1
|
Sueh YS, Chen SH, Tseng WL, Lin SC, Chen DQ, Huang CC, Hsueh YY. Leptin deficiency leads to nerve degeneration and impairs axon remyelination by inducing Schwann cell apoptosis and demyelination in type 2 diabetic peripheral neuropathy in rats. Neurochem Int 2024:105908. [PMID: 39608454 DOI: 10.1016/j.neuint.2024.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Diabetic peripheral neuropathy, characterized by symptoms such as paresthesia, neuropathic pain, and potential lower limb amputation, poses significant clinical management challenges. Recent studies suggest that chronic hyperglycemia-induced Schwann cells (SCs) apoptosis contributes to neurodegeneration and impaired nerve regeneration, but the detailed mechanisms are still unknown. Our study investigated a mixed-sex type 2 diabetes mellitus (T2DM) rat model using leptin knockout (KO) to simulate obesity and diabetes-related conditions. Through extensive assessments, including mechanical allodynia, electrophysiology, and microcirculation analyses, along with myelin degradation studies in KO versus wild-type rats, we focused on apoptosis, autophagy, and SCs dedifferentiation in the sciatic nerve and examined nerve regeneration in KO rats. KO rats exhibited notable reductions in mechanical withdrawal force, prolonged latency, decreased compound muscle action potential (CMAP) amplitude, reduced microcirculation, myelin sheath damage, and increases in apoptosis, autophagy, and SCs dedifferentiation. Moreover, leptin KO was found to impair peripheral nerve regeneration postinjury, as indicated by reduced muscle weight, lower CMAP amplitude, extended latency, and decreased remyelination and SCs density. These findings underscore the effectiveness of the T2DM rat model in clarifying the impact of leptin KO on SCs apoptosis, dedifferentiation, and demyelination, providing valuable insights into new therapeutic avenues for treating T2DM-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Yuan-Shuo Sueh
- Department of Physiology, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wan-Ling Tseng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Sheng-Che Lin
- Division of Plastic Surgery, Department of Surgery, An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| | - De-Quan Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Yuan-Yu Hsueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
2
|
Zhang X, Zhong G, Jiang C, Ha X, Yang Q, Wu H. Exploring the potential anti-diabetic peripheral neuropathy mechanisms of Huangqi Guizhi Wuwu Decoction by network pharmacology and molecular docking. Metab Brain Dis 2024; 40:20. [PMID: 39565454 DOI: 10.1007/s11011-024-01474-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/02/2024] [Indexed: 11/21/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is the most prevalent microvascular complication of diabetes and Huangqi Guizhi Wuwu Decoction (HGWD) is frequently employed in classical Chinese medicine for treating DPN. This study aims to investigate the potential therapeutic targets and mechanisms of HGWD for treating DPN using network pharmacology and molecular docking methodologies. The intersection targets of DPN and HGWD were retrieved from the databases, with the resulting intersection targets being imported into the STRING database to construct the protein-protein interaction (PPI) network. Cytoscape 3.9.1 was used to screen the core targets and plot the herb-active ingredient-target (H-A-T) network. To identify the pivotal signaling pathways, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on intersection targets. Molecular docking was subsequently conducted with AutoDock Vina to validate the binding energy between the core active ingredients and the core targets. 91 potential targets of HGWD were identified for the treatment of DPN. Topological analysis revealed core targets, including AKT1, TNF, PPARG, NFKB1, TP53, STAT3, PTGS2, HIF1A, ESR1, and GSK3B, alongside core active ingredients such as protoporphyrin, jaranol, kaempferol, quercetin, and isorhamnetin. GO and KEGG analyses indicated that PI3K/AKT, HIF-1, and AGE/RAGE signaling pathways could be crucial in treating DPN using HGWD. Furthermore, molecular docking results demonstrated robust binding activities between the active ingredients in HGWD and the identified core targets. The above results indicated that HGWD may exerting an anti-DPN effect by modulating the PI3K/AKT, HIF-1, and AGE/RAGE signaling pathways.
Collapse
Affiliation(s)
- Xueying Zhang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Jiang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaojun Ha
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Qingjiang Yang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, China
| | - Haike Wu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, China.
| |
Collapse
|
3
|
Abd Razak NH, Idris J, Hassan NH, Zaini F, Muhamad N, Daud MF. Unveiling the Role of Schwann Cell Plasticity in the Pathogenesis of Diabetic Peripheral Neuropathy. Int J Mol Sci 2024; 25:10785. [PMID: 39409114 PMCID: PMC11476695 DOI: 10.3390/ijms251910785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes that affects a significant proportion of diabetic patients worldwide. Although the pathogenesis of DPN involves axonal atrophy and demyelination, the exact mechanisms remain elusive. Current research has predominantly focused on neuronal damage, overlooking the potential contributions of Schwann cells, which are the predominant glial cells in the peripheral nervous system. Schwann cells play a critical role in neurodevelopment, neurophysiology, and nerve regeneration. This review highlights the emerging understanding of the involvement of Schwann cells in DPN pathogenesis. This review explores the potential role of Schwann cell plasticity as an underlying cellular and molecular mechanism in the development of DPN. Understanding the interplay between Schwann cell plasticity and diabetes could reveal novel strategies for the treatment and management of DPN.
Collapse
Affiliation(s)
- Nurul Husna Abd Razak
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Jalilah Idris
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Nur Hidayah Hassan
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Fazlin Zaini
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Noorzaid Muhamad
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| |
Collapse
|
4
|
Jin T, Wang Z, Fan F, Wei W, Zhou C, Zhang Z, Gao Y, Li W, Zhu L, Hao J. HDAC1 Promotes Mitochondrial Pathway Apoptosis and Inhibits the Endoplasmic Reticulum Stress Response in High Glucose-Treated Schwann Cells via Decreased U4 Spliceosomal RNA. Neurochem Res 2024; 49:2699-2724. [PMID: 38916813 DOI: 10.1007/s11064-024-04200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Dysfunction of Schwann cells, including cell apoptosis, autophagy inhibition, dedifferentiation, and pyroptosis, is a pivotal pathogenic factor in induced diabetic peripheral neuropathy (DPN). Histone deacetylases (HDACs) are an important family of proteins that epigenetically regulate gene transcription by affecting chromatin dynamics. Here, we explored the effect of HDAC1 on high glucose-cultured Schwann cells. HDAC1 expression was increased in diabetic mice and high glucose-cultured RSC96 cells, accompanied by cell apoptosis. High glucose also increased the mitochondrial pathway apoptosis-related Bax/Bcl-2 and cleaved caspase-9/caspase-9 ratios and decreased endoplasmic reticulum response-related GRP78, CHOP, and ATF4 expression in RSC96 cells (P < 0.05). Furthermore, overexpression of HDAC1 increased the ratios of Bax/Bcl-2, cleaved caspase-9/caspase-9, and cleaved caspase-3 and reduced the levels of GRP78, CHOP, and ATF4 in RSC96 cells (P < 0.05). In contrast, knockdown of HDAC1 inhibited high glucose-promoted mitochondrial pathway apoptosis and suppressed the endoplasmic reticulum response. Moreover, RNA sequencing revealed that U4 spliceosomal RNA was significantly reduced in HDAC1-overexpressing RSC96 cells. Silencing of U4 spliceosomal RNA led to an increase in Bax/Bcl-2 and cleaved caspase-9 and a decrease in CHOP and ATF4. Conversely, overexpression of U4 spliceosomal RNA blocked HDAC1-promoted mitochondrial pathway apoptosis and inhibited the endoplasmic reticulum response. In addition, alternative splicing analysis of HDAC1-overexpressing RSC96 cells showed that significantly differential intron retention (IR) of Rpl21, Cdc34, and Mtmr11 might be dominant downstream targets that mediate U4 deficiency-induced Schwann cell dysfunction. Taken together, these findings indicate that HDAC1 promotes mitochondrial pathway-mediated apoptosis and inhibits the endoplasmic reticulum stress response in high glucose-cultured Schwann cells by decreasing the U4 spliceosomal RNA/IR of Rpl21, Cdc34, and Mtmr11.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ziming Wang
- Experimental Center of Clinical College, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fan Fan
- Department of Investigation, Hebei Vocational College of Public Security Police, Shijiazhuang, Hebei, China
| | - Wandi Wei
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chenming Zhou
- Department of Electron Microscopy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ziyu Zhang
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yue Gao
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenhui Li
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Zhu
- Department of Electromyogram, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China.
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei, China.
| |
Collapse
|
5
|
Wu L, Wang XJ, Luo X, Zhang J, Zhao X, Chen Q. Diabetic peripheral neuropathy based on Schwann cell injury: mechanisms of cell death regulation and therapeutic perspectives. Front Endocrinol (Lausanne) 2024; 15:1427679. [PMID: 39193373 PMCID: PMC11348392 DOI: 10.3389/fendo.2024.1427679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a complication of diabetes mellitus that lacks specific treatment, its high prevalence and disabling neuropathic pain greatly affects patients' physical and mental health. Schwann cells (SCs) are the major glial cells of the peripheral nervous system, which play an important role in various inflammatory and metabolic neuropathies by providing nutritional support, wrapping axons and promoting repair and regeneration. Increasingly, high glucose (HG) has been found to promote the progression of DPN pathogenesis by targeting SCs death regulation, thus revealing the specific molecular process of programmed cell death (PCD) in which SCs are disrupted is an important link to gain insight into the pathogenesis of DPN. This paper is the first to review the recent progress of HG studies on apoptosis, autophagy, pyroptosis, ferroptosis and necroptosis pathways in SCs, and points out the crosstalk between various PCDs and the related therapeutic perspectives, with the aim of providing new perspectives for a deeper understanding of the mechanisms of DPN and the exploration of effective therapeutic targets.
Collapse
Affiliation(s)
- Lijiao Wu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Jin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, China
| | - Xi Luo
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingqi Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Zhao
- College of lntegrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Hunan, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Mao T, Fan J. Myricetin Restores Autophagy to Attenuate Lumbar Intervertebral Disk Degeneration Via Negative Regulation of the JAK2/STAT3 Pathway. Biochem Genet 2024:10.1007/s10528-024-10838-x. [PMID: 38842745 DOI: 10.1007/s10528-024-10838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Autophagy is a critical player in lumbar intervertebral disk degeneration (IDD), and autophagy activation has been suggested to prevent the apoptosis of nucleus pulposus cells (NPCs). Myricetin has anti-cancer, anti-inflammatory, and antioxidant potentials and can activate autophagy. Thus, this study focused on the roles and mechanisms of myricetin in IDD. A puncture-induced rat IDD model was established and intraperitoneally injected with 20-mg/kg/day myricetin. Histopathological changes of intervertebral disks (IVDs) were assessed by hematoxylin and eosin staining and Safranin O/Fast Green staining. The isolated NPCs from IVDs of healthy rats were stimulated with IL-1β to mimic IDD-like conditions. The roles of myricetin in cell apoptosis, extracellular matrix (ECM) degradation, autophagy repression, and the JAK2/STAT3 pathway activation were examined by cell counting kit-8, flow cytometry, western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence staining. Myricetin treatment attenuated the apoptosis and ECM degradation, and enhanced autophagy in the IL-1β-treated NPCs, whereas the myricetin-mediated protection was limited by autophagy inhibition. Mechanistically, myricetin activated autophagy through blocking the JAK2/STAT3 signaling. In vivo experiments revealed that intraperitoneal injection of myricetin activated NPC autophagy to relieve puncture injury in rats. Myricetin prevents IDD by attenuating NPC apoptosis and ECM degradation through blocking the JAK2/STAT3 pathway to enhance autophagy.
Collapse
Affiliation(s)
- Tian Mao
- School of Acupuncture-Moxibustion and Orthopedic, Hubei University of Chinese Medicine, Wuhan, 430060, Hubei, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Hubei Provincial Institute of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Junchi Fan
- Department of Orthopedics Ward 1, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, No. 11, Lingjiaohu Road, Jianghan District, Wuhan, 430015, Hubei, China.
| |
Collapse
|
7
|
Sun L, Wang Y, Li J, Xu S, Xu S, Li J. Bruceantinol works as a CDK2/4/6 inhibitor to inhibit the growth of breast cancer cells. Chem Biol Interact 2024; 395:110999. [PMID: 38608999 DOI: 10.1016/j.cbi.2024.110999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Bruceantinol (BOL), isolated from the dried fruit of the Brucea javanica (L.) Merr., exhibits cytotoxic effects on breast cancer cells. However, the underlying mechanism remains to be fully addressed. In this paper, the MCF-7 and MDA-MB-231 human breast cancer cell lines were used as experimental models to uncover how BOL inhibits breast cancer cell growth. The effects of BOL on cell growth, proliferation, the cell cycle, and apoptosis were investigated using the MTT assays, EdU incorporation assays, and flow cytometry, respectively. Bioinformatics techniques were applied to predict the key targets of BOL in breast cancer. Subsequent validation of these targets and the anti-breast cancer mechanism of BOL was conducted through Western blotting, RT-PCR, siRNA transfection, and molecular docking analysis. The results demonstrated that BOL dose- and time-dependently reduced the growth of both cell lines, impeded cell proliferation, disrupted the cell cycle, and induced necrosis in MCF-7 cells and apoptosis in MDA-MB-231 cells. Furthermore, CDK2/4/6 were identified as BOL targets, and their knockdown reduced cell sensitivity to BOL. BOL was found to potentially bind with CDK2/4/6 to facilitate protein degradation through the proteasome pathway. Additionally, BOL activated ERK in MDA-MB-231 cells, and this activation was required for BOL's functions in these cells. Collectively, BOL may act as an inhibitor of CDK2/4/6 to exert anti-breast cancer effects. Its effects on cell growth and CDK2/4/6 expression may also depend on ERK activation in HRs-HER2- breast cancer cells. These results suggest the potential of using BOL for treating breast cancer.
Collapse
Affiliation(s)
- Li Sun
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China; Key Lab of Traditional Chinese Medicine Pathogenesis and Syndrome Differentiation Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China.
| | - Yumeng Wang
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China; Key Lab of Traditional Chinese Medicine Pathogenesis and Syndrome Differentiation Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Jia Li
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China; Key Lab of Traditional Chinese Medicine Pathogenesis and Syndrome Differentiation Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Shiqing Xu
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China; Key Lab of Traditional Chinese Medicine Pathogenesis and Syndrome Differentiation Theory and Application, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Shuang Xu
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China
| | - Jun Li
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
8
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Zhu J, Hu Z, Luo Y, Liu Y, Luo W, Du X, Luo Z, Hu J, Peng S. Diabetic peripheral neuropathy: pathogenetic mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 14:1265372. [PMID: 38264279 PMCID: PMC10803883 DOI: 10.3389/fendo.2023.1265372] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) refers to the development of peripheral nerve dysfunction in patients with diabetes when other causes are excluded. Diabetic distal symmetric polyneuropathy (DSPN) is the most representative form of DPN. As one of the most common complications of diabetes, its prevalence increases with the duration of diabetes. 10-15% of newly diagnosed T2DM patients have DSPN, and the prevalence can exceed 50% in patients with diabetes for more than 10 years. Bilateral limb pain, numbness, and paresthesia are the most common clinical manifestations in patients with DPN, and in severe cases, foot ulcers can occur, even leading to amputation. The etiology and pathogenesis of diabetic neuropathy are not yet completely clarified, but hyperglycemia, disorders of lipid metabolism, and abnormalities in insulin signaling pathways are currently considered to be the initiating factors for a range of pathophysiological changes in DPN. In the presence of abnormal metabolic factors, the normal structure and function of the entire peripheral nervous system are disrupted, including myelinated and unmyelinated nerve axons, perikaryon, neurovascular, and glial cells. In addition, abnormalities in the insulin signaling pathway will inhibit neural axon repair and promote apoptosis of damaged cells. Here, we will discuss recent advances in the study of DPN mechanisms, including oxidative stress pathways, mechanisms of microvascular damage, mechanisms of damage to insulin receptor signaling pathways, and other potential mechanisms associated with neuroinflammation, mitochondrial dysfunction, and cellular oxidative damage. Identifying the contributions from each pathway to neuropathy and the associations between them may help us to further explore more targeted screening and treatment interventions.
Collapse
Affiliation(s)
- Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Li J, Wu G, Li W, Zhou X, Li W, Xu X, Xu K, Cao R, Cui S. Plasma exosomes improve peripheral neuropathy via miR-20b-3p/Stat3 in type I diabetic rats. J Nanobiotechnology 2023; 21:447. [PMID: 38001489 PMCID: PMC10675980 DOI: 10.1186/s12951-023-02222-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes and the main cause of non-traumatic amputation, with no ideal treatment. Multiple cell-derived exosomes have been reported to improve the progression of DPN. Blood therapy is thought to have a powerful repairing effect. However, whether it could also improve DPN remains unclear. RESULTS In this study, we found that microRNA (miRNA) expression in plasma-derived exosomes of healthy rats (hplasma-exos) was significantly different from that of age-matched DPN rats. By injection of hplasma-exos into DPN rats, the mechanical sensitivity of DPN rats was decreased, the thermal sensitivity and motor ability were increased, and the nerve conduction speed was accelerated. Histological analysis showed myelin regeneration of the sciatic nerve, increased intraepidermal nerve fibers, distal local blood perfusion, and enhanced neuromuscular junction and muscle spindle innervation after hplasma-exos administration. Compared with plasma exosomes in DPN, miR-20b-3p was specifically enriched in exosomes of healthy plasma and was found to be re-upregulated in the sciatic nerve of DPN rats after hplasma-exos treatment. Moreover, miR-20b-3p agomir improved DPN symptoms to a level similar to hplasma-exos, both of which also alleviated autophagy impairment induced by high glucose in Schwann cells. Mechanistic studies found that miR-20b-3p targeted Stat3 and consequently reduced the amount of p-Stat3, which then negatively regulated autophagy processes and contributed to DPN improvement. CONCLUSIONS This study demonstrated that miRNA of plasma exosomes was different between DPN and age-matched healthy rats. MiR-20b-3p was enriched in hplasma-exos, and both of them could alleviated DPN symptoms. MiR-20b-3p regulated autophagy of Schwann cells in pathological states by targeting Stat3 and thereby inhibited the progression of DPN.
Collapse
Affiliation(s)
- Jiayang Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Guangzhi Wu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weiye Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Xiongyao Zhou
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Xiong Xu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Ke Xu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Zheng G, Ren J, Shang L, Bao Y. Role of autophagy in the pathogenesis and regulation of pain. Eur J Pharmacol 2023; 955:175859. [PMID: 37429517 DOI: 10.1016/j.ejphar.2023.175859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
Pain is a ubiquitous and highly concerned clinical symptom, usually caused by peripheral or central nervous injury, tissue damage, or other diseases. The long-term existence of pain can seriously affect daily physical function and quality of life and produce great torture on the physiological and psychological levels. However, the complex pathogenesis of pain involving molecular mechanisms and signaling pathways has not been fully elucidated, and managing pain remains highly challenging. As a result, finding new targets to pursue effective and long-term pain treatment strategies is required and urgent. Autophagy is an intracellular degradation and recycling process that maintains tissue homeostasis and energy supply, which can be cytoprotective and is vital in maintaining neural plasticity and proper nervous system function. Much evidence has shown that autophagy dysregulation is linked to the emergence of neuropathic pain, such as postherpetic neuralgia and cancer-related pain. Autophagy has also been connected to pain caused by osteoarthritis and lumbar disc degeneration. It is worth noting that in recent years, studies on traditional Chinese medicine have also proved that several traditional Chinese medicine monomers involve autophagy in the mechanism of pain relief. Therefore, autophagy can serve as a potential regulatory target to provide new ideas and inspiration for pain management.
Collapse
Affiliation(s)
- Guangda Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, Liaoning Province, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
12
|
Dexmedetomidine alleviates oxidative stress and mitochondrial dysfunction in diabetic peripheral neuropathy via the microRNA-34a/SIRT2/S1PR1 axis. Int Immunopharmacol 2023; 117:109910. [PMID: 37012886 DOI: 10.1016/j.intimp.2023.109910] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/06/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVE Dexmedetomidine (Dex) is a highly selective α2-adrenoceptor agonist with sedative, analgesic, sympatholytic, and hemodynamic-stabilizing properties, which plays a neuroprotective role in diabetic peripheral neuropathy (DPN) and diabetes-induced nerve damage. However, the related molecular mechanisms are not fully understood. Therefore, our study explored the mechanism of Dex in DPN using rat and RSC96 cell models. METHODS Sciatic nerve sections were observed under an optical microscope and the ultrastructure of the sciatic nerves was observed under a transmission electron microscope. Oxidative stress was assessed by detecting MDA, SOD, GSH-Px, and ROS levels. The motor nerve conduction velocity (MNCV), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) of rats were measured. Cell viability, apoptosis, and the changes in the expression of related genes and proteins were examined. Furthermore, the relationship between microRNA (miR)-34a and SIRT2 or SIRT2 and S1PR1 was analyzed. RESULTS Dex reversed DPN-induced decreases in MNCV, MWT, and TWL. Dex alleviated oxidative stress, mitochondrial damage, and apoptosis in both the rat and RSC96 cell models of DPN. Mechanistically, miR-34a negatively targeted SIRT2, and SIRT2 inhibited S1PR1 transcription. The overexpression of miR-34a or S1PR1 or the inhibition of SIRT2 counteracted the neuroprotective effects of Dex in DPN in vivo and in vitro. CONCLUSION Dex alleviates oxidative stress and mitochondrial dysfunction associated with DPN by downregulating miR-34a to regulate the SIRT2/S1PR1 axis.
Collapse
|
13
|
Wang J, Feng S, Zhang Q, Qin H, Xu C, Fu X, Yan L, Zhao Y, Yao K. Roles of Histone Acetyltransferases and Deacetylases in the Retinal Development and Diseases. Mol Neurobiol 2023; 60:2330-2354. [PMID: 36637745 DOI: 10.1007/s12035-023-03213-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
The critical role of epigenetic modification of histones in maintaining the normal function of the nervous system has attracted increasing attention. Among these modifications, the level of histone acetylation, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is essential in regulating gene expression. In recent years, the research progress on the function of HDACs in retinal development and disease has advanced remarkably, while that regarding HATs remains to be investigated. Here, we overview the roles of HATs and HDACs in regulating the development of diverse retinal cells, including retinal progenitor cells, photoreceptor cells, bipolar cells, ganglion cells, and Müller glial cells. The effects of HATs and HDACs on the progression of various retinal diseases are also discussed with the highlight of the proof-of-concept research regarding the application of available HDAC inhibitors in treating retinal diseases.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shuyu Feng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qian Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Chunxiu Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China. .,College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China. .,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
14
|
Chen J, Li G, Liu X, Chen K, Wang Y, Qin J, Yang F. Delivery of miR-130a-3p Through Adipose-Derived Stem Cell-Secreted EVs Protects Against Diabetic Peripheral Neuropathy via DNMT1/NRF2/HIF1α/ACTA1 Axis. Mol Neurobiol 2023; 60:3678-3694. [PMID: 36933145 DOI: 10.1007/s12035-023-03297-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 03/05/2023] [Indexed: 03/19/2023]
Abstract
Peripheral neuropathy is common in diabetic patients and can lead to amputations or foot ulcers. microRNAs (miRNAs) possess crucial roles in diabetic peripheral neuropathy (DPN). This study aims to investigate the role miR-130a-3p played in DPN and its underlying molecular mechanisms. miR-130a-3p expression in clinical tissue samples, established DPN rat models, and extracellular vesicles (EVs) derived from adipose-derived stem cells (ADSCs) were determined. Schwann cells (SCs) were co-cultured with ADSC-derived EVs and treated with high glucose. The direct relationship and functional significance of miR-130a-3p, DNMT1, nuclear factor E2-related factor 2 (NRF2), hypoxia-inducible factor-1α (HIF1α), and skeletal muscle actin alpha 1 (ACTA1) was identified. The in vitro and in vivo implication of ADSC-derived EVs carrying miR-130a-3p was assessed. miR-130a-3p was poorly expressed in DPN patients and rats but highly expressed in ADSC-derived EVs. miR-130a-3p could be delivered to SCs through ADSC-derived EVs to inhibit SC apoptosis and promote proliferation under a high-glucose environment. miR-130a-3p activated NRF2/HIF1α/ACTA1 axis through down-regulating DNMT1. In vivo injection of ADSC-derived EVs activated NRF2/HIF1α/ACTA11 axis to promote angiogenesis in DPN rat model. These data together supported that ADSC-derived EVs carrying miR-130a-3p could alleviate DPN by accelerating SC proliferation and inhibiting apoptosis, providing a potential treatment against DPN.
Collapse
Affiliation(s)
- Ji Chen
- Department of Endocrinology, The First People's Hospital of Huaihua, Huaihua, 418000, People's Republic of China
| | - Gengzhang Li
- Department of Anesthesiology, The First Affiliated Hospital, Shaoyang College, Shaoyang, 422001, People's Republic of China
| | - Xinxin Liu
- Department of Anesthesiology, The First People's Hospital of Huaihua, No. 144, Jinxi South Road, Huaihua, 418000, Hunan Province, People's Republic of China
| | - Kemin Chen
- Department of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Yuxia Wang
- Department of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Jie Qin
- Department of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Fengrui Yang
- Department of Anesthesiology, The First People's Hospital of Huaihua, No. 144, Jinxi South Road, Huaihua, 418000, Hunan Province, People's Republic of China.
- Department of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
15
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
16
|
Abstract
Diabetic peripheral neuropathy (DPN) is the most common neuropathy in the world, mainly manifested as bilateral symmetry numbness, pain or paresthesia, with a high rate of disability and mortality. Schwann cells (SCs), derived from neural ridge cells, are the largest number of glial cells in the peripheral nervous system, and play an important role in DPN. Studies have found that SCs are closely related to the pathogenesis of DPN, such as oxidative stress, endoplasmic reticulum stress, inflammation, impaired neurotrophic support and dyslipidemia. This article reviews the mechanism of SCs in DPN.
Collapse
Affiliation(s)
- Jingjing Li
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- * Correspondence: Jingjing Li, Heilongjiang University of Traditional Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang Province 150000, China (e-mail: )
| | - Ruiqian Guan
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Limin Pan
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
17
|
Zhou X, Chen H, Shi Y, Li J, Ma X, Du L, Hu Y, Tao M, Zhong Q, Yan D, Zhuang S, Liu N. Histone deacetylase 8 inhibition prevents the progression of peritoneal fibrosis by counteracting the epithelial-mesenchymal transition and blockade of M2 macrophage polarization. Front Immunol 2023; 14:1137332. [PMID: 36911746 PMCID: PMC9995794 DOI: 10.3389/fimmu.2023.1137332] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Background Peritoneal dialysis (PD) is an effective replacement therapy for end-stage renal disease patients. However, long-term exposure to peritoneal dialysate will lead to the development of peritoneal fibrosis. Epigenetics has been shown to play an important role in peritoneal fibrosis, but the role of histone deacetylases 8 (HDAC8) in peritoneal fibrosis have not been elucidated. In this research, we focused on the role and mechanisms of HDAC8 in peritoneal fibrosis and discussed the mechanisms involved. Methods We examined the expression of HDAC8 in the peritoneum and dialysis effluent of continuous PD patients. Then we assessed the role and mechanism of HDAC8 in peritoneal fibrosis progression in mouse model of peritoneal fibrosis induced by high glucose peritoneal dialysis fluid by using PCI-34051. In vitro, TGF-β1 or IL-4 were used to stimulate human peritoneal mesothelial cells (HPMCs) or RAW264.7 cells to establish two cell injury models to further explore the role and mechanism of HDAC8 in epithelial-mesenchymal transition (EMT) and macrophage polarization. Results We found that HDAC8 expressed highly in the peritoneum from patients with PD-related peritonitis. We further revealed that the level of HDAC8 in the dialysate increased over time, and HDAC8 was positively correlated with TGF-β1 and vascular endothelial growth factor (VEGF), and negatively correlated with cancer antigen 125. In mouse model of peritoneal fibrosis induced by high glucose dialysate, administration of PCI-34051 (a selective HDAC8 inhibitor) significantly prevented the progression of peritoneal fibrosis. Treatment with PCI-34051 blocked the phosphorylation of epidermal growth factor receptor (EGFR) and the activation of its downstream signaling pathways ERK1/2 and STAT3/HIF-1α. Inhibition of HDAC8 also reduced apoptosis. In vitro, HDAC8 silencing with PCI-34051 or siRNA inhibited TGF-β1-induced EMT and apoptosis in HPMCs. In addition, continuous high glucose dialysate or IL-4 stimulation induced M2 macrophage polarization. Blockade of HDAC8 reduced M2 macrophage polarization by inhibiting the activation of STAT6 and PI3K/Akt signaling pathways. Conclusions We demonstrated that HDAC8 promoted the EMT of HPMCs via EGFR/ERK1/2/STAT3/HIF-1α, induced M2 macrophage polarization via STAT6 and PI3K/Akt signaling pathways, and ultimately accelerated the process of peritoneal fibrosis.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Du
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin Zhong
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danying Yan
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Bai X, Jiang M, Wang J, Yang S, Liu Z, Zhang H, Zhu X. Cyanidin attenuates the apoptosis of rat nucleus pulposus cells and the degeneration of intervertebral disc via the JAK2/STAT3 signal pathway in vitro and in vivo. PHARMACEUTICAL BIOLOGY 2022; 60:427-436. [PMID: 35175176 PMCID: PMC8856032 DOI: 10.1080/13880209.2022.2035773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Cyanidin has been shown to have therapeutic potential in osteoarthritis. However, it is unclear whether cyanidin prevents the progression of intervertebral disc degeneration (IVDD). OBJECTIVE This study evaluates the effects of cyanidin on IVDD in vitro and in vivo. MATERIALS AND METHODS Nucleus pulposus cells (NPCs) isolated from lumbar IVD of 4-week-old male Sprague-Dawley (SD) rats were exposed to 20 ng/mL IL-1β, and then treated with different doses (0-120 µM) of cyanidin for 24 h. SD rats were classified into three groups (n = 8) and treated as follows: control (normal saline), IVDD (vehicle), IVDD + cyanidin (50 mg/kg). Cyanidin was administered intraperitoneally for 8 weeks. RESULTS The IC50 of cyanidin for NPCs was 94.78 µM, and cyanidin had no toxicity at concentrations up to 500 mg/kg in SD rats. Cyanidin inhibited the apoptosis of NPCs induced by IL-1β (12.73 ± 0.61% vs. 18.54 ± 0.60%), promoted collagen II (0.82-fold) and aggrecan (0.81-fold) expression, while reducing MMP-13 (1.02-fold) and ADAMTS-5 (1.40-fold) expression. Cyanidin increased the formation of autophagosomes in IL-1β-induced NPCs, and promoted LC3II/LC3I (0.83-fold) and beclin-1 (0.85-fold) expression, which could be reversed by chloroquine. Cyanidin inhibited the phosphorylation of JAK2 (0.47-fold) and STAT3 (0.53-fold) in IL-1β-induced NPCs. The effects of cyanidin could be enhanced by AG490. Furthermore, cyanidin mitigated disc degeneration in IVDD rats in vivo. DISCUSSION AND CONCLUSIONS Cyanidin improved the function of NPCs in IVDD by regulating the JAK2/STAT3 pathway, which may provide a novel alternative strategy for IVDD. The mechanism of cyanidin improving IVDD still needs further work for in-depth investigation.
Collapse
Affiliation(s)
- Xiaoliang Bai
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
- Department of Spine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meichao Jiang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Jie Wang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Shuai Yang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
- Department of Spine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiwei Liu
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Hongxin Zhang
- Department of Orthopaedics, Baoding NO.1 Central Hospital, Baoding, China
| | - Xiaojuan Zhu
- Department of Geratology, Baoding NO.1 Central Hospital, Baoding, China
- CONTACT Xiaojuan Zhu Department of Geratology, Baoding NO.1 Central Hospital, No.320 Great Wall North Street, Baoding, 071000, China
| |
Collapse
|
19
|
Poitras T, Zochodne DW. Unleashing Intrinsic Growth Pathways in Regenerating Peripheral Neurons. Int J Mol Sci 2022; 23:13566. [PMID: 36362354 PMCID: PMC9654452 DOI: 10.3390/ijms232113566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 10/17/2023] Open
Abstract
Common mechanisms of peripheral axon regeneration are recruited following diverse forms of damage to peripheral nerve axons. Whether the injury is traumatic or disease related neuropathy, reconnection of axons to their targets is required to restore function. Supporting peripheral axon regrowth, while not yet available in clinics, might be accomplished from several directions focusing on one or more of the complex stages of regrowth. Direct axon support, with follow on participation of supporting Schwann cells is one approach, emphasized in this review. However alternative approaches might include direct support of Schwann cells that instruct axons to regrow, manipulation of the inflammatory milieu to prevent ongoing bystander axon damage, or use of inflammatory cytokines as growth factors. Axons may be supported by a growing list of growth factors, extending well beyond the classical neurotrophin family. The understanding of growth factor roles continues to expand but their impact experimentally and in humans has faced serious limitations. The downstream signaling pathways that impact neuron growth have been exploited less frequently in regeneration models and rarely in human work, despite their promise and potency. Here we review the major regenerative signaling cascades that are known to influence adult peripheral axon regeneration. Within these pathways there are major checkpoints or roadblocks that normally check unwanted growth, but are an impediment to robust growth after injury. Several molecular roadblocks, overlapping with tumour suppressor systems in oncology, operate at the level of the perikarya. They have impacts on overall neuron plasticity and growth. A second approach targets proteins that largely operate at growth cones. Addressing both sites might offer synergistic benefits to regrowing neurons. This review emphasizes intrinsic aspects of adult peripheral axon regeneration, emphasizing several molecular barriers to regrowth that have been studied in our laboratory.
Collapse
Affiliation(s)
| | - Douglas W. Zochodne
- Neuroscience and Mental Health Institute, Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| |
Collapse
|
20
|
Eftekharpour E, Fernyhough P. Oxidative Stress and Mitochondrial Dysfunction Associated with Peripheral Neuropathy in Type 1 Diabetes. Antioxid Redox Signal 2022; 37:578-596. [PMID: 34416846 DOI: 10.1089/ars.2021.0152] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: This review highlights the many intracellular processes generating reactive oxygen species (ROS) in the peripheral nervous system in the context of type 1 diabetes. The major sources of superoxide and hydrogen peroxide (H2O2) are described, and scavenging systems are explained. Important roles of ROS in regulating normal redox signaling and in a disease setting, such as diabetes, contributing to oxidative stress and cellular damage are outlined. The primary focus is the role of hyperglycemia in driving elevated ROS production and oxidative stress contributing to neurodegeneration in diabetic neuropathy (within the dorsal root ganglia [DRG] and peripheral nerve). Recent Advances: Contributors to ROS production under high intracellular glucose concentration such as mitochondria and the polyol pathway are discussed. The primarily damaging impact of ROS on multiple pathways including mitochondrial function, endoplasmic reticulum (ER) stress, autophagy, and epigenetic signaling is covered. Critical Issues: There is a strong focus on mechanisms of diabetes-induced mitochondrial dysfunction and how this may drive ROS production (in particular superoxide). The mitochondrial sites of superoxide/H2O2 production via mitochondrial metabolism and aerobic respiration are reviewed. Future Directions: Areas for future development are highlighted, including the need to clarify diabetes-induced changes in autophagy and ER function in neurons and Schwann cells. In addition, more clarity is needed regarding the sources of ROS production at mitochondrial sites under high glucose concentration (and lack of insulin signaling). New areas of study should be introduced to investigate the role of ROS, nuclear lamina function, and epigenetic signaling under diabetic conditions in peripheral nerve.
Collapse
Affiliation(s)
- Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology and Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| |
Collapse
|
21
|
Ge X, Wang L, Fei A, Ye S, Zhang Q. Research progress on the relationship between autophagy and chronic complications of diabetes. Front Physiol 2022; 13:956344. [PMID: 36003645 PMCID: PMC9393249 DOI: 10.3389/fphys.2022.956344] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetes is a common metabolic disease whose hyperglycemic state can induce diverse complications and even threaten human health and life security. Currently, the treatment of diabetes is restricted to drugs that regulate blood glucose and have certain accompanying side effects. Autophagy, a research hotspot, has been proven to be involved in the occurrence and progression of the chronic complications of diabetes. Autophagy, as an essential organismal defense mechanism, refers to the wrapping of cytoplasmic proteins, broken organelles or pathogens by vesicles, which are then degraded by lysosomes to maintain the stability of the intracellular environment. Here, we review the relevant aspects of autophagy and the molecular mechanisms of autophagy in diabetic chronic complications, and further analyze the impact of improving autophagy on diabetic chronic complications, which will contribute to a new direction for further prevention and treatment of diabetic chronic complications.
Collapse
Affiliation(s)
- Xia Ge
- Department of Endocrinology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Ling Wang
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Aihua Fei
- Department of Endocrinology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
- *Correspondence: Shandong Ye, ; Qingping Zhang,
| | - Qingping Zhang
- College of Acupuncture-Moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Shandong Ye, ; Qingping Zhang,
| |
Collapse
|
22
|
Curcumin protect Schwann cells from inflammation response and apoptosis induced by high glucose through the NF-κB pathway. Tissue Cell 2022; 77:101873. [PMID: 35868051 DOI: 10.1016/j.tice.2022.101873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
Abstract
Demyelination disease as diabetes mellitus (DM) complication is characterized by apoptosis of Schwann cells (SCs) and several reports have demonstrated that high glucose content can induce an inflammation response and lead to the apoptosis of SCs. For NF-κB plays a pivotal role in the inflammatory response, hence we hypothesized that high glucose content can induce inflammation though the NF-κB pathway. First we verified that 150 mM high glucose can increase the expression of cleaved caspase 3, interleukin (IL)- 1β, Cyto-C and NF-κB with time through Western blot and increase the apoptosis of RSC96s through Flow Cytometry. Then we found that high glucose can increase the nuclear translocation NF-κB through confocal system which can promote the expression of inflammation genes such as IL-1β. Curcumin has been reported to possess anti-inflammation activities to protect cells. In this study, we found that application with 25 μM curcumin could alleviate the inflammation response and protect the cells from apoptosis. We revealed that the expression of NF-κB and p-NF-κB was decreased and the translocation was also inhibited after curcumin application. Accordingly, the secretion of IL-1β and the apoptosis of RSC96s induce by high glucose was suppressed. Our cumulative findings suggest that curcumin can protect SCs from apoptosis through the inhibition of the inflammatory response though the NF-κB pathway.
Collapse
|
23
|
Ouyang C, Huang L, Ye X, Ren M, Han Z. HDAC1 Promotes Myocardial Fibrosis in Diabetic Cardiomyopathy by Inhibiting BMP-7 Transcription Through Histone Deacetylation. Exp Clin Endocrinol Diabetes 2022; 130:660-670. [PMID: 35760306 DOI: 10.1055/a-1780-8768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Diabetic cardiomyopathy (DCM) constitutes a primary cause of mortality in diabetic patients. Histone deacetylase (HDAC) inhibition can alleviate diabetes-associated myocardial injury. This study investigated the mechanism of HDAC1 on myocardial fibrosis (MF) in DCM. METHODS A murine model of DCM was established by a high-fat diet and streptozotocin injection. The bodyweight, blood glucose, serum insulin, and cardiac function of mice were analyzed. Lentivirus-packaged sh-HDAC1 was injected into DCM mice and high glucose (HG)-induced cardiac fibroblasts (CFs). The pathological structure of the myocardium and the level of myocardial fibrosis were observed by histological staining. HDAC1 expression in mouse myocardial tissues and CFs was determined. Collagen I, collagen III, alpha-smooth muscle actin (α-SMA), and vimentin levels in CFs were detected, and CF proliferation was tested. HDAC activity and histone acetylation levels in tissues and cells were measured. Bone morphogenetic protein-7 (BMP-7) expression in myocardial tissues and CFs was determined. Functional rescue experiments were conducted to confirm the effects of histone acetylation and BMP-7 on myocardial fibrosis. RESULTS DCM mice showed decreased bodyweight, elevated blood glucose and serum insulin, and cardiac dysfunction. Elevated HDAC1 and reduced BMP-7 expressions were detected in DCM mice and HG-induced CFs. HDAC1 repressed BMP-7 transcription through deacetylation. HDAC1 silencing alleviated MF, reduced CF proliferation and decreased collagen I, -III, α-SMA, and vimentin levels. However, reducing histone acetylation level or BMP-7 downregulation reversed the effects of HDAC1 silencing on CF fibrosis. CONCLUSION HDAC1 repressed BMP-7 transcription by enhancing histone deacetylation, thereby promoting MF and aggravating DCM.
Collapse
Affiliation(s)
- Chun Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen City 518036, Guangdong Province, P.R. China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen City 518036, Guangdong Province, P.R. China
| | - Xiaoqiang Ye
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen City 518036, Guangdong Province, P.R. China
| | - Mingming Ren
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen City 518036, Guangdong Province, P.R. China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen City 518036, Guangdong Province, P.R. China
| |
Collapse
|
24
|
Wright GM, Gassman NR. Glucose Increases STAT3 Activation, Promoting Sustained XRCC1 Expression and Increasing DNA Repair. Int J Mol Sci 2022; 23:ijms23084314. [PMID: 35457130 PMCID: PMC9029887 DOI: 10.3390/ijms23084314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 02/05/2023] Open
Abstract
Dysregulation of DNA repair is a hallmark of cancer, though few cancer-specific mechanisms that drive the overexpression of DNA repair proteins are known. We previously identified STAT3 as a novel transcriptional regulator of X-ray cross-complementing group 1 (XRCC1), an essential scaffold protein in base excision repair in triple-negative breast cancers. We also identified an inducible response to IL-6 and epidermal growth factor stimulation in the non-tumorigenic embryonic kidney cell line HEK293T. As IL-6 and EGF signaling are growth and inflammatory-inducible responses, we examined if glucose challenge can increase STAT3 activation, promoting adaptive changes in XRCC1 expression in different cell types. Acute high glucose exposure promoted XRCC1 expression through STAT3 activation, increasing the repair of methyl methanesulfonate-induced DNA damage in HEK293T cells and the osteosarcoma cell line U2OS. Sustained exposure to high glucose promoted the overexpression of XRCC1, which can be reversed upon glucose restriction and down-regulation of STAT3 activation. Thus, we have identified a novel link between XRCC1 expression and STAT3 activation following exogenous exposures, which could play a critical role in dictating a cancer cell’s response to DNA-damaging agents.
Collapse
Affiliation(s)
- Griffin M. Wright
- College of Medicine Depart of Physiology & Cell Biology, University of South Alabama, Mobile, AL 36688, USA;
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36607, USA
| | - Natalie R. Gassman
- Department of Pharmacology and Toxicology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
25
|
Zhang L, Yu Z, Qu Q, Li X, Lu X, Zhang H. Exosomal lncRNA HOTAIR Promotes the Progression and Angiogenesis of Endometriosis via the miR-761/HDAC1 Axis and Activation of STAT3-Mediated Inflammation. Int J Nanomedicine 2022; 17:1155-1170. [PMID: 35321026 PMCID: PMC8935629 DOI: 10.2147/ijn.s354314] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) and exosomes are implicated in endometriosis development. We measured the expression of an exosomal lncRNA, homeobox transcript antisense RNA (HOTAIR), and explored its molecular mechanism in endometriosis progression. Methods Expression of HOTAIR and microRNA (miR)-761 in different endometrial tissues was measured. Exosomes were isolated from a culture medium of endometrial stromal cells (ESCs). RT-qPCR was used to measure HOTAIR expression in different exosome types. CCK-8, Edu, wound healing, transwell assays, flow cytometry and tube formation were used to detect the role of exosomal HOTAIR on ESCs and human umbilical vein endothelial cells (HUVECs). The relationship among miR-761, HOTAIR, and histone deacetylase 1 (HDAC1) was verified by dual-luciferase reporter assay. ESCs were transfected with miR-761 mimics or HDAC1 small interfering RNA (si-RNA) to ascertain if alterations in expression of miR-761 or HDAC1 could reverse the effect of exosomal HOTAIR. Then, we detected the effect of the HOTAIR/miR-761/HDAC1 axis on signal transducer and activator of transcription 3 (STAT3)-mediated inflammation. In vivo experiments were conducted to verify in vitro results. Results HOTAIR expression was upregulated and miR-761 expression was downregulated in ectopic endometrium tissues. HOTAIR was packaged into exosomes and transported from ESCs to surrounding cells. Exosomal HOTAIR promoted the proliferation, migration, and invasion, and inhibited the apoptosis of ESCs. Angiogenesis of HUVECs was enhanced after cultured with exosomal HOTAIR. HOTAIR acted as a competing endogenous RNA to downregulate miR-761 and increase HDAC1 expression. miR-761 overexpression or HDAC1 knockdown reversed the role of exosomal HOTAIR on ESCs and HUVECs. The HOTAIR/miR-761/HDAC1 axis could activate STAT3-related proinflammatory cytokines and stattic (inhibitor of phosphorylated-STAT3) could reverse the effect of HOTAIR on ESCs and HUVECs. In vivo experiments suggested that exosomal HOTAIR promoted the growth of endometrial lesions in vivo. Conclusion Exosomal HOTAIR promoted the progression and angiogenesis of endometriosis by regulating the miR-761/HDAC1 axis and activating STAT3-mediated inflammation in vitro and in vivo, which may provide promising treatment for endometriosis.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Zitong Yu
- Department of Obstetrics, Shouguang People’s Hospital, Shouguang, 262700, People’s Republic of China
| | - Qingxi Qu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Xue Lu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, People’s Republic of China
| | - Hui Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, People’s Republic of China
- Correspondence: Hui Zhang, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Jinan, 250012, People’s Republic of China, Email
| |
Collapse
|
26
|
Regulatory Effects of Astragaloside IV on Hyperglycemia-Induced Mitophagy in Schwann Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7864308. [PMID: 35069769 PMCID: PMC8767404 DOI: 10.1155/2022/7864308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE This study aimed to observe the regulatory effects of astragaloside IV (AS-IV) on hyperglycemia-induced mitochondrial damage and mitophagy in Schwann cells and to provide references for clinical trials on AS-IV in the treatment of diabetic peripheral neuropathy. METHODS Schwann cells were grown in a high-glucose medium to construct an autophagy model; the cells were then treated with AS-IV and N-acetylcysteine (control) to observe the regulatory effects of AS-IV on oxidative stress and mitophagy. RESULTS AS-IV exhibited antioxidant activity and inhibited the overactivation of autophagy in Schwann cells, significantly reducing the level of reactive oxygen species and downregulating the expression of autophagy-related proteins (LC3, PINK, and Parkin) under hyperglycemic conditions, thereby exerting a protective effect on mitochondrial morphology and membrane potential. CONCLUSION AS-IV can maintain the mitochondrial function of Schwann cells under hyperglycemic conditions by effectively alleviating oxidative stress and overactivation of mitophagy. The evidence from this study supports an AS-IV-based therapeutic strategy against diabetic peripheral neuropathy.
Collapse
|
27
|
Yuan Q, Zhang X, Wei W, Zhao J, Wu Y, Zhao S, Zhu L, Wang P, Hao J. Lycorine improves peripheral nerve function by promoting Schwann cell autophagy via AMPK pathway activation and MMP9 downregulation in diabetic peripheral neuropathy. Pharmacol Res 2022; 175:105985. [PMID: 34863821 DOI: 10.1016/j.phrs.2021.105985] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus and no effective therapy is approved. Here, lycorine, a natural alkaloid, was identified as a potential drug for DPN by the bioinformatics analysis of GEO datasets and Connectivity Map database. Lycorine administration improved peripheral nerve function and autophagy-associated proteins of diabetic mice. Again, in vitro high glucose-cultured rat Schwann cells (RSC96) showed enhanced autophagosome marker LC3-II with the treatment of lycorine. Additionally, beclin-1 and Atg3 were decreased in high glucose-stimulated RSC96 cells, which were reversed by lycorine treatment. Furthermore, DPN-associated differentially expressed genes (DEGs) from GEO datasets and lycorine-drug targets from PubChem and PharmMapper were visually analyzed and revealed that MMP9 was both DPN-associated DEGs and lycorine-drug target. Functional enrichment analysis of MMP9-relevant genes showed that cell energy metabolism was involved. Moreover, lycorine reduced high glucose-enhanced MMP9 expression in RSC96 cells. Overexpression of MMP9 attenuated lycorine-induced the expression of beclin-1, Atg3 and LC3-II in high glucose-cultured RSC96 cells. In addition, AMPK pathway activation was confirmed in lycorine-treated high glucose-cultured RSC96 cells. Then AMPK pathway inhibition attenuated lycorine-reduced MMP9 expression in high glucose-treated RSC96 cells. Molecular docking analysis revealed that lycorine bound the domain of AMPK containing Thr 172 site, which affected AMPK (Thr 172) phosphorylation. Finally, AMPK pathway activation and MMP9 downregulation were also revealed in the sciatic nerves of diabetic mice administrated with lycorine. Taken together, lycorine was advised to promote Schwann cell autophagy via AMPK pathway activation and MMP9 downregulation-induced LC3-II transformation in diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Qingqing Yuan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Xiang Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Wandi Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Jialing Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Yuhao Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Peiran Wang
- Beijing 21st Century International School, Beijing, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
28
|
Perspectives of glycemic variability in diabetic neuropathy: a comprehensive review. Commun Biol 2021; 4:1366. [PMID: 34876671 PMCID: PMC8651799 DOI: 10.1038/s42003-021-02896-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic neuropathy is one of the most prevalent chronic complications of diabetes, and up to half of diabetic patients will develop diabetic neuropathy during their disease course. Notably, emerging evidence suggests that glycemic variability is associated with the pathogenesis of diabetic complications and has emerged as a possible independent risk factor for diabetic neuropathy. In this review, we describe the commonly used metrics for evaluating glycemic variability in clinical practice and summarize the role and related mechanisms of glycemic variability in diabetic neuropathy, including cardiovascular autonomic neuropathy, diabetic peripheral neuropathy and cognitive impairment. In addition, we also address the potential pharmacological and non-pharmacological treatment methods for diabetic neuropathy, aiming to provide ideas for the treatment of diabetic neuropathy. Zhang et al. describe metrics for evaluating glycaemic variability (GV) in clinical practice and summarize the role and related mechanisms of GV in diabetic neuropathy, including cardiovascular autonomic neuropathy, diabetic peripheral neuropathy and cognitive impairment. They aim to stimulate ideas for the treatment of diabetic neuropathy.
Collapse
|
29
|
Hou Z, Chen J, Yang H, Hu X, Yang F. PIAS1 alleviates diabetic peripheral neuropathy through SUMOlation of PPAR-γ and miR-124-induced downregulation of EZH2/STAT3. Cell Death Discov 2021; 7:372. [PMID: 34857740 PMCID: PMC8639830 DOI: 10.1038/s41420-021-00765-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a frequently occurring chronic complication of diabetes. In this study, we aim to explore the regulatory mechanism of protein inhibitor of activated STAT1 (PIAS1) in DPN in terms of autophagy and apoptosis of Schwann cells. The SUMOlation of PPAR-γ by PIAS1 was examined, and ChIP was performed to verify the binding of PPAR-γ to miR-124 promoter region. Dual-luciferase gene reporter assay was used to validate the binding affinity between miR-124 and EZH2/STAT3. Following loss‐ and gain‐of-function experiments, in vitro assays in high glucose-treated Schwann cells (SC4) and in vivo assays in db/db and ob/ob mice were performed to detect the effects of PIAS1 on autophagy and apoptosis of Schwann cells as well as symptoms of DPN by regulating the PPAR-γ-miR-124-EZH2/STAT3. The expression of PIAS1, PPAR-γ, and miR-124 was downregulated in the sciatic nerve tissue of diabetic mice. PIAS1 enhanced the expression of PPAR-γ through direct binding and SUMOlation of PPAR-γ. PPAR-γ enhanced the expression of miR-124 by enhancing the promoter activity of miR-124. Furthermore, miR-124 targeted and inversely modulated EZH2 and STAT3, promoting the autophagy of Schwann cells and inhibiting their apoptosis. In vivo experiments further substantiated that PIAS1 could promote the autophagy and inhibit the apoptosis of Schwann cells through the PPAR-γ-miR-124-EZH2/STAT3 axis. In conclusion, PIAS1 promoted SUMOlation of PPAR-γ to stabilize PPAR-γ expression, which upregulated miR-124 to inactivate EZH2/STAT3, thereby inhibiting apoptosis and promoting autophagy of Schwann cells to suppress the development of DPN.
Collapse
Affiliation(s)
- Zixin Hou
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Ji Chen
- Department of Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Huan Yang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Xiaoling Hu
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Fengrui Yang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China. .,Department of Anesthesiology, Affiliated Huaihua Hospital, University of South China, Huaihua, 418000, P.R. China.
| |
Collapse
|
30
|
Chen B, Yang Y, Wu J, Song J, Lu J. microRNA-17-5p downregulation inhibits autophagy and myocardial remodelling after myocardial infarction by targeting STAT3. Autoimmunity 2021; 55:43-51. [PMID: 34755577 DOI: 10.1080/08916934.2021.1992754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRs) are reported to regulate myocardial infarction (MI). This study was performed to investigate the function and mechanism of miR-17-5p in myocardial remodelling after MI. Initially, a mouse model of MI was established and MI mice were infected with lentivirus antago-miR-17-5p vector. High expression of miR-17-5p was found in myocardial tissues after MI. After inhibiting miR-17-5p expression, myocardial fibrosis, scarring, and cardiomyocyte apoptosis were improved, LC3-II/LC3-I ratio and Beclin-1 expression were decreased but p62 expression was increased. The dual-luciferase assay suggested that miR-17-5p targeted STAT3 and negatively regulated its expression. Then, after inhibiting STAT3 expression using STAT3 inhibitor S31-201, the fibrosis, scarring, and cardiomyocyte apoptosis were deteriorated, along with the rise of LC3-II/LC3-I and Beclin-1 expression, the reduction of p62 expression and the reversion of MI attenuation. In conclusion, inhibition of miR-17-5p can inhibit myocardial autophagy through targeting STAT3 and then inhibit myocardial remodelling, thereby protecting the myocardium after MI.
Collapse
Affiliation(s)
- Bo Chen
- Department of Cardiovascular, First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Yingjun Yang
- Department of Cardiovascular, First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Jinbo Wu
- Department of Cardiology, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Jianjiang Song
- Department of Cardiovascular, First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Jia Lu
- Department of Cardiovascular, First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| |
Collapse
|
31
|
Poitras TM, Munchrath E, Zochodne DW. Neurobiological Opportunities in Diabetic Polyneuropathy. Neurotherapeutics 2021; 18:2303-2323. [PMID: 34935118 PMCID: PMC8804062 DOI: 10.1007/s13311-021-01138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
This review highlights a selection of potential translational directions for the treatment of diabetic polyneuropathy (DPN) currently irreversible and without approved interventions beyond pain management. The list does not include all diabetic targets that have been generated over several decades of research but focuses on newer work. The emphasis is firstly on approaches that support the viability and growth of peripheral neurons and their ability to withstand a barrage of diabetic alterations. We include a section describing Schwann cell targets and finally how mitochondrial damage has been a common element in discussing neuropathic damage. Most of the molecules and pathways described here have not yet reached clinical trials, but many trials have been negative to date. Nonetheless, these failures clear the pathway for new thoughts over reversing DPN.
Collapse
Affiliation(s)
- Trevor M Poitras
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Easton Munchrath
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
32
|
Wong FC, Ye L, Demir IE, Kahlert C. Schwann cell-derived exosomes: Janus-faced mediators of regeneration and disease. Glia 2021; 70:20-34. [PMID: 34519370 DOI: 10.1002/glia.24087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022]
Abstract
The phenotypic plasticity of Schwann cells (SCs) has contributed to the regenerative potential of the peripheral nervous system (PNS), but also pathological processes. This double-sided effect has led to an increasing attention to the role of extracellular vesicles (EVs) or exosomes in SCs to examine the intercellular communication between SCs and their surroundings. Here, we first describe the current knowledge of SC and EV biology, which forms the basis for the updates on advances in SC-derived exosomes research. We seek to explore in-depth the exosome-mediated molecular mechanisms involved in the regulation of SCs and their microenvironment. This review concludes with potential applications of SC-derived exosomes as delivery vehicles for therapeutics and biomarkers. The goal of this review is to emphasize the crucial role of SC-derived exosomes in the functional integration of the PNS, highlighting an emerging area in which there is much to explore and re-explore.
Collapse
Affiliation(s)
- Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Linhan Ye
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Germany German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Germany German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany.,Else Kröner Clinician Scientist Professor for "Translational Pancreatic Surgery
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| |
Collapse
|
33
|
Wang M, Xie M, Yu S, Shang P, Zhang C, Han X, Fan C, Chen L, Zhuang X, Chen S. Lipin1 Alleviates Autophagy Disorder in Sciatic Nerve and Improves Diabetic Peripheral Neuropathy. Mol Neurobiol 2021; 58:6049-6061. [PMID: 34435332 DOI: 10.1007/s12035-021-02540-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/17/2021] [Indexed: 01/10/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a chronic complication of diabetes, and its neural mechanisms underlying the pathogenesis remain unclear. Autophagy plays an important role in neurodegenerative diseases and nerve tissue injury. Lipin1 is a phosphatidic acid phosphatase enzyme that converts phosphatidic acid (PA) into diacylglycerol (DAG), a precursor of triacylglycerol and phospholipids which plays an important role in maintaining normal peripheral nerve conduction function. However, whether Lipin1 involved in the pathogenesis of DPN via regulation of autophagy is not elucidated. Here, we show that the Lipin1 expression was downregulated in streptozotocin (STZ)-induced DPN rat model. Interestingly, STZ prevented DAG synthesis, and resulted in autophagic hyperactivity, effects which may increase the apoptosis of Schwann cells and lead to demyelination in sciatic nerve in DPN rats. More importantly, upregulation of lipin1 in the DPN rats ameliorated autophagy disorders and pathological changes of the sciatic nerve, which associated with the increase of the motor nerve conductive velocity (MNCV) in DPN rats. In contrast, knockdown of lipin1 exacerbates neuronal abnormalities and facilitates the genesis of DPN phenotypes in rats. In addition, overexpression of lipin1 in RSC96 cells also significantly decreased the autophagic hyperactivity and apoptosis induced by hyperglycemia. These results suggest that lipin1 may exert neuroprotection within the sciatic nerve anomalies and may serve as a potential therapeutic target for the treatment of DPN.
Collapse
Affiliation(s)
- Meijian Wang
- Department of Endocrinology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Ji'nan, Shandong, 250033, People's Republic of China.,Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, 758 Hefei Road, Qingdao, Shandong, 266035, People's Republic of China
| | - Min Xie
- Department of Endocrinology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Ji'nan, Shandong, 250033, People's Republic of China.,Department of Endocrinology, Binzhou Medical University Hospital, 661 Huanghe Second Road, Binzhou, Shandong, 256603, People's Republic of China
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Pan Shang
- Department of Endocrinology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Ji'nan, Shandong, 250033, People's Republic of China
| | - Cong Zhang
- Department of School of Biological & Chemical Engineering, Qingdao Technical College, 369 Qiantangjiang Road, Qingdao, Shandong, 266555, People's Republic of China
| | - Xiaolin Han
- Department of Endocrinology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Ji'nan, Shandong, 250033, People's Republic of China
| | - Cuiqin Fan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao, 758 Hefei Road, Qingdao, Shandong, 266035, People's Republic of China
| | - Xianghua Zhuang
- Department of Endocrinology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Ji'nan, Shandong, 250033, People's Republic of China.
| | - Shihong Chen
- Department of Endocrinology, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Ji'nan, Shandong, 250033, People's Republic of China.
| |
Collapse
|
34
|
Zhang X, Zhao S, Yuan Q, Zhu L, Li F, Wang H, Kong D, Hao J. TXNIP, a novel key factor to cause Schwann cell dysfunction in diabetic peripheral neuropathy, under the regulation of PI3K/Akt pathway inhibition-induced DNMT1 and DNMT3a overexpression. Cell Death Dis 2021; 12:642. [PMID: 34162834 PMCID: PMC8222353 DOI: 10.1038/s41419-021-03930-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM) and the dysfunction of Schwann cells plays an important role in the pathogenesis of DPN. Thioredoxin-interacting protein (TXNIP) is known as an inhibitor of thioredoxin and associated with oxidative stress and inflammation. However, whether TXNIP is involved in dysfunction of Schwann cells of DPN and the exact mechanism is still not known. In this study, we first reported that TXNIP expression was significantly increased in the sciatic nerves of diabetic mice, accompanied by abnormal electrophysiological indexes and myelin sheath structure. Similarly, in vitro cultured Schwann cells TXNIP was evidently enhanced by high glucose stimulation. Again, the function experiment found that knockdown of TXNIP in high glucose-treated RSC96 cells led to a 4.12 times increase of LC3-II/LC3-I ratio and a 25.94% decrease of cleaved caspase 3/total caspase 3 ratio. Then, DNA methyltransferase (DNMT) inhibitor 5-Aza has been reported to benefit Schwann cell in DPN, and here 5-Aza treatment reduced TXNIP protein expression, improved autophagy and inhibited apoptosis in high glucose-treated RSC96 cells and the sciatic nerves of diabetic mice. Furthermore, DNMT1 and DNMT3a upregulation were found to be involved in TXNIP overexpression in high glucose-stimulated RSC96 cells. Silencing of DNMT1 and DNMT3a effectively reversed high glucose-enhanced TXNIP. Moreover, high glucose-inhibited PI3K/Akt pathway led to DNMT1, DNMT3a, and TXNIP upregulation in RSC96 cells. Knockdown of DNMT1 and DNMT3a prevented PI3K/Akt pathway inhibition-caused TXNIP upregulation in RSC96 cells. Finally, in vivo knockout of TXNIP improved nerve conduction function, increased autophagosome and LC3 expression, and decreased cleaved Caspase 3 and Bax expression in diabetic mice. Taken together, PI3K/Akt pathway inhibition mediated high glucose-induced DNMT1 and DNMT3a overexpression, leading to cell autophagy inhibition and apoptosis via TXNIP protein upregulation in Schwann cells of DPN.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Qingqing Yuan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China.
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
35
|
Fang D, Xie H, Hu T, Shan H, Li M. Binding Features and Functions of ATG3. Front Cell Dev Biol 2021; 9:685625. [PMID: 34235149 PMCID: PMC8255673 DOI: 10.3389/fcell.2021.685625] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process that is essential for maintaining cellular, tissue, and organismal homeostasis. Autophagy-related (ATG) genes are indispensable for autophagosome formation. ATG3 is one of the key genes involved in autophagy, and its homologs are common in eukaryotes. During autophagy, ATG3 acts as an E2 ubiquitin-like conjugating enzyme in the ATG8 conjugation system, contributing to phagophore elongation. ATG3 has also been found to participate in many physiological and pathological processes in an autophagy-dependent manner, such as tumor occurrence and progression, ischemia-reperfusion injury, clearance of pathogens, and maintenance of organelle homeostasis. Intriguingly, a few studies have recently discovered the autophagy-independent functions of ATG3, including cell differentiation and mitosis. Here, we summarize the current knowledge of ATG3 in autophagosome formation, highlight its binding partners and binding sites, review its autophagy-dependent functions, and provide a brief introduction into its autophagy-independent functions.
Collapse
Affiliation(s)
- Dongmei Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huazhong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Shan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Dewanjee S, Vallamkondu J, Kalra RS, Chakraborty P, Gangopadhyay M, Sahu R, Medala V, John A, Reddy PH, De Feo V, Kandimalla R. The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus. Cells 2021; 10:1340. [PMID: 34071497 PMCID: PMC8228721 DOI: 10.3390/cells10061340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus (DM) is one of the principal manifestations of metabolic syndrome and its prevalence with modern lifestyle is increasing incessantly. Chronic hyperglycemia can induce several vascular complications that were referred to be the major cause of morbidity and mortality in DM. Although several therapeutic targets have been identified and accessed clinically, the imminent risk of DM and its prevalence are still ascending. Substantial pieces of evidence revealed that histone deacetylase (HDAC) isoforms can regulate various molecular activities in DM via epigenetic and post-translational regulation of several transcription factors. To date, 18 HDAC isoforms have been identified in mammals that were categorized into four different classes. Classes I, II, and IV are regarded as classical HDACs, which operate through a Zn-based mechanism. In contrast, class III HDACs or Sirtuins depend on nicotinamide adenine dinucleotide (NAD+) for their molecular activity. Functionally, most of the HDAC isoforms can regulate β cell fate, insulin release, insulin expression and signaling, and glucose metabolism. Moreover, the roles of HDAC members have been implicated in the regulation of oxidative stress, inflammation, apoptosis, fibrosis, and other pathological events, which substantially contribute to diabetes-related vascular dysfunctions. Therefore, HDACs could serve as the potential therapeutic target in DM towards developing novel intervention strategies. This review sheds light on the emerging role of HDACs/isoforms in diabetic pathophysiology and emphasized the scope of their targeting in DM for constituting novel interventional strategies for metabolic disorders/complications.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | | | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305 8565, Japan;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | - Moumita Gangopadhyay
- School of Life Science and Biotechnology, ADAMAS University, Barasat, Kolkata 700126, West Bengal, India;
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India;
| | - Vijaykrishna Medala
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India
| |
Collapse
|
37
|
Genetic and Epigenomic Modifiers of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms22094887. [PMID: 34063061 PMCID: PMC8124699 DOI: 10.3390/ijms22094887] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic neuropathy (DN), the most common chronic and progressive complication of diabetes mellitus (DM), strongly affects patients’ quality of life. DN could be present as peripheral, autonomous or, clinically also relevant, uremic neuropathy. The etiopathogenesis of DN is multifactorial, and genetic components play a role both in its occurrence and clinical course. A number of gene polymorphisms in candidate genes have been assessed as susceptibility factors for DN, and most of them are linked to mechanisms such as reactive oxygen species production, neurovascular impairments and modified protein glycosylation, as well as immunomodulation and inflammation. Different epigenomic mechanisms such as DNA methylation, histone modifications and non-coding RNA action have been studied in DN, which also underline the importance of “metabolic memory” in DN appearance and progression. In this review, we summarize most of the relevant data in the field of genetics and epigenomics of DN, hoping they will become significant for diagnosis, therapy and prevention of DN.
Collapse
|
38
|
Park G, Lee JY, Han HM, An HS, Jin Z, Jeong EA, Kim KE, Shin HJ, Lee J, Kang D, Kim HJ, Bae YC, Roh GS. Ablation of dynamin-related protein 1 promotes diabetes-induced synaptic injury in the hippocampus. Cell Death Dis 2021; 12:445. [PMID: 33953167 PMCID: PMC8099876 DOI: 10.1038/s41419-021-03723-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
Dynamin-related protein 1 (Drp1)-mediated mitochondrial dysfunction is associated with synaptic injury in the diabetic brain. However, the dysfunctional mitochondria by Drp1 deletion in the diabetic brain are poorly understood. Here, we investigated the effects of neuron-specific Drp1 deletion on synaptic damage and mitophagy in the hippocampus of a high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice. HFD/STZ-induced diabetic mice exhibited metabolic disturbances and synaptic damages. Floxed Drp1 mice were crossed with Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα)-Cre mice, to generate neuron-specific Drp1 knockout (Drp1cKO) mice, which showed marked mitochondrial swelling and dendritic spine loss in hippocampal neurons. In particular, diabetic Drp1cKO mice exhibited an increase in dendritic spine loss and higher levels of oxidative stress and neuroinflammation compared with diabetic wild-type (WT) mice. Diabetic WT mice generally displayed increased Drp1-induced small mitochondrial morphology in hippocampal neurons, but large mitochondria were prominently observed in diabetic Drp1cKO mice. The levels of microtubule-associated protein 1 light-chain 3 and lysosomal-associated membrane protein 1 proteins were significantly increased in the hippocampus of diabetic Drp1cKO mice compared with diabetic WT mice. The inhibition of Drp1 adversely promotes synaptic injury and neurodegeneration in the diabetic brain. The findings suggest that the exploratory mechanisms behind Drp1-mediated mitochondrial dysfunction could provide a possible therapeutic target for diabetic brain complications.
Collapse
Affiliation(s)
- Gyeongah Park
- grid.256681.e0000 0001 0661 1492Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea ,grid.256681.e0000 0001 0661 1492Bio Anti-Aging Medical Research Center, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea ,grid.267301.10000 0004 0386 9246Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Jong Youl Lee
- grid.256681.e0000 0001 0661 1492Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea ,grid.256681.e0000 0001 0661 1492Bio Anti-Aging Medical Research Center, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea
| | - Hye Min Han
- grid.258803.40000 0001 0661 1556Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41944 South Korea
| | - Hyeong Seok An
- grid.256681.e0000 0001 0661 1492Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea ,grid.256681.e0000 0001 0661 1492Bio Anti-Aging Medical Research Center, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea
| | - Zhen Jin
- grid.256681.e0000 0001 0661 1492Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea ,grid.256681.e0000 0001 0661 1492Bio Anti-Aging Medical Research Center, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea ,grid.267301.10000 0004 0386 9246Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Eun Ae Jeong
- grid.256681.e0000 0001 0661 1492Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea ,grid.256681.e0000 0001 0661 1492Bio Anti-Aging Medical Research Center, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea
| | - Kyung Eun Kim
- grid.256681.e0000 0001 0661 1492Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea ,grid.256681.e0000 0001 0661 1492Bio Anti-Aging Medical Research Center, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea
| | - Hyun Joo Shin
- grid.256681.e0000 0001 0661 1492Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea ,grid.256681.e0000 0001 0661 1492Bio Anti-Aging Medical Research Center, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea
| | - Jaewoong Lee
- grid.256681.e0000 0001 0661 1492Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea ,grid.256681.e0000 0001 0661 1492Bio Anti-Aging Medical Research Center, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea
| | - Dawon Kang
- grid.256681.e0000 0001 0661 1492Bio Anti-Aging Medical Research Center, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea ,grid.256681.e0000 0001 0661 1492Department of Physiology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea
| | - Hyun Joon Kim
- grid.256681.e0000 0001 0661 1492Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea ,grid.256681.e0000 0001 0661 1492Bio Anti-Aging Medical Research Center, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea
| | - Yong Chul Bae
- grid.258803.40000 0001 0661 1556Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 41944 South Korea
| | - Gu Seob Roh
- grid.256681.e0000 0001 0661 1492Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea ,grid.256681.e0000 0001 0661 1492Bio Anti-Aging Medical Research Center, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam 52727 Republic of Korea
| |
Collapse
|
39
|
Liu BY, Li L, Bai LW, Xu CS. Long Non-coding RNA XIST Attenuates Diabetic Peripheral Neuropathy by Inducing Autophagy Through MicroRNA-30d-5p/ sirtuin1 Axis. Front Mol Biosci 2021; 8:655157. [PMID: 33996907 PMCID: PMC8113765 DOI: 10.3389/fmolb.2021.655157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent diabetes mellitus (Feldman et al., 2017) complication and the primary reason for amputation. Meanwhile, long non-coding RNAs (lncRNAs) are a type of regulatory non-coding RNAs (ncRNAs) that broadly participate in DPN development. However, the correlation of lncRNA X-inactive specific transcript (XIST) with DPN remains unclear. In this study, we were interested in the role of XIST in the modulation of DPN progression. Significantly, our data showed that the expression of XIST and sirtuin1 (SIRT1) was inhibited, and the expression of microRNA-30d-5p (miR-30d-5p) was enhanced in the trigeminal sensory neurons of the diabetic mice compared with the normal mice. The levels of LC3II and Beclin-1 were inhibited in the diabetic mice. The treatment of high glucose (HG) reduced the XIST expression in Schwann cells. The apoptosis of Schwann cells was enhanced in the HG-treated cells, but the overexpression of XIST could block the effect in the cells. Moreover, the levels of LC3II and Beclin-1 were reduced in the HG-treated Schwann cells, while the overexpression of XIST was able to reverse this effect. The HG treatment promoted the production of oxidative stress, while the XIST overexpression could attenuate this result in the Schwann cells. Mechanically, XIST was able to sponge miR-30d-5p and miR-30d-5p-targeted SIRT1 in the Schwann cells. MiR-30d-5p inhibited autophagy and promoted oxidative stress in the HG-treated Schwann cells, and SIRT1 presented a reversed effect. MiR-30d-5p mimic or SIRT1 depletion could reverse XIST overexpression-mediated apoptosis and autophagy of the Schwann cells. Thus, we concluded that XIST attenuated DPN by inducing autophagy through miR-30d-5p/SIRT1 axis. XIST and miR-30d-5p may be applied as the potential targets for DPN therapy.
Collapse
Affiliation(s)
- Bei-Yan Liu
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Lin Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Li-Wei Bai
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chang-Shui Xu
- Department of Neurology, Henan Province People's Hospital, Zhengzhou, China
| |
Collapse
|
40
|
Wei L, Peng Y, Yang XJ, Zhou P. Knockdown of long non-coding RNA RMRP protects cerebral ischemia-reperfusion injury via the microRNA-613/ATG3 axis and the JAK2/STAT3 pathway. Kaohsiung J Med Sci 2021; 37:468-478. [PMID: 33560543 DOI: 10.1002/kjm2.12362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/29/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury can induce the mitophagy of neurons in the ischemic brain. Long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of various injuries, especially in cerebral I/R injury. The purpose of this study is to investigate the molecular mechanism of lncRNA RNA component of mitochondrial RNA processing endoribonuclease (RMRP) in cerebral I/R injury. The middle cerebral artery occlusion (MCAO) mouse model was established. Neurological deficit score, pathological structure, infarcted area, neuron number, cell apoptosis, and coagulation ability of MCAO mice were evaluated. The expressions of RMRP, microRNA (miR)-613, and ATG3 in MCAO mice were detected. The binding relationships among miR-613, RMRP, and ATG3 were predicted and verified. Neuro 2A (N2a) cells were treated with oxygen-glucose deprivation/reperfusion (OGD/R) to simulate I/R injury. Cell viability and apoptosis assays were performed. The effects of miR-613, ATG3, and RMRP on I/R injury were verified by functional rescue experiments. JAK2/STAT3 phosphorylation level was detected. We found significantly upregulated RMRP and ATG3, and downregulated miR-613 expressions in MCAO mice. RMRP could escalate ATG3 mRNA expression through miR-613. RMRP knockdown promoted viability and inhibited apoptosis of OGD/R-treated N2a cells, which could be reversed by miR-613 inhibition or ATG3 overexpression. RMRP overexpression inhibited the activation of JAK2/STAT3 signaling pathway. We demonstrated that lncRNA RMRP competitively bound to miR-613, leading to the increase of ATG3 expression and the inhibition the JAK2/STAT3 pathway, thus promoting cerebral I/R injury in mice.
Collapse
Affiliation(s)
- Li Wei
- Department of Blood Transfusion, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiao-Jun Yang
- Department of Blood Transfusion, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Peng Zhou
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
41
|
Li L, Yang J, Li F, Gao F, Zhu L, Hao J. FBXW7 mediates high glucose‑induced SREBP‑1 expression in renal tubular cells of diabetic nephropathy under PI3K/Akt pathway regulation. Mol Med Rep 2021; 23:233. [PMID: 33537812 PMCID: PMC7893693 DOI: 10.3892/mmr.2021.11872] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and lipid metabolism abnormality serves a key role in the pathogenesis of DN. Sterol regulatory element-binding protein 1 (SREBP-1) overexpression mediates aberrant lipid accumulation in renal tubular cells of DN. However, the exact mechanism involved in increased SREBP-1 has not been fully elucidated. The aim of the present study was to explore the mechanism involved in SREBP-1 upregulation. Diabetic mice and high glucose-cultured HKC cells were chosen to detect the expression of FBXW7 and SREBP-1 using immunohistochemistry, western blotting and PCR. The present study demonstrated that F-box and WD repeat domain containing 7 (FBXW7) expression was decreased in renal tubular cells of diabetic mice. Moreover, the co-expression of FBXW7 and SREBP-1 was observed in renal tubular cells, but not in the glomeruli. High glucose-induced the downregulation of FBXW7 expression in in vitro cultured HKC cells, which was accompanied by SREBP-1 upregulation. In addition, overexpression of FBXW7 in HKC cells led to SREBP-1 downregulation. By contrast, knockdown of FBXW7 caused SREBP-1 upregulation in HKC cells. It was found that the PI3K/Akt signaling pathway was activated in high glucose-stimulated HKC cells, and inhibition of PI3K/Akt pathway using LY294002 increased FBXW7 expression and decreased SREBP-1 expression. Taken together, the present results suggested that FBXW7 mediated high glucose-induced SREBP-1 expression in renal tubular cells of DN, under the regulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Lisha Li
- Department of Pathology, Cangzhou Hospital of Integrated TCM‑WM, Cangzhou, Hebei 061001, P.R. China
| | - Juxiang Yang
- The Office of Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Fan Gao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lin Zhu
- Department of Electromyogram, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
42
|
METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial-mesenchymal transition of renal tubular cells in diabetic kidney disease. Cell Death Dis 2021; 12:32. [PMID: 33414476 PMCID: PMC7791055 DOI: 10.1038/s41419-020-03312-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
Histone deacetylase 5 (HDAC5) belongs to class II HDAC subfamily and is reported to be increased in the kidneys of diabetic patients and animals. However, little is known about its function and the exact mechanism in diabetic kidney disease (DKD). Here, we found that HDAC5 was located in renal glomeruli and tubular cells, and significantly upregulated in diabetic mice and UUO mice, especially in renal tubular cells and interstitium. Knockdown of HDAC5 ameliorated high glucose-induced epithelial–mesenchymal transition (EMT) of HK2 cells, indicated in the increased E-cadherin and decreased α-SMA, via the downregulation of TGF-β1. Furthermore, HDAC5 expression was regulated by PI3K/Akt signaling pathway and inhibition of PI3K/Akt pathway by LY294002 treatment or Akt phosphorylation mutation reduced HDAC5 and TGF-β1 expression in vitro high glucose-cultured HK2 cells. Again, high glucose stimulation downregulated total m6A RNA methylation level of HK2 cells. Then, m6A demethylase inhibitor MA2 treatment decreased Akt phosphorylation, HDAC5, and TGF-β1 expression in high glucose-cultured HK2 cells. In addition, m6A modification-associated methylase METTL3 and METTL14 were decreased by high glucose at the levels of mRNA and protein. METTL14 not METTL3 overexpression led to PI3K/Akt pathway inactivation in high glucose-treated HK2 cells by enhancing PTEN, followed by HDAC5 and TGF-β1 expression downregulation. Finally, in vivo HDACs inhibitor TSA treatment alleviated extracellular matrix accumulation in kidneys of diabetic mice, accompanied with HDAC5, TGF-β1, and α-SMA expression downregulation. These above data suggest that METTL14-regulated PI3K/Akt signaling pathway via PTEN affected HDAC5-mediated EMT of renal tubular cells in diabetic kidney disease.
Collapse
|
43
|
An J, Zhang X, Jia K, Zhang C, Zhu L, Cheng M, Li F, Zhao S, Hao J. Trichostatin A increases BDNF protein expression by improving XBP-1s/ATF6/GRP78 axis in Schwann cells of diabetic peripheral neuropathy. Biomed Pharmacother 2021; 133:111062. [PMID: 33378965 DOI: 10.1016/j.biopha.2020.111062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the common complication of diabetes mellitus. Histone deacetylase (HDAC) inhibitor trichostatin A (TSA) is reported to ameliorate the peripheral nerves degeneration of DPN. However, the exact mechanism is still not well elucidated. Here, we first revealed that TSA promoted nerve conduction and brain derived neurotrophic factor (BDNF) expression in the sciatic nerves of diabetic mice. In line, TSA also reversed high glucose-reduced mature BDNF expression in vitro cultured rat Schwann cells (RSC96). Then unexpectedly, the downstream targets of TSA HDAC1 and HDAC5 were not involved in TSA-improved BDNF expression. Furthermore, unfolded protein response (UPR) chaperone GRP78 was revealed to be downregulated with high glucose stimulation in RSC96 cells, which was avoided with TSA treatment. Also, GRP78 upregulation mediated TSA-improved mature BDNF expression in high glucose-cultured RSC96 cells by binding with BDNF. As well, TSA treatment enhanced the binding of GRP78 with BDNF in RSC96 cells. Again, UPR-associated transcription factors XBP-1s and ATF6 were involved in TSA-increased GRP78 expression in high glucose-stimulated RSC96 cells. Finally, conditioned medium from high glucose-cultured RSC96 cells delayed neuron SH-SY5Y differentiation and that from TSA-treated high glucose-cultured RSC96 cells promoted SH-SY5Y cell differentiation. Taken together, our findings suggested that TSA increased BDNF expression to ameliorate DPN by improving XBP-1s/ATF6/GRP78 axis in Schwann cells.
Collapse
Affiliation(s)
- Jiahui An
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Xiang Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Keqi Jia
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Cuihong Zhang
- Department of Radiation Oncology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meijuan Cheng
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
44
|
Belousov DM, Mikhaylenko EV, Somasundaram SG, Kirkland CE, Aliev G. The Dawn of Mitophagy: What Do We Know by Now? Curr Neuropharmacol 2021; 19:170-192. [PMID: 32442087 PMCID: PMC8033973 DOI: 10.2174/1570159x18666200522202319] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are essential organelles for healthy eukaryotic cells. They produce energyrich phosphate bond molecules (ATP) through oxidative phosphorylation using ionic gradients. The presence of mitophagy pathways in healthy cells enhances cell protection during mitochondrial damage. The PTEN-induced putative kinase 1 (PINK1)/Parkin-dependent pathway is the most studied for mitophage. In addition, there are other mechanisms leading to mitophagy (FKBP8, NIX, BNIP3, FUNDC1, BCL2L13). Each of these provides tethering of a mitochondrion to an autophagy apparatus via the interaction between receptor proteins (Optineurin, p62, NDP52, NBR1) or the proteins of the outer mitochondrial membrane with ATG9-like proteins (LC3A, LC3B, GABARAP, GABARAPL1, GATE16). Another pathogenesis of mitochondrial damage is mitochondrial depolarization. Reactive oxygen species (ROS) antioxidant responsive elements (AREs) along with antioxidant genes, including pro-autophagic genes, are all involved in mitochondrial depolarization. On the other hand, mammalian Target of Rapamycin Complex 1 (mTORC1) and AMP-dependent kinase (AMPK) are the major regulatory factors modulating mitophagy at the post-translational level. Protein-protein interactions are involved in controlling other mitophagy processes. The objective of the present review is to analyze research findings regarding the main pathways of mitophagy induction, recruitment of the autophagy machinery, and their regulations at the levels of transcription, post-translational modification and protein-protein interaction that appeared to be the main target during the development and maturation of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Cecil E. Kirkland
- Address correspondence to this author at the Department of Biological Sciences, Salem University, Salem, WV, 26426, USA & GALLY International Research Institute, San Antonio, TX 78229, USA;, E-mails: ,
| | - Gjumrakch Aliev
- Address correspondence to this author at the Department of Biological Sciences, Salem University, Salem, WV, 26426, USA & GALLY International Research Institute, San Antonio, TX 78229, USA;, E-mails: ,
| |
Collapse
|
45
|
Wang X, Huan Y, Li C, Cao H, Sun S, Lei L, Liu Q, Liu S, Ji W, Liu H, Huang K, Zhou J, Shen Z. Diphenyl diselenide alleviates diabetic peripheral neuropathy in rats with streptozotocin-induced diabetes by modulating oxidative stress. Biochem Pharmacol 2020; 182:114221. [DOI: 10.1016/j.bcp.2020.114221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
|
46
|
Exendin-4 Promotes Schwann Cell Proliferation and Migration via Activating the Jak-STAT Pathway after Peripheral Nerve Injury. Neuroscience 2020; 437:1-10. [PMID: 32334071 DOI: 10.1016/j.neuroscience.2020.04.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
Peripheral nerve injury (PNI) is a common clinical disease that causes the partial loss of segmental exercise and sensory and autonomic nervous function, placing a heavy burden on patients and their families. A previous study confirmed that exendin-4 can effectively improve nerve regeneration and functional recovery after PNI. However, the specific mechanisms by which exendin-4-mediates this repair have not been clarified. To explore the mechanism of exendin-4 in the treatment of PNI, we used microarray analysis to detect gene expression in the distal segment of the sciatic nerve after sciatic injury. Bioinformatics analyses were used to predict the roles of differentially expressed genes (DEGs) in nerve damage repair. Schwann cells (SCs) were cultured, and we verified the molecular mechanism of exendin-4 in SCs and the effect of exendin-4 on peripheral nerve regeneration through in vitro molecular biology and cell biology experiments. In vivo, exendin-4 could significantly promote peripheral nerve regeneration. A total of 180 DEGs between the exendin-4 group and the control group were detected. Bioinformatics analysis indicated that these DEGs were mainly enriched in the Jak-STAT signaling pathway. In vitro, exendin-4 could significantly promote the proliferation and migration of SCs by activating the Jak-STAT pathway, which promoted peripheral nerve regeneration. Our results indicate that exendin-4 promotes SC proliferation, migration and nerve regeneration after PNI by activating the Jak-STAT pathway. Our findings provide a basis and direction for further elucidation of the mechanisms of exendin-4 in the repair of PNI and provide a new way to treat PNI.
Collapse
|
47
|
Liu YP, Shao SJ, Guo HD. Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy. Life Sci 2020; 248:117459. [PMID: 32092332 DOI: 10.1016/j.lfs.2020.117459] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus that affects approximately half of patients with diabetes. Current treatment regimens cannot treat DPN effectively. Schwann cells (SCs) are very sensitive to glucose concentration and insulin, and closely associated with the occurrence and development of type 1 diabetic mellitus (T1DM) and DPN. Apoptosis of SCs is induced by hyperglycemia and is involved in the pathogenesis of DPN. This review considers the pathological processes of SCs apoptosis under high glucose, which include the following: oxidative stress, inflammatory reactions, endoplasmic reticulum stress, autophagy, nitrification and signaling pathways (PI3K/AKT, ERK, PERK/Nrf2, and Wnt/β-catenin). The clarification of mechanisms underlying SCs apoptosis induced by high glucose will help us to understand and identify more effective strategies for the treatment of T1DM DPN.
Collapse
Affiliation(s)
- Yu-Pu Liu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shui-Jin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai-Dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
48
|
Du W, Zhao S, Gao F, Wei M, An J, Jia K, Li F, Zhu L, Hao J. IFN-γ/mTORC1 decreased Rab11 in Schwann cells of diabetic peripheral neuropathy, inhibiting cell proliferation via GLUT1 downregulation. J Cell Physiol 2020; 235:5764-5776. [PMID: 31970777 DOI: 10.1002/jcp.29510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus. Rab11 is conserved gene-regulating vesicle traffic and reported to be involved in the pathogenesis of diabetes mellitus by affecting insulin sensitivity. We aimed to investigate the role of Rab11 in the pathogenesis of DPN. In this study, Rab11 expression decreased in the sciatic nerves of diabetic mice with impaired conduction function versus those of normal mice. In vitro experiment revealed interferon-γ (IFN-γ), not high glucose and interleukin 1β was the main factor to lead to Rab11 downregulation in RSC96 cells. Again, both Rab11 knockdown and IFN-γ treatment caused cell viability inhibition and the decrease in BrdU-positive cells. In contrast, overexpression of Rab11 reversed IFN-γ-reduced cell proliferation. Furthermore, mTORC1 not mTORC2 was proven to be suppressed by IFN-γ treatment in RSC96 cells, indicated in decreased phospho-p70S6K. Inhibition of the mTORC1 pathway resulted in Rab11 expression downregulation in RSC96 cells. Activation of the mTORC1 pathway effectively prevented IFN-γ-reduced Rab11 expression in RSC96 cells. Also, glucose transporter 1 (GLUT1) was found to be downregulated in RSC96 cells with Rab11 silence and overexpression of GLUT1 reversed Rab11 blocking-caused proliferation inhibition. Taken together, our findings suggest that IFN-γ decreases Rab11 expression via the inhibition of the mTORC1 signaling pathway, causing reduced cell proliferation in Schwann cells of DPN by GLUT1 downregulation.
Collapse
Affiliation(s)
- Wei Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Fan Gao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Mengyu Wei
- Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiahui An
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Keqi Jia
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
49
|
Li F, Du W, Wang H, Zhao S, Zhu L, Hao J. Activation of AMPK pathway compromises Rab11 downregulation-mediated inhibition of Schwann cell proliferation in a Glut1 and Glut3-dependent manner. Neurosci Lett 2020; 720:134762. [PMID: 31954765 DOI: 10.1016/j.neulet.2020.134762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/26/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Rab11, a small GTPase, is an important protein in the regulation of intracellular plasma membrane trafficking. Schwann cells are the main cells of peripheral nerves and knockdown of Rab11 in these cells inhibits the formation of functional tunneling nanotubes (TNTs). However, the role of Rab11 in the functioning of Schwann cells remains elusive. Herein, using cell viability analysis, live/dead cell staining, BrdU assay, and western blot analysis with an AMPK antibody, we observed that the knockdown of Rab11 significantly inhibited the proliferation of RSC96 cells. Further investigations showed that the AMPK pathway was activated by the knockdown of Rab11, as indicated by the enhanced levels of phosphorylated AMPK. Moreover, suppression of AMPK pathway with Compound C aggravated Rab11 knockdown-induced inhibition of cell proliferation. In contrast, activation of the AMPK pathway with AICAR ameliorated the Rab11 knockdown-mediated inhibition of cell proliferation. Furthermore, the levels of Glut1 and Glut3 were decreased in the RSC96 cells upon Rab11 knockdown. Additionally, the knockdown of Glut1 and Glut3 led to the activation of the AMPK pathway in RSC96 cells. We conclude that the knockdown of Rab11 suppresses the proliferation of RSC96 cells, and as a compensatory mechanism, the activation of AMPK pathway, in a Glut1 and Glut3-dependent manner, improves RSC96 cell proliferation.
Collapse
Affiliation(s)
- Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Wei Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, the Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
50
|
Wang Q, Wei S, Zhou S, Qiu J, Shi C, Liu R, Zhou H, Lu L. Hyperglycemia aggravates acute liver injury by promoting liver-resident macrophage NLRP3 inflammasome activation via the inhibition of AMPK/mTOR-mediated autophagy induction. Immunol Cell Biol 2019; 98:54-66. [PMID: 31625631 PMCID: PMC7004066 DOI: 10.1111/imcb.12297] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/08/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
Although the detrimental effects of diabetes mellitus/hyperglycemia have been observed in many liver disease models, the function and mechanism of hyperglycemia regulating liver‐resident macrophages, Kupffer cells (KCs), in thioacetamide (TAA)‐induced liver injury remain largely unknown. In this study, we evaluated the role of hyperglycemia in regulating NOD‐like receptor family pyrin domain‐containing 3 protein (NLRP3) inflammasome activation by inhibiting autophagy induction in KCs in the TAA‐induced liver injury model. Type I diabetes/hyperglycemia was induced by streptozotocin treatment. Compared with the control group, hyperglycemic mice exhibited a significant increase in intrahepatic inflammation and liver injury. Enhanced NLRP3 inflammasome activation was detected in KCs from hyperglycemic mice, as shown by increased gene induction and protein levels of NLRP3, cleaved caspase‐1, apoptosis‐associated speck‐like protein containing a caspase recruitment domain and interleukin‐1β, compared with control mice. NLRP3 inhibition by its antagonist CY‐09 effectively suppressed inflammasome activation in KCs and attenuated liver injury in hyperglycemic mice. Furthermore, inhibited autophagy activation was revealed by transmission electron microscope detection, decreased LC3B protein expression and p‐62 protein degradation in KCs isolated from TAA‐stressed hyperglycemic mice. Interestingly, inhibited 5′ AMP‐activated protein kinase (AMPK) but enhanced mammalian target of rapamycin (mTOR) activation was found in KCs from TAA‐stressed hyperglycemic mice. AMPK activation by its agonist 5‐aminoimidazole‐4‐carboxamide ribonucleotide (AICAR) or mTOR signaling knockdown by small interfering RNA restored autophagy activation, and subsequently, inhibited NLRP3 inflammasome activation in KCs, leading to ultimately reduced TAA‐induced liver injury in the hyperglycemic mice. Our findings demonstrated that hyperglycemia aggravated TAA‐induced acute liver injury by promoting liver‐resident macrophage NLRP3 inflammasome activation via inhibiting AMPK/mTOR‐mediated autophagy. This study provided a novel target for prevention of toxin‐induced acute liver injury under hyperglycemia.
Collapse
Affiliation(s)
- Qi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Song Wei
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medical, Southeast University, Nanjing, China
| | - Shun Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jiannan Qiu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Chenyu Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Rui Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.,NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China.,School of Medical, Southeast University, Nanjing, China
| |
Collapse
|