1
|
Yang D, Liang H, Zhu X, Li B, Li C, Hu G, Du X, Dang G, Song Y, Ma X, Zhang P, Chen T, Liu B, Yan L, Pan CS, Sun K, Huo X, Feng Y, Wang X, Ai D, Han JY, Feng J. Farnesoid X Receptor Protects Murine Lung against IL-6-promoted Ferroptosis Induced by Polyriboinosinic-Polyribocytidylic Acid. Am J Respir Cell Mol Biol 2024; 70:364-378. [PMID: 38300138 DOI: 10.1165/rcmb.2023-0172oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024] Open
Abstract
Various infections trigger a storm of proinflammatory cytokines in which IL-6 acts as a major contributor and leads to diffuse alveolar damage in patients. However, the metabolic regulatory mechanisms of IL-6 in lung injury remain unclear. Polyriboinosinic-polyribocytidylic acid [poly(I:C)] activates pattern recognition receptors involved in viral sensing and is widely used in alternative animal models of RNA virus-infected lung injury. In this study, intratracheal instillation of poly(I:C) with or without an IL-6-neutralizing antibody model was combined with metabonomics, transcriptomics, and so forth to explore the underlying molecular mechanisms of IL-6-exacerbated lung injury. We found that poly(I:C) increased the IL-6 concentration, and the upregulated IL-6 further induced lung ferroptosis, especially in alveolar epithelial type II cells. Meanwhile, lung regeneration was impaired. Mechanistically, metabolomic analysis showed that poly(I:C) significantly decreased glycolytic metabolites and increased bile acid intermediate metabolites that inhibited the bile acid nuclear receptor farnesoid X receptor (FXR), which could be reversed by IL-6-neutralizing antibody. In the ferroptosis microenvironment, IL-6 receptor monoclonal antibody tocilizumab increased FXR expression and subsequently increased the Yes-associated protein (YAP) concentration by enhancing PKM2 in A549 cells. FXR agonist GW4064 and liquiritin, a potential natural herbal ingredient as an FXR regulator, significantly attenuated lung tissue inflammation and ferroptosis while promoting pulmonary regeneration. Together, the findings of the present study provide the evidence that IL-6 promotes ferroptosis and impairs regeneration of alveolar epithelial type II cells during poly(I:C)-induced murine lung injury by regulating the FXR-PKM2-YAP axis. Targeting FXR represents a promising therapeutic strategy for IL-6-associated inflammatory lung injury.
Collapse
Affiliation(s)
- Dongmin Yang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Hongbiao Liang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Xiangrui Zhu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Bochuan Li
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China; and
| | - Guizimeng Hu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Xing Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guohui Dang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuwei Song
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Xiaolong Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Peng Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Tianqi Chen
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Bo Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Xinmei Huo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ding Ai
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Juan Feng
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, and
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| |
Collapse
|
2
|
Zhuang X, Gallo G, Sharma P, Ha J, Magri A, Borrmann H, Harris JM, Tsukuda S, Bentley E, Kirby A, de Neck S, Yang H, Balfe P, Wing PA, Matthews D, Harris AL, Kipar A, Stewart JP, Bailey D, McKeating JA. Hypoxia inducible factors inhibit respiratory syncytial virus infection by modulation of nucleolin expression. iScience 2024; 27:108763. [PMID: 38261926 PMCID: PMC10797196 DOI: 10.1016/j.isci.2023.108763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a global healthcare problem, causing respiratory illness in young children and elderly individuals. Our knowledge of the host pathways that define susceptibility to infection and disease severity are limited. Hypoxia inducible factors (HIFs) define metabolic responses to low oxygen and regulate inflammatory responses in the lower respiratory tract. We demonstrate a role for HIFs to suppress RSV entry and RNA replication. We show that hypoxia and HIF prolyl-hydroxylase inhibitors reduce the expression of the RSV entry receptor nucleolin and inhibit viral cell-cell fusion. We identify a HIF regulated microRNA, miR-494, that regulates nucleolin expression. In RSV-infected mice, treatment with the clinically approved HIF prolyl-hydroxylase inhibitor, Daprodustat, reduced the level of infectious virus and infiltrating monocytes and neutrophils in the lung. This study highlights a role for HIF-signalling to limit multiple aspects of RSV infection and associated inflammation and informs future therapeutic approaches for this respiratory pathogen.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Parul Sharma
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jiyeon Ha
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helene Borrmann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Bentley
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adam Kirby
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Simon de Neck
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Hongbing Yang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A.C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - David Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | | | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Figarella K, Kim J, Ruan W, Mills T, Eltzschig HK, Yuan X. Hypoxia-adenosine axis as therapeutic targets for acute respiratory distress syndrome. Front Immunol 2024; 15:1328565. [PMID: 38312838 PMCID: PMC10835146 DOI: 10.3389/fimmu.2024.1328565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The human respiratory and circulatory systems collaborate intricately to ensure oxygen delivery to all cells, which is vital for ATP production and maintaining physiological functions and structures. During limited oxygen availability, hypoxia-inducible factors (HIFs) are stabilized and play a fundamental role in maintaining cellular processes for hypoxia adaptation. First discovered during investigations of erythropoietin production regulation, HIFs influence physiological and pathological processes, including development, inflammation, wound healing, and cancer. HIFs promote extracellular adenosine signaling by enhancing adenosine generation and receptor signaling, representing an endogenous feedback mechanism that curbs excessive inflammation, supports injury resolution, and enhances hypoxia tolerance. This is especially important for conditions that involve tissue hypoxia, such as acute respiratory distress syndrome (ARDS), which globally poses significant health challenges without specific treatment options. Consequently, pharmacological strategies to amplify HIF-mediated adenosine production and receptor signaling are of great importance.
Collapse
Affiliation(s)
- Katherine Figarella
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jieun Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger Klaus Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Wu D, He H, Chen J, Yao S, Xie H, Jiang W, Lv X, Gao W, Meng L, Yao X. L-carnitine reduces acute lung injury via mitochondria modulation and inflammation control in pulmonary macrophages. Braz J Med Biol Res 2023; 56:e12830. [PMID: 37878885 PMCID: PMC10591484 DOI: 10.1590/1414-431x2023e12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023] Open
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a critical respiratory syndrome with limited effective interventions. Lung macrophages play a critical role in the pathogenesis of abnormal inflammatory response in the syndrome. Recently, impaired fatty acid oxidation (FAO), one of the key lipid metabolic signalings, was found to participate in the onset and development of various lung diseases, including ALI/ARDS. Lipid/fatty acid contents within mouse lungs were quantified using the Oil Red O staining. The protective effect of FAO activator L-carnitine (Lca, 50, 500, or 5 mg/mL) was evaluated by cell counting kit 8 (CCK-8) assay, real-time quantitative PCR (qPCR), ELISA, immunoblotting, fluorescence imaging, and fluorescence plate reader detection in lipopolysaccharide (LPS) (100 ng/mL)-stimulated THP-1-derived macrophages. The in vivo efficacy of Lca (300 mg/kg) was determined in a 10 mg/kg LPS-induced ALI mouse model. We found for the first time that lipid accumulation in pulmonary macrophages was significantly increased in a classical ALI murine model, which indicated disrupted FAO induced by LPS. Lca showed potent anti-inflammatory and antioxidative effects on THP-1 derived macrophages upon LPS stimulation. Mechanistically, Lca was able to maintain FAO, mitochondrial activity, and ameliorate mitochondrial dynamics. In the LPS-induced ALI mouse model, we further discovered that Lca inhibited neutrophilic inflammation and decreased diffuse damage, which might be due to the preservation of mitochondrial homeostasis. These results broadened our understanding of ALI/ARDS pathogenesis and provided a promising drug candidate for this syndrome.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou, Nanjing, China
| | - Haiyan He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Jinliang Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Sumei Yao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Haiqin Xie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Wenyan Jiang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Xuedong Lv
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nantong University, North Haierxiang, Nantong, China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Jimo, Shanghai, China
| | - Linlin Meng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Jimo, Shanghai, China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou, Nanjing, China
| |
Collapse
|
5
|
Suresh MV, Aktay S, Yalamanchili G, Solanki S, Sathyarajan DT, Arnipalli MS, Pennathur S, Raghavendran K. Role of succinate in airway epithelial cell regulation following traumatic lung injury. JCI Insight 2023; 8:e166860. [PMID: 37737265 PMCID: PMC10561732 DOI: 10.1172/jci.insight.166860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Lung contusion and gastric aspiration (LC and GA) are major risk factors for developing acute respiratory distress following trauma. Hypoxia from lung injury is mainly regulated by hypoxia-inducible factor 1α (HIF-1α). Published data from our group indicate that HIF-1α regulation in airway epithelial cells (AEC) drives the acute inflammatory response following LC and GA. Metabolomic profiling and metabolic flux of Type II AEC following LC revealed marked increases in glycolytic and TCA intermediates in vivo and in vitro that were HIF-1α dependent. GLUT-1/4 expression was also increased in HIF-1α+/+ mice, suggesting that increased glucose entry may contribute to increased intermediates. Importantly, lactate incubation in vitro on Type II cells did not significantly increase the inflammatory byproduct IL-1β. Contrastingly, succinate had a direct proinflammatory effect on human small AEC by IL-1β generation in vitro. This effect was reversed by dimethylmalonate, suggesting an important role for succinate dehydrogenase in mediating HIF-1α effects. We confirmed the presence of the only known receptor for succinate binding, SUCNR1, on Type II AEC. These results support the hypothesis that succinate drives HIF-1α-mediated airway inflammation following LC. This is the first report to our knowledge of direct proinflammatory activation of succinate in nonimmune cells such as Type II AEC in direct lung injury models.
Collapse
|
6
|
Foresto-Neto O, da Silva ARPA, Cipelli M, Santana-Novelli FPR, Camara NOS. The impact of hypoxia-inducible factors in the pathogenesis of kidney diseases: a link through cell metabolism. Kidney Res Clin Pract 2023; 42:561-578. [PMID: 37448286 PMCID: PMC10565456 DOI: 10.23876/j.krcp.23.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 07/15/2023] Open
Abstract
Kidneys are sensitive to disturbances in oxygen homeostasis. Hypoxia and activation of the hypoxia-inducible factor (HIF) pathway alter the expression of genes involved in the metabolism of renal and immune cells, interfering with their functioning. Whether the transcriptional activity of HIF protects the kidneys or participates in the pathogenesis of renal diseases is unclear. Several studies have indicated that HIF signaling promotes fibrosis in experimental models of kidney disease. Other reports showed a protective effect of HIF activation on kidney inflammation and injury. In addition to the direct effect of HIF on the kidneys, experimental evidence indicates that HIF-mediated metabolic shift activates inflammatory cells, supporting the HIF cascade as a link between lung or gut damage and worsening of renal disease. Although hypoxia and HIF activation are present in several scenarios of renal diseases, further investigations are needed to clarify whether interfering with the HIF pathway is beneficial in different pathological contexts.
Collapse
Affiliation(s)
- Orestes Foresto-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Marcella Cipelli
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Division of Nephrology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Chen J, Ma S, Luo B, Hao H, Li Y, Yang H, Zhu F, Zhang P, Niu R, Pan P. Human umbilical cord mesenchymal stromal cell small extracellular vesicle transfer of microRNA-223-3p to lung epithelial cells attenuates inflammation in acute lung injury in mice. J Nanobiotechnology 2023; 21:295. [PMID: 37626408 PMCID: PMC10464265 DOI: 10.1186/s12951-023-02038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI), manifested as strong pulmonary inflammation and alveolar epithelial damage, is a life-threatening disease with high morbidity and mortality. Small extracellular vesicles (sEVs), secreted by multiple types of cells, are critical cellular communication mediators and can inhibit inflammation by transferring bioactive molecules, such as microRNAs (miRNAs). Thus, we hypothesized that sEVs derived from mesenchymal stromal cells (MSC sEVs) could transfer miRNAs to attenuate inflammation of lung epithelial cells during ALI. METHODS C57BL/6 male mice were intratracheally administered LPS (10 mg/kg). Six hours later, the mice were randomly administered with MSC sEVs (40 µg per mouse in 150 µl of saline), which were collected by ultracentrifugation. Control group received saline administration. After 48 h, the mice were sacrificed to evaluate pulmonary microvascular permeability and inflammatory responses. In vitro, A549 cells and primary human small airway epithelial cells (SAECs) were stimulated with LPS with or without MSC sEVs treatment. RESULTS In vitro, MSC sEVs could also inhibit the inflammation induced by LPS in A549 cells and SAECs (reducing TNF-α, IL-1β, IL-6 and MCP-1). Moreover, MSC sEV treatment improved the survival rate, alleviated pulmonary microvascular permeability, and inhibited proinflammatory responses (reducing TNF-α, IL-1β, IL-6 and JE-1) in ALI mice. Notably, miR-223-3p was found to be served as a critical mediator in MSC sEV-induced regulatory effects through inhibition of poly (adenosine diphosphate-ribose) polymerase-1 (PARP-1) in lung epithelial cells. CONCLUSIONS Overall, these findings suggest that MSC sEVs may offer a novel promising strategy for ALI.
Collapse
Affiliation(s)
- Jie Chen
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Shiyang Ma
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Baihua Luo
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haojie Hao
- Institute of Basic Medicine Science, Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical College, Beijing, China
| | - Yanqin Li
- Center of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Medical College, Beijing, China
| | - Hang Yang
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Fei Zhu
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Peipei Zhang
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China
| | - Ruichao Niu
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China.
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, China.
| | - Pinhua Pan
- Department of Respiratory Medicine, Clinical Research Center for Respiratory Disease, Xiangya Hospital, National Key Clinical Specialty, Branch of National, Central South University, No.28 Xiangya Road, Kai-Fu District, Changsha, 410008, Hunan, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Chang-sha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, P.R. China.
| |
Collapse
|
8
|
Jessop F, Schwarz B, Bohrnsen E, Miltko M, Shaia C, Bosio CM. Targeting 2-Oxoglutarate-Dependent Dioxygenases Promotes Metabolic Reprogramming That Protects against Lethal SARS-CoV-2 Infection in the K18-hACE2 Transgenic Mouse Model. Immunohorizons 2023; 7:528-542. [PMID: 37417946 PMCID: PMC10587500 DOI: 10.4049/immunohorizons.2300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Dysregulation of host metabolism is a feature of lethal SARS-CoV-2 infection. Perturbations in α-ketoglutarate levels can elicit metabolic reprogramming through 2-oxoglutarate-dependent dioxygenases (2-ODDGs), leading to stabilization of the transcription factor HIF-1α. HIF1-α activation has been reported to promote antiviral mechanisms against SARS-CoV-2 through direct regulation of ACE2 expression (a receptor required for viral entry). However, given the numerous pathways HIF-1α serves to regulate it is possible that there are other undefined metabolic mechanisms contributing to the pathogenesis of SARS-CoV-2 independent of ACE2 downregulation. In this study, we used in vitro and in vivo models in which HIF-1α modulation of ACE2 expression was negated, allowing for isolated characterization of the host metabolic response within SARS-CoV-2 disease pathogenesis. We demonstrated that SARS-CoV-2 infection limited stabilization of HIF-1α and associated mitochondrial metabolic reprogramming by maintaining activity of the 2-ODDG prolyl hydroxylases. Inhibition of 2-ODDGs with dimethyloxalylglycine promoted HIF-1α stabilization following SARS-CoV-2 infection, and significantly increased survival among SARS-CoV-2-infected mice compared with vehicle controls. However, unlike previous reports, the mechanism by which activation of HIF-1α responses contributed to survival was not through impairment of viral replication. Rather, dimethyloxalylglycine treatment facilitated direct effects on host metabolism including increased glycolysis and resolution of dysregulated pools of metabolites, which correlated with reduced morbidity. Taken together, these data identify (to our knowledge) a novel function of α-ketoglutarate-sensing platforms, including those responsible for HIF-1α stabilization, in the resolution of SARS-CoV-2 infection and support targeting these metabolic nodes as a viable therapeutic strategy to limit disease severity during infection.
Collapse
Affiliation(s)
- Forrest Jessop
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Benjamin Schwarz
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Eric Bohrnsen
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Molly Miltko
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| | - Catharine M. Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Disease, Hamilton, MT
| |
Collapse
|
9
|
Suresh MV, Balijepalli S, Solanki S, Aktay S, Choudhary K, Shah YM, Raghavendran K. Hypoxia-Inducible Factor 1α and Its Role in Lung Injury: Adaptive or Maladaptive. Inflammation 2023; 46:491-508. [PMID: 36596930 PMCID: PMC9811056 DOI: 10.1007/s10753-022-01769-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023]
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors critical for the adaptive response to hypoxia. There is also an essential link between hypoxia and inflammation, and HIFs have been implicated in the dysregulated immune response to various insults. Despite the prevalence of hypoxia in tissue trauma, especially involving the lungs, there remains a dearth of studies investigating the role of HIFs in clinically relevant injury models. Here, we summarize the effects of HIF-1α on the vasculature, metabolism, inflammation, and apoptosis in the lungs and review the role of HIFs in direct lung injuries, including lung contusion, acid aspiration, pneumonia, and COVID-19. We present data that implicates HIF-1α in the context of arguments both in favor and against its role as adaptive or injurious in the propagation of the acute inflammatory response in lung injuries. Finally, we discuss the potential for pharmacological modulation of HIFs as a new class of therapeutics in the modern intensive care unit.
Collapse
Affiliation(s)
| | | | - Sumeet Solanki
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Sinan Aktay
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | | | - Yatrik M Shah
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
10
|
Milk yield variation partially attributed to blood oxygen-mediated neutrophil activation in lactating dairy goats. Br J Nutr 2023; 129:369-380. [PMID: 35604023 DOI: 10.1017/s0007114522001015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Blood oxygen is an essential component for numerous biological processes of mammalian animals. Milk production of ruminants largely relies on the supply of nutrients, such as glucose, amino acids and fatty acids. To define the regulatory role of blood oxygen availability in regard to milk production, seventy-five healthy Guanzhong dairy goats with similar body weight, days in milk and parities were selected. For each animal, milk yield was recorded and milk sample was collected to determine compositions. Milk vein blood was collected to determine parameters including blood gas, physio-biochemistry and haematology. Another blood sample was prepared for transcriptome and RT-qPCR. Results showed that both pressure of oxygen (pO2) in the milk vein (positively) and numbers of neutrophils in mammary vein (negatively) were associated with milk yield of the animals. To learn the role of pO2 in blood cell functionality, twelve animals (six with higher yield (H-group) and six with lower yield (L-group)) from seventy-five goats were selected. Compared with animals in L-group, goats in H-group were higher in pO2 but lower in pCO2, lactate, lactate dehydrogenase activity and neutrophil abundance in milk vein, compared with L-group. The blood transcriptome analysis suggested that compared with L-group, animals in H-group were depressed in functionality including neutrophil activation and metabolic pathways including glycolysis, NF-κB and HIF-1. Our result revealed that lower milk production could be associated with neutrophil activation responding to low pO2 in the mammary vein. In the meantime, we highlighted the potential importance of blood oxygen as a milk yield regulator.
Collapse
|
11
|
Tojo K, Yamamoto N, Tamada N, Mihara T, Abe M, Nishii M, Takeuchi I, Goto T. Early alveolar epithelial cell necrosis is a potential driver of COVID-19-induced acute respiratory distress syndrome. iScience 2022; 26:105748. [PMID: 36507222 PMCID: PMC9722615 DOI: 10.1016/j.isci.2022.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) with COVID-19 is aggravated by hyperinflammatory responses even after the peak of the viral load has passed; however, its underlying mechanisms remain unclear. In the present study, analysis of the alveolar tissue injury markers and epithelial cell death markers in patients with COVID-19 revealed that COVID-19-induced ARDS was characterized by alveolar epithelial necrosis at an early disease stage. Serum levels of HMGB-1, one of the DAMPs released from necrotic cells, were also significantly elevated in these patients. Further analysis using a mouse model mimicking COVID-19-induced ARDS showed that the alveolar epithelial cell necrosis involved two forms of programmed necrosis, namely necroptosis, and pyroptosis. Finally, the neutralization of HMGB-1 attenuated alveolar tissue injury in the mouse model. Collectively, necrosis, including necroptosis and pyroptosis, is the predominant form of alveolar epithelial cell death at an early disease stage and subsequent release of DAMPs is a potential driver of COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Kentaro Tojo
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan,Corresponding author
| | - Natsuhiro Yamamoto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Nao Tamada
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan,Department of Paramedic, Kyorin University Faculty of Health Sciences, Mitaka, Tokyo, Japan
| | - Takahiro Mihara
- Department of Health Data Science, Yokohama City University Graduate School of Data Science, Yokohama, Kanagawa, Japan
| | - Miyo Abe
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Mototsugu Nishii
- Department of Emergency Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Ichiro Takeuchi
- Department of Emergency Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | - Takahisa Goto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
12
|
Wing PAC, Prange-Barczynska M, Cross A, Crotta S, Orbegozo Rubio C, Cheng X, Harris JM, Zhuang X, Johnson RL, Ryan KA, Hall Y, Carroll MW, Issa F, Balfe P, Wack A, Bishop T, Salguero FJ, McKeating JA. Hypoxia inducible factors regulate infectious SARS-CoV-2, epithelial damage and respiratory symptoms in a hamster COVID-19 model. PLoS Pathog 2022; 18:e1010807. [PMID: 36067210 PMCID: PMC9481176 DOI: 10.1371/journal.ppat.1010807] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Understanding the host pathways that define susceptibility to Severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) infection and disease are essential for the design of new therapies. Oxygen levels in the microenvironment define the transcriptional landscape, however the influence of hypoxia on virus replication and disease in animal models is not well understood. In this study, we identify a role for the hypoxic inducible factor (HIF) signalling axis to inhibit SARS-CoV-2 infection, epithelial damage and respiratory symptoms in the Syrian hamster model. Pharmacological activation of HIF with the prolyl-hydroxylase inhibitor FG-4592 significantly reduced infectious virus in the upper and lower respiratory tract. Nasal and lung epithelia showed a reduction in SARS-CoV-2 RNA and nucleocapsid expression in treated animals. Transcriptomic and pathological analysis showed reduced epithelial damage and increased expression of ciliated cells. Our study provides new insights on the intrinsic antiviral properties of the HIF signalling pathway in SARS-CoV-2 replication that may be applicable to other respiratory pathogens and identifies new therapeutic opportunities.
Collapse
Affiliation(s)
- Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maria Prange-Barczynska
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Amy Cross
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Xiaotong Cheng
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel L. Johnson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Kathryn A. Ryan
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Yper Hall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Miles W. Carroll
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tammie Bishop
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Francisco J. Salguero
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Jane A. McKeating
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Wang C, Xu Z, Liu J. Knockdown of PFKFB2 Alleviates Oxidative Stress and Inflammation in LPS-Induced Alveolar Epithelial Cells by Reducing Glycolysis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glycolysis is the most important mode of energy metabolism in endothelial cells and has been shown to be involved in the pathological processes of acute and chronic inflammatory diseases. Phosphofructokinase 2/fructose-2, 6-bisphosphatase 2 (PFKFB2) exerts an important regulatory factor
in the process of glycolysis by catalyzing the synthesis and degradation of fructose 2,6-bisphosphate. There is still unclear however, whether PFKFB2 can play a role in sepsis-related acute lung injury by regulating glycolysis. This research examines the role and mechanism of PFKFB2 in LPS-induced
alveolar epithelial cells. In this study, the detection of mRNA expressions of PFKFB2, glycolysis and inflammation-related proteins employed quantitative real-time PCR (RTqPCR). Western blot was applied to examine the expressions of all proteins. The viability of A549 cells was assessed with
the use of cell counting kit (CCK)-8. The expressions of related factors were quantified by commercial assay kits, respectively. The experimental results showed that the expression of PFKFB2 was increased in sepsis. Knockdown of PFKFB2 alleviated glycolysis in LPS-induced A549 cells. Additionally,
knockdown of PFKFB2 reduced LPS-induced oxidative stress and inflammation through glycolysis. Knockdown of PFKFB2 also mitigated LPS-induced oxidative stress and inflammation in alveolar epithelial cells by reducing glycolysis. Hence, PFKFB2 may be served as an effective target for the treatment
of sepsis-related acute lung injury.
Collapse
Affiliation(s)
- Chang Wang
- Department of Traumatology, Central People’s Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, 524000, China
| | - Zhenyu Xu
- Department of Traumatology, Central People’s Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, 524000, China
| | - Juntao Liu
- Department of Traumatology, Central People’s Hospital of Zhanjiang, Zhanjiang City, Guangdong Province, 524000, China
| |
Collapse
|
14
|
Liu J, Yao S, Jia J, Chen Z, Yuan Y, He Y, Wasti B, Duan W, Li D, Wang G, Jia A, Sun W, Qiu S, Ma L, Li J, Liu Y, Zheng J, Xiang X, Zhang X, Liu S, He Z, Peng Z, Zhang H, Zhang D, Xiao B. Loss of MBD2 ameliorates LPS‐induced alveolar epithelial cell apoptosis and ALI in mice via modulating intracellular zinc homeostasis. FASEB J 2022; 36:e22162. [PMID: 35061304 DOI: 10.1096/fj.202100924rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Jiqiang Liu
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Shuo Yao
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Jingsi Jia
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Zhifeng Chen
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Yu Yuan
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Yi He
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Binaya Wasti
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Wentao Duan
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Danhong Li
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Guyi Wang
- Department of Intensive Care Medicine The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Aijun Jia
- Department of the Third Emergency of Yuelushan Hospital District Hunan Provincial People's Hospital Changsha P.R. China
| | - Wenjin Sun
- Department of General Medicine West China Hospital, Sichuan University Chengdu P.R. China
| | - Shuangfa Qiu
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine The Affiliated Hospital of Guilin Medical University Guangxi P.R. China
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine Hunan Provincial People's Hospital Changsha P.R. China
| | - Yi Liu
- Department of Respiratory Medicine Zhuzhou City Central Hospital Zhuzhou P.R. China
| | - Jianfei Zheng
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Xudong Xiang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Xiufeng Zhang
- Department of Respiratory Medicine The Second Affiliated Hospital of Hainan Medical University Haikou P.R. China
| | - Shaokun Liu
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Zhibiao He
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Zhenyu Peng
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Hongliang Zhang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Dongshan Zhang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Bing Xiao
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| |
Collapse
|
15
|
Zaki A, Ali MS, Hadda V, Ali SM, Chopra A, Fatma T. Long non-coding RNA (lncRNA): A potential therapeutic target in acute lung injury. Genes Dis 2021; 9:1258-1268. [PMID: 35873025 PMCID: PMC9293716 DOI: 10.1016/j.gendis.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/26/2022] Open
Abstract
Acute Lung Injury (ALI) and its severe form Acute Respiratory Distress Syndrome (ARDS) are the major cause of ICU death worldwide. ALI/ARDS is characterized by severe hypoxemia and inflammation that leads to poor lung compliance. Despite many advances in understanding and management, ALI/ARDS is still causing significant morbidity and mortality. Long non-coding RNA (lncRNA) is a fast-growing topic in lung inflammation and injury. lncRNA is a class of non-coding RNA having a length of more than 200 nucleotides. It has been a center of research for understanding the pathophysiology of various diseases in the past few years. Multiple studies have shown that lncRNAs are abundant in acute lung injury/injuries in mouse models and cell lines. By targeting these long non-coding RNAs, many investigators have demonstrated the alleviation of ALI in various mouse models. Therefore, lncRNAs show great promise as a therapeutic target in ALI. This review provides the current state of knowledge about the relationship between lncRNAs in various biological processes in acute lung injury and its use as a potential therapeutic target.
Collapse
|
16
|
Aboushousha R, Elko E, Chia SB, Manuel AM, van de Wetering C, van der Velden J, MacPherson M, Erickson C, Reisz JA, D'Alessandro A, Wouters EFM, Reynaert NL, Lam YW, Anathy V, van der Vliet A, Seward DJ, Janssen-Heininger YMW. Glutathionylation chemistry promotes interleukin-1 beta-mediated glycolytic reprogramming and pro-inflammatory signaling in lung epithelial cells. FASEB J 2021; 35:e21525. [PMID: 33817836 DOI: 10.1096/fj.202002687rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022]
Abstract
Glycolysis is a well-known process by which metabolically active cells, such as tumor or immune cells meet their high metabolic demands. Previously, our laboratory has demonstrated that in airway epithelial cells, the pleiotropic cytokine, interleukin-1 beta (IL1B) induces glycolysis and that this contributes to allergic airway inflammation and remodeling. Activation of glycolysis is known to increase NADPH reducing equivalents generated from the pentose phosphate pathway, linking metabolic reprogramming with redox homeostasis. In addition, numerous glycolytic enzymes are known to be redox regulated. However, whether and how redox chemistry regulates metabolic reprogramming more generally remains unclear. In this study, we employed a multi-omics approach in primary mouse airway basal cells to evaluate the role of protein redox biochemistry, specifically protein glutathionylation, in mediating metabolic reprogramming. Our findings demonstrate that IL1B induces glutathionylation of multiple proteins involved in metabolic regulation, notably in the glycolysis pathway. Cells lacking Glutaredoxin-1 (Glrx), the enzyme responsible for reversing glutathionylation, show modulation of multiple metabolic pathways including an enhanced IL1B-induced glycolytic response. This was accompanied by increased secretion of thymic stromal lymphopoietin (TSLP), a cytokine important in asthma pathogenesis. Targeted inhibition of glycolysis prevented TSLP release, confirming the functional relevance of enhanced glycolysis in cells stimulated with IL1B. Collectively, data herein point to an intriguing link between glutathionylation chemistry and glycolytic reprogramming in epithelial cells and suggest that glutathionylation chemistry may represent a therapeutic target in pulmonary pathologies with perturbations in the glycolysis pathway.
Collapse
Affiliation(s)
- Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Evan Elko
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Allison M Manuel
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Maximilian MacPherson
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Cuixia Erickson
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, USA
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands.,Ludwig Boltzmann Institute for Lung Research, Vienna, Austria
| | - Niki L Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ying-Wai Lam
- Department of Biology, University of Vermont College of Medicine, Burlington, VT, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | | |
Collapse
|
17
|
Necrosis Rather Than Apoptosis is the Dominant form of Alveolar Epithelial Cell Death in Lipopolysaccharide-Induced Experimental Acute Respiratory Distress Syndrome Model. Shock 2021; 54:128-139. [PMID: 31365488 DOI: 10.1097/shk.0000000000001425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Alveolar epithelial cell (AEC) death, which is classified as apoptosis or necrosis, plays a critical role in the pathogenesis of acute respiratory distress syndrome (ARDS). In addition to apoptosis, some types of necrosis are known to be molecularly regulated, and both apoptosis and necrosis can be therapeutic targets for diseases. However, the relative contribution of apoptosis and necrosis to AEC death during ARDS has not been elucidated. Here, we evaluated which type of AEC death is dominant and whether regulated necrosis is involved in lipopolysaccharide (LPS)-induced lung injury, an experimental ARDS model. In the bronchoalveolar lavage fluid from the LPS-induced lung injury mice, both the levels of cytokeratin 18-M65 antigen (a marker of total epithelial cell death) and cytokeratin 18-M30 antigen (an epithelial apoptosis marker) were increased. The M30/M65 ratio, which is an indicator of the proportion of apoptosis to total epithelial cell death, was significantly lower than that in healthy controls. In addition, the number of propidium iodide-positive, membrane-disrupted cells was significantly higher than the number of TUNEL-positive apoptotic cells in the lung sections of lung injury mice. Activated neutrophils seemed to mediate AEC death. Finally, we demonstrated that necroptosis, a regulated necrosis pathway, is involved in AEC death during LPS-induced lung injury. These results indicate that necrosis including necroptosis, rather than apoptosis, is the dominant type of AEC death in LPS-induced lung injury. Although further studies investigating human ARDS subjects are necessary, targeting necrosis including its regulated forms might represent a more efficient approach to protecting the alveolar epithelial barrier during ARDS.
Collapse
|
18
|
Su Y, Guo H, Liu Q. Effects of mesenchymal stromal cell-derived extracellular vesicles in acute respiratory distress syndrome (ARDS): Current understanding and future perspectives. J Leukoc Biol 2021; 110:27-38. [PMID: 33955590 PMCID: PMC8242476 DOI: 10.1002/jlb.3mr0321-545rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating and life‐threatening syndrome that results in high morbidity and mortality. Current pharmacologic treatments and mechanical ventilation have limited value in targeting the underlying pathophysiology of ARDS. Mesenchymal stromal cells (MSCs) have shown potent therapeutic advantages in experimental and clinical trials through direct cell‐to‐cell interaction and paracrine signaling. However, safety concerns and the indeterminate effects of MSCs have resulted in the investigation of MSC‐derived extracellular vesicles (MSC‐EVs) due to their low immunogenicity and tumorigenicity. Over the past decades, soluble proteins, microRNAs, and organelles packaged in EVs have been identified as efficacious molecules to orchestrate nearby immune responses, which attenuate acute lung injury by facilitating pulmonary epithelium repair, reducing acute inflammation, and restoring pulmonary vascular leakage. Even though MSC‐EVs possess similar bio‐functional effects to their parental cells, there remains existing barriers to employing this alternative from bench to bedside. Here, we summarize the current established research in respect of molecular mechanisms of MSC‐EV effects in ARDS and highlight the future challenges of MSC‐EVs for clinical application.
Collapse
Affiliation(s)
- Yue Su
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| | - Haiyan Guo
- Department of Paediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qinghua Liu
- Department of Respiratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, P.R. China
| |
Collapse
|
19
|
Ambruso SL, Gil HW, Fox B, Park B, Altmann C, Bagchi RA, Baker PR, Reisz JA, Faubel S. Lung metabolomics after ischemic acute kidney injury reveals increased oxidative stress, altered energy production, and ATP depletion. Am J Physiol Lung Cell Mol Physiol 2021; 321:L50-L64. [PMID: 33949208 DOI: 10.1152/ajplung.00042.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) is a complex disease associated with increased mortality that may be due to deleterious distant organ effects. AKI associated with respiratory complications, in particular, has a poor outcome. In murine models, AKI is characterized by increased circulating cytokines, lung chemokine upregulation, and neutrophilic infiltration, similar to other causes of indirect acute lung injury (ALI; e.g., sepsis). Many causes of lung inflammation are associated with a lung metabolic profile characterized by increased oxidative stress, a shift toward the use of other forms of energy production, and/or a depleted energy state. To our knowledge, there are no studies that have evaluated pulmonary energy production and metabolism after AKI. We hypothesized that based on the parallels between inflammatory acute lung injury and AKI-mediated lung injury, a similar metabolic profile would be observed. Lung metabolomics and ATP levels were assessed 4 h, 24 h, and 7 days after ischemic AKI in mice. Numerous novel findings regarding the effect of AKI on the lung were observed including 1) increased oxidative stress, 2) a shift toward alternate methods of energy production, and 3) depleted levels of ATP. The findings in this report bring to light novel characteristics of AKI-mediated lung injury and provide new leads into the mechanisms by which AKI in patients predisposes to pulmonary complications.
Collapse
Affiliation(s)
- Sophia L Ambruso
- Rocky Mountain Regional VA Medical Center, Denver, Colorado.,University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Hyo-Wook Gil
- Soonchunhyang University Cheonan Hospital, Cheonan, ChungcheongNam-do, Republic of Korea
| | - Benjamin Fox
- University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Bryan Park
- University of Colorado Anschutz Medical Campus, Denver, Colorado
| | | | - Rushita A Bagchi
- University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Peter R Baker
- University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Julie A Reisz
- University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Sarah Faubel
- Rocky Mountain Regional VA Medical Center, Denver, Colorado.,University of Colorado Anschutz Medical Campus, Denver, Colorado
| |
Collapse
|
20
|
Vohwinkel CU, Coit EJ, Burns N, Elajaili H, Hernandez‐Saavedra D, Yuan X, Eckle T, Nozik E, Tuder RM, Eltzschig HK. Targeting alveolar-specific succinate dehydrogenase A attenuates pulmonary inflammation during acute lung injury. FASEB J 2021; 35:e21468. [PMID: 33687752 PMCID: PMC8250206 DOI: 10.1096/fj.202002778r] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023]
Abstract
Acute lung injury (ALI) is an inflammatory lung disease, which manifests itself in patients as acute respiratory distress syndrome (ARDS). Previous studies have implicated alveolar-epithelial succinate in ALI protection. Therefore, we hypothesized that targeting alveolar succinate dehydrogenase SDH A would result in elevated succinate levels and concomitant lung protection. Wild-type (WT) mice or transgenic mice with targeted alveolar-epithelial Sdha or hypoxia-inducible transcription factor Hif1a deletion were exposed to ALI induced by mechanical ventilation. Succinate metabolism was assessed in alveolar-epithelial via mass spectrometry as well as redox measurements and evaluation of lung injury. In WT mice, ALI induced by mechanical ventilation decreased SDHA activity and increased succinate in alveolar-epithelial. In vitro, cell-permeable succinate decreased epithelial inflammation during stretch injury. Mice with inducible alveolar-epithelial Sdha deletion (Sdhaloxp/loxp SPC-CreER mice) revealed reduced lung inflammation, improved alveolar barrier function, and attenuated histologic injury. Consistent with a functional role of succinate to stabilize HIF, Sdhaloxp/loxp SPC-CreER experienced enhanced Hif1a levels during hypoxia or ALI. Conversely, Hif1aloxp/loxp SPC-CreER showed increased inflammation with ALI induced by mechanical ventilation. Finally, wild-type mice treated with intra-tracheal dimethlysuccinate were protected during ALI. These data suggest that targeting alveolar-epithelial SDHA dampens ALI via succinate-mediated stabilization of HIF1A. Translational extensions of our studies implicate succinate treatment in attenuating alveolar inflammation in patients suffering from ARDS.
Collapse
Affiliation(s)
- Christine U. Vohwinkel
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Ethan J. Coit
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Nana Burns
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Hanan Elajaili
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | | | - Xiaoyi Yuan
- Department of AnesthesiologyMcGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Tobias Eckle
- Department of AnesthesiologyUniversity of Colorado ‐ Anschutz Medical CampusAuroraCOUSA
| | - Eva Nozik
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraCOUSA
| | - Holger K. Eltzschig
- Department of AnesthesiologyMcGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTXUSA
| |
Collapse
|
21
|
Li X, Berg NK, Mills T, Zhang K, Eltzschig HK, Yuan X. Adenosine at the Interphase of Hypoxia and Inflammation in Lung Injury. Front Immunol 2021; 11:604944. [PMID: 33519814 PMCID: PMC7840604 DOI: 10.3389/fimmu.2020.604944] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia and inflammation often coincide in pathogenic conditions such as acute respiratory distress syndrome (ARDS) and chronic lung diseases, which are significant contributors to morbidity and mortality for the general population. For example, the recent global outbreak of Coronavirus disease 2019 (COVID-19) has placed viral infection-induced ARDS under the spotlight. Moreover, chronic lung disease ranks the third leading cause of death in the United States. Hypoxia signaling plays a diverse role in both acute and chronic lung inflammation, which could partially be explained by the divergent function of downstream target pathways such as adenosine signaling. Particularly, hypoxia signaling activates adenosine signaling to inhibit the inflammatory response in ARDS, while in chronic lung diseases, it promotes inflammation and tissue injury. In this review, we discuss the role of adenosine at the interphase of hypoxia and inflammation in ARDS and chronic lung diseases, as well as the current strategy for therapeutic targeting of the adenosine signaling pathway.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Nathanial K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kaiying Zhang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
22
|
Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol 2020; 599:23-37. [PMID: 33006160 DOI: 10.1113/jp280572] [Citation(s) in RCA: 395] [Impact Index Per Article: 98.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
Under conditions of hypoxia, most eukaryotic cells can shift their primary metabolic strategy from predominantly mitochondrial respiration towards increased glycolysis to maintain ATP levels. This hypoxia-induced reprogramming of metabolism is key to satisfying cellular energetic requirements during acute hypoxic stress. At a transcriptional level, this metabolic switch can be regulated by several pathways including the hypoxia inducible factor-1α (HIF-1α) which induces an increased expression of glycolytic enzymes. While this increase in glycolytic flux is beneficial for maintaining bioenergetic homeostasis during hypoxia, the pathways mediating this increase can also be exploited by cancer cells to promote tumour survival and growth, an area which has been extensively studied. It has recently become appreciated that increased glycolytic metabolism in hypoxia may also have profound effects on cellular physiology in hypoxic immune and endothelial cells. Therefore, understanding the mechanisms central to mediating this reprogramming are of importance from both physiological and pathophysiological standpoints. In this review, we highlight the role of HIF-1α in the regulation of hypoxic glycolysis and its implications for physiological processes such as angiogenesis and immune cell effector function.
Collapse
Affiliation(s)
- S J Kierans
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - C T Taylor
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
23
|
Larson-Casey JL, Gu L, Fiehn O, Carter AB. Cadmium-mediated lung injury is exacerbated by the persistence of classically activated macrophages. J Biol Chem 2020; 295:15754-15766. [PMID: 32917723 DOI: 10.1074/jbc.ra120.013632] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Heavy metals released into the environment have a significant effect on respiratory health. Lung macrophages are important in mounting an inflammatory response to injury, but they are also involved in repair of injury. Macrophages develop mixed phenotypes in complex pathological conditions and polarize to a predominant phenotype depending on the duration and stage of injury and/or repair. Little is known about the reprogramming required for lung macrophages to switch between these divergent functions; therefore, understanding the mechanism(s) by which macrophages promote metabolic reprogramming to regulate lung injury is essential. Here, we show that lung macrophages polarize to a pro-inflammatory, classically activated phenotype after cadmium-mediated lung injury. Because metabolic adaptation provides energy for the diverse macrophage functions, these classically activated macrophages show metabolic reprogramming to glycolysis. RNA-Seq revealed up-regulation of glycolytic enzymes and transcription factors regulating glycolytic flux in lung macrophages from cadmium-exposed mice. Moreover, cadmium exposure promoted increased macrophage glycolytic function with enhanced extracellular acidification rate, glycolytic metabolites, and lactate excretion. These observations suggest that cadmium mediates the persistence of classically activated lung macrophages to exacerbate lung injury.
Collapse
Affiliation(s)
- Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Linlin Gu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oliver Fiehn
- National Institutes of Health West Coast Metabolomics Center, University of California Davis, Davis, California, USA
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham Veterans Administration Medical Center, Birmingham, Alabama, USA
| |
Collapse
|
24
|
Del Vecchio L, Locatelli F. Hypoxia response and acute lung and kidney injury: possible implications for therapy of COVID-19. Clin Kidney J 2020; 13:494-499. [PMID: 32905208 PMCID: PMC7467604 DOI: 10.1093/ckj/sfaa149] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic of unprecedented severity affecting millions of people around the world and causing several hundred thousands of deaths. The presentation of the disease ranges from asymptomatic manifestations through to acute respiratory distress syndrome with the necessity of mechanical ventilation. Cytokine storm and maladaptive responses to the viral spread in the body could be responsible for the severity of disease. Many patients develop acute kidney injury (AKI) during the course of their disease, especially in more severe cases. Many factors could cause kidney damage during infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. It is still unclear whether direct viral damage or the overexpression of cytokines and inflammatory factors are preeminent. According to autoptic studies, in most of the cases, AKI is due proximal tubular damage. However, cases of collapsing focal segmental glomerulosclerosis were reported as well in the absence of signs of direct viral infection of the kidney. Considering that severe hypoxia is a hallmark of severe SARS-CoV-2 infection, the involvement of the hypoxia-inducible factor (HIF) system is very likely, possibly influencing the inflammatory response and outcome in both the lungs and kidneys. Several bodies of evidence have shown a possible role of the HIF pathway during AKI in various kidney disease models. Similar observations were made in the setting of acute lung injury. In both organs, HIF activation by means of inhibition of the prolyl-hydroxylases domain (PHD) could be protective. Considering these promising experimental data, we hypothesize that PHD inhibitors could be considered as a possible new therapy against severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Francesco Locatelli
- Past Director, Department of Nephrology and Dialysis, Alessandro Manzoni Hospital, ASST Lecco, Lecco, Italy
| |
Collapse
|
25
|
Han F, Wu G, Han S, Li Z, Jia Y, Bai L, Li X, Wang K, Yang F, Zhang J, Wang X, Guan H, Linlin S, Han J, Hu D. Hypoxia-inducible factor prolyl-hydroxylase inhibitor roxadustat (FG-4592) alleviates sepsis-induced acute lung injury. Respir Physiol Neurobiol 2020; 281:103506. [PMID: 32726645 DOI: 10.1016/j.resp.2020.103506] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/07/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
Acute lung injury (ALI) is one of the most severe outcomes of sepsis which still waiting for effective treatment method. Roxadustat (FG-4592) which is often used for treatment of anemia in patients with chronic kidney disease (CKD), its affection on LPS-induced ALI haven't been evaluated. MH-S and MLE-12 cell injury and ALI mouse model was induced LPS. Several assays were used to explore the role of FG-4592 in reducing the damage caused by LPS. FG-4592 treatment significantly upregulated HIF-1α and HO-1 and strikingly attenuated inflammation in vivo and in vitro. Furthermore, septic mice overexpressing HIF-1α had high level of survival rate and lower expression of inflammatory factors while down-regulation can enhance the damage of LPS. HIF-1α has a protective effect on acute lung injury in LPS induced septic mice. FG-4592 treatment remarkably ameliorated the LPS-induced lung injury through the stabilization of HIF-1α. Besides the role in treating CKD anemia, the clinical use of FG-4592 also might be extended to ALI.
Collapse
Affiliation(s)
- Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China
| | - Zhenzhen Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China
| | - Lu Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China
| | - Xiaoqiang Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China
| | - Fangfang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China
| | - Xujie Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China
| | - Su Linlin
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China.
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, China.
| |
Collapse
|
26
|
Yang Y, Ding Z, Wang Y, Zhong R, Feng Y, Xia T, Xie Y, Yang B, Sun X, Shu Z. Systems pharmacology reveals the mechanism of activity of Physalis alkekengi L. var. franchetii against lipopolysaccharide-induced acute lung injury. J Cell Mol Med 2020; 24:5039-5056. [PMID: 32220053 PMCID: PMC7205831 DOI: 10.1111/jcmm.15126] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury (ALI) is an important cause of mortality of patients with sepsis, shock, trauma, pneumonia, multiple transfusions and pancreatitis. Physalis alkekengi L. var. franchetii (Mast.) Makino (PAF) has been extensively used in Chinese folk medicine because of a good therapeutic effect in respiratory diseases. Here, an integrated approach combining network pharmacology, proton nuclear magnetic resonance-based metabolomics, histopathological analysis and biochemical assays was used to elucidate the mechanism of PAF against ALI induced by lipopolysaccharide (LPS) in a mouse model. We found that the compounds present in PAF interact with 32 targets to effectively improve the damage in the lung undergoing ALI. We predicted the putative signalling pathway involved by using the network pharmacology and then used the orthogonal signal correction partial least-squares discriminant analysis to analyse the disturbances in the serum metabolome in mouse. We also used ELISA, RT-qPCR, Western blotting, immunohistochemistry and TUNEL assay to confirm the potential signalling pathways involved. We found that PAF reduced the release of cytokines, such as TNF-α, and the accumulation of oxidation products; decreased the levels of NF-κB, p-p38, ERK, JNK, p53, caspase-3 and COX-2; and enhanced the translocation of Nrf2 from the cytoplasm to the nucleus. Collectively, PAF significantly reduced oxidative stress injury and inflammation, at the same time correcting the energy metabolism imbalance caused by ALI, increasing the amount of antioxidant-related metabolites and reducing the apoptosis of lung cells. These observations suggest that PAF may be an effective candidate preparation alleviating ALI.
Collapse
Affiliation(s)
- Yanni Yang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zihe Ding
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Renxing Zhong
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanlin Feng
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyi Xia
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuanyuan Xie
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingyou Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zunpeng Shu
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Xu J, Pan T, Qi X, Tan R, Wang X, Liu Z, Tao Z, Qu H, Zhang Y, Chen H, Wang Y, Zhang J, Wang J, Liu J. Increased mortality of acute respiratory distress syndrome was associated with high levels of plasma phenylalanine. Respir Res 2020; 21:99. [PMID: 32354336 PMCID: PMC7193408 DOI: 10.1186/s12931-020-01364-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background There is a dearth of drug therapies available for the treatment of acute respiratory distress syndrome (ARDS). Certain metabolites play a key role in ARDS and could serve as potential targets for developing therapies against this respiratory disorder. The present study was designed to determine such “functional metabolites” in ARDS using metabolomics and in vivo experiments in a mouse model. Methods Metabolomic profiles of blood plasma from 42 ARDS patients and 28 healthy controls were captured using Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) assay. Univariate and multivariate statistical analysis were performed on metabolomic profiles from blood plasma of ARDS patients and healthy controls to screen for “functional metabolites”, which were determined by variable importance in projection (VIP) scores and P value. Pathway analysis of all the metabolites was performed. The mouse model of ARDS was established to investigate the role of “functional metabolites” in the lung injury and mortality caused by the respiratory disorder. Results The metabolomic profiles of patients with ARDS were significantly different from healthy controls, difference was also observed between metabolomic profiles of the non-survivors and the survivors among the ARDS patient pool. Levels of Phenylalanine, D-Phenylalanine and Phenylacetylglutamine were significantly increased in non-survivors compared to the survivors of ARDS. Phenylalanine metabolism was the most notably altered pathway between the non-survivors and survivors of ARDS patients. In vivo animal experiments demonstrated that high levels of Phenylalanine might be associated with the severer lung injury and increased mortality of ARDS. Conclusion Increased mortality of acute respiratory distress syndrome was associated with high levels of plasma Phenylalanine. Trial registration Chinese Clinical Trial Registry, ChiCTR1800015930. Registered 29 April 2018, http://www.chictr.org.cn/edit.aspx?pid=25609&htm=4
Collapse
Affiliation(s)
- Jing Xu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Qi
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaojun Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheying Tao
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hong Chen
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Wang
- Department of Emergency Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Zhang
- Department of Gynecology and Obstetrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
28
|
Abstract
Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.
Collapse
Affiliation(s)
- Sean P Colgan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA;
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Glenn T Furuta
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
29
|
Wang M, Wang K, Deng G, Liu X, Wu X, Hu H, Zhang Y, Gao W, Li Q. Mitochondria-Modulating Porous Se@SiO 2 Nanoparticles Provide Resistance to Oxidative Injury in Airway Epithelial Cells: Implications for Acute Lung Injury. Int J Nanomedicine 2020; 15:2287-2302. [PMID: 32280221 PMCID: PMC7127826 DOI: 10.2147/ijn.s240301] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
Background Mitochondrial dysfunction played a vital role in the pathogenesis of various diseases, including acute lung injury (ALI). However, few strategies targeting mitochondria were developed in treating ALI. Recently, we fabricated a porous Se@SiO2 nanoparticles (NPs) with antioxidant properties. Methods The protective effect of Se@SiO2 NPs was assessed using confocal imaging, immunoblotting, RNA-seq, mitochondrial respiratory chain (MRC) activity assay, and transmission electron microscopy (TEM) in airway epithelial cell line (Beas-2B). The in vivo efficacy of Se@SiO2 NPs was evaluated in a lipopolysaccharide (LPS)-induced ALI mouse model. Results This study demonstrated that Se@SiO2 NPs significantly increased the resistance of airway epithelial cells under oxidative injury and shifted lipopolysaccharide-induced gene expression profile closer to the untreated controls. The cytoprotection of Se@SiO2 was found to be achieved by maintaining mitochondrial function, activity, and dynamics. In an animal model of ALI, pretreated with the NPs improved mitochondrial dysfunction, thus reducing inflammatory responses and diffuse damage in lung tissues. Additionally, RNA-seq analysis provided evidence for the broad modulatory activity of our Se@SiO2 NPs in various metabolic disorders and inflammatory diseases. Conclusion This study brought new insights into mitochondria-targeting bioactive NPs, with application potential in curing ALI or other human mitochondria-related disorders.
Collapse
Affiliation(s)
- Muyun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, People's Republic of China
| | - Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, People's Republic of China
| | - Guoying Deng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Xiaodong Wu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, People's Republic of China
| | - Haiyang Hu
- Department of Cardiothoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, People's Republic of China
| | - Yanbei Zhang
- Department of Geriatric Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui 230022, People's Republic of China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, People's Republic of China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, People's Republic of China
| |
Collapse
|
30
|
Depression of lncRNA NEAT1 Antagonizes LPS-Evoked Acute Injury and Inflammatory Response in Alveolar Epithelial Cells via HMGB1-RAGE Signaling. Mediators Inflamm 2020; 2020:8019467. [PMID: 32089649 PMCID: PMC7025070 DOI: 10.1155/2020/8019467] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/31/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Sepsis-evoked acute lung injury (ALI) and its extreme manifestation, acute respiratory distress syndrome (ARDS), constitute a major cause of mortality in intensive care units. High levels of the long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) have been positively correlated with increased severity and unfavorable prognoses in patients with sepsis. Nevertheless, the function and molecular mechanism of NEAT1 in ALI remain elusive. In the current study, high levels of NEAT1 were confirmed in lipopolysaccharide- (LPS-) induced ALI mice models and in LPS-stimulated cells from the alveolar epithelial A549 cell line. Intriguingly, cessation of NEAT1 led to increased cell viability and decreased lactate dehydrogenase release, apoptosis, and caspase-3/9 activity, which conferred protection against LPS-induced injury in these cells. NEAT1 inhibition also restrained LPS-evoked transcripts and production of inflammatory cytokines IL-6, IL-1β, and TNF-α. A mechanism analysis corroborated the activation of high-mobility group box1 (HMGB1)/receptors for advanced glycation end products (RAGE) and NF-κB signaling in LPS-treated A549 cells. NEAT1 suppression reversed the activation of this pathway. Notably, reactivating HMGB1/RAGE signaling via HMGB1 overexpression blunted the anti-injury and anti-inflammation effects of NEAT1 knockdown. These findings suggest that NEAT1 may aggravate the progression of ALI and ARDS by inducing alveolar epithelial cell injury and inflammation via HMGB1/RAGE signaling, implying a promising treatment target for these conditions.
Collapse
|
31
|
Ten VS, Ratner V. Mitochondrial bioenergetics and pulmonary dysfunction: Current progress and future directions. Paediatr Respir Rev 2019; 34:37-45. [PMID: 31060947 PMCID: PMC6790157 DOI: 10.1016/j.prrv.2019.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/04/2019] [Indexed: 12/26/2022]
Abstract
This review summarizes current understanding of mitochondrial bioenergetic dysfunction applicable to mechanisms of lung diseases and outlines challenges and future directions in this rapidly emerging field. Although the role of mitochondria extends beyond the term of cellular "powerhouse", energy generation remains the most fundamental function of these organelles. It is not counterintuitive to propose that intact energy supply is important for favorable cellular fate following pulmonary insult. In this review, the discussion of mitochondrial dysfunction focuses on those molecular mechanisms that alter cellular bioenergetics in the lungs: (a) inhibition of mitochondrial respiratory chain, (b) mitochondrial leak and uncoupling, (c) alteration of mitochondrial Ca2+ handling, (d) mitochondrial production of reactive oxygen species and self-oxidation. The discussed lung diseases were selected according to their pathological nature and relevance to pediatrics: Acute lung injury (ALI), defined as acute parenchymal lung disease associated with cellular demise and inflammation (Acute Respiratory Distress Syndrome, ARDS, Pneumonia), alveolar developmental failure (Bronchopulmonary Dysplasia, BPD or chronic lung disease in premature infants), obstructive airway diseases (Bronchial asthma) and vascular remodeling affecting pulmonary circulation (Pulmonary Hypertension, PH). The analysis highlights primary mechanisms of mitochondrial bioenergetic dysfunction contributing to the disease-specific pulmonary insufficiency and proposes potential therapeutic targets.
Collapse
Affiliation(s)
- Vadim S. Ten
- Division of Neonatology, Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Veniamin Ratner
- Division of Neonatology, Department of Pediatrics, Icahn Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
32
|
CMIT/MIT induce apoptosis and inflammation in alveolar epithelial cells through p38/JNK/ERK1/2 signaling pathway. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-019-0005-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|