1
|
Strake M, Fischer-Wedi CV, Khattab MH, Lauermann P, Wollnik C, Stanischa C, Hoerauf H, Rehfeldt F, van Oterendorp C. The influence of polyacrylamide gel substrate elasticity on primary cultures of rat retinal ganglion cells. Exp Eye Res 2024; 249:110116. [PMID: 39374640 DOI: 10.1016/j.exer.2024.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
In vitro primary cell culture models of retinal ganglion cells (RGC) are widely used to study pathomechanisms of diseases such as glaucoma. The biomechanic interaction with the culture substrate is known to influence core cellular functions. RGC cultures, however, are usually grown on rigid plastic or glass substrates. We hypothesized that soft polyacrylamide gel substrates may alter survival and neurite outgrowth of primary cultured RGC. Primary retinal cultures from postnatal (day 1-6) Wistar rats were grown on glass coverslips or polyacrylamide (PA) gel substrate with different Young's elastic moduli (0.75, 10 or 30 kPa). Substrates were coated with Poly-l-lysine and/or laminin. RGC were immunostained with anti-beta-III-tubulin. Total neurite length, growth cone morphology, RGC density, mitochondrial morphology and transport as well as pro-survival pathways (Erk1/2, Akt, CREB) were assessed. PA gel substrates of E = 10 kPa significantly increased the total neurite length by factor 1.5 compared to glass (p = 0.02). The growth cone area was significantly larger by factor 5.3 on 30 kPa gels (p = 0.01). The presence of a substrate coating was more important for neurite outgrowth and RGC survival on PA gels (poly-l-lysine > laminin) than on glass. Neither mitochondrial morphology and motility nor the activation of pro-survival pathways significantly differed between the four substrates. PA gel substrates significantly enhanced RGC neurite outgrowth. The signaling cascades mediating this effect remain to be determined.
Collapse
Affiliation(s)
- Matthias Strake
- Department of Ophthalmology, University Medical Center, Goettingen, Germany; Third Institute of Physics, Biophysics, Georg-August-University, Goettingen, Germany; Department of Ophthalmology, University Medical Center, Rostock, Germany
| | | | - Mohammed H Khattab
- Department of Ophthalmology, University Medical Center, Goettingen, Germany
| | - Peer Lauermann
- Department of Ophthalmology, University Medical Center, Goettingen, Germany
| | - Carina Wollnik
- Third Institute of Physics, Biophysics, Georg-August-University, Goettingen, Germany
| | | | - Hans Hoerauf
- Department of Ophthalmology, University Medical Center, Goettingen, Germany
| | - Florian Rehfeldt
- Third Institute of Physics, Biophysics, Georg-August-University, Goettingen, Germany; Experimental Physics I, University of Bayreuth, Bayreuth, Germany
| | | |
Collapse
|
2
|
Kuijpers M, Nguyen PT, Haucke V. The Endoplasmic Reticulum and Its Contacts: Emerging Roles in Axon Development, Neurotransmission, and Degeneration. Neuroscientist 2024; 30:545-559. [PMID: 36960757 PMCID: PMC11420577 DOI: 10.1177/10738584231162810] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The neuronal endoplasmic reticulum (ER) consists of a dynamic, tubular network that extends all the way from the soma into dendrites, axons, and synapses. This morphology gives rise to an enormous membrane surface area that, through the presence of tethering proteins, lipid transfer proteins, and ion channels, plays critical roles in local calcium regulation, membrane dynamics, and the supply of ions and lipids to other organelles. Here, we summarize recent advances that highlight the various roles of the neuronal ER in axonal growth, repair, and presynaptic function. We review the variety of contact sites between the ER and other axonal organelles and describe their influence on neurodevelopment and neurotransmission.
Collapse
Affiliation(s)
- Marijn Kuijpers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Phuong T Nguyen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| |
Collapse
|
3
|
Goncalves MB, Wu Y, Clarke E, Grist J, Moehlin J, Mendoza-Parra MA, Hobbs C, Kalindjian B, Fok H, Mander AP, Hassanin H, Bendel D, Täubel J, Mant T, Carlstedt T, Jack J, Corcoran JPT. C286, an orally available retinoic acid receptor β agonist drug, regulates multiple pathways to achieve spinal cord injury repair. Front Mol Neurosci 2024; 17:1411384. [PMID: 39228795 PMCID: PMC11368863 DOI: 10.3389/fnmol.2024.1411384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Retinoic acid receptor β2 (RARβ2) is an emerging therapeutic target for spinal cord injuries (SCIs) with a unique multimodal regenerative effect. We have developed a first-in-class RARβ agonist drug, C286, that modulates neuron-glial pathways to induce functional recovery in a rodent model of sensory root avulsion. Here, using genome-wide and pathway enrichment analysis of avulsed rats' spinal cords, we show that C286 also influences the extracellular milieu (ECM). Protein expression studies showed that C286 upregulates tenascin-C, integrin-α9, and osteopontin in the injured cord. Similarly, C286 remodulates these ECM molecules, hampers inflammation and prevents tissue loss in a rodent model of spinal cord contusion C286. We further demonstrate C286's efficacy in human iPSC-derived neurons, with treatment resulting in a significant increase in neurite outgrowth. Additionally, we identify a putative efficacy biomarker, S100B, which plasma levels correlated with axonal regeneration in nerve-injured rats. We also found that other clinically available retinoids, that are not RARβ specific agonists, did not lead to functional recovery in avulsed rats, demonstrating the requirement for RARβ specific pathways in regeneration. In a Phase 1 trial, the single ascending dose (SAD) cohorts showed increases in expression of RARβ2 in white blood cells correlative to increased doses and at the highest dose administered, the pharmacokinetics were similar to the rat proof of concept (POC) studies. Collectively, our data suggests that C286 signalling in neurite/axonal outgrowth is conserved between species and across nerve injuries. This warrants further clinical testing of C286 to ascertain POC in a broad spectrum of neurodegenerative conditions.
Collapse
Affiliation(s)
- Maria B. Goncalves
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Yue Wu
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Earl Clarke
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - John Grist
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Julien Moehlin
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - Marco Antonio Mendoza-Parra
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - Carl Hobbs
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Barret Kalindjian
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Henry Fok
- NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Adrian P. Mander
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Hana Hassanin
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Daryl Bendel
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Jörg Täubel
- Richmond Pharmacology Limited, London, United Kingdom
| | - Tim Mant
- NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Thomas Carlstedt
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Julian Jack
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| | - Jonathan P. T. Corcoran
- Neuroscience Drug Discovery Unit, Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, United Kingdom
| |
Collapse
|
4
|
Yang X, Zhou B. Unleashing metabolic power for axonal regeneration. Trends Endocrinol Metab 2024:S1043-2760(24)00182-6. [PMID: 39069446 DOI: 10.1016/j.tem.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Axon regeneration requires the mobilization of intracellular resources, including proteins, lipids, and nucleotides. After injury, neurons need to adapt their metabolism to meet the biosynthetic demands needed to achieve axonal regeneration. However, the exact contribution of cellular metabolism to this process remains elusive. Insights into the metabolic characteristics of proliferative cells may illuminate similar mechanisms operating in axon regeneration; therefore, unraveling previously unappreciated roles of metabolic adaptation is critical to achieving neuron regrowth, which is connected to the therapeutic strategies for neurological conditions necessitating nerve repairs, such as spinal cord injury and stroke. Here, we outline the metabolic role in axon regeneration and discuss factors enhancing nerve regrowth, highlighting potential novel metabolic treatments for restoring nerve function.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Bing Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China; School of Engineering Medicine, Beihang University, Beijing 100191, China.
| |
Collapse
|
5
|
Rommelspacher H, Bera S, Brommer B, Ward R, Kwiatkowska M, Zygmunt T, Theden F, Üsekes B, Eren N, Nieratschker M, Arnoldner C, Plontke SK, Hellmann-Regen J, Schlingensiepen R. A single dose of AC102 restores hearing in a guinea pig model of noise-induced hearing loss to almost prenoise levels. Proc Natl Acad Sci U S A 2024; 121:e2314763121. [PMID: 38557194 PMCID: PMC11009624 DOI: 10.1073/pnas.2314763121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024] Open
Abstract
Although sudden sensorineural hearing loss (SSNHL) is a serious condition, there are currently no approved drugs for its treatment. Nevertheless, there is a growing understanding that the cochlear pathologies that underlie SSNHL include apoptotic death of sensory outer hair cells (OHCs) as well as loss of ribbon synapses connecting sensory inner hair cells (IHCs) and neurites of the auditory nerve, designated synaptopathy. Noise-induced hearing loss (NIHL) is a common subtype of SSNHL and is widely used to model hearing loss preclinically. Here, we demonstrate that a single interventive application of a small pyridoindole molecule (AC102) into the middle ear restored auditory function almost to prenoise levels in a guinea pig model of NIHL. AC102 prevented noise-triggered loss of OHCs and reduced IHC synaptopathy suggesting a role of AC102 in reconnecting auditory neurons to their sensory target cells. Notably, AC102 exerted its therapeutic properties over a wide frequency range. Such strong improvements in hearing have not previously been demonstrated for other therapeutic agents. In vitro experiments of a neuronal damage model revealed that AC102 protected cells from apoptosis and promoted neurite growth. These effects may be explained by increased production of adenosine triphosphate, indicating improved mitochondrial function, and reduced levels of reactive-oxygen species which prevents the apoptotic processes responsible for OHC death. This action profile of AC102 might be causal for the observed hearing recovery in in vivo models.
Collapse
Affiliation(s)
| | - Sujoy Bera
- AudioCure Pharma GmbH, Berlin10115, Germany
| | | | | | | | | | | | - Berk Üsekes
- AudioCure Pharma GmbH, Berlin10115, Germany
- Department of Psychiatry and Psychotherapy, Section Clinical Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
| | - Neriman Eren
- AudioCure Pharma GmbH, Berlin10115, Germany
- Department of Psychiatry and Psychotherapy, Section Clinical Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
| | - Michael Nieratschker
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna1090, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna1090, Austria
| | - Stefan K. Plontke
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle06120, Germany
| | - Julian Hellmann-Regen
- Department of Psychiatry and Psychotherapy, Section Clinical Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Benjamin Franklin, Berlin12203, Germany
| | | |
Collapse
|
6
|
Goncalves MB, Mant T, Täubel J, Clarke E, Hassanin H, Bendel D, Fok H, Posner J, Holmes J, Mander AP, Corcoran JPT. Phase 1 safety, tolerability, pharmacokinetics and pharmacodynamic results of KCL-286, a novel retinoic acid receptor-β agonist for treatment of spinal cord injury, in male healthy participants. Br J Clin Pharmacol 2023; 89:3573-3583. [PMID: 37452623 PMCID: PMC10835503 DOI: 10.1111/bcp.15854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
AIMS KCL-286 is an orally available agonist that activates the retinoic acid receptor (RAR) β2, a transcription factor which stimulates axonal outgrowth. The investigational medicinal product is being developed for treatment of spinal cord injury (SCI). This adaptive dose escalation study evaluated the tolerability, safety and pharmacokinetics and pharmacodynamic activity of KCL-286 in male healthy volunteers to establish dosing to be used in the SCI patient population. METHODS The design was a double blind, randomized, placebo-controlled dose escalation study in 2 parts: a single ascending dose adaptive design with a food interaction arm, and a multiple ascending dose design. RARβ2 mRNA expression was evaluated in white blood cells. RESULTS At the highest single and multiple ascending doses (100 mg), no trends or clinically important differences were noted in the incidence or intensity of adverse events (AEs), serious AEs or other safety assessments with none leading to withdrawal from the study. The AEs were dry skin, rash, skin exfoliation, raised liver enzymes and eye disorders. There was an increase in mean maximum observed concentration and area under the plasma concentration-time curve up to 24 h showing a trend to subproportionality with dose. RARβ2 was upregulated by the investigational medicinal product in white blood cells. CONCLUSION KCL-286 was well tolerated by healthy human participants following doses that exceeded potentially clinically relevant plasma exposures based on preclinical in vivo models. Target engagement shows the drug candidate activates its receptor. These findings support further development of KCL-286 as a novel oral treatment for SCI.
Collapse
Affiliation(s)
- Maria B. Goncalves
- Neuroscience Drug Discovery UnitThe Wolfson Centre for Age‐Related Diseases, King's College London, Guy's CampusLondonUK
| | - Tim Mant
- NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, Guy's and St Thomas' NHS Foundation TrustLondonUK
| | | | - Earl Clarke
- Neuroscience Drug Discovery UnitThe Wolfson Centre for Age‐Related Diseases, King's College London, Guy's CampusLondonUK
| | - Hana Hassanin
- Surrey Clinical Research CentreUniversity of SurreySurreyUK
| | - Daryl Bendel
- Surrey Clinical Research CentreUniversity of SurreySurreyUK
| | - Henry Fok
- NIHR Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London, Guy's and St Thomas' NHS Foundation TrustLondonUK
| | - John Posner
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Jane Holmes
- Nuffield Department of Primary Care Health SciencesUniversity of OxfordOxfordUK
| | | | - Jonathan P. T. Corcoran
- Neuroscience Drug Discovery UnitThe Wolfson Centre for Age‐Related Diseases, King's College London, Guy's CampusLondonUK
| |
Collapse
|
7
|
Lu D, Feng Y, Liu G, Yang Y, Ren Y, Chen Z, Sun X, Guan Y, Wang Z. Mitochondrial transport in neurons and evidence for its involvement in acute neurological disorders. Front Neurosci 2023; 17:1268883. [PMID: 37901436 PMCID: PMC10600463 DOI: 10.3389/fnins.2023.1268883] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Ensuring mitochondrial quality is essential for maintaining neuronal homeostasis, and mitochondrial transport plays a vital role in mitochondrial quality control. In this review, we first provide an overview of neuronal mitochondrial transport, followed by a detailed description of the various motors and adaptors associated with the anterograde and retrograde transport of mitochondria. Subsequently, we review the modest evidence involving mitochondrial transport mechanisms that has surfaced in acute neurological disorders, including traumatic brain injury, spinal cord injury, spontaneous intracerebral hemorrhage, and ischemic stroke. An in-depth study of this area will help deepen our understanding of the mechanisms underlying the development of various acute neurological disorders and ultimately improve therapeutic options.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Feng
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yayi Yang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yixiang Guan
- Department of Neurosurgery, Hai'an People's Hospital Affiliated of Nantong University, Nantong, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Schlotawa L, Tyka K, Kettwig M, Ahrens‐Nicklas RC, Baud M, Berulava T, Brunetti‐Pierri N, Gagne A, Herbst ZM, Maguire JA, Monfregola J, Pena T, Radhakrishnan K, Schröder S, Waxman EA, Ballabio A, Dierks T, Fischer A, French DL, Gelb MH, Gärtner J. Drug screening identifies tazarotene and bexarotene as therapeutic agents in multiple sulfatase deficiency. EMBO Mol Med 2023; 15:e14837. [PMID: 36789546 PMCID: PMC9994482 DOI: 10.15252/emmm.202114837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
Multiple sulfatase deficiency (MSD, MIM #272200) results from pathogenic variants in the SUMF1 gene that impair proper function of the formylglycine-generating enzyme (FGE). FGE is essential for the posttranslational activation of cellular sulfatases. MSD patients display reduced or absent sulfatase activities and, as a result, clinical signs of single sulfatase disorders in a unique combination. Up to date therapeutic options for MSD are limited and mostly palliative. We performed a screen of FDA-approved drugs using immortalized MSD patient fibroblasts. Recovery of arylsulfatase A activity served as the primary readout. Subsequent analysis confirmed that treatment of primary MSD fibroblasts with tazarotene and bexarotene, two retinoids, led to a correction of MSD pathophysiology. Upon treatment, sulfatase activities increased in a dose- and time-dependent manner, reduced glycosaminoglycan content decreased and lysosomal position and size normalized. Treatment of MSD patient derived induced pluripotent stem cells (iPSC) differentiated into neuronal progenitor cells (NPC) resulted in a positive treatment response. Tazarotene and bexarotene act to ultimately increase the stability of FGE variants. The results lay the basis for future research on the development of a first therapeutic option for MSD patients.
Collapse
Affiliation(s)
- Lars Schlotawa
- Department of Paediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGöttingenGermany
| | - Karolina Tyka
- Department of Paediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGöttingenGermany
| | - Matthias Kettwig
- Department of Paediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGöttingenGermany
| | - Rebecca C Ahrens‐Nicklas
- Division of Human Genetics and MetabolismThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Matthias Baud
- School of Chemistry and Institute for Life SciencesUniversity of SouthamptonSouthamptonUK
| | - Tea Berulava
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Centre for Neurodegenerative DiseasesGöttingenGermany
| | - Nicola Brunetti‐Pierri
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational MedicineUniversity of Naples Federico IINaplesItaly
| | - Alyssa Gagne
- Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | | | - Jean A Maguire
- Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Jlenia Monfregola
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational MedicineUniversity of Naples Federico IINaplesItaly
| | - Tonatiuh Pena
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Centre for Neurodegenerative DiseasesGöttingenGermany
- Bioinformatics UnitGerman Centre for Neurodegenerative DiseasesGöttingenGermany
| | | | - Sophie Schröder
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Centre for Neurodegenerative DiseasesGöttingenGermany
| | - Elisa A Waxman
- Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Andrea Ballabio
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational MedicineUniversity of Naples Federico IINaplesItaly
- Department of Molecular and Human Genetics and Neurological Research InstituteBaylor College of MedicineHoustonTXUSA
| | - Thomas Dierks
- Faculty of Chemistry, Biochemistry IBielefeld UniversityBielefeldGermany
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative DiseasesGerman Centre for Neurodegenerative DiseasesGöttingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical Center GöttingenGöttingenGermany
- Multiscale Bioimaging Cluster of Excellence, University Medical Center GöttingenUniversity of GöttingenGöttingenGermany
| | - Deborah L French
- Center for Cellular and Molecular TherapeuticsThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Michael H Gelb
- Department of ChemistryUniversity of WashingtonSeattleWAUSA
| | - Jutta Gärtner
- Department of Paediatrics and Adolescent MedicineUniversity Medical Centre GöttingenGöttingenGermany
| |
Collapse
|
9
|
Trigo D, Nadais A, Carvalho A, Morgado B, Santos F, Nóbrega-Pereira S, da Cruz E Silva OAB. Mitochondria dysfunction and impaired response to oxidative stress promotes proteostasis disruption in aged human cells. Mitochondrion 2023; 69:1-9. [PMID: 36273801 DOI: 10.1016/j.mito.2022.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/19/2022] [Accepted: 10/15/2022] [Indexed: 12/06/2022]
Abstract
The plastic architecture of the mitochondrial network and its dynamic structure play crucial roles ensuring that varying energetic demands are rapidly met. Given the brain's high energy demand, mitochondria play a particularly critical role in neuronal and axonal energy homeostasis. With ageing physiological properties of the organism deteriorate, and are associated with loss of cellular homeostasis, accumulation of dysfunctional organelles and damaged macromolecules. Thus, mitochondrial loss of efficiency is likely to be both a cause and a consequence of ageing. Additionally distinct cellular events can contribute to oxidative stress, disruption of metabolism and mitochondria homeostasis, resulting in neuropathology. However, although the correlation between ageing and mitochondria disfunction is well established, the response to oxidative stress, particularly proteostasis, remains to be fully elucidated. The work here described explores the degradation of mitochondria oxidative stress-response mechanisms with ageing in human cells, addressing the physiological effects on proteostasis, focused on its role in differentiating between healthy and pathological ageing. Increased protein aggregation appears to be tightly related to impairment of ageing mitochondria response to oxidative stress, and antioxidative agents are shown to have a progressive protective effect with age; cells from old individuals show higher susceptibility to oxidative stress, in terms of protein aggregation, cell viability, or mitochondria homeostasis. These results support the antioxidant properties of flavonoids as a good therapeutic strategy for age-related diseases. Given their protective effect, this family of compounds can be of strategic therapeutic value for protein-aggregation related diseases.
Collapse
Affiliation(s)
- Diogo Trigo
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - André Nadais
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Carvalho
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara Morgado
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Francisco Santos
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sandrina Nóbrega-Pereira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
The Expression of ARMCX1 in Gastric Cancer Contributes to Prognosis and Influences Chemotherapy. J Immunol Res 2023; 2023:2623317. [PMID: 36726491 PMCID: PMC9886469 DOI: 10.1155/2023/2623317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/26/2022] [Indexed: 01/24/2023] Open
Abstract
The altered expression of ARMCX1 in patients with gastric cancer has been reported frequently, yet its correlation to prognosis and chemotherapy needs to be unveiled. In combination of the gene expression data retrieved from TCGA database and bioinformatic analysis, this study discovered 590 differentially expressed genes in the cancerous biopsies isolated from gastric patients, compared with controls. Among which, ARMCX1 exhibited great potential to serve as a prognostic biomarker for gastric patients; furthermore, patients with low expression of ARMCX1 could be more sensitive to these 9 chemotherapeutic agents: A-770041, AMG-706, ATRA, BEZ235, bortezomib, CGP60474, dasatinib, HG-64-1, and pazopanib, rather than the other chemotherapeutic agents. This study helps the improvement of evaluating the prognosis of gastric cancer patients, and would help optimize chemotherapeutic strategies in consideration of the expression of ARMCX1.
Collapse
|
11
|
Trigo D, Vitória JJ, da Cruz e Silva OAB. Novel therapeutic strategies targeting mitochondria as a gateway in neurodegeneration. Neural Regen Res 2022; 18:991-995. [PMID: 36254979 PMCID: PMC9827793 DOI: 10.4103/1673-5374.355750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In recent years, multiple disciplines have focused on mitochondrial biology and contributed to understanding its relevance towards adult-onset neurodegenerative disorders. These are complex dynamic organelles that have a variety of functions in ensuring cellular health and homeostasis. The plethora of mitochondrial functionalities confers them an intrinsic susceptibility to internal and external stressors (such as mutation accumulation or environmental toxins), particularly so in long-lived postmitotic cells such as neurons. Thus, it is reasonable to postulate an involvement of mitochondria in aging-associated neurological disorders, notably neurodegenerative pathologies including Alzheimer's disease and Parkinson's disease. On the other hand, biological effects resulting from neurodegeneration can in turn affect mitochondrial health and function, promoting a feedback loop further contributing to the progression of neuronal dysfunction and cellular death. This review examines state-of-the-art knowledge, focus on current research exploring mitochondrial health as a contributing factor to neuroregeneration, and the development of therapeutic approaches aimed at restoring mitochondrial homeostasis in a pathological setting.
Collapse
Affiliation(s)
- Diogo Trigo
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal,Correspondence to: Diogo Trigo, .
| | - José João Vitória
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Odete A. B. da Cruz e Silva
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
12
|
Labba NA, Wæhler HA, Houdaifi N, Zosen D, Haugen F, Paulsen RE, Hadera MG, Eskeland R. Paracetamol perturbs neuronal arborization and disrupts the cytoskeletal proteins SPTBN1 and TUBB3 in both human and chicken in vitro models. Toxicol Appl Pharmacol 2022; 449:116130. [PMID: 35714712 DOI: 10.1016/j.taap.2022.116130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Epidemiological studies have linked long-term/high-dose usage of paracetamol (N-acetyl-para-aminophenol, APAP) during pregnancy to adverse neuropsychiatric outcomes, primarily attention-deficit hyperactive disorder (ADHD), in the offspring. Though variable, ADHD has been associated with phenotypic alterations characterized by reductions in grey matter densities and aberrations in structural connectivity, effects which are thought to originate in neurodevelopment. We used embryonic chicken cerebellar granule neurons (CGNs) and neuronally differentiating human NTERA2 cells (NT2Ns) to investigate the in vitro effects of APAP on cell viability, migration, neuritogenesis, and the intracellular levels of various proteins involved in neurodevelopment as well as in the maintenance of the structure and function of neurites. Exposure to APAP ranging from 100 to 1600 μM yielded concentration- and time-dependent reductions in cell viability and levels of neurite arborization, as well as reductions in the levels of the cytoskeletal protein β2-spectrin, with the highest APAP concentration resulting in between 50 and 75% reductions in the aforementioned metrics over the course of 72 h. Exposure to APAP also reduced migration in the NT2Ns but not CGNs. Moreover, we found concentration- and time-dependent increases in punctate aggregation of the cytoskeletal protein β3-tubulin following exposure to APAP in both cell model systems, with the highest APAP concentration approximately doubling the number of aggregates over 72-120 h. Our findings demonstrate that APAP negatively perturbs neurite arborization degree, with concurrent reductions in the protein levels of β2-spectrin and disruption of the integrity of β3-tubulin, both proteins of which play important roles in neuronal structure and function.
Collapse
Affiliation(s)
- Nils-Anders Labba
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Hallvard Austin Wæhler
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Nora Houdaifi
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Denis Zosen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Fred Haugen
- Department of Work Psychology and Physiology, National Institute of Occupational Health (STAMI), Oslo, Norway
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Mussie Ghezu Hadera
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Ragnhild Eskeland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway.
| |
Collapse
|
13
|
Zaręba-Kozioł M, Burdukiewicz M, Wysłouch-Cieszyńska A. Intracellular Protein S-Nitrosylation—A Cells Response to Extracellular S100B and RAGE Receptor. Biomolecules 2022; 12:biom12050613. [PMID: 35625541 PMCID: PMC9138530 DOI: 10.3390/biom12050613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Human S100B is a small, multifunctional protein. Its activity, inside and outside cells, contributes to the biology of the brain, muscle, skin, and adipocyte tissues. Overexpression of S100B occurs in Down Syndrome, Alzheimer’s disease, Creutzfeldt–Jakob disease, schizophrenia, multiple sclerosis, brain tumors, epilepsy, melanoma, myocardial infarction, muscle disorders, and sarcopenia. Modulating the activities of S100B, related to human diseases, without disturbing its physiological functions, is vital for drug and therapy design. This work focuses on the extracellular activity of S100B and one of its receptors, the Receptor for Advanced Glycation End products (RAGE). The functional outcome of extracellular S100B, partially, depends on the activation of intracellular signaling pathways. Here, we used Biotin Switch Technique enrichment and mass-spectrometry-based proteomics to show that the appearance of the S100B protein in the extracellular milieu of the mammalian Chinese Hamster Ovary (CHO) cells, and expression of the membrane-bound RAGE receptor, lead to changes in the intracellular S-nitrosylation of, at least, more than a hundred proteins. Treatment of the wild-type CHO cells with nanomolar or micromolar concentrations of extracellular S100B modulates the sets of S-nitrosylation targets inside cells. The cellular S-nitrosome is tuned differently, depending on the presence or absence of stable RAGE receptor expression. The presented results are a proof-of-concept study, suggesting that S-nitrosylation, like other post-translational modifications, should be considered in future research, and in developing tailored therapies for S100B and RAGE receptor-related diseases.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteura 3, 02-093 Warsaw, Poland
| | - Michał Burdukiewicz
- Clinical Research Centre, Medical University of Białystok, Kilińskiego 1, 15-369 Białystok, Poland;
| | - Aleksandra Wysłouch-Cieszyńska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
14
|
Ciancia M, Rataj-Baniowska M, Zinter N, Baldassarro VA, Fraulob V, Charles AL, Alvarez R, Muramatsu SI, de Lera AR, Geny B, Dollé P, Niewiadomska-Cimicka A, Krezel W. Retinoic acid receptor beta protects striatopallidal medium spiny neurons from mitochondrial dysfunction and neurodegeneration. Prog Neurobiol 2022; 212:102246. [DOI: 10.1016/j.pneurobio.2022.102246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/07/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022]
|
15
|
Trigo D, Avelar C, Fernandes M, Sá J, da Cruz E Silva O. Mitochondria, energy, and metabolism in neuronal health and disease. FEBS Lett 2022; 596:1095-1110. [PMID: 35088449 DOI: 10.1002/1873-3468.14298] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/09/2022]
Abstract
Mitochondria are associated with various cellular activities critical to homeostasis, particularly in the nervous system. The plastic architecture of the mitochondrial network and its dynamic structure play crucial roles in ensuring that varying energetic demands are rapidly met to maintain neuronal and axonal energy homeostasis. Recent evidence associates ageing and neurodegeneration with anomalous neuronal metabolism, as age-dependent alterations of neuronal metabolism are now believed to occur prior to neurodegeneration. The brain has a high energy demand, which makes it particularly sensitive to mitochondrial dysfunction. Distinct cellular events causing oxidative stress or disruption of metabolism and mitochondrial homeostasis can trigger a neuropathology. This review explores the bioenergetic hypothesis for the neurodegenerative pathomechanisms, discussing factors leading to age-related brain hypometabolism and its contribution to cognitive decline. Recent research on the mitochondrial network in healthy nervous system cells, its response to stress and how it is affected by pathology, as well as current contributions to novel therapeutic approaches will be highlighted.
Collapse
Affiliation(s)
- Diogo Trigo
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.,Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Catarina Avelar
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Miguel Fernandes
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juliana Sá
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete da Cruz E Silva
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.,Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
16
|
Vitória JJM, Trigo D, da Cruz E Silva OAB. Revisiting APP secretases: an overview on the holistic effects of retinoic acid receptor stimulation in APP processing. Cell Mol Life Sci 2022; 79:101. [PMID: 35089425 PMCID: PMC11073327 DOI: 10.1007/s00018-021-04090-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide and is characterized by the accumulation of the β-amyloid peptide (Aβ) in the brain, along with profound alterations in phosphorylation-related events and regulatory pathways. The production of the neurotoxic Aβ peptide via amyloid precursor protein (APP) proteolysis is a crucial step in AD development. APP is highly expressed in the brain and is complexly metabolized by a series of sequential secretases, commonly denoted the α-, β-, and γ-cleavages. The toxicity of resulting fragments is a direct consequence of the first cleaving event. β-secretase (BACE1) induces amyloidogenic cleavages, while α-secretases (ADAM10 and ADAM17) result in less pathological peptides. Hence this first cleavage event is a prime therapeutic target for preventing or reverting initial biochemical events involved in AD. The subsequent cleavage by γ-secretase has a reduced impact on Aβ formation but affects the peptides' aggregating capacity. An array of therapeutic strategies are being explored, among them targeting Retinoic Acid (RA) signalling, which has long been associated with neuronal health. Additionally, several studies have described altered RA levels in AD patients, reinforcing RA Receptor (RAR) signalling as a promising therapeutic strategy. In this review we provide a holistic approach focussing on the effects of isoform-specific RAR modulation with respect to APP secretases and discuss its advantages and drawbacks in subcellular AD related events.
Collapse
Affiliation(s)
- José J M Vitória
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Garcia G, Pinto S, Cunha M, Fernandes A, Koistinaho J, Brites D. Neuronal Dynamics and miRNA Signaling Differ between SH-SY5Y APPSwe and PSEN1 Mutant iPSC-Derived AD Models upon Modulation with miR-124 Mimic and Inhibitor. Cells 2021; 10:cells10092424. [PMID: 34572073 PMCID: PMC8465877 DOI: 10.3390/cells10092424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
Neuronal miRNA dysregulation may have a role in the pathophysiology of Alzheimer's disease (AD). miRNA(miR)-124 is largely abundant and a critical player in many neuronal functions. However, the lack of models reliably recapitulating AD pathophysiology hampers our understanding of miR-124's role in the disease. Using the classical human SH-SY5Y-APP695 Swedish neuroblastoma cells (SH-SWE) and the PSEN1 mutant iPSC-derived neurons (iNEU-PSEN), we observed a sustained upregulation of miR-124/miR-125b/miR-21, but only miR-124 was consistently shuttled into their exosomes. The miR-124 mimic reduced APP gene expression in both AD models. While miR-124 mimic in SH-SWE neurons led to neurite outgrowth, mitochondria activation and small Aβ oligomer reduction, in iNEU-PSEN cells it diminished Tau phosphorylation, whereas miR-124 inhibitor decreased dendritic spine density. In exosomes, cellular transfection with the mimic predominantly downregulated miR-125b/miR-21/miR-146a/miR-155. The miR-124 inhibitor upregulated miR-146a in the two experimental cell models, while it led to distinct miRNA signatures in cells and exosomes. In sum, though miR-124 function may be dependent on the neuronal AD model, data indicate that keeping miR-124 level strictly controlled is crucial for proper neuronal function. Moreover, the iNEU-PSEN cellular model stands out as a useful tool for AD mechanistic studies and perhaps for the development of personalized therapeutic strategies.
Collapse
Affiliation(s)
- Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (G.G.); (S.P.); (M.C.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Sara Pinto
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (G.G.); (S.P.); (M.C.)
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Mar Cunha
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (G.G.); (S.P.); (M.C.)
| | - Adelaide Fernandes
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland; or
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (G.G.); (S.P.); (M.C.)
- Correspondence: ; Tel.: +351-217946450
| |
Collapse
|
18
|
Basu H, Pekkurnaz G, Falk J, Wei W, Chin M, Steen J, Schwarz TL. FHL2 anchors mitochondria to actin and adapts mitochondrial dynamics to glucose supply. J Cell Biol 2021; 220:212527. [PMID: 34342639 PMCID: PMC8340551 DOI: 10.1083/jcb.201912077] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/05/2021] [Accepted: 07/08/2021] [Indexed: 01/24/2023] Open
Abstract
Mitochondrial movement and distribution are fundamental to their function. Here we report a mechanism that regulates mitochondrial movement by anchoring mitochondria to the F-actin cytoskeleton. This mechanism is activated by an increase in glucose influx and the consequent O-GlcNAcylation of TRAK (Milton), a component of the mitochondrial motor-adaptor complex. The protein four and a half LIM domains protein 2 (FHL2) serves as the anchor. FHL2 associates with O-GlcNAcylated TRAK and is both necessary and sufficient to drive the accumulation of F-actin around mitochondria and to arrest mitochondrial movement by anchoring to F-actin. Disruption of F-actin restores mitochondrial movement that had been arrested by either TRAK O-GlcNAcylation or forced direction of FHL2 to mitochondria. This pathway for mitochondrial immobilization is present in both neurons and non-neuronal cells and can thereby adapt mitochondrial dynamics to changes in glucose availability.
Collapse
Affiliation(s)
- Himanish Basu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Division of Medical Sciences, Harvard Medical School, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Gulcin Pekkurnaz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Jill Falk
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Wei Wei
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
| | - Morven Chin
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Division of Medical Sciences, Harvard Medical School, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Judith Steen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
| | - Thomas L Schwarz
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Department of Neurobiology, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Shil SK, Kagawa Y, Umaru BA, Nanto-Hara F, Miyazaki H, Yamamoto Y, Kobayashi S, Suzuki C, Abe T, Owada Y. Ndufs4 ablation decreases synaptophysin expression in hippocampus. Sci Rep 2021; 11:10969. [PMID: 34040028 PMCID: PMC8155116 DOI: 10.1038/s41598-021-90127-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Altered function of mitochondrial respiratory chain in brain cells is related to many neurodegenerative diseases. NADH Dehydrogenase (Ubiquinone) Fe-S protein 4 (Ndufs4) is one of the subunits of mitochondrial complex I and its mutation in human is associated with Leigh syndrome. However, the molecular biological role of Ndufs4 in neuronal function is poorly understood. In this study, upon Ndufs4 expression confirmation in NeuN-positive neurons, and GFAP-positive astrocytes in WT mouse hippocampus, we found significant decrease of mitochondrial respiration in Ndufs4-KO mouse hippocampus. Although there was no change in the number of NeuN positive neurons in Ndufs4-KO hippocampus, the expression of synaptophysin, a presynaptic protein, was significantly decreased. To investigate the detailed mechanism, we silenced Ndufs4 in Neuro-2a cells and we observed shorter neurite lengths with decreased expression of synaptophysin. Furthermore, western blot analysis for phosphorylated extracellular regulated kinase (pERK) revealed that Ndufs4 silencing decreases the activity of ERK signalling. These results suggest that Ndufs4-modulated mitochondrial activity may be involved in neuroplasticity via regulating synaptophysin expression.
Collapse
Affiliation(s)
- Subrata Kumar Shil
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Banlanjo Abdulaziz Umaru
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Fumika Nanto-Hara
- Division of Animal Metabolism and Nutrition, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yui Yamamoto
- Department of Anatomy, Tohoku Medical and Pharmaceutical University, Sendai, 981-0905, Japan
| | - Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Chitose Suzuki
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takaaki Abe
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
20
|
All-Trans Retinoic Acid Increases DRP1 Levels and Promotes Mitochondrial Fission. Cells 2021; 10:cells10051202. [PMID: 34068960 PMCID: PMC8156392 DOI: 10.3390/cells10051202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
In the heart, mitochondrial homeostasis is critical for sustaining normal function and optimal responses to metabolic and environmental stressors. Mitochondrial fusion and fission are thought to be necessary for maintaining a robust population of mitochondria, and disruptions in mitochondrial fission and/or fusion can lead to cellular dysfunction. The dynamin-related protein (DRP1) is an important mediator of mitochondrial fission. In this study, we investigated the direct effects of the micronutrient retinoid all-trans retinoic acid (ATRA) on the mitochondrial structure in vivo and in vitro using Western blot, confocal, and transmission electron microscopy, as well as mitochondrial network quantification using stochastic modeling. Our results showed that ATRA increases DRP1 protein levels, increases the localization of DRP1 to mitochondria in isolated mitochondrial preparations. Our results also suggested that ATRA remodels the mitochondrial ultrastructure where the mitochondrial area and perimeter were decreased and the circularity was increased. Microscopically, mitochondrial network remodeling is driven by an increased rate of fission over fusion events in ATRA, as suggested by our numerical modeling. In conclusion, ATRA results in a pharmacologically mediated increase in the DRP1 protein. It also results in the modulation of cardiac mitochondria by promoting fission events, altering the mitochondrial network, and modifying the ultrastructure of mitochondria in the heart.
Collapse
|
21
|
Jiaranaikulwanitch J, Pandith H, Tadtong S, Thammarat P, Jiranusornkul S, Chauthong N, Nilkosol S, Vajragupta O. Novel Multifunctional Ascorbic Triazole Derivatives for Amyloidogenic Pathway Inhibition, Anti-Inflammation, and Neuroprotection. Molecules 2021; 26:molecules26061562. [PMID: 33809092 PMCID: PMC7999550 DOI: 10.3390/molecules26061562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder. The number of patients with AD is projected to reach 152 million by 2050. Donepezil, rivastigmine, galantamine, and memantine are the only four drugs currently approved by the United States Food and Drug Administration for AD treatment. However, these drugs can only alleviate AD symptoms. Thus, this research focuses on the discovery of novel lead compounds that possess multitarget regulation of AD etiopathology relating to amyloid cascade. The ascorbic acid structure has been designated as a core functional domain due to several characteristics, including antioxidant activities, amyloid aggregation inhibition, and the ability to be transported to the brain and neurons. Multifunctional ascorbic derivatives were synthesized by copper (I)-catalyzed azide-alkyne cycloaddition reaction (click chemistry). The in vitro and cell-based assays showed that compounds 2c and 5c exhibited prominent multifunctional activities as beta-secretase 1 inhibitors, amyloid aggregation inhibitors, and antioxidant, neuroprotectant, and anti-inflammatory agents. Significant changes in activities promoting neuroprotection and anti-inflammation were observed at a considerably low concentration at a nanomolar level. Moreover, an in silico study showed that compounds 2c and 5c were capable of being permeated across the blood-brain barrier by sodium-dependent vitamin C transporter-2.
Collapse
Affiliation(s)
- Jutamas Jiaranaikulwanitch
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.J.); (N.C.); (S.N.)
- Correspondence: ; Tel.: +66-5394-4382
| | - Hataichanok Pandith
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok 26120, Thailand;
| | - Phanit Thammarat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.J.); (N.C.); (S.N.)
| | - Supat Jiranusornkul
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.J.); (N.C.); (S.N.)
| | - Nattapong Chauthong
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.J.); (N.C.); (S.N.)
| | - Supitcha Nilkosol
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.T.); (S.J.); (N.C.); (S.N.)
| | - Opa Vajragupta
- Office of Research Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
22
|
Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury. Int J Mol Sci 2021; 22:ijms22041798. [PMID: 33670312 PMCID: PMC7918155 DOI: 10.3390/ijms22041798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Investigating the molecular mechanisms governing developmental axon growth has been a useful approach for identifying new strategies for boosting axon regeneration after injury, with the goal of treating debilitating conditions such as spinal cord injury and vision loss. The picture emerging is that various axonal organelles are important centers for organizing the molecular mechanisms and machinery required for growth cone development and axon extension, and these have recently been targeted to stimulate robust regeneration in the injured adult central nervous system (CNS). This review summarizes recent literature highlighting a central role for organelles such as recycling endosomes, the endoplasmic reticulum, mitochondria, lysosomes, autophagosomes and the proteasome in developmental axon growth, and describes how these organelles can be targeted to promote axon regeneration after injury to the adult CNS. This review also examines the connections between these organelles in developing and regenerating axons, and finally discusses the molecular mechanisms within the axon that are required for successful axon growth.
Collapse
|
23
|
Clark JN, Whiting A, McCaffery P. Retinoic acid receptor-targeted drugs in neurodegenerative disease. Expert Opin Drug Metab Toxicol 2020; 16:1097-1108. [DOI: 10.1080/17425255.2020.1811232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jason Nicol Clark
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | | | - Peter McCaffery
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
24
|
Zhang S, Hang Y, Wu J, Tang Z, Li X, Zhang S, Wang L, Brash JL, Chen H. Dual Pathway for Promotion of Stem Cell Neural Differentiation Mediated by Gold Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22066-22073. [PMID: 32223207 DOI: 10.1021/acsami.9b22258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The neural differentiation of embryonic stem cells (ESCs) is of great value in the treatment of neurodegenerative diseases. On the basis of the two related signaling pathways that direct the neural differentiation of ESCs, we used gold nanoparticles (GNP) as a means of combining chemical and physical cues to trigger the neurogenic differentiation of stem cells. Neural differentiation-related functional units (glyco and sulfonate units on glycosaminoglycans, GAG) were anchored on the GNP surface and were then transferred to the cell membrane surface via GNP-membrane interactions. The functional units were able to activate the GAG-related signaling pathway, in turn promoting differentiation and maturation of stem cells into neuronal lineages. In addition, using the photothermal effect of GNP, the differentiation-inducing factor retinoic acid (RA), could be actively delivered into cells via laser irradiation. The RA-related intracellular signaling pathway was thereby further triggered, resulting in strong promotion of neurogenesis with a 300-fold increase in mature neural marker expression. The gold nanocomposites developed in this work provide the basis for a new strategy directing ESCs differentiation into nerve cells with high efficiency and high purity by acting on two related signaling pathways.
Collapse
Affiliation(s)
- Sixuan Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yingjie Hang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jingxian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zengchao Tang
- Jiangsu Biosurf Biotech Company, Ltd., Suzhou 215123, P. R. China
| | - Xin Li
- Suzhou Seemine-Nebula Biotech Company, Ltd., Suzhou 215123, P. R. China
| | - Shenghan Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Lei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - John L Brash
- School of Biomedical Engineering and Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S4L7, Canada
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
25
|
Wakulik K, Wiatrak B, Szczukowski Ł, Bodetko D, Szandruk-Bender M, Dobosz A, Świątek P, Gąsiorowski K. Effect of Novel Pyrrolo[3,4- d]pyridazinone Derivatives on Lipopolysaccharide-Induced Neuroinflammation. Int J Mol Sci 2020; 21:E2575. [PMID: 32276316 PMCID: PMC7177677 DOI: 10.3390/ijms21072575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is considered to be one of the potential causes for the development of neurodegenerative diseases, including Alzheimer's disease. In this study, we evaluated the effect of four newly synthesized pyrrolo[3,4-d]pyridazinone derivatives on the neuron-like PC12 cells under simulated inflammation conditions by preincubation with lipopolysaccharide (LPS). Our novel derivatives are selective cyclooxygenase-2 (COX-2) inhibitors and have similar effects to nonsteroidal anti-inflammatory drugs (NSAIDs). We assessed viability (LDH assay), metabolic activity (MTT assay), DNA damage (number of double-strand breaks measured by fast halo assay), and the neuronal features of cells (average neurite length and neurite outgrowth measured spectrofluorimetrically). DCF-DA and Griess assays were also performed, which allowed determining the impact of the tested compounds on the level of oxygen free radicals and nitrites. LPS administration significantly negatively affected the results in all tests performed, and treatment with the tested derivatives in most cases significantly reduced this negative impact. Multiple-criteria decision analysis indicated that overall, the best results were observed for compounds 2a and 2b at a concentration of 10 µM. The new derivatives showed intense activity against free oxygen radicals and nitrites. Reduced reactive oxygen species level also correlated with a decrease in the number of DNA damage. The compounds improved neuronal features, such as neurite length and outgrowth, and they also increased cell viability and mitochondrial activity. Our results suggest that derivatives 2a and 2b may also act additionally on mechanisms other than 3a and 3b.
Collapse
Affiliation(s)
- Karolina Wakulik
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (D.B.); (A.D.); (K.G.)
| | - Benita Wiatrak
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (D.B.); (A.D.); (K.G.)
| | - Łukasz Szczukowski
- Department of Chemistry of Drugs, Wroclaw Medical University, 50-556 Wroclaw, Poland; (Ł.S.); (P.Ś.)
| | - Dorota Bodetko
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (D.B.); (A.D.); (K.G.)
| | | | - Agnieszka Dobosz
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (D.B.); (A.D.); (K.G.)
| | - Piotr Świątek
- Department of Chemistry of Drugs, Wroclaw Medical University, 50-556 Wroclaw, Poland; (Ł.S.); (P.Ś.)
| | - Kazimierz Gąsiorowski
- Department of Basic Medical Sciences, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.W.); (D.B.); (A.D.); (K.G.)
| |
Collapse
|
26
|
Nomoto H, Pei L, Montemurro C, Rosenberger M, Furterer A, Coppola G, Nadel B, Pellegrini M, Gurlo T, Butler PC, Tudzarova S. Activation of the HIF1α/PFKFB3 stress response pathway in beta cells in type 1 diabetes. Diabetologia 2020; 63:149-161. [PMID: 31720731 PMCID: PMC6945783 DOI: 10.1007/s00125-019-05030-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022]
Abstract
AIMS/HYPOTHESIS The conserved hypoxia inducible factor 1 α (HIF1α) injury-response pro-survival pathway has recently been implicated in early beta cell dysfunction but slow beta cell loss in type 2 diabetes. We hypothesised that the unexplained prolonged prediabetes phase in type 1 diabetes may also be, in part, due to activation of the HIF1α signalling pathway. METHODS RNA sequencing (RNA-Seq) data from human islets with type 1 diabetes or after cytokine exposure in vitro was evaluated for activation of HIF1α targets. This was corroborated by immunostaining human pancreases from individuals with type 1 diabetes for 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), the key effector of HIF1α-mediated metabolic remodelling, and by western blotting of islets and INS-1 832/13 cells exposed to cytokines implicated in type 1 diabetes. RESULTS HIF1α signalling is activated (p = 4.5 × 10-9) in islets from individuals with type 1 diabetes, and in human islets exposed in vitro to cytokines implicated in type 1 diabetes (p = 1.1 × 10-14). Expression of PFKFB3 is increased fivefold (p < 0.01) in beta cells in type 1 diabetes and in human and rat islets exposed to cytokines that induced increased lactate production. HIF1α attenuates cytokine-induced cell death in beta cells. CONCLUSIONS/INTERPRETATION The conserved pro-survival HIF1α-mediated injury-response signalling is activated in beta cells in type 1 diabetes and likely contributes to the relatively slow rate of beta cell loss at the expense of early defective glucose-induced insulin secretion.
Collapse
Affiliation(s)
- Hiroshi Nomoto
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, 10833 Le Conte Avenue, 33-165 CHS, Los Angeles, CA, 90095-7073, USA
| | - Lina Pei
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, 10833 Le Conte Avenue, 33-165 CHS, Los Angeles, CA, 90095-7073, USA
| | - Chiara Montemurro
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, 10833 Le Conte Avenue, 33-165 CHS, Los Angeles, CA, 90095-7073, USA
| | - Madeline Rosenberger
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, 10833 Le Conte Avenue, 33-165 CHS, Los Angeles, CA, 90095-7073, USA
| | - Allison Furterer
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Brian Nadel
- Molecular Cell and Developmental Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Molecular Cell and Developmental Biology, College of Life Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Tatyana Gurlo
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, 10833 Le Conte Avenue, 33-165 CHS, Los Angeles, CA, 90095-7073, USA
| | - Peter C Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, 10833 Le Conte Avenue, 33-165 CHS, Los Angeles, CA, 90095-7073, USA.
| | - Slavica Tudzarova
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, 10833 Le Conte Avenue, 33-165 CHS, Los Angeles, CA, 90095-7073, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|