection and eating behavior are discussed. Individual genotypic variation results in specific phenotypes of food preference and nutrient intake. Understanding the role of taste in food selection and ingestive behavior is important for expanding our understanding of the factors involved in body weight maintenance and the risk of chronic diseases including obesity, atherosclerosis, cancer, diabetes, liver disease, and hypertension.
Collapse
Affiliation(s)
- Hillary B Loper
- H.B. Loper is with the Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. M. La Sala and C. Dotson are with the Division of Addiction Medicine, Center for Smell and Taste, Department of Neuroscience and Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA. N Steinle is with the Baltimore Veterans Administration Medical Center and University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael La Sala
- H.B. Loper is with the Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. M. La Sala and C. Dotson are with the Division of Addiction Medicine, Center for Smell and Taste, Department of Neuroscience and Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA. N Steinle is with the Baltimore Veterans Administration Medical Center and University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cedrick Dotson
- H.B. Loper is with the Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. M. La Sala and C. Dotson are with the Division of Addiction Medicine, Center for Smell and Taste, Department of Neuroscience and Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA. N Steinle is with the Baltimore Veterans Administration Medical Center and University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nanette Steinle
- H.B. Loper is with the Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. M. La Sala and C. Dotson are with the Division of Addiction Medicine, Center for Smell and Taste, Department of Neuroscience and Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA. N Steinle is with the Baltimore Veterans Administration Medical Center and University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Ciullo DL, Dotson CD. Using Animal Models to Determine the Role of Gustatory Neural Input in the Control of Ingestive Behavior and the Maintenance of Body Weight. CHEMOSENS PERCEPT 2015; 8:61-77. [PMID: 26557212 PMCID: PMC4636125 DOI: 10.1007/s12078-015-9190-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Decades of research have suggested that nutritional intake contributes to the development of human disease, mainly by influencing the development of obesity and obesity-related conditions. A relatively large body of research indicates that functional variation in human taste perception can influence nutritional intake as well as body mass accumulation. However, there are a considerable number of studies that suggest that no link between these variables actually exists. These discrepancies in the literature likely result from the confounding influence of a variety of other, uncontrolled, factors that can influence ingestive behavior. STRATEGY In this review, the use of controlled animal experimentation to alleviate at least some of these issues related to the lack of control of experimental variables is discussed. Specific examples of the use of some of these techniques are examined. DISCUSSION AND CONCLUSIONS The review will close with some specific suggestions aimed at strengthening the link between gustatory neural input and its putative influence on ingestive behaviors and the maintenance of body weight.
Collapse
Affiliation(s)
- Dana L Ciullo
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| | - Cedrick D Dotson
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| |
Collapse
|
33
|
Baum BJ, Alevizos I, Chiorini JA, Cotrim AP, Zheng C. Advances in salivary gland gene therapy - oral and systemic implications. Expert Opin Biol Ther 2015; 15:1443-54. [PMID: 26149284 DOI: 10.1517/14712598.2015.1064894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Much research demonstrates the feasibility and efficacy of gene transfer to salivary glands. Recently, the first clinical trial targeting a salivary gland was completed, yielding positive safety and efficacy results. AREAS COVERED There are two major disorders affecting salivary glands: radiation damage following treatment for head and neck cancers and Sjögren's syndrome (SS). Salivary gland gene transfer has also been employed in preclinical studies using transgenic secretory proteins for exocrine (upper gastrointestinal tract) and endocrine (systemic) applications. EXPERT OPINION Salivary gland gene transfer is safe and can be beneficial in humans. Applications to treat and prevent radiation damage show considerable promise. A first-in-human clinical trial for the former was recently successfully completed. Studies on SS suffer from an inadequate understanding of its etiology. Proof of concept in animal models has been shown for exocrine and endocrine disorders. Currently, the most promising exocrine application is for the management of obesity. Endocrine applications are limited, as it is currently impossible to predict if systemically required transgenic proteins will be efficiently secreted into the bloodstream. This results from not understanding how secretory proteins are sorted. Future studies will likely employ ultrasound-assisted and pseudotyped adeno-associated viral vector-mediated gene transfer.
Collapse
Affiliation(s)
- Bruce J Baum
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Ilias Alevizos
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - John A Chiorini
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Ana P Cotrim
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Changyu Zheng
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| |
Collapse
|
34
|
Smith RM, Klein R, Kruzliak P, Zulli A. Role of Peptide YY in blood vessel function and atherosclerosis in a rabbit model. Clin Exp Pharmacol Physiol 2015; 42:648-52. [DOI: 10.1111/1440-1681.12398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/13/2015] [Accepted: 03/28/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Renee M Smith
- Centre for Chronic Disease Prevention & Management (CCDPM); College of Health & Biomedicine; Victoria University; Melbourne Vic. Australia
| | - Rudi Klein
- Centre for Chronic Disease Prevention & Management (CCDPM); College of Health & Biomedicine; Victoria University; Melbourne Vic. Australia
| | - Peter Kruzliak
- International Clinical Research Center; St. Anne′s University Hospital and Masaryk University; Brno Czech Republic
| | - Anthony Zulli
- Centre for Chronic Disease Prevention & Management (CCDPM); College of Health & Biomedicine; Victoria University; Melbourne Vic. Australia
| |
Collapse
|
35
|
Abstract
Levels of obesity have reached epidemic proportions on a global scale, which has led to considerable increases in health problems and increased risk of several diseases, including cardiovascular and pulmonary diseases, cancer and diabetes mellitus. People with obesity consume more food than is needed to maintain an ideal body weight, despite the discrimination that accompanies being overweight and the wealth of available information that overconsumption is detrimental to health. The relationship between energy expenditure and energy intake throughout an individual's lifetime is far more complicated than previously thought. An improved comprehension of the relationships between taste, palatability, taste receptors and hedonic responses to food might lead to increased understanding of the biological underpinnings of energy acquisition, as well as why humans sometimes eat more than is needed and more than we know is healthy. This Review discusses the role of taste receptors in the tongue, gut, pancreas and brain and their hormonal involvement in taste perception, as well as the relationship between taste perception, overeating and the development of obesity.
Collapse
Affiliation(s)
- Sara Santa-Cruz Calvo
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Biomedical Research Center, Room 09B133, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224-6825, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Biomedical Research Center, Room 09B133, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224-6825, USA
| |
Collapse
|
36
|
Molecular mechanisms of taste recognition: considerations about the role of saliva. Int J Mol Sci 2015; 16:5945-74. [PMID: 25782158 PMCID: PMC4394514 DOI: 10.3390/ijms16035945] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022] Open
Abstract
The gustatory system plays a critical role in determining food preferences and food intake, in addition to nutritive, energy and electrolyte balance. Fine tuning of the gustatory system is also crucial in this respect. The exact mechanisms that fine tune taste sensitivity are as of yet poorly defined, but it is clear that various effects of saliva on taste recognition are also involved. Specifically those metabolic polypeptides present in the saliva that were classically considered to be gut and appetite hormones (i.e., leptin, ghrelin, insulin, neuropeptide Y, peptide YY) were considered to play a pivotal role. Besides these, data clearly indicate the major role of several other salivary proteins, such as salivary carbonic anhydrase (gustin), proline-rich proteins, cystatins, alpha-amylases, histatins, salivary albumin and mucins. Other proteins like glucagon-like peptide-1, salivary immunoglobulin-A, zinc-α-2-glycoprotein, salivary lactoperoxidase, salivary prolactin-inducible protein and salivary molecular chaperone HSP70/HSPAs were also expected to play an important role. Furthermore, factors including salivary flow rate, buffer capacity and ionic composition of saliva should also be considered. In this paper, the current state of research related to the above and the overall emerging field of taste-related salivary research alongside basic principles of taste perception is reviewed.
Collapse
|
37
|
Glendinning JI, Elson AET, Kalik S, Sosa Y, Patterson CM, Myers MG, Munger SD. Taste responsiveness to sweeteners is resistant to elevations in plasma leptin. Chem Senses 2015; 40:223-31. [PMID: 25740302 DOI: 10.1093/chemse/bju075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
There is uncertainty about the relationship between plasma leptin and sweet taste in mice. Whereas 2 studies have reported that elevations in plasma leptin diminish responsiveness to sweeteners, another found that they enhanced responsiveness to sucrose. We evaluated the impact of plasma leptin on sweet taste in C57BL/6J (B6) and leptin-deficient ob/ob mice. Although mice expressed the long-form leptin receptor (LepRb) selectively in Type 2 taste cells, leptin failed to activate a critical leptin-signaling protein, STAT3, in taste cells. Similarly, we did not observe any impact of intraperitoneal (i.p.) leptin treatment on chorda tympani nerve responses to sweeteners in B6 or ob/ob mice. Finally, there was no effect of leptin treatment on initial licking responses to several sucrose concentrations in B6 mice. We confirmed that basal plasma leptin levels did not exceed 10ng/mL, regardless of time of day, physiological state, or body weight, suggesting that taste cell LepRb were not desensitized to leptin in our studies. Furthermore, i.p. leptin injections produced plasma leptin levels that exceeded those previously reported to exert taste effects. We conclude that any effect of plasma leptin on taste responsiveness to sweeteners is subtle and manifests itself only under specific experimental conditions.
Collapse
Affiliation(s)
- John I Glendinning
- Department of Biology, Barnard College, Columbia University, 3009 Broadway New York, NY 10027, USA,
| | - Amanda E T Elson
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 S. Penn St., Baltimore, MD 21201, USA
| | - Salina Kalik
- Department of Biology, Barnard College, Columbia University, 3009 Broadway New York, NY 10027, USA
| | - Yvett Sosa
- Department of Biology, Barnard College, Columbia University, 3009 Broadway New York, NY 10027, USA
| | - Christa M Patterson
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA and
| | - Martin G Myers
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA and
| | - Steven D Munger
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 S. Penn St., Baltimore, MD 21201, USA, Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, HH-495, Baltimore, MD 21201, USA
| |
Collapse
|
38
|
Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab 2015; 26:125-35. [PMID: 25662369 DOI: 10.1016/j.tem.2015.01.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
Obesity develops when energy intake exceeds energy expenditure over time. Numerous neurotransmitters, hormones, and factors have been implicated to coordinately control energy homeostasis, centrally and peripherally. However, the neuropeptide Y (NPY) system has emerged as the one with the most critical functions in this process. While NPY centrally promotes feeding and reduces energy expenditure, peptide YY (PYY) and pancreatic polypeptide (PP), the other family members, mediate satiety. Importantly, recent research has uncovered additional functions for these peptides that go beyond the simple feeding/satiety circuits and indicate a more extensive function in controlling energy homeostasis. In this review, we will discuss the actions of the NPY system in the regulation of energy balance, with a particular focus on energy expenditure.
Collapse
Affiliation(s)
- Kim Loh
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| |
Collapse
|
39
|
Persaud SJ, Bewick GA. Peptide YY: more than just an appetite regulator. Diabetologia 2014; 57:1762-9. [PMID: 24917132 DOI: 10.1007/s00125-014-3292-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/08/2014] [Indexed: 12/13/2022]
Abstract
Replenishment of beta cell mass is a key aim of novel therapeutic interventions for diabetes, and the implementation of new strategies will be aided by understanding the mechanisms employed to regulate beta cell mass under normal physiological conditions. We have recently identified a new role for the gut hormone peptide YY (PYY) and the neuropeptide Y (NPY) receptor systems in the control of beta cell survival. PYY is perhaps best known for its role in regulating appetite and body weight, but its production by islet cells, the presence of NPY receptors on islets and the demonstration that Y1 activation causes proliferation of beta cells and protects them from apoptosis, suggest a role for this peptide in modulating beta cell mass. This review introduces PYY and its potential role in glucose homeostasis, then focuses on evidence supporting the concept that PYY and NPY receptors are exciting new targets for the preservation of beta cells.
Collapse
Affiliation(s)
- Shanta J Persaud
- Division of Diabetes & Nutritional Sciences, King's College London, Guy's Campus, London, SE1 1UL, UK
| | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW To highlight recent research developments relating to the effects of, and interactions between, hormones and diet, as well as underlying mechanisms, on appetite, energy intake and body weight. For this purpose, clinically relevant English language articles were reviewed from October 2012 to April 2014. RECENT FINDINGS The mechanisms underlying nutrient-induced energy intake suppression differ between dietary protein and lipid. High-fat, energy-dense diets compromise the satiating effects of gut hormones, and, therefore, promote further overconsumption. These effects are mediated by changes in the signalling in both peripheral and central pathways, and may only be partially reversible by dietary restriction. Additional factors, including probiotics, meal-related factors (e.g., eating speed and frequency), circadian influences and gene polymorphisms, also modify energy intake and eating behaviour. SUMMARY Research continues to unravel the pathways and mechanisms underlying the nutrient-induced and diet-induced regulation of energy intake, as well as the changes, both peripherally and in the central nervous system, brought about by the consumption of high-fat, energy-dense diets. Much further work is required to translate this knowledge into novel, and effective, approaches for the management and treatment of obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Christine Feinle-Bisset
- National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Royal Adelaide Hospital, University of Adelaide Discipline of Medicine, Adelaide, South Australia, Australia
| |
Collapse
|
41
|
Merlino DJ, Blomain ES, Aing AS, Waldman SA. Gut-Brain Endocrine Axes in Weight Regulation and Obesity Pharmacotherapy. J Clin Med 2014; 3:763-94. [PMID: 26237477 PMCID: PMC4449653 DOI: 10.3390/jcm3030763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/29/2014] [Accepted: 06/16/2014] [Indexed: 12/21/2022] Open
Abstract
In recent years, the obesity epidemic has developed into a major health crisis both in the United States as well as throughout the developed world. With current treatments limited to expensive, high-risk surgery and minimally efficacious pharmacotherapy, new therapeutic options are urgently needed to combat this alarming trend. This review focuses on the endogenous gut-brain signaling axes that regulate appetite under physiological conditions, and discusses their clinical relevance by summarizing the clinical and preclinical studies that have investigated manipulation of these pathways to treat obesity.
Collapse
Affiliation(s)
- Dante J Merlino
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA 19107, USA.
| | - Erik S Blomain
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA 19107, USA.
| | - Amanda S Aing
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA 19107, USA.
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, JAH 368, Philadelphia, PA 19107, USA.
| |
Collapse
|
42
|
Wang R, van Keeken NMA, Siddiqui S, Dijksman LM, Maudsley S, Derval D, van Dam PS, Martin B. Higher TNF-α, IGF-1, and Leptin Levels are Found in Tasters than Non-Tasters. Front Endocrinol (Lausanne) 2014; 5:125. [PMID: 25120532 PMCID: PMC4114300 DOI: 10.3389/fendo.2014.00125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/11/2014] [Indexed: 12/03/2022] Open
Abstract
Taste perception is controlled by taste cells that are present in the tongue that produce and secrete various metabolic hormones. Recent studies have demonstrated that taste receptors in tongue, gut, and pancreas are associated with local hormone secretion. The aim of this study was to determine whether there is a link between taste sensitivity and levels of circulating metabolic hormones in humans and whether taste sensitivity is potentially related to peripheral metabolic regulation. Thirty-one subjects were recruited and separated into tasters and non-tasters based on their phenol thiocarbamide (PTC) bitter taste test results. Fasting plasma and saliva were collected and levels of hormones and cytokines were assayed. We observed significant differences in both hormone levels and hormone-body mass index (BMI) correlation between tasters and non-tasters. Tasters had higher plasma levels of leptin (p = 0.05), tumor necrosis factor-α (TNF-α) (p = 0.04), and insulin-like growth factor 1 (IGF-1) (p = 0.03). There was also a trend toward increased IGF-1 levels in the saliva of tasters (p = 0.06). We found a positive correlation between plasma levels of glucose and BMI (R = 0.4999, p = 0.04) exclusively in non-tasters. In contrast, plasma C-peptide levels were found to be positively correlated to BMI (R = 0.5563, p = 0.03) in tasters. Saliva TNF-α levels were negatively correlated with BMI in tasters (R = -0.5908, p = 0.03). Our findings demonstrate that there are differences in circulating levels of leptin, TNF-α, and IGF-1 between tasters and non-tasters. These findings indicate that in addition to the regulation of food consumption, taste perception also appears to be tightly linked to circulating metabolic hormone levels. People with different taste sensitivity may respond differently to the nutrient stimulation. Further work investigating the link between taste perception and peripheral metabolic control could potentially lead to the development of novel therapies for obesity or Type 2 diabetes.
Collapse
Affiliation(s)
- Rui Wang
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - Sana Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lea M. Dijksman
- Teaching Hospital, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
| | - Diana Derval
- Better Immune System Foundation, Amsterdam, Netherlands
| | - P. Sytze van Dam
- Department of Internal Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- *Correspondence: Bronwen Martin, Metabolism Unit, National Institute on Aging, 251 Bayview Blvd., Suite 100 Room 08C009, Baltimore, MD 21224, USA e-mail:
| |
Collapse
|