1
|
Traetta ME, Vecchiarelli HA, Tremblay MÈ. Fundamental Neurochemistry Review: Lipids across microglial states. J Neurochem 2025; 169:e16259. [PMID: 39696753 DOI: 10.1111/jnc.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/20/2024]
Abstract
The capacity of immune cells to alter their function based on their metabolism is the basis of the emerging field of immunometabolism. Microglia are the resident innate immune cells of the central nervous system, and it is a current focus of the field to investigate how alterations in their metabolism impact these cells. Microglia have the ability to utilize lipids, such as fatty acids, as energy sources, but also alterations in lipids can impact microglial form and function. Recent studies highlighting different microglial states and transcriptional signatures have highlighted modifications in lipid processing as defining these states. This review highlights these recent studies and uses these altered pathways to discuss the current understanding of lipid biology in microglia. The studies highlighted here review how lipids may alter microglial phagocytic functioning or alter their pro- and anti-inflammatory balance. These studies provide a foundation by which lipid supplementation or diet alterations could influence microglial states and function. Furthermore, targets modulating microglial lipid metabolism may provide new treatment avenues.
Collapse
Affiliation(s)
- Marianela E Traetta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Haley A Vecchiarelli
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Institute for Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada
- Département de médecine moléculaire, Université Laval, Québec City, Quebec, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec City, Quebec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Cararo-Lopes MM, Sadovnik R, Fu A, Suresh S, Gandu S, Firestein BL. Overexpression of α-Klotho isoforms promotes distinct Effects on BDNF-Induced Alterations in Dendritic Morphology. Mol Neurobiol 2024; 61:9155-9170. [PMID: 38589756 PMCID: PMC11496329 DOI: 10.1007/s12035-024-04171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
α-Klotho (α-Kl) is a modulator of aging, neuroprotection, and cognition. Transcription of the Klotho gene produces two splice variants-a membrane protein (mKl), which can be cleaved and released into the extracellular milieu, and a truncated secreted form (sKl). Despite mounting evidence supporting a role for α-Kl in brain function, the specific roles of α-Kl isoforms in neuronal development remain elusive. Here, we examined α-Kl protein levels in rat brain and observed region-specific expression in the adult that differs between isoforms. In the developing hippocampus, levels of isoforms decrease after the third postnatal week, marking the end of the critical period for development. We overexpressed α-Kl isoforms in primary cultures of rat cortical neurons and evaluated effects on brain-derived neurotrophic factor (BDNF) signaling. Overexpression of either isoform attenuated BDNF-mediated signaling and reduced intracellular Ca2+ levels, with mKl promoting a greater effect. mKl or sKl overexpression in hippocampal neurons resulted in a partially overlapping reduction in secondary dendrite branching. Moreover, mKl overexpression increased primary dendrite number. BDNF treatment of neurons overexpressing sKl resulted in a dendrite branching phenotype similar to control neurons. In neurons overexpressing mKl, BDNF treatment restored branching of secondary and higher order dendrites close, but not distal, to the soma. Taken together, the data presented support the idea that sKl and mKl play distinct roles in neuronal development, and specifically, in dendrite morphogenesis.
Collapse
Affiliation(s)
- Marina Minto Cararo-Lopes
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ratchell Sadovnik
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Allen Fu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Shradha Suresh
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Srinivasa Gandu
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Feng J, Ma X, Liu Y, Shi X, Jin L, Le Y, Zhang Q, Wang C. The Role of Human Adiponectin Receptor 1 in 2-Ethylhexyl Diphenyl Phosphate Induced Lipid Metabolic Disruption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18190-18201. [PMID: 39364562 DOI: 10.1021/acs.est.4c07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Epidemiological evidence links exposure to 2-ethylhexyl diphenyl phosphate (EHDPP) with lipid metabolic disruption, typically attributed to nuclear receptors, while the role of membrane receptors remains underexplored. This study explored the role of adiponectin receptor 1 (AdipoR1) in EHDPP-induced lipid metabolic disturbances. We examined EHDPP's binding affinity and transcriptional impact on AdipoR1. AdipoR1 knockdown (AdipoR1kd) human liver cells and coculture experiments with AdipoR1 activator (AdipoRon) were used to investigate the effect and the mechanism. EHDPP disrupted triglyceride and phospholipid synthesis and altered corresponding gene expression, mirroring effects in AdipoR1kd cells but diminishing in EHDPP-treated AdipoR1kd cells. RNA sequencing revealed that EHDPP primarily disrupted oxidative phosphorylation and insulin signaling dependent on AdipoR1. Mechanistically, EHDPP interacted with AdipoR1 and reduced AdipoR1 protein levels at 10-7 mol/L or higher, weakening the activation of the calmodulin dependent protein kinase β (CaMKKβ)/AMPK/acetyl CoA carboxylase pathway. Furthermore, EHDPP pretreatment blocked the increase in Ca2+ flux and the corresponding kinase CaMKKβ, as well as liver kinase B1 (LKB1) activation induced by AdipoRon, which is necessary for AMPK activation. Collectively, these findings demonstrate that EHDPP-induced lipid imbalance is partially dependent on AdipoR1, expanding the understanding of environmental metabolic disruptors beyond nuclear receptors.
Collapse
Affiliation(s)
- Jiafan Feng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaochun Ma
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ying Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaoliu Shi
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Lingbing Jin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
4
|
Xu T, Heon-Roberts R, Moore T, Dubot P, Pan X, Guo T, Cairo CW, Holley R, Bigger B, Durcan TM, Levade T, Ausseil J, Amilhon B, Gorelik A, Nagar B, Sturiale L, Palmigiano A, Röckle I, Thiesler H, Hildebrandt H, Garozzo D, Pshezhetsky AV. Secondary deficiency of neuraminidase 1 contributes to CNS pathology in neurological mucopolysaccharidoses via hypersialylation of brain glycoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.587986. [PMID: 38712143 PMCID: PMC11071461 DOI: 10.1101/2024.04.26.587986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII are associated with lysosomal accumulation of heparan sulphate and manifest with neurological deterioration. Most of these neurological MPS currently lack effective treatments. Here, we report that, compared to controls, neuraminidase 1 (NEU1) activity is drastically reduced in brain tissues of neurological MPS patients and in mouse models of MPS I, II, IIIA, IIIB and IIIC, but not of other neurological lysosomal disorders not presenting with heparan sulphate storage. We further show that accumulated heparan sulphate disrupts the lysosomal multienzyme complex of NEU1 with cathepsin A (CTSA), β-galactosidase (GLB1) and glucosamine-6-sulfate sulfatase (GALNS) necessary to maintain enzyme activity, and that NEU1 deficiency is linked to partial deficiencies of GLB1 and GALNS in cortical tissues and iPSC-derived cortical neurons of neurological MPS patients. Increased sialylation of N-linked glycans in brain samples of human MPS III patients and MPS IIIC mice implicated insufficient processing of brain N-linked sialylated glycans, except for polysialic acid, which was reduced in the brains of MPS IIIC mice. Correction of NEU1 activity in MPS IIIC mice by lentiviral gene transfer ameliorated previously identified hallmarks of the disease, including memory impairment, behavioural traits, and reduced levels of the excitatory synapse markers VGLUT1 and PSD95. Overexpression of NEU1 also restored levels of VGLUT1-/PSD95-positive puncta in cortical neurons derived from iPSC of an MPS IIIA patient. Together, our data demonstrate that heparan sulphate-induced secondary NEU1 deficiency and aberrant sialylation of glycoproteins implicated in synaptogenesis, memory, and behaviour constitute a novel pathological pathway in neurological MPS spectrum crucially contributing to CNS pathology. Graphical abstract
Collapse
|
5
|
Wißfeld J, Abou Assale T, Cuevas-Rios G, Liao H, Neumann H. Therapeutic potential to target sialylation and SIGLECs in neurodegenerative and psychiatric diseases. Front Neurol 2024; 15:1330874. [PMID: 38529039 PMCID: PMC10961342 DOI: 10.3389/fneur.2024.1330874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Sialic acids, commonly found as the terminal carbohydrate on the glycocalyx of mammalian cells, are pivotal checkpoint inhibitors of the innate immune system, particularly within the central nervous system (CNS). Sialic acid-binding immunoglobulin-like lectins (SIGLECs) expressed on microglia are key players in maintaining microglial homeostasis by recognizing intact sialylation. The finely balanced sialic acid-SIGLEC system ensures the prevention of excessive and detrimental immune responses in the CNS. However, loss of sialylation and SIGLEC receptor dysfunctions contribute to several chronic CNS diseases. Genetic variants of SIGLEC3/CD33, SIGLEC11, and SIGLEC14 have been associated with neurodegenerative diseases such as Alzheimer's disease, while sialyltransferase ST8SIA2 and SIGLEC4/MAG have been linked to psychiatric diseases such as schizophrenia, bipolar disorders, and autism spectrum disorders. Consequently, immune-modulatory functions of polysialic acids and SIGLEC binding antibodies have been exploited experimentally in animal models of Alzheimer's disease and inflammation-induced CNS tissue damage, including retinal damage. While the potential of these therapeutic approaches is evident, only a few therapies to target either sialylation or SIGLEC receptors have been tested in patient clinical trials. Here, we provide an overview of the critical role played by the sialic acid-SIGLEC axis in shaping microglial activation and function within the context of neurodegeneration and synaptopathies and discuss the current landscape of therapies that target sialylation or SIGLECs.
Collapse
Affiliation(s)
- Jannis Wißfeld
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Tawfik Abou Assale
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - German Cuevas-Rios
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Huan Liao
- Florey Institute of Neuroscience and Mental Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Allende ML, Lee YT, Byrnes C, Li C, Tuymetova G, Bakir JY, Nicoli ER, James VK, Brodbelt JS, Tifft CJ, Proia RL. Sialidase NEU3 action on GM1 ganglioside is neuroprotective in GM1 gangliosidosis. J Lipid Res 2023; 64:100463. [PMID: 37871851 PMCID: PMC10694597 DOI: 10.1016/j.jlr.2023.100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
GM1 gangliosidosis is a neurodegenerative disorder caused by mutations in the GLB1 gene, which encodes lysosomal β-galactosidase. The enzyme deficiency blocks GM1 ganglioside catabolism, leading to accumulation of GM1 ganglioside and asialo-GM1 ganglioside (GA1 glycolipid) in brain. This disease can present in varying degrees of severity, with the level of residual β-galactosidase activity primarily determining the clinical course. Glb1 null mouse models, which completely lack β-galactosidase expression, exhibit a less severe form of the disease than expected from the comparable deficiency in humans, suggesting a potential species difference in the GM1 ganglioside degradation pathway. We hypothesized this difference may involve the sialidase NEU3, which acts on GM1 ganglioside to produce GA1 glycolipid. To test this hypothesis, we generated Glb1/Neu3 double KO (DKO) mice. These mice had a significantly shorter lifespan, increased neurodegeneration, and more severe ataxia than Glb1 KO mice. Glb1/Neu3 DKO mouse brains exhibited an increased GM1 ganglioside to GA1 glycolipid ratio compared with Glb1 KO mice, indicating that NEU3 mediated GM1 ganglioside to GA1 glycolipid conversion in Glb1 KO mice. The expression of genes associated with neuroinflammation and glial responses were enhanced in Glb1/Neu3 DKO mice compared with Glb1 KO mice. Mouse NEU3 more efficiently converted GM1 ganglioside to GA1 glycolipid than human NEU3 did. Our findings highlight NEU3's role in ameliorating the consequences of Glb1 deletion in mice, provide insights into NEU3's differential effects between mice and humans in GM1 gangliosidosis, and offer a potential therapeutic approach for reducing toxic GM1 ganglioside accumulation in GM1 gangliosidosis patients.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Y Terry Lee
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Colleen Byrnes
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cuiling Li
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Galina Tuymetova
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jenna Y Bakir
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elena-Raluca Nicoli
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Virginia K James
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | | | - Cynthia J Tifft
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Richard L Proia
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Deschenes NM, Cheng C, Khanal P, Quinville BM, Ryckman AE, Mitchell M, Pshezhetsky AV, Walia JS. Characterization of a phenotypically severe animal model for human AB-Variant GM2 gangliosidosis. Front Mol Neurosci 2023; 16:1242814. [PMID: 38098938 PMCID: PMC10720325 DOI: 10.3389/fnmol.2023.1242814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023] Open
Abstract
AB-Variant GM2 gangliosidosis (ABGM2) is a rare and lethal genetic disorder caused by mutations in the GM2A gene that lead to fatal accumulation of GM2 gangliosides (GM2) in neurons of the central nervous system (CNS). GM2A encodes a transport protein known as GM2 activator (GM2A) protein, which is essential for degrading GM2 into their GM3 form. ABGM2 presents in infantile-, juvenile-, and adult-onset forms; of the three, the infantile-onset is the most prominent, and by far the most severe, as evidenced by high levels of GM2 accumulation, widespread neurodegeneration, and death by the age of 4. Gm2a-/- mice are commonly used as a model of ABGM2. These mice are characterized by phenotypes most representative of predicted adult-onset form of ABGM2, which include moderate GM2 accumulation and mild neurological defects. This mild phenotype has been attributed to compensation by alternative GM2 degradation pathways mediated by sialidase, neuraminidase 3 (NEU3), a pathway that is more prominent in mice than humans. To assess the extent to which NEU3 contributes to GM2 degradation, we generated double knock-out (Gm2a-/-Neu3-/-) mice. Compellingly, these mice present with a clinical phenotype resembling that of a more severe ABGM2, including ataxia, reduced mobility and coordination, weight loss, poor body scores, and lethality by 6-7 months. Furthermore, these phenotypes correlate with a dramatic increase in GM2 accumulation in the CNS compared to levels observed in either Gm2a-/- or Neu3-/- mice. Taken together, these studies, for the first-time, confirm that the mild neurological phenotype of Gm2a-/- mice is due to compensatory activity on GM2 catabolism through an alternate breakdown pathway involving NEU3. These studies support the use of double knockout mice as a novel and highly relevant model for pre-clinical drug studies in a more severe form of ABGM2.
Collapse
Affiliation(s)
| | - Camilyn Cheng
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Prem Khanal
- Department of Pediatrics, Queen’s University, Kingston, ON, Canada
| | | | - Alex E. Ryckman
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Melissa Mitchell
- Department of Pediatrics, Queen’s University, Kingston, ON, Canada
| | - Alexey V. Pshezhetsky
- Centre Hospitalier Universitaire Sainte-Justine Research Centre, Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Jagdeep S. Walia
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Pediatrics, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
8
|
Kho I, Demina EP, Pan X, Londono I, Cairo CW, Sturiale L, Palmigiano A, Messina A, Garozzo D, Ung RV, Mac-Way F, Bonneil É, Thibault P, Lemaire M, Morales CR, Pshezhetsky AV. Severe kidney dysfunction in sialidosis mice reveals an essential role for neuraminidase 1 in reabsorption. JCI Insight 2023; 8:e166470. [PMID: 37698928 PMCID: PMC10619504 DOI: 10.1172/jci.insight.166470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
Sialidosis is an ultra-rare multisystemic lysosomal disease caused by mutations in the neuraminidase 1 (NEU1) gene. The severe type II form of the disease manifests with a prenatal/infantile or juvenile onset, bone abnormalities, severe neuropathology, and visceromegaly. A subset of these patients present with nephrosialidosis, characterized by abrupt onset of fulminant glomerular nephropathy. We studied the pathophysiological mechanism of the disease in 2 NEU1-deficient mouse models, a constitutive Neu1-knockout, Neu1ΔEx3, and a conditional phagocyte-specific knockout, Neu1Cx3cr1ΔEx3. Mice of both strains exhibited terminal urinary retention and severe kidney damage with elevated urinary albumin levels, loss of nephrons, renal fibrosis, presence of storage vacuoles, and dysmorphic mitochondria in the intraglomerular and tubular cells. Glycoprotein sialylation in glomeruli, proximal distal tubules, and distal tubules was drastically increased, including that of an endocytic reabsorption receptor megalin. The pool of megalin bearing O-linked glycans with terminal galactose residues, essential for protein targeting and activity, was reduced to below detection levels. Megalin levels were severely reduced, and the protein was directed to lysosomes instead of the apical membrane. Together, our results demonstrated that desialylation by NEU1 plays a crucial role in processing and cellular trafficking of megalin and that NEU1 deficiency in sialidosis impairs megalin-mediated protein reabsorption.
Collapse
Affiliation(s)
- Ikhui Kho
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Ekaterina P. Demina
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
| | - Xuefang Pan
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
| | - Irene Londono
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
| | | | - Luisa Sturiale
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Angelo Palmigiano
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Angela Messina
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Domenico Garozzo
- CNR, Institute for Polymers, Composites and Biomaterials, Catania, Italy
| | - Roth-Visal Ung
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital, Faculty and Department of Medicine, University Laval, Québec City, Québec, Canada
| | - Fabrice Mac-Way
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital, Faculty and Department of Medicine, University Laval, Québec City, Québec, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Québec, Canada
| | - Mathieu Lemaire
- Division of Nephrology, The Hospital for Sick Kids, Faculty of Medicine, University of Toronto, Ontario, Canada
- Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Alexey V. Pshezhetsky
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
9
|
Mijdam R, Bijnagte-Schoenmaker C, Dyke E, Moons SJ, Boltje TJ, Nadif Kasri N, Lefeber DJ. Sialic acid biosynthesis pathway blockade disturbs neuronal network formation in human iPSC-derived excitatory neurons. J Neurochem 2023; 167:76-89. [PMID: 37650222 DOI: 10.1111/jnc.15934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
N-acetylneuraminic acid (sialic acid) is present in large quantities in the brain and plays a crucial role in brain development, learning, and memory formation. How sialic acid contributes to brain development is not fully understood. The purpose of this study was to determine the effects of reduced sialylation on network formation in human iPSC-derived neurons (iNeurons). Using targeted mass spectrometry and antibody binding, we observed an increase in free sialic acid and polysialic acid during neuronal development, which was disrupted by treatment of iNeurons with a synthetic inhibitor of sialic acid biosynthesis. Sialic acid inhibition disturbed synapse formation and network formation on microelectrode array (MEA), showing short but frequent (network) bursts and an overall lower firing rate, and higher percentage of random spikes. This study shows that sialic acid is necessary for neuronal network formation during human neuronal development and provides a physiologically relevant model to study the role of sialic acid in patient-derived iNeurons.
Collapse
Affiliation(s)
- Rachel Mijdam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| | - Chantal Bijnagte-Schoenmaker
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| | - Emma Dyke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| | - Sam J Moons
- Synvenio B.V. Mercator 2, Nijmegen, the Netherlands
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Okun S, Peek A, Igdoura SA. Neuraminidase 4 (NEU4): new biological and physiological player. Glycobiology 2023; 33:182-187. [PMID: 36728702 DOI: 10.1093/glycob/cwad008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/20/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Sialidases are found in viruses, bacteria, fungi, avians, and mammals. Mammalian sialidases differ in their specificity, optimum pH, subcellular localization, and tissue expression. To date, four genes encoding mammalian sialidases (NEU1-4) have been cloned. This review examines the functional impact of NEU4 sialidase on complex physiological and cellular processes. The intracellular localization and trafficking of NEU4 and its potential target molecules are discussed along with its impact on cancer, lysosomal storage disease, and cellular differentiation. Modulation of NEU4 expression may be essential not only for the breakdown of sialylated glycoconjugates, but also in the activation or inactivation of functionally important cellular events.
Collapse
Affiliation(s)
- Sarah Okun
- Department of Biology , McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Allyson Peek
- Department of Biology , McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Suleiman A Igdoura
- Department of Biology , McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
11
|
Sandhoff R, Sandhoff K. Neuronal Ganglioside and Glycosphingolipid (GSL) Metabolism and Disease : Cascades of Secondary Metabolic Errors Can Generate Complex Pathologies (in LSDs). ADVANCES IN NEUROBIOLOGY 2023; 29:333-390. [PMID: 36255681 DOI: 10.1007/978-3-031-12390-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glycosphingolipids (GSLs) are a diverse group of membrane components occurring mainly on the surfaces of mammalian cells. They and their metabolites have a role in intercellular communication, serving as versatile biochemical signals (Kaltner et al, Biochem J 476(18):2623-2655, 2019) and in many cellular pathways. Anionic GSLs, the sialic acid containing gangliosides (GGs), are essential constituents of neuronal cell surfaces, whereas anionic sulfatides are key components of myelin and myelin forming oligodendrocytes. The stepwise biosynthetic pathways of GSLs occur at and lead along the membranes of organellar surfaces of the secretory pathway. After formation of the hydrophobic ceramide membrane anchor of GSLs at the ER, membrane-spanning glycosyltransferases (GTs) of the Golgi and Trans-Golgi network generate cell type-specific GSL patterns for cellular surfaces. GSLs of the cellular plasma membrane can reach intra-lysosomal, i.e. luminal, vesicles (ILVs) by endocytic pathways for degradation. Soluble glycoproteins, the glycosidases, lipid binding and transfer proteins and acid ceramidase are needed for the lysosomal catabolism of GSLs at ILV-membrane surfaces. Inherited mutations triggering a functional loss of glycosylated lysosomal hydrolases and lipid binding proteins involved in GSL degradation cause a primary lysosomal accumulation of their non-degradable GSL substrates in lysosomal storage diseases (LSDs). Lipid binding proteins, the SAPs, and the various lipids of the ILV-membranes regulate GSL catabolism, but also primary storage compounds such as sphingomyelin (SM), cholesterol (Chol.), or chondroitin sulfate can effectively inhibit catabolic lysosomal pathways of GSLs. This causes cascades of metabolic errors, accumulating secondary lysosomal GSL- and GG- storage that can trigger a complex pathology (Breiden and Sandhoff, Int J Mol Sci 21(7):2566, 2020).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Konrad Sandhoff
- LIMES, c/o Kekule-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
12
|
Pan X, Taherzadeh M, Bose P, Heon-Roberts R, Nguyen AL, Xu T, Pará C, Yamanaka Y, Priestman DA, Platt FM, Khan S, Fnu N, Tomatsu S, Morales CR, Pshezhetsky AV. Glucosamine amends CNS pathology in mucopolysaccharidosis IIIC mouse expressing misfolded HGSNAT. J Exp Med 2022; 219:e20211860. [PMID: 35704026 PMCID: PMC9204472 DOI: 10.1084/jem.20211860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/26/2022] [Accepted: 05/02/2022] [Indexed: 02/03/2023] Open
Abstract
The majority of mucopolysaccharidosis IIIC (MPS IIIC) patients have missense variants causing misfolding of heparan sulfate acetyl-CoA:α-glucosaminide N-acetyltransferase (HGSNAT), which are potentially treatable with pharmacological chaperones. To test this approach, we generated a novel HgsnatP304L mouse model expressing misfolded HGSNAT Pro304Leu variant. HgsnatP304L mice present deficits in short-term and working/spatial memory 2-4 mo earlier than previously described constitutive knockout Hgsnat-Geo mice. HgsnatP304L mice also show augmented severity of neuroimmune response, synaptic deficits, and neuronal storage of misfolded proteins and gangliosides compared with Hgsnat-Geo mice. Expression of misfolded human Pro311Leu HGSNAT protein in cultured hippocampal Hgsnat-Geo neurons further reduced levels of synaptic proteins. Memory deficits and majority of brain pathology were rescued in mice receiving HGSNAT chaperone, glucosamine. Our data for the first time demonstrate dominant-negative effects of misfolded HGSNAT Pro304Leu variant and show that they are treatable by oral administration of glucosamine. This suggests that patients affected with mutations preventing normal folding of the enzyme can benefit from chaperone therapy.
Collapse
Affiliation(s)
- Xuefang Pan
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Mahsa Taherzadeh
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Poulomee Bose
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Rachel Heon-Roberts
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Annie L.A. Nguyen
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - TianMeng Xu
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Camila Pará
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | | | | | - Shaukat Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Nidhi Fnu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Alexey V. Pshezhetsky
- Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Howlader MA, Demina EP, Samarani S, Guo T, Caillon A, Ahmad A, Pshezhetsky AV, Cairo CW. The Janus-like role of neuraminidase isoenzymes in inflammation. FASEB J 2022; 36:e22285. [PMID: 35363389 PMCID: PMC9323473 DOI: 10.1096/fj.202101218r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 01/13/2023]
Abstract
The processes of activation, extravasation, and migration of immune cells to a site are early and essential steps in the induction of an acute inflammatory response. These events are an essential part of the inflammatory cascade, which involves multiple regulatory steps. Using a murine air pouch model of inflammation with LPS as an inflammation inducer, we demonstrate that isoenzymes of the neuraminidase family (NEU1, 3, and 4) play essential roles in these processes by acting as positive or negative regulators of leukocyte infiltration. In genetically knocked‐out (KO) mice for different NEU genes (Neu1 KO, Neu3 KO, Neu4 KO, and Neu3/4 double KO mice) with LPS‐induced air pouch inflammation, leukocytes at the site of inflammation were counted, and the inflamed tissue was analyzed using immunohistochemistry. Our data show that leukocyte recruitment was decreased in NEU1‐ and NEU3‐deficient mice, while it was increased in NEU4‐deficient animals. Consistent with these results, systemic as well as pouch exudate levels of pro‐inflammatory cytokines were reduced in Neu1 and increased in Neu4 KO mice. Pharmacological inhibitors specific for NEU1, NEU3, and NEU4 isoforms also affected leukocyte recruitment. Together our data demonstrate that NEU isoenzymes have distinct—and even opposing—effects on leukocyte recruitment, and therefore warrant further investigation to determine their mechanisms and importance as regulators of the inflammatory cascade.
Collapse
Affiliation(s)
- Md Amran Howlader
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ekaterina P Demina
- Division of Medical Genetics, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Suzanne Samarani
- Department of Microbiology, Infectious Diseases & Immunology, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Tianlin Guo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Antoine Caillon
- Division of Medical Genetics, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Ali Ahmad
- Department of Microbiology, Infectious Diseases & Immunology, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Alexey V Pshezhetsky
- Division of Medical Genetics, Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
14
|
Sialidase neu4 deficiency is associated with neuroinflammation in mice. Glycoconj J 2021; 38:649-667. [PMID: 34686927 DOI: 10.1007/s10719-021-10017-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/11/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Sialidases catalyze the removal of sialic acid residues from glycoproteins, oligosaccharides, and sialylated glycolipids. Sialidase Neu4 is in the lysosome and has broad substrate specificity. Previously generated Neu4-/- mice were viable, fertile and lacked gross morphological abnormalities, but displayed a marked vacuolization and lysosomal storage in lung and spleen cells. In addition, we showed that there is an increased level of GD1a ganglioside and a markedly decreased level of GM1 ganglioside in the brain of Neu4-/- mice. In this study, we further explored whether sialidase Neu4 deficiency causes neuroinflammation. We demostrated that elevated level of GD1a and GT1b is associated with an increased level of LAMP1-positive lysosomal vesicles and Tunel-positive neurons correlated with alterations in the expression of cytokines and chemokines in adult Neu4-/- mice. Astrogliosis and microgliosis were also significantly enhanced in the hippocampus, and cerebellum. These changes in brain immunity were accompanied by motor impairment in these mice. Our results indicate that sialidase Neu4 is a novel mediator of an inflammatory response in the mouse brain due to the altered catabolism of gangliosides.
Collapse
|
15
|
Niedzwiedz-Massey VM, Douglas JC, Rafferty T, Wight PA, Kane CJM, Drew PD. Ethanol modulation of hippocampal neuroinflammation, myelination, and neurodevelopment in a postnatal mouse model of fetal alcohol spectrum disorders. Neurotoxicol Teratol 2021; 87:107015. [PMID: 34256161 PMCID: PMC8440486 DOI: 10.1016/j.ntt.2021.107015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are alarmingly common and result in significant personal and societal loss. Neuropathology of the hippocampus is common in FASD leading to aberrant cognitive function. In the current study, we evaluated the effects of ethanol on the expression of a targeted set of molecules involved in neuroinflammation, myelination, neurotransmission, and neuron function in the developing hippocampus in a postnatal model of FASD. Mice were treated with ethanol from P4-P9, hippocampi were isolated 24 h after the final treatment at P10, and mRNA levels were quantitated by qRT-PCR. We evaluated the effects of ethanol on both pro-inflammatory and anti-inflammatory molecules in the hippocampus and identified novel mechanisms by which ethanol induces neuroinflammation. We further demonstrated that ethanol decreased expression of molecules associated with mature oligodendrocytes and greatly diminished expression of a lacZ reporter driven by the first half of the myelin proteolipid protein (PLP) gene (PLP1). In addition, ethanol caused a decrease in genes expressed in oligodendrocyte progenitor cells (OPCs). Together, these studies suggest ethanol may modulate pathogenesis in the developing hippocampus through effects on cells of the oligodendrocyte lineage, resulting in altered oligodendrogenesis and myelination. We also observed differential expression of molecules important in synaptic plasticity, neurogenesis, and neurotransmission. Collectively, the molecules evaluated in these studies may play a role in ethanol-induced pathology in the developing hippocampus and contribute to cognitive impairment associated with FASD. A better understanding of these molecules and their effects on the developing hippocampus may lead to novel treatment strategies for FASD.
Collapse
Affiliation(s)
- Victoria M Niedzwiedz-Massey
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - James C Douglas
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Tonya Rafferty
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patricia A Wight
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
16
|
Liao H, Winkler J, Wißfeld J, Shahraz A, Klaus C, Neumann H. Low molecular weight polysialic acid prevents lipopolysaccharide-induced inflammatory dopaminergic neurodegeneration in humanized SIGLEC11 transgenic mice. Glia 2021; 69:2845-2862. [PMID: 34406679 DOI: 10.1002/glia.24073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
Parkinson's disease is one of the most common neurodegenerative diseases in the elderly population, with a pathophysiology linked to neuroinflammation, complement activation, and oxidative damage. Soluble polysialic acid with an average degree of polymerization 20 (polySia avDP20) prevents inflammation and oxidative burst in human macrophages via sialic acid-binding immunoglobulin like lectin-11 (SIGLEC11) receptor and interferes with alternative complement activation. Here, we confirmed the anti-inflammatory capacity of polySia avDP20 on cultured murine embryonic stem cell-derived microglia and analyzed the effect of polySia avDP20 in a lipopolysaccharide-triggered animal model of Parkinson's disease. We demonstrated a neuroprotective effect of intraperitoneally applied polySia avDP20 in humanized SIGLEC11 transgenic mice after repeated systemic challenge with lipopolysaccharide. Pathway enrichment analysis of the brain transcriptome on day 19 after disease initiation showed that intraperitoneal application of 10 μg/g body weight polySia avDP20 prevented excessive inflammation. In line with these data, polySia avDP20 attenuated the lipopolysaccharide-triggered increase in mRNA levels of immune-related genes (Il1b, Cd14, Myd88, Fcer1g, Itgam, C4, Cybb, Iba1 and Cd68) and cell death-related genes (Casp8, Ripk1 and Ripk3) in the brains of SIGLEC11 transgenic mice on day 19, but not on day 5. Moreover, immunohistochemistry demonstrated that polySia avDP20 reduced the lipopolysaccharide-induced increase in immunoreactivity of IBA1 and CD68 in the substantia nigra pars reticulata in SIGLEC11 transgenic and wild type mice on day 19. Furthermore, treatment with polySia avDP20 prevented the loss of dopaminergic neurons in the substantia nigra pars compacta induced by lipopolysaccharide challenge in both SIGLEC11 transgenic and wild type mice on day 19. Thus, our data demonstrate that polySia avDP20 ameliorates inflammatory dopaminergic neurodegeneration and therefore is a promising drug candidate to prevent Parkinson's disease-related inflammation and neurodegeneration.
Collapse
Affiliation(s)
- Huan Liao
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Jonas Winkler
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Jannis Wißfeld
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Anahita Shahraz
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Christine Klaus
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Harald Neumann
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Yu W, Ying J, Wang X, Liu X, Zhao T, Yoon S, Zheng Q, Fang Y, Yang D, Hua F. The Involvement of Lactosylceramide in Central Nervous System Inflammation Related to Neurodegenerative Disease. Front Aging Neurosci 2021; 13:691230. [PMID: 34349634 PMCID: PMC8326838 DOI: 10.3389/fnagi.2021.691230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases are a class of slow-progressing terminal illnesses characterized by neuronal lesions, such as multiple sclerosis [MS, Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS)]. Their incidence increases with age, and the associated burden on families and society will become increasingly more prominent with aging of the general population. In recent years, there is growing studies have shown that lactosylceramide (LacCer) plays a crucial role in the progression of neurodegeneration, although these diseases have different pathogenic mechanisms and etiological characteristics. Based on latest research progress, this study expounds the pathogenic role of LacCer in driving central nervous system (CNS) inflammation, as well as the role of membrane microstructure domain (lipid rafts) and metabolite gangliosides, and discusses in detail their links with the pathogenesis of neurodegenerative diseases, with a view to providing new strategies and ideas for the study of pathological mechanisms and drug development for neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Wen Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Tiancheng Zhao
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Sungtae Yoon
- Helping Minds International Charitable Foundation, New York, NY, United States
| | - Qingcui Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Danying Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
18
|
Neu1 deficiency induces abnormal emotional behavior in zebrafish. Sci Rep 2021; 11:13477. [PMID: 34188220 PMCID: PMC8241872 DOI: 10.1038/s41598-021-92778-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
NEU1 sialidase hydrolyzes sialic acids from glycoconjugates in lysosomes. Deficiency of NEU1 causes sialidosis with symptoms including facial dysmorphism, bone dysplasia, and neurodegeneration. However, the effects of NEU1 deficiency on emotional activity have not been explored. Here, we conducted the behavioral analysis using Neu1-knockout zebrafish (Neu1-KO). Neu1-KO zebrafish showed normal swimming similar to wild-type zebrafish (WT), whereas shoaling was decreased and accompanied by greater inter-fish distance than WT zebrafish. The aggression test showed a reduced aggressive behavior in Neu1-KO zebrafish than in WT zebrafish. In the mirror and 3-chambers test, Neu1-KO zebrafish showed more interest toward the opponent in the mirror and multiple unfamiliar zebrafish, respectively, than WT zebrafish. Furthermore, Neu1-KO zebrafish also showed increased interaction with different fish species, whereas WT zebrafish avoided them. In the black-white preference test, Neu1-KO zebrafish showed an abnormal preference for the white region, whereas WT zebrafish preferred the black region. Neu1-KO zebrafish were characterized by a downregulation of the anxiety-related genes of the hypothalamic-pituitary-adrenal axis and upregulation of lamp1a, an activator of lysosomal exocytosis, with their brains accumulating several sphingoglycolipids. This study revealed that Neu1 deficiency caused abnormal emotional behavior in zebrafish, possibly due to neuronal dysfunction induced by lysosomal exocytosis.
Collapse
|
19
|
Lunghi G, Fazzari M, Di Biase E, Mauri L, Chiricozzi E, Sonnino S. The structure of gangliosides hides a code for determining neuronal functions. FEBS Open Bio 2021; 11:3193-3200. [PMID: 34003598 PMCID: PMC8634855 DOI: 10.1002/2211-5463.13197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/14/2021] [Indexed: 11/07/2022] Open
Abstract
Gangliosides are particularly abundant in the central nervous system, where they are mainly associated with the synaptic membranes. Their structure underlies a specific role in determining several cell physiological processes of the nervous system. The high number of different gangliosides available in nature suggests that their structure, related to both the hydrophobic and hydrophilic portion of the molecule, defines a code, although not completely understood, that through hydrophobic interactions and hydrogen bonds allows the transduction of signals starting at the plasma membranes. In this short review, we describe some structural aspects responsible for the role played by gangliosides in maintaining and determining neuronal functions.
Collapse
Affiliation(s)
- Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Maria Fazzari
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Erika Di Biase
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Italy
| |
Collapse
|
20
|
Bocquet O, Wahart A, Sarazin T, Vincent E, Schneider C, Fougerat A, Gayral S, Henry A, Blaise S, Romier-Crouzet B, Boulagnon C, Jaisson S, Gillery P, Bennasroune A, Sartelet H, Laffargue M, Martiny L, Duca L, Maurice P. Adverse Effects of Oseltamivir Phosphate Therapy on the Liver of LDLR-/- Mice Without Any Benefit on Atherosclerosis and Thrombosis. J Cardiovasc Pharmacol 2021; 77:660-672. [PMID: 33760798 DOI: 10.1097/fjc.0000000000001002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
ABSTRACT Desialylation, governed by sialidases or neuraminidases, is strongly implicated in a wide range of human disorders, and accumulative data show that inhibition of neuraminidases, such as neuraminidases 1 sialidase, may be useful for managing atherosclerosis. Several studies have reported promising effects of oseltamivir phosphate, a widely used anti-influenza sialidase inhibitor, on human cancer cells, inflammation, and insulin resistance. In this study, we evaluated the effects of oseltamivir phosphate on atherosclerosis and thrombosis and potential liver toxicity in LDLR-/- mice fed with high-fat diet. Our results showed that oseltamivir phosphate significantly decreased plasma levels of LDL cholesterol and elastin fragmentation in aorta. However, no effect was observed on both atherosclerotic plaque size in aortic roots and chemically induced thrombosis in carotid arteries. Importantly, oseltamivir phosphate administration had adverse effects on the liver of mice and significantly increased messenger RNA expression levels of F4/80, interleukin-1β, transforming growth factor-β1, matrix metalloproteinase-12, and collagen. Taken together, our findings suggest that oseltamivir phosphate has limited benefits on atherosclerosis and carotid thrombosis and may lead to adverse side effects on the liver with increased inflammation and fibrosis.
Collapse
Affiliation(s)
- Olivier Bocquet
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Amandine Wahart
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Thomas Sarazin
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Elise Vincent
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Christophe Schneider
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Anne Fougerat
- INSERM UMR1048 I2MC, Université Paul Sabatier, Toulouse, France
| | | | - Aubéri Henry
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Sébastien Blaise
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Béatrice Romier-Crouzet
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Camille Boulagnon
- Laboratoire d'anatomie et de Cytologie Pathologique, Hôpital Robert Debré, CHU de Reims; and
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
- Department of Biochemistry-Pharmacology-Toxicology, University Hospital of Reims, Reims, France
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
- Department of Biochemistry-Pharmacology-Toxicology, University Hospital of Reims, Reims, France
| | - Amar Bennasroune
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Hervé Sartelet
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | | | - Laurent Martiny
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| |
Collapse
|
21
|
Huizing M, Hackbarth ME, Adams DR, Wasserstein M, Patterson MC, Walkley SU, Gahl WA. Free sialic acid storage disorder: Progress and promise. Neurosci Lett 2021; 755:135896. [PMID: 33862140 DOI: 10.1016/j.neulet.2021.135896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022]
Abstract
Lysosomal free sialic acid storage disorder (FSASD) is an extremely rare, autosomal recessive, neurodegenerative, multisystemic disorder caused by defects in the lysosomal sialic acid membrane exporter SLC17A5 (sialin). SLC17A5 defects cause free sialic acid and some other acidic hexoses to accumulate in lysosomes, resulting in enlarged lysosomes in some cell types and 10-100-fold increased urinary excretion of free sialic acid. Clinical features of FSASD include coarse facial features, organomegaly, and progressive neurodegenerative symptoms with cognitive impairment, cerebellar ataxia and muscular hypotonia. Central hypomyelination with cerebellar atrophy and thinning of the corpus callosum are also prominent disease features. Around 200 FSASD cases are reported worldwide, with the clinical spectrum ranging from a severe infantile onset form, often lethal in early childhood, to a mild, less severe form with subjects living into adulthood, also called Salla disease. The pathobiology of FSASD remains poorly understood and FSASD is likely underdiagnosed. Known patients have experienced a diagnostic delay due to the rarity of the disorder, absence of routine urine sialic acid testing, and non-specific clinical symptoms, including developmental delay, ataxia and infantile hypomyelination. There is no approved therapy for FSASD. We initiated a multidisciplinary collaborative effort involving worldwide academic clinical and scientific FSASD experts, the National Institutes of Health (USA), and the FSASD patient advocacy group (Salla Treatment and Research [S.T.A.R.] Foundation) to overcome the scientific, clinical and financial challenges facing the development of new treatments for FSASD. We aim to collect data that incentivize industry to further develop, obtain approval for, and commercialize FSASD treatments. This review summarizes current aspects of FSASD diagnosis, prevalence, etiology, and disease models, as well as challenges on the path to therapeutic approaches for FSASD.
Collapse
Affiliation(s)
- Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States.
| | - Mary E Hackbarth
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - David R Adams
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Melissa Wasserstein
- Departments of Pediatrics and Genetics, The Children's Hospital at Montefiore, Bronx, NY, 10467, United States; Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Marc C Patterson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, United States
| | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | | |
Collapse
|
22
|
Lorenz L, Amann B, Hirmer S, Degroote RL, Hauck SM, Deeg CA. NEU1 is more abundant in uveitic retina with concomitant desialylation of retinal cells. Glycobiology 2021; 31:873-883. [PMID: 33677598 DOI: 10.1093/glycob/cwab014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Desialylation of cell surface glycoproteins carried out by sialidases affects various immunological processes. However, the role of neuraminidase 1 (NEU1), one of four mammalian sialidases, in inflammation and autoimmune disease is not completely unraveled to date. In this study, we analyzed retinal expression of NEU1 in equine recurrent uveitis (ERU), a spontaneous animal model for autoimmune uveitis. Mass spectrometry revealed significantly higher abundance of NEU1 in retinal Müller glial cells (RMG) of ERU-diseased horses compared to healthy controls. Immunohistochemistry uncovered NEU1 expression along the whole Müller cell body in healthy and uveitic state and confirmed higher abundance in inflamed retina. Müller glial cells are the principal macroglial cells of the retina and play a crucial role in uveitis pathogenesis. To determine whether higher expression levels of NEU1 in uveitic RMG correlate with desialylation of retinal cells, we performed lectin binding assays with sialic acid-specific lectins. Through these experiments we could demonstrate a profound loss of both α2-3- and α2-6-linked terminal sialic acids in uveitis. Hence, we hypothesize that higher abundance of NEU1 in uveitic RMG plays an important role in the pathogenesis of uveitis by desialylation of retinal cells. As RMG become activated in the course of uveitis and actively promote inflammation, we propose that NEU1 might represent a novel activation marker for inflammatory RMG. Our data provide novel insights in the expression and implication of NEU1 in inflammation and autoimmune disease.
Collapse
Affiliation(s)
- Lea Lorenz
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Barbara Amann
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Sieglinde Hirmer
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 80939 Munich, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| |
Collapse
|
23
|
Demina EP, Smutova V, Pan X, Fougerat A, Guo T, Zou C, Chakraberty R, Snarr BD, Shiao TC, Roy R, Orekhov AN, Miyagi T, Laffargue M, Sheppard DC, Cairo CW, Pshezhetsky AV. Neuraminidases 1 and 3 Trigger Atherosclerosis by Desialylating Low-Density Lipoproteins and Increasing Their Uptake by Macrophages. J Am Heart Assoc 2021; 10:e018756. [PMID: 33554615 PMCID: PMC7955353 DOI: 10.1161/jaha.120.018756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Chronic vascular disease atherosclerosis starts with an uptake of atherogenic modified low-density lipoproteins (LDLs) by resident macrophages, resulting in formation of arterial fatty streaks and eventually atheromatous plaques. Increased plasma sialic acid levels, increased neuraminidase activity, and reduced sialic acid LDL content have been previously associated with atherosclerosis and coronary artery disease in human patients, but the mechanism underlying this association has not been explored. Methods and Results We tested the hypothesis that neuraminidases contribute to development of atherosclerosis by removing sialic acid residues from glycan chains of the LDL glycoprotein and glycolipids. Atherosclerosis progression was investigated in apolipoprotein E and LDL receptor knockout mice with genetic deficiency of neuraminidases 1, 3, and 4 or those treated with specific neuraminidase inhibitors. We show that desialylation of the LDL glycoprotein, apolipoprotein B 100, by human neuraminidases 1 and 3 increases the uptake of human LDL by human cultured macrophages and by macrophages in aortic root lesions in Apoe-/- mice via asialoglycoprotein receptor 1. Genetic inactivation or pharmacological inhibition of neuraminidases 1 and 3 significantly delays formation of fatty streaks in the aortic root without affecting the plasma cholesterol and LDL levels in Apoe-/- and Ldlr-/- mouse models of atherosclerosis. Conclusions Together, our results suggest that neuraminidases 1 and 3 trigger the initial phase of atherosclerosis and formation of aortic fatty streaks by desialylating LDL and increasing their uptake by resident macrophages.
Collapse
Affiliation(s)
- Ekaterina P Demina
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Victoria Smutova
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Xuefang Pan
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Anne Fougerat
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| | - Tianlin Guo
- Department of Chemistry University of Alberta Edmonton Alberta Canada
| | - Chunxia Zou
- Department of Chemistry University of Alberta Edmonton Alberta Canada
| | | | - Brendan D Snarr
- Departments of Medicine, Microbiology and Immunology McGill University Montreal Quebec Canada
| | - Tze C Shiao
- Department of Chemistry Université du Québec à Montréal Montreal Quebec Canada
| | - Rene Roy
- Department of Chemistry Université du Québec à Montréal Montreal Quebec Canada
| | | | - Taeko Miyagi
- Miyagi Cancer Center Research Institute Natori Miyagi Japan
| | - Muriel Laffargue
- Institut National de la Santé et de la Recherche MédicaleUMR 1048Institute of Metabolic and Cardiovascular Diseases Toulouse France
| | - Donald C Sheppard
- Departments of Medicine, Microbiology and Immunology McGill University Montreal Quebec Canada
| | | | - Alexey V Pshezhetsky
- Departments of Pediatrics and Biochemistry Sainte-Justine University Hospital Research CenterUniversity of Montreal Quebec Canada
| |
Collapse
|
24
|
An iPSC-based neural model of sialidosis uncovers glycolytic impairment-causing presynaptic dysfunction and deregulation of Ca 2+ dynamics. Neurobiol Dis 2021; 152:105279. [PMID: 33516873 DOI: 10.1016/j.nbd.2021.105279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Sialidosis is a neuropathic lysosomal storage disease caused by a deficiency in the NEU1 gene-encoding lysosomal neuraminidase and characterized by abnormal accumulation of undigested sialyl-oligoconjugates in systemic organs including brain. Although patients exhibit neurological symptoms, the underlying neuropathological mechanism remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) from skin fibroblasts with sialidosis and induced the differentiation into neural progenitor cells (NPCs) and neurons. Sialidosis NPCs and neurons mimicked the disease-like phenotypes including reduced neuraminidase activity, accumulation of sialyl-oligoconjugates and lysosomal expansions. Functional analysis also revealed that sialidosis neurons displayed two distinct abnormalities, defective exocytotic glutamate release and augmented α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR)-mediated Ca2+ influx. These abnormalities were restored by overexpression of the wild-type NEU1 gene, demonstrating causative role of neuraminidase deficiency in functional impairments of disease neurons. Comprehensive proteomics analysis revealed the significant reduction of SNARE proteins and glycolytic enzymes in synaptosomal fraction, with downregulation of ATP production. Bypassing the glycolysis by treatment of pyruvate, which is final metabolite of glycolysis pathway, improved both the synaptsomal ATP production and the exocytotic function. We also found that upregulation of AMPAR and L-type voltage dependent Ca2+ channel (VDCC) subunits in disease neurons, with the restoration of AMPAR-mediated Ca2+ over-load by treatment of antagonists for the AMPAR and L-type VDCC. Our present study provides new insights into both the neuronal pathophysiology and potential therapeutic strategy for sialidosis.
Collapse
|
25
|
Klaus C, Liao H, Allendorf DH, Brown GC, Neumann H. Sialylation acts as a checkpoint for innate immune responses in the central nervous system. Glia 2020; 69:1619-1636. [PMID: 33340149 DOI: 10.1002/glia.23945] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Sialic acids are monosaccharides that normally terminate the glycan chains of cell surface glyco-proteins and -lipids in mammals, and are highly enriched in the central nervous tissue. Sialic acids are conjugated to proteins and lipids (termed "sialylation") by specific sialyltransferases, and are removed ("desialylation") by neuraminidases. Cell surface sialic acids are sensed by complement factor H (FH) to inhibit complement activation or by sialic acid-binding immunoglobulin-like lectin (SIGLEC) receptors to inhibit microglial activation, phagocytosis, and oxidative burst. In contrast, desialylation of cells enables binding of the opsonins C1, calreticulin, galectin-3, and collectins, stimulating phagocytosis of such cells. Hypersialylation is used by bacteria and cancers as camouflage to escape immune recognition, while polysialylation of neurons protects synapses and neurogenesis. Insufficient lysosomal cleavage of sialylated molecules can lead to lysosomal accumulation of lipids and aggregated proteins, which if excessive may be expelled into the extracellular space. On the other hand, desialylation of immune receptors can activate them or trigger removal of proteins. Loss of inhibitory SIGLECs or FH triggers reduced clearance of aggregates, oxidative brain damage and complement-mediated retinal damage. Thus, cell surface sialylation recognized by FH, SIGLEC, and other immune-related receptors acts as a major checkpoint inhibitor of innate immune responses in the central nervous system, while excessive cleavage of sialic acid residues and consequently removing this checkpoint inhibitor may trigger lipid accumulation, protein aggregation, inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Christine Klaus
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | - Huan Liao
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| | | | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Abstract
In this review, we focus on the metabolism of mammalian glycan-associated monosaccharides, where the vast majority of our current knowledge comes from research done during the 1960s and 1970s. Most monosaccharides enter the cell using distinct, often tissue specific transporters from the SLC2A family. If not catabolized, these monosaccharides can be activated to donor nucleotide sugars and used for glycan synthesis. Apart from exogenous and dietary sources, all monosaccharides and their associated nucleotide sugars can be synthesized de novo, using mostly glucose to produce all nine nucleotide sugars present in human cells. Today, monosaccharides are used as treatment options for a small number of rare genetic disorders and even some common conditions. Here, we cover therapeutic applications of these sugars and highlight biochemical gaps that must be revisited as we go forward.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
27
|
Yuan L, Zhao Y, Sun XL. Sialidase substrates for Sialdiase assays - activity, specificity, quantification and inhibition. Glycoconj J 2020; 37:513-531. [PMID: 32813176 DOI: 10.1007/s10719-020-09940-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 08/06/2020] [Indexed: 12/01/2022]
Abstract
Sialidases are glycosidases responsible for the removal of sialic acid (Sia) residues (desialylation) from glycan portions of either glycoproteins or glycolipids. By desialylation, sialidases are able to modulate the functionality and stability of the Sia-containing molecules and are involved in both physiological and pathological pathways. Therefore, evaluation of sialidase activity and specificity is important for understanding the biological significance of desialylation by sialidases and its function and the related molecular mechanisms of the physiological and pathological pathways. In addition, it is essential for developing novel mechanisms and approaches for disease treatment and diagnosis and pathogen detection as well. This review summarizes the most recent sialidase substrates for evaluating sialidase activity and specificity and screening sialidase inhibitors, including (i) general sialidase substrates, (ii) specific sialidase substrates, (iii) native sialidase substrates and (iv) cellular sialidase substrates. This review also provides a brief introduction of recent instrumental methods for quantifying the sialidase activity, such as UV, fluorescence, HPLC and LC-MS methods.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA.,School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yu Zhao
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH, 44115, USA.
| |
Collapse
|
28
|
Liao H, Klaus C, Neumann H. Control of Innate Immunity by Sialic Acids in the Nervous Tissue. Int J Mol Sci 2020; 21:ijms21155494. [PMID: 32752058 PMCID: PMC7432451 DOI: 10.3390/ijms21155494] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Sialic acids (Sias) are the most abundant terminal sugar residues of glycoproteins and glycolipids on the surface of mammalian cells. The nervous tissue is the organ with the highest expression level of Sias. The ‘sialylation’ of glycoconjugates is performed via sialyltransferases, whereas ‘desialylation’ is done by sialidases or is a possible consequence of oxidative damage. Sialic acid residues on the neural cell surfaces inhibit complement and microglial activation, as well as phagocytosis of the underlying structures, via binding to (i) complement factor H (CFH) or (ii) sialic acid-binding immunoglobulin-like lectin (SIGLEC) receptors. In contrast, activated microglial cells show sialidase activity that desialylates both microglia and neurons, and further stimulates innate immunity via microglia and complement activation. The desialylation conveys neurons to become susceptible to phagocytosis, as well as triggers a microglial phagocytosis-associated oxidative burst and inflammation. Dysfunctions of the ‘Sia–SIGLEC’ and/or ‘Sia–complement’ axes often lead to neurological diseases. Thus, Sias on glycoconjugates of the intact glycocalyx and its desialylation are major regulators of neuroinflammation.
Collapse
Affiliation(s)
| | | | - Harald Neumann
- Correspondence: ; Tel.: +49-228-6885-500; Fax: +49-228-6885-501
| |
Collapse
|
29
|
Puigdellívol M, Allendorf DH, Brown GC. Sialylation and Galectin-3 in Microglia-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2020; 14:162. [PMID: 32581723 PMCID: PMC7296093 DOI: 10.3389/fncel.2020.00162] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
Microglia are brain macrophages that mediate neuroinflammation and contribute to and protect against neurodegeneration. The terminal sugar residue of all glycoproteins and glycolipids on the surface of mammalian cells is normally sialic acid, and addition of this negatively charged residue is known as “sialylation,” whereas removal by sialidases is known as “desialylation.” High sialylation of the neuronal cell surface inhibits microglial phagocytosis of such neurons, via: (i) activating sialic acid receptors (Siglecs) on microglia that inhibit phagocytosis and (ii) inhibiting binding of opsonins C1q, C3, and galectin-3. Microglial sialylation inhibits inflammatory activation of microglia via: (i) activating Siglec receptors CD22 and CD33 on microglia that inhibit phagocytosis and (ii) inhibiting Toll-like receptor 4 (TLR4), complement receptor 3 (CR3), and other microglial receptors. When activated, microglia release a sialidase activity that desialylates both microglia and neurons, activating the microglia and rendering the neurons susceptible to phagocytosis. Activated microglia also release galectin-3 (Gal-3), which: (i) further activates microglia via binding to TLR4 and TREM2, (ii) binds to desialylated neurons opsonizing them for phagocytosis via Mer tyrosine kinase, and (iii) promotes Aβ aggregation and toxicity in vivo. Gal-3 and desialylation may increase in a variety of brain pathologies. Thus, Gal-3 and sialidases are potential treatment targets to prevent neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - David H Allendorf
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Lipničanová S, Chmelová D, Ondrejovič M, Frecer V, Miertuš S. Diversity of sialidases found in the human body - A review. Int J Biol Macromol 2020; 148:857-868. [PMID: 31945439 DOI: 10.1016/j.ijbiomac.2020.01.123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/31/2022]
Abstract
Sialidases are enzymes essential for numerous organisms including humans. Hydrolytic sialidases (EC 3.2.1.18), trans-sialidases and anhydrosialidases (intramolecular trans-sialidases, EC 4.2.2.15) are glycoside hydrolase enzymes that cleave the glycosidic linkage and release sialic acid residues from sialyl substrates. The paper summarizes diverse sialidases present in the human body and their potential impact on development of antiviral compounds - inhibitors of viral neuraminidases. It includes a brief overview of catalytic mechanisms of action of sialidases and describes the origin of sialidases in the human body. This is followed by description of the structure and function of sialidase families with a special focus on the GH33 and GH34 families. Various effects of sialidases on human body are also briefly described. Modulation of sialidase activity may be considered a useful tool for effective treatment of various diseases. In some cases, it is desired to completely suppress the activity of sialidases by suitable inhibitors. Specific sialidase inhibitors are useful for the treatment of influenza, epilepsy, Alzheimer's disease, diabetes, different types of cancer, or heart defects. Challenges and future directions are shortly depicted in the final part of the paper.
Collapse
Affiliation(s)
- Sabina Lipničanová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia.
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia.
| | - Vladimír Frecer
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, SK-83232 Bratislava, Slovakia; ICARST n.o., Jamnického 19, SK-84101, Bratislava, Slovakia.
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, SK-91701 Trnava, Slovakia; ICARST n.o., Jamnického 19, SK-84101, Bratislava, Slovakia.
| |
Collapse
|
31
|
Investigation of substrate specificity of sialidases with membrane mimetic glycoconjugates. Glycoconj J 2019; 37:175-185. [PMID: 31802374 DOI: 10.1007/s10719-019-09895-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/20/2019] [Accepted: 11/06/2019] [Indexed: 01/17/2023]
Abstract
Sialidases or neuraminidases play important roles in various physiological and pathological processes by cleaving terminal sialic acids (Sias) (desialylation) from the glycans of both glycoproteins and glycolipids. To understand the biological significance of desialylation by sialidases, it is important to investigate enzyme specificity with native substrate in biological membrane of cells. Herein, we report a membrane-mimicking system with liposome ganglioside conjugates containing different lipids for evaluating substrate specificity of sialidase and the lipid effect on the enzyme activity. Briefly, liposomes of phosphatidylcholine (PC) and cholesterol with ganglioside (GM3 or GM1) along with different percentage of phosphatidylserine (PS) or phosphatidylethanolamine (PE) were prepared and characterized. Their desialylation profiles with Arthrobacter ureafaciens (bacterial) sialidase and H1N1 (influenza viral) sialidase were quantified by HPLC method. A diversity of substrate preference was found for both bacterial and viral sialidase to the liposome ganglioside conjugate platform. The apparent Km and Vmax were dependent on the type of lipid. These results indicate that the intrinsic characteristics of the membrane-like system affect the sialidase specificity and activity. This biomimetic substrate provides a better tool for unravelling the substrate specificity and the biological function of sialidases and for screening of functional sialidase inhibitors as well.
Collapse
|
32
|
Aerts JMFG, Kuo CL, Lelieveld LT, Boer DEC, van der Lienden MJC, Overkleeft HS, Artola M. Glycosphingolipids and lysosomal storage disorders as illustrated by gaucher disease. Curr Opin Chem Biol 2019; 53:204-215. [PMID: 31783225 DOI: 10.1016/j.cbpa.2019.10.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
Abstract
Glycosphingolipids are important building blocks of the outer leaflet of the cell membrane. They are continuously recycled, involving fragmentation inside lysosomes by glycosidases. Inherited defects in degradation cause lysosomal glycosphingolipid storage disorders. The relatively common glycosphingolipidosis Gaucher disease is highlighted here to discuss new insights in the molecular basis and pathophysiology of glycosphingolipidoses reached by fundamental research increasingly using chemical biology tools. We discuss improvements in the detection of glycosphingolipid metabolites by mass spectrometry and review new developments in laboratory diagnosis and disease monitoring as well as therapeutic interventions.
Collapse
Affiliation(s)
- Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands.
| | - Chi-Lin Kuo
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Lindsey T Lelieveld
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Daphne E C Boer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | | | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
33
|
Huebecker M, Moloney EB, van der Spoel AC, Priestman DA, Isacson O, Hallett PJ, Platt FM. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. Mol Neurodegener 2019; 14:40. [PMID: 31703585 PMCID: PMC6842240 DOI: 10.1186/s13024-019-0339-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background Haploinsufficiency in the Gaucher disease GBA gene, which encodes the lysosomal glucocerebrosidase GBA, and ageing represent major risk factors for developing Parkinson’s disease (PD). Recently, more than fifty other lysosomal storage disorder gene variants have been identified in PD, implicating lysosomal dysfunction more broadly as a key risk factor for PD. Despite the evidence of multiple lysosomal genetic risks, it remains unclear how sphingolipid hydrolase activities, other than GBA, are altered with ageing or in PD. Moreover, it is not fully known if levels of glycosphingolipid substrates for these enzymes change in vulnerable brain regions of PD. Finally, little is known about the levels of complex gangliosides in substantia nigra which may play a significant role in ageing and PD. Methods To study sphingolipid hydrolase activities and glycosphingolipid expression in ageing and in PD, two independent cohorts of human substantia nigra tissues were obtained. Fluorescent 4-methylumbelliferone assays were used to determine multiple enzyme activities. The lysosomal GBA and non-lysosomal GBA2 activities were distinguished using the inhibitor NB-DGJ. Sensitive and quantitative normal-phase HPLC was performed to study glycosphingolipid levels. In addition, glycosphingolipid levels in cerebrospinal fluid and serum were analysed as possible biomarkers for PD. Results The present study demonstrates, in two independent cohorts of human post-mortem substantia nigra, that sporadic PD is associated with deficiencies in multiple lysosomal hydrolases (e.g. α-galactosidase and β-hexosaminidase), in addition to reduced GBA and GBA2 activities and concomitant glycosphingolipid substrate accumulation. Furthermore, the data show significant reductions in levels of complex gangliosides (e.g. GM1a) in substantia nigra, CSF and serum in ageing, PD, and REM sleep behaviour disorder, which is a strong predictor of PD. Conclusions These findings conclusively demonstrate reductions in GBA activity in the parkinsonian midbrain, and for the first time, reductions in the activity of several other sphingolipid hydrolases. Furthermore, significant reductions were seen in complex gangliosides in PD and ageing. The diminished activities of these lysosomal hydrolases, the glycosphingolipid substrate accumulation, and the reduced levels of complex gangliosides are likely major contributors to the primary development of the pathology seen in PD and related disorders with age.
Collapse
Affiliation(s)
- Mylene Huebecker
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Elizabeth B Moloney
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA
| | - Aarnoud C van der Spoel
- Departments of Pediatrics and Biochemistry & Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - David A Priestman
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA.
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, 02478, USA.
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
34
|
Wen XY, Tarailo-Graovac M, Brand-Arzamendi K, Willems A, Rakic B, Huijben K, Da Silva A, Pan X, El-Rass S, Ng R, Selby K, Philip AM, Yun J, Ye XC, Ross CJ, Lehman AM, Zijlstra F, Abu Bakar N, Drögemöller B, Moreland J, Wasserman WW, Vallance H, van Scherpenzeel M, Karbassi F, Hoskings M, Engelke U, de Brouwer A, Wevers RA, Pshezhetsky AV, van Karnebeek CD, Lefeber DJ. Sialic acid catabolism by N-acetylneuraminate pyruvate lyase is essential for muscle function. JCI Insight 2018; 3:122373. [PMID: 30568043 DOI: 10.1172/jci.insight.122373] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/14/2018] [Indexed: 11/17/2022] Open
Abstract
Sialic acids are important components of glycoproteins and glycolipids essential for cellular communication, infection, and metastasis. The importance of sialic acid biosynthesis in human physiology is well illustrated by the severe metabolic disorders in this pathway. However, the biological role of sialic acid catabolism in humans remains unclear. Here, we present evidence that sialic acid catabolism is important for heart and skeletal muscle function and development in humans and zebrafish. In two siblings, presenting with sialuria, exercise intolerance/muscle wasting, and cardiac symptoms in the brother, compound heterozygous mutations [chr1:182775324C>T (c.187C>T; p.Arg63Cys) and chr1:182772897A>G (c.133A>G; p.Asn45Asp)] were found in the N-acetylneuraminate pyruvate lyase gene (NPL). In vitro, NPL activity and sialic acid catabolism were affected, with a cell-type-specific reduction of N-acetyl mannosamine (ManNAc). A knockdown of NPL in zebrafish resulted in severe skeletal myopathy and cardiac edema, mimicking the human phenotype. The phenotype was rescued by expression of wild-type human NPL but not by the p.Arg63Cys or p.Asn45Asp mutants. Importantly, the myopathy phenotype in zebrafish embryos was rescued by treatment with the catabolic products of NPL: N-acetyl glucosamine (GlcNAc) and ManNAc; the latter also rescuing the cardiac phenotype. In conclusion, we provide the first report to our knowledge of a human defect in sialic acid catabolism, which implicates an important role of the sialic acid catabolic pathway in mammalian muscle physiology, and suggests opportunities for monosaccharide replacement therapy in human patients.
Collapse
Affiliation(s)
- Xiao-Yan Wen
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Maja Tarailo-Graovac
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Institute of Physiology and Biochemistry, Faculty of Biology, The University of Belgrade, Belgrade, Serbia.,Departments of Biochemistry, Molecular Biology, and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Koroboshka Brand-Arzamendi
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Anke Willems
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bojana Rakic
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Karin Huijben
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Afitz Da Silva
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Xuefang Pan
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada
| | - Suzan El-Rass
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Robin Ng
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Katheryn Selby
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Anju Mary Philip
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Junghwa Yun
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - X Cynthia Ye
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Colin J Ross
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Anna M Lehman
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Fokje Zijlstra
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - N Abu Bakar
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Britt Drögemöller
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver Canada
| | - Jacqueline Moreland
- Departments of Biochemistry, Molecular Biology, and Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Wyeth W Wasserman
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Hilary Vallance
- Department of Medical Genetics and Department of Pathology and Laboratory Sciences, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Monique van Scherpenzeel
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands.,Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Farhad Karbassi
- Zebrafish Centre for Advanced Drug Discovery and Keenan Research Centre for Biomedical science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, Laboratory Medicine and Pathobiology and Institute of Medical Science, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Martin Hoskings
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver Canada
| | - Udo Engelke
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Arjan de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexey V Pshezhetsky
- Sainte-Justine University Hospital Research Center, University of Montreal, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Clara Dm van Karnebeek
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada.,Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver Canada.,Departments of Pediatrics and Clinical Genetics, Emma Children's Hospital, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands.,Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
35
|
Guo T, Héon-Roberts R, Zou C, Zheng R, Pshezhetsky AV, Cairo CW. Selective Inhibitors of Human Neuraminidase 1 (NEU1). J Med Chem 2018; 61:11261-11279. [PMID: 30457869 DOI: 10.1021/acs.jmedchem.8b01411] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inhibitors of human neuraminidase enzymes (NEU) are recognized as important tools for the study of the biological functions of NEU and will be potent tools for elucidating the role of these enzymes in regulating the repertoire of cellular glycans. Here we report the discovery of selective inhibitors of the human neuraminidase 1 (NEU1) and neuraminidase 2 (NEU2) enzymes with exceptional potency. A library of modified 2-deoxy-2,3-didehydro- N-acetylneuraminic acid (DANA) analogues, with variability in the C5- or C9-position, were synthesized and evaluated against four human neuraminidase isoenyzmes (NEU1-4). Hydrophobic groups with an amide linker at the C5 and C9 positions were well accommodated by NEU1, and a hexanamido group was found to give the best potency at both positions. While the C5-hexanamido-C9-hexanamido-DANA analogue did not show synergistic improvements for combined modification, an extended alkylamide at an individual position combined with a smaller group at the second gave increased potency. The best NEU1 inhibitor identified was a C5-hexanamido-C9-acetamido-DANA that had a Ki of 53 ± 5 nM and 340-fold selectivity over other isoenzymes. Additionally, we demonstrated that C5-modifications combined with a C4-guandino group provided the most potent NEU2 inhibitor reported, with a Ki of 1.3 ± 0.2 μM and 7-fold selectivity over other NEU isoenzymes.
Collapse
Affiliation(s)
- Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Rachel Héon-Roberts
- Division of Medical Genetics , Sainte-Justine University Hospital Research Center, University of Montreal , Montréal , H3T 1C5 , Canada
| | - Chunxia Zou
- Alberta Glycomics Centre, Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Ruixiang Zheng
- Alberta Glycomics Centre, Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| | - Alexey V Pshezhetsky
- Division of Medical Genetics , Sainte-Justine University Hospital Research Center, University of Montreal , Montréal , H3T 1C5 , Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre, Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
36
|
Demina EP, Pierre WC, Nguyen ALA, Londono I, Reiz B, Zou C, Chakraberty R, Cairo CW, Pshezhetsky AV, Lodygensky GA. Persistent reduction in sialylation of cerebral glycoproteins following postnatal inflammatory exposure. J Neuroinflammation 2018; 15:336. [PMID: 30518374 PMCID: PMC6282350 DOI: 10.1186/s12974-018-1367-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The extension of sepsis encompassing the preterm newborn's brain is often overlooked due to technical challenges in this highly vulnerable population, yet it leads to substantial long-term neurodevelopmental disabilities. In this study, we demonstrate how neonatal neuroinflammation following postnatal E. coli lipopolysaccharide (LPS) exposure in rat pups results in persistent reduction in sialylation of cerebral glycoproteins. METHODS Male Sprague-Dawley rat pups at postnatal day 3 (P3) were injected in the corpus callosum with saline or LPS. Twenty-four hours (P4) or 21 days (P24) following injection, brains were extracted and analyzed for neuraminidase activity and expression as well as for sialylation of cerebral glycoproteins and glycolipids. RESULTS At both P4 and P24, we detected a significant increase of the acidic neuraminidase activity in LPS-exposed rats. It correlated with significantly increased neuraminidase 1 (Neu1) mRNA in LPS-treated brains at P4 and with neuraminidases 1 and 4 at P24 suggesting that these enzymes were responsible for the rise of neuraminidase activity. At both P4 and P24, sialylation of N-glycans on brain glycoproteins decreased according to both mass-spectrometry analysis and lectin blotting, but the ganglioside composition remained intact. Finally, at P24, analysis of brain tissues by immunohistochemistry showed that neurons in the upper layers (II-III) of somatosensory cortex had a reduced surface content of polysialic acid. CONCLUSIONS Together, our data demonstrate that neonatal LPS exposure results in specific and sustained induction of Neu1 and Neu4, causing long-lasting negative changes in sialylation of glycoproteins on brain cells. Considering the important roles played by sialoglycoproteins in CNS function, we speculate that observed re-programming of the brain sialome constitutes an important part of pathophysiological consequences in perinatal infectious exposure.
Collapse
Affiliation(s)
- Ekaterina P Demina
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Wyston C Pierre
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Annie L A Nguyen
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Irene Londono
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada
| | - Bela Reiz
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Chunxia Zou
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Radhika Chakraberty
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, AB, Canada
| | - Alexey V Pshezhetsky
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, H3A0C7, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| | - Gregory A Lodygensky
- Department of Paediatrics, Sainte-Justine Hospital Research Center, Université de Montréal, Montreal, H3T 1C5, QC, Canada. .,Department of Pharmacology and Physiology, Université de Montréal, Montreal, H3T 1J4, QC, Canada. .,Montreal Heart Institute, Montreal, H1T 1C8, QC, Canada. .,Centre de recherche, CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| |
Collapse
|
37
|
Unfolding of hidden white blood cell count phenotypes for gene discovery using latent class mixed modeling. Genes Immun 2018; 20:555-565. [PMID: 30459343 DOI: 10.1038/s41435-018-0051-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022]
Abstract
Resting-state white blood cell (WBC) count is a marker of inflammation and immune system health. There is evidence that WBC count is not fixed over time and there is heterogeneity in WBC trajectory that is associated with morbidity and mortality. Latent class mixed modeling (LCMM) is a method that can identify unobserved heterogeneity in longitudinal data and attempts to classify individuals into groups based on a linear model of repeated measurements. We applied LCMM to repeated WBC count measures derived from electronic medical records of participants of the National Human Genetics Research Institute (NHRGI) electronic MEdical Record and GEnomics (eMERGE) network study, revealing two WBC count trajectory phenotypes. Advancing these phenotypes to GWAS, we found genetic associations between trajectory class membership and regions on chromosome 1p34.3 and chromosome 11q13.4. The chromosome 1 region contains CSF3R, which encodes the granulocyte colony-stimulating factor receptor. This protein is a major factor in neutrophil stimulation and proliferation. The association on chromosome 11 contain genes RNF169 and XRRA1; both involved in the regulation of double-strand break DNA repair.
Collapse
|
38
|
Oliveira R, Hermo L, Pshezhetsky AV, Morales CR. Presence of aberrant epididymal tubules revealing undifferentiated epithelial cells and absence of spermatozoa in a combined neuraminidase-3 and -4 deficient adult mouse model. PLoS One 2018; 13:e0206173. [PMID: 30359429 PMCID: PMC6201937 DOI: 10.1371/journal.pone.0206173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022] Open
Abstract
Mammalian neuraminidases are responsible for the removal of sialic acids from glycoproteins and glycolipids and function in a variety of biological phenomena such as lysosomal catabolism and control of cell differentiation and growth. Disruption of Neu3 and Neu4 genes has led to the generation of a mouse model revealing severe neurological disorders. In this study a morphological analysis was performed on the epididymis of 3 month-old neu3-/-neu4-/- mice as compared with wild type animals. In neu3-/-neu4-/- mice the majority of tubules of the main epididymal duct were large and lined by differentiated epithelial cells, but revealing lysosomal abnormalities in principal and basally located cells. Of particular note was the presence of aberrant epididymal tubules (ATs) juxtaposed next to the main tubules. ATs were small and of different shapes. Layers of myoid cells encased ATs, which they shared with those of the main tubules, but no interstitial space existed between the two. While some ATs were a dense mass of cells, others revealed a distinct lumen devoid of spermatozoa. The latter revealed an undifferentiated epithelium consisting of cuboidal cells and basal cells, with junctional complexes evident at the luminal front. The absence of spermatozoa from the lumen of the ATs suggests that they were not in contact with the main duct, as also implied by the undifferentiated appearance of the epithelium suggesting lack of lumicrine factors. Despite the presence of ATs, the main duct contained ample spermatozoa, as the neu3-/-neu4-/- mice were fertile. Taken together the data suggest that absence of Neu3 and Neu4 leads to defects in cell adhesion and differentiation of epithelial cells resulting in aberrant tubular offshoots that fail to remain connected with the main duct. Hence Neu3 and Neu 4 play an essential role in the guidance of epithelial cells during early embryonic formation.
Collapse
Affiliation(s)
- Regiana Oliveira
- Department of Anatomy and Cell Biology, McGill University–Montreal, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University–Montreal, Canada
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, Centre Hospitalière Universitaire Sainte-Justine, University of Montréal—Montreal, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University–Montreal, Canada
- * E-mail:
| |
Collapse
|
39
|
Pshezhetsky AV, Ashmarina M. Keeping it trim: roles of neuraminidases in CNS function. Glycoconj J 2018; 35:375-386. [PMID: 30088207 PMCID: PMC6182584 DOI: 10.1007/s10719-018-9837-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022]
Abstract
The sialylated glyconjugates (SGC) are found in abundance on the surface of brain cells, where they form a dense array of glycans mediating cell/cell and cell/protein recognition in numerous physiological and pathological processes. Metabolic genetic blocks in processing and catabolism of SGC result in development of severe storage disorders, dominated by CNS involvement including marked neuroinflammation and neurodegeneration, the pathophysiological mechanisms of which are still discussed. SGC patterns in the brain are cell and organelle-specific, dynamic and maintained by highly coordinated processes of their biosynthesis, trafficking, processing and catabolism. The changes in the composition of SGC during development and aging of the brain cannot be explained based solely on the regulation of the SGC-synthesizing enzymes, sialyltransferases, suggesting that neuraminidases (sialidases) hydrolysing the removal of terminal sialic acid residues also play an essential role. In the current review we summarize the roles of three mammalian neuraminidases: neuraminidase 1, neuraminidase 3 and neuraminidase 4 in processing brain SGC. Emerging data demonstrate that these enzymes with different, yet overlapping expression patterns, intracellular localization and substrate specificity play essential roles in the physiology of the CNS.
Collapse
Affiliation(s)
- Alexey V Pshezhetsky
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, CHU Ste-Justine, Centre de recherche, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, H3A0C7, Canada.
| | - Mila Ashmarina
- Sainte-Justine Hospital Research Center, Department of Paediatrics, University of Montreal, CHU Ste-Justine, Centre de recherche, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada
| |
Collapse
|
40
|
Moreno-García A, Kun A, Calero O, Medina M, Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front Neurosci 2018; 12:464. [PMID: 30026686 PMCID: PMC6041410 DOI: 10.3389/fnins.2018.00464] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Despite aging being by far the greatest risk factor for highly prevalent neurodegenerative disorders, the molecular underpinnings of age-related brain changes are still not well understood, particularly the transition from normal healthy brain aging to neuropathological aging. Aging is an extremely complex, multifactorial process involving the simultaneous interplay of several processes operating at many levels of the functional organization. The buildup of potentially toxic protein aggregates and their spreading through various brain regions has been identified as a major contributor to these pathologies. One of the most striking morphologic changes in neurons during normal aging is the accumulation of lipofuscin (LF) aggregates, as well as, neuromelanin pigments. LF is an autofluorescent lipopigment formed by lipids, metals and misfolded proteins, which is especially abundant in nerve cells, cardiac muscle cells and skin. Within the Central Nervous System (CNS), LF accumulates as aggregates, delineating a specific senescence pattern in both physiological and pathological states, altering neuronal cytoskeleton and cellular trafficking and metabolism, and being associated with neuronal loss, and glial proliferation and activation. Traditionally, the accumulation of LF in the CNS has been considered a secondary consequence of the aging process, being a mere bystander of the pathological buildup associated with different neurodegenerative disorders. Here, we discuss recent evidence suggesting the possibility that LF aggregates may have an active role in neurodegeneration. We argue that LF is a relevant effector of aging that represents a risk factor or driver for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Alejandra Kun
- Biochemistry Section, Science School, Universidad de la República, Montevideo, Uruguay
- Protein and Nucleic Acids Department, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Olga Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Miguel Medina
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Miguel Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
41
|
Hallett PJ, Huebecker M, Brekk OR, Moloney EB, Rocha EM, Priestman DA, Platt FM, Isacson O. Glycosphingolipid levels and glucocerebrosidase activity are altered in normal aging of the mouse brain. Neurobiol Aging 2018; 67:189-200. [PMID: 29735433 PMCID: PMC6015735 DOI: 10.1016/j.neurobiolaging.2018.02.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Aging is the predominant risk factor for both genetic and sporadic Parkinson's disease (PD). The majority of PD cases are nonfamilial, and the connection between aging and PD-associated genes is not well understood. Haploinsufficiency of the GBA gene, leading to a reduction in glucocerebrosidase (GCase) activity, is one of the most common genetic risk factors for PD. Furthermore, GCase activity is also reduced in brain regions of sporadic PD patients, with a corresponding accumulation of its glycosphingolipid (GSL) substrates. Recent findings in PD patients and aging control cases, and in human PD patient induced pluripotent stem cell neurons, have shown an age-dependent reduction in GCase activity and an elevation of some GSLs. We therefore asked whether aging-induced changes to both lysosomal and nonlysosomal GCase activity and GSL homeostasis in the brain could also be reflected in other nonhuman mammalian systems. Increases in brain polyubiquitin and the lysosomal-associated membrane protein, LAMP2A, were found in 24-month-old wild-type mice compared to 1.5-month-old mice. A lipidomic analysis was performed on brains of wild-type mice of different strains between 1.5 and 24 months of age. Aging created GSL changes that are reminiscent of sporadic PD. Levels of glucosylceramide, glucosylsphingosine, lactosylceramide, and GM1a were elevated in the brain of aged mice, and levels of complex gangliosides, GD1a, GD1b, and GT1b, were reduced with age. Parallel biochemical analyses revealed a change in lipid metabolism probably mediated by lysosomal hydrolases, with reduced GCase and increased neuraminidase activity. Based on these data, we hypothesize that perturbation of GSL metabolism in the aging brain may precede or may be part of abnormal protein handling and may accelerate PD pathophysiological processes in vulnerable neurons in PD and other age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | | | - Oeystein R Brekk
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Elizabeth B Moloney
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | - Emily M Rocha
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, USA
| | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
42
|
Sandhoff R, Sandhoff K. Emerging concepts of ganglioside metabolism. FEBS Lett 2018; 592:3835-3864. [PMID: 29802621 DOI: 10.1002/1873-3468.13114] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/12/2022]
Abstract
Gangliosides (GGs) are sialic acid-containing glycosphingolipids (GSLs) and major membrane components enriched on cellular surfaces. Biosynthesis of mammalian GGs starts at the cytosolic leaflet of endoplasmic reticulum (ER) membranes with the formation of their hydrophobic ceramide anchors. After intracellular ceramide transfer to Golgi and trans-Golgi network (TGN) membranes, anabolism of GGs, as well as of other GSLs, is catalyzed by membrane-spanning glycosyltransferases (GTs) along the secretory pathway. Combined activity of only a few promiscuous GTs allows for the formation of cell-type-specific glycolipid patterns. Following an exocytotic vesicle flow to the cellular plasma membranes, GGs can be modified by metabolic reactions at or near the cellular surface. For degradation, GGs are endocytosed to reach late endosomes and lysosomes. Whereas membrane-spanning enzymes of the secretory pathway catalyze GSL and GG formation, a cooperation of soluble glycosidases, lipases and lipid-binding cofactors, namely the sphingolipid activator proteins (SAPs), act as the main players of GG and GSL catabolism at intralysosomal luminal vesicles (ILVs).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group (G131), German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
43
|
Fougerat A, Pan X, Smutova V, Heveker N, Cairo CW, Issad T, Larrivée B, Medin JA, Pshezhetsky AV. Neuraminidase 1 activates insulin receptor and reverses insulin resistance in obese mice. Mol Metab 2018; 12:76-88. [PMID: 29735266 PMCID: PMC6001920 DOI: 10.1016/j.molmet.2018.03.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/23/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Neuraminidase 1 (NEU1) cleaves terminal sialic acids of glycoconjugates during lysosomal catabolism. It also modulates the structure and activity of cellular surface receptors affecting diverse pathways. Previously we demonstrated that NEU1 activates the insulin receptor (IR) and that NEU1-deficient CathAS190A-Neo mice (hypomorph of the NEU1 activator protein, cathepsin A/CathA) on a high-fat diet (HFD) develop hyperglycaemia and insulin resistance faster than wild-type animals. The major objective of the current work was to reveal the molecular mechanism by which NEU1 desialylation activates the IR and to test if increase of NEU1 activity in insulin target tissues reverses insulin resistance and glucose intolerance. METHODS To test if desialylation causes a conformational change in the IR dimer we measured interaction between the receptor subunits by Bioluminescence Resonance Energy Transfer in the HEK293T cells either overexpressing NEU1 or treated with the NEU1 inhibitor. The influence of NEU1 overexpression on insulin resistance was studied in vitro in palmitate-treated HepG2 cells transduced with NEU1-expressing lentivirus and in vivo in C57Bl6 mice treated with HFD and either pharmacological inducer of NEU1, Ambroxol or NEU1-expressing adenovirus. NEU1-deficient CathAS190A-Neo mice were used as a control. RESULTS By desialylation of IR, NEU1 induced formation of its active dimer leading to insulin signaling. Overexpression of NEU1 in palmitate-treated HepG2 cells restored insulin signaling, suggesting that increased NEU1 levels may reverse insulin resistance. Five-day treatment of glycemic C57Bl6 mice receiving HFD with the activator of the lysosomal gene network, Ambroxol, increased NEU1 expression and activity in muscle tissue, normalized fasting glucose levels, and improved physiological and molecular responses to glucose and insulin. Ambroxol did not improve insulin sensitivity in obese insulin-resistant CathAS190A-Neo mice indicating that the Ambroxol effect is mediated through NEU1 induction. Sustained increase of liver NEU1 activity through adenovirus-based gene transfer failed to attenuate insulin resistance most probably due to negative feedback regulation of IR expression. CONCLUSION Together our results demonstrate that increase of NEU1 activity in insulin target tissues reverses insulin resistance and glucose intolerance suggesting that a pharmacological modulation of NEU1 activity may be potentially explored for restoring insulin sensitivity and resolving hyperglycemia associated with T2DM.
Collapse
Affiliation(s)
- Anne Fougerat
- CHU Sainte-Justine Research Centre, Departments of Biochemistry and Pediatrics, University of Montreal, Montreal, Canada
| | - Xuefang Pan
- CHU Sainte-Justine Research Centre, Departments of Biochemistry and Pediatrics, University of Montreal, Montreal, Canada
| | - Victoria Smutova
- CHU Sainte-Justine Research Centre, Departments of Biochemistry and Pediatrics, University of Montreal, Montreal, Canada
| | - Nikolaus Heveker
- CHU Sainte-Justine Research Centre, Departments of Biochemistry and Pediatrics, University of Montreal, Montreal, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Tarik Issad
- INSERM U1016, CNRS UMR8104, Université Paris Descartes Sorbonne Paris Cité, Institut Cochin, Paris, France
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Canada
| | | | - Alexey V Pshezhetsky
- CHU Sainte-Justine Research Centre, Departments of Biochemistry and Pediatrics, University of Montreal, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| |
Collapse
|
44
|
Guo T, Dätwyler P, Demina E, Richards MR, Ge P, Zou C, Zheng R, Fougerat A, Pshezhetsky AV, Ernst B, Cairo CW. Selective Inhibitors of Human Neuraminidase 3. J Med Chem 2018; 61:1990-2008. [PMID: 29425031 DOI: 10.1021/acs.jmedchem.7b01574] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human neuraminidases (NEU) are associated with human diseases including cancer, atherosclerosis, and diabetes. To obtain small molecule inhibitors as research tools for the study of their biological functions, we designed a library of 2-deoxy-2,3-didehydro- N-acetylneuraminic acid (DANA) analogues with modifications at C4 and C9 positions. This library allowed us to discover selective inhibitors targeting the human NEU3 isoenzyme. Our most selective inhibitor for NEU3 has a Ki of 320 ± 40 nM and a 15-fold selectivity over other human neuraminidase isoenzymes. This inhibitor blocks glycolipid processing by NEU3 in vitro. To improve their pharmacokinetic properties, various esters of the best inhibitors were synthesized and evaluated. Finally, we confirmed that our best compounds exhibited selective inhibition of NEU orthologues from murine brain.
Collapse
Affiliation(s)
- Tianlin Guo
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Philipp Dätwyler
- Department of Pharmaceutical Sciences, Pharmacenter , University of Basel , Klingelbergstrasse 50 , CH-4056 Basel , Switzerland
| | - Ekaterina Demina
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center , University of Montreal , Montréal , Quebec H3T 1C5 , Canada
| | - Michele R Richards
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Peng Ge
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Chunxia Zou
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Ruixiang Zheng
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| | - Anne Fougerat
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center , University of Montreal , Montréal , Quebec H3T 1C5 , Canada
| | - Alexey V Pshezhetsky
- Division of Medical Genetics, Sainte-Justine University Hospital Research Center , University of Montreal , Montréal , Quebec H3T 1C5 , Canada
| | - Beat Ernst
- Department of Pharmaceutical Sciences, Pharmacenter , University of Basel , Klingelbergstrasse 50 , CH-4056 Basel , Switzerland
| | - Christopher W Cairo
- Alberta Glycomics Centre and Department of Chemistry , University of Alberta , Edmonton Alberta T6G 2G2 , Canada
| |
Collapse
|
45
|
Biological and Pathological Roles of Ganglioside Sialidases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:121-150. [DOI: 10.1016/bs.pmbts.2017.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|