1
|
Hu P, Li H, Ji Z, Jing W, Li Z, Yu S, Shan X, Cui Y, Wang B, Dong H, Zhou Y, Wang Z, Xiong H, Zhang X, Li HC, Wang J, Tang J, Wang T, Xie K, Liu Y, Zhu H, Yu Q. Fructose-1,6-diphosphate inhibits viral replication by promoting the lysosomal degradation of HMGB1 and blocking the binding of HMGB1 to the viral genome. PLoS Pathog 2024; 20:e1012782. [PMID: 39693295 DOI: 10.1371/journal.ppat.1012782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Fructose-1,6-diphosphate (FBP), a key glycolytic metabolite, is recognized for its cytoprotective effects during stress. However, the role of FBP in viral infections is unknown. Here, we demonstrate that virus-infected cells exhibit elevated FBP levels. Exogenous FBP inhibits both RNA and DNA virus infections in vitro and in vivo. Modulating intracellular FBP levels by regulating the expression of the metabolic enzymes FBP1 and PFK1 significantly impacts viral infections. Mechanistically, the inhibitory effects of FBP are not a result of altered viral adhesion or entry and are largely independent of type I interferon-mediated immune responses; rather, they occur through modulation of HMGB1. During viral infections, FBP predominantly reduces the protein levels of HMGB1 by facilitating its lysosomal degradation. Furthermore, FBP interacts with HMGB1 and disrupts the binding of HMGB1 to viral genomes, thereby further inhibiting viral replication. Our findings underscore the potential of FBP as a therapeutic target for controlling viral infections.
Collapse
Affiliation(s)
- Penghui Hu
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huiyi Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital of Hainan Medical University, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Hainan, China
| | - Zemin Ji
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Weijia Jing
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zihan Li
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sujun Yu
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiao Shan
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Cui
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Baochen Wang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongyuan Dong
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanzhao Zhou
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- University of Electronic Science and Technology of China, Chengdu, China
| | - Zhe Wang
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Xiong
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaomei Zhang
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui-Chieh Li
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinrong Wang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiuzhou Tang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuping Liu
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haizhen Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital of Hainan Medical University, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Hainan, China
| | - Qiujing Yu
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Fokra A, Feldman HB, Kurolap A, Kinaneh S, Abassi Z, Hershkovitz T. Patients with Gaucher disease display systemic elevation of ACE2, which is impacted by therapy status and genotype. Mol Genet Metab 2024; 143:108534. [PMID: 39033630 DOI: 10.1016/j.ymgme.2024.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Gaucher disease (GD) has a high carrier rate among Ashkenazi Jews.The most common disease-causing variant in this population N370S, is also prevalent pan-ethnically. This has led to speculations of some protective effect for carriers of this variant. During the recent COVID-19 pandemic, GD patients reportedly had a surprisingly low infection rate and mild symptoms considering their disease status. As SARS-CoV-2 gains entry into the cell via membrane-bound angiotensin-converting enzyme 2 (ACE2), we speculated that differences in levels of soluble ACE2 in GD patients could contribute to this protective state. While ACE is known to be elevated in GD, to our knowledge, ACE2 levels have not been explored. We measured serum and macrophage-bound levels of ACE and ACE2 by ELISA and western blot, respectively, in GD patients and age- and sex-matched controls. Our results reveal a significant elevation of both serum and macrophage-bound ACE and ACE2 in GD patients compared to healthy controls. This elevation appears to be mitigated by GD treatment. Moreover, the most robust ACE2 elevation was observed in N370S homozygotes, and was not effected by treatment. Since coronaviruses use the ACE2 receptor as a gateway for host cell entry, we speculate that elevated circulating ACE2 may serve as a decoy. This might explain the observed mild infections in GD patients during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ahmad Fokra
- Department of Physiology and Biophysics Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alina Kurolap
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Safa Kinaneh
- Department of Physiology and Biophysics Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology and Biophysics Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
| | - Tova Hershkovitz
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
3
|
Rani A, Stadler JT, Marsche G. HDL-based therapeutics: A promising frontier in combating viral and bacterial infections. Pharmacol Ther 2024; 260:108684. [PMID: 38964560 DOI: 10.1016/j.pharmthera.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Low levels of high-density lipoprotein (HDL) and impaired HDL functionality have been consistently associated with increased susceptibility to infection and its serious consequences. This has been attributed to the critical role of HDL in maintaining cellular lipid homeostasis, which is essential for the proper functioning of immune and structural cells. HDL, a multifunctional particle, exerts pleiotropic effects in host defense against pathogens. It functions as a natural nanoparticle, capable of sequestering and neutralizing potentially harmful substances like bacterial lipopolysaccharides. HDL possesses antiviral activity, preventing viruses from entering or fusing with host cells, thereby halting their replication cycle. Understanding the complex relationship between HDL and the immune system may reveal innovative targets for developing new treatments to combat infectious diseases and improve patient outcomes. This review aims to emphasize the role of HDL in influencing the course of bacterial and viral infections and its and its therapeutic potential.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Styria, Austria.
| |
Collapse
|
4
|
Kulma M, Šakanović A, Bedina-Zavec A, Caserman S, Omersa N, Šolinc G, Orehek S, Hafner-Bratkovič I, Kuhar U, Slavec B, Krapež U, Ocepek M, Kobayashi T, Kwiatkowska K, Jerala R, Podobnik M, Anderluh G. Sequestration of membrane cholesterol by cholesterol-binding proteins inhibits SARS-CoV-2 entry into Vero E6 cells. Biochem Biophys Res Commun 2024; 716:149954. [PMID: 38704887 DOI: 10.1016/j.bbrc.2024.149954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Aleksandra Šakanović
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Apolonija Bedina-Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Brigita Slavec
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, F-67401, Illkirch, France
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and COVID-19-therapeutic opportunities at the host/virus interface during cell entry. Life Sci Alliance 2024; 7:e202302453. [PMID: 38388172 PMCID: PMC10883773 DOI: 10.26508/lsa.202302453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
The rapid development of vaccines to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has been critical to reduce the severity of COVID-19. However, the continuous emergence of new SARS-CoV-2 subtypes highlights the need to develop additional approaches that oppose viral infections. Targeting host factors that support virus entry, replication, and propagation provide opportunities to lower SARS-CoV-2 infection rates and improve COVID-19 outcome. This includes cellular cholesterol, which is critical for viral spike proteins to capture the host machinery for SARS-CoV-2 cell entry. Once endocytosed, exit of SARS-CoV-2 from the late endosomal/lysosomal compartment occurs in a cholesterol-sensitive manner. In addition, effective release of new viral particles also requires cholesterol. Hence, cholesterol-lowering statins, proprotein convertase subtilisin/kexin type 9 antibodies, and ezetimibe have revealed potential to protect against COVID-19. In addition, pharmacological inhibition of cholesterol exiting late endosomes/lysosomes identified drug candidates, including antifungals, to block SARS-CoV-2 infection. This review describes the multiple roles of cholesterol at the cell surface and endolysosomes for SARS-CoV-2 entry and the potential of drugs targeting cholesterol homeostasis to reduce SARS-CoV-2 infectivity and COVID-19 disease severity.
Collapse
Affiliation(s)
- Thomas Grewal
- https://ror.org/0384j8v12 School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Mai Khanh Linh Nguyen
- https://ror.org/0384j8v12 School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Christa Buechler
- https://ror.org/01226dv09 Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
6
|
Elste J, Cast N, Udawatte S, Adhikari K, Payen SH, Verma SC, Shukla D, Swanson-Mungerson M, Tiwari V. Co-Expression of Niemann-Pick Type C1-Like1 (NPC1L1) with ACE2 Receptor Synergistically Enhances SARS-CoV-2 Entry and Fusion. Biomedicines 2024; 12:821. [PMID: 38672177 PMCID: PMC11048565 DOI: 10.3390/biomedicines12040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into human embryonic kidney (HEK293T) cells has been shown to be a cholesterol-rich, lipid raft-dependent process. In this study, we investigated if the presence of a cholesterol uptake receptor Niemann-pick type c1-like1 (NPC1L1) impacts SARS-CoV-2 cell entry. Initially, we utilized reporter-based pseudovirus cell entry assays and a spike (S) glycoprotein-mediated cell-to-cell fusion assay. Using Chinese hamster ovary (CHO-K1) cells, which lack endogenous receptors for SARS-CoV-2 entry, our data showed that the co-expression of NPC1L1 together with the ACE2 receptor synergistically increased SARS-CoV-2 pseudovirus entry even more than the cells expressing ACE-2 receptor alone. Similar results were also found with the HEK293T cells endogenously expressing the ACE2 receptor. Co-cultures of effector cells expressing S glycoprotein together with target cells co-expressing ACE-2 receptor with NPC1L1 significantly promoted quantitative cell-to-cell fusion, including syncytia formation. Finally, we substantiated that an elevated expression of NPC1L1 enhanced entry, whereas the depletion of NPC1L1 resulted in a diminished SARS-CoV-2 entry in HEK293T-ACE2 cells using authentic SARS-CoV-2 virus in contrast to their respective control cells. Collectively, these findings underscore the pivotal role of NPC1L1 in facilitating the cellular entry of SARS-CoV-2. Importance: Niemann-Pick type C1-like1 (NPC1L1) is an endosomal membrane protein that regulates intracellular cholesterol trafficking. This protein has been demonstrated to play a crucial role in the life cycle of several clinically important viruses. Although SARS-CoV-2 exploits cholesterol-rich lipid rafts as part of its viral entry process, the role of NPC1L1 in SARS-CoV-2 entry remains unclear. Our research represents the first-ever demonstration of NPC1L1's involvement in facilitating SARS-CoV-2 entry. The observed role of NPC1L1 in human kidney cells is not only highly intriguing but also quite relevant. This relevance stems from the fact that NPC1L1 exhibits high expression levels in several organs, including the kidneys, and the fact that kidney damages are reported during severe cases of SARS-CoV-2. These findings may help us understand the new functions and mechanisms of NPC1L1 and could contribute to the identification of new antiviral targets.
Collapse
Affiliation(s)
- James Elste
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (N.C.); (M.S.-M.)
| | - Nicole Cast
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (N.C.); (M.S.-M.)
| | - Shalini Udawatte
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA;
| | - Kabita Adhikari
- Department of Microbiology & Immunology, University of Reno, Reno, NV 89557, USA; (K.A.); (S.H.P.); (S.C.V.)
| | - Shannon Harger Payen
- Department of Microbiology & Immunology, University of Reno, Reno, NV 89557, USA; (K.A.); (S.H.P.); (S.C.V.)
| | - Subhash C. Verma
- Department of Microbiology & Immunology, University of Reno, Reno, NV 89557, USA; (K.A.); (S.H.P.); (S.C.V.)
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (N.C.); (M.S.-M.)
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (N.C.); (M.S.-M.)
| |
Collapse
|
7
|
Khan I, Li S, Tao L, Wang C, Ye B, Li H, Liu X, Ahmad I, Su W, Zhong G, Wen Z, Wang J, Hua RH, Ma A, Liang J, Wan XP, Bu ZG, Zheng YH. Tubeimosides are pan-coronavirus and filovirus inhibitors that can block their fusion protein binding to Niemann-Pick C1. Nat Commun 2024; 15:162. [PMID: 38167417 PMCID: PMC10762260 DOI: 10.1038/s41467-023-44504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
SARS-CoV-2 and filovirus enter cells via the cell surface angiotensin-converting enzyme 2 (ACE2) or the late-endosome Niemann-Pick C1 (NPC1) as a receptor. Here, we screened 974 natural compounds and identified Tubeimosides I, II, and III as pan-coronavirus and filovirus entry inhibitors that target NPC1. Using in-silico, biochemical, and genomic approaches, we provide evidence that NPC1 also binds SARS-CoV-2 spike (S) protein on the receptor-binding domain (RBD), which is blocked by Tubeimosides. Importantly, NPC1 strongly promotes productive SARS-CoV-2 entry, which we propose is due to its influence on fusion in late endosomes. The Tubeimosides' antiviral activity and NPC1 function are further confirmed by infection with SARS-CoV-2 variants of concern (VOC), SARS-CoV, and MERS-CoV. Thus, NPC1 is a critical entry co-factor for highly pathogenic human coronaviruses (HCoVs) in the late endosomes, and Tubeimosides hold promise as a new countermeasure for these HCoVs and filoviruses.
Collapse
Affiliation(s)
- Ilyas Khan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sunan Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lihong Tao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bowei Ye
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Huiyu Li
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Xiaoyang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Iqbal Ahmad
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenqiang Su
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gongxun Zhong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhiyuan Wen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinliang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Rong-Hong Hua
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ao Ma
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Jie Liang
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Xiao-Peng Wan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Zhi-Gao Bu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Yong-Hui Zheng
- Department of Microbiology and Immunology, The University of Illinois Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
8
|
Wang H, Cheng L, Yu L, Guo Z. Targeting the mammalian target of rapamycin pathway in neurological manifestations of Covid-19. Rev Med Virol 2024; 34:e2503. [PMID: 38282397 DOI: 10.1002/rmv.2503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
The diverse and severe nature of neurological manifestations associated with coronavirus disease 2019 (Covid-19) has garnered increasing attention. Exploring the potential to decrease neurological complications in Covid-19 patients involves targeting the mammalian target of rapamycin (mTOR) pathway as a therapeutic strategy. The mTOR pathway, widely recognised for its central role in essential cellular processes like synthesising proteins, facilitating autophagy, and modulating immune responses, has implications in various neurological disorders. Drawing parallels between these disorders and the observed neurological complications in Covid-19, we present a comprehensive review on the current understanding of mTOR signalling in the context of severe acute respiratory syndrome coronavirus 2 infection and neuroinflammation.
Collapse
Affiliation(s)
- Han Wang
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun, University of Chinese Medicine, Changchun, China
| | - Li Cheng
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun, University of Chinese Medicine, Changchun, China
| | - Lanlan Yu
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun, University of Chinese Medicine, Changchun, China
| | - Zhigang Guo
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Ahmad I, Fatemi SN, Ghaheri M, Rezvani A, Khezri DA, Natami M, Yasamineh S, Gholizadeh O, Bahmanyar Z. An overview of the role of Niemann-pick C1 (NPC1) in viral infections and inhibition of viral infections through NPC1 inhibitor. Cell Commun Signal 2023; 21:352. [PMID: 38098077 PMCID: PMC10722723 DOI: 10.1186/s12964-023-01376-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses communicate with their hosts through interactions with proteins, lipids, and carbohydrate moieties on the plasma membrane (PM), often resulting in viral absorption via receptor-mediated endocytosis. Many viruses cannot multiply unless the host's cholesterol level remains steady. The large endo/lysosomal membrane protein (MP) Niemann-Pick C1 (NPC1), which is involved in cellular cholesterol transport, is a crucial intracellular receptor for viral infection. NPC1 is a ubiquitous housekeeping protein essential for the controlled cholesterol efflux from lysosomes. Its human absence results in Niemann-Pick type C disease, a deadly lysosomal storage disorder. NPC1 is a crucial viral receptor and an essential host component for filovirus entrance, infection, and pathogenesis. For filovirus entrance, NPC1's cellular function is unnecessary. Furthermore, blocking NPC1 limits the entry and replication of the African swine fever virus by disrupting cholesterol homeostasis. Cell entrance of quasi-enveloped variants of hepatitis A virus and hepatitis E virus has also been linked to NPC1. By controlling cholesterol levels, NPC1 is also necessary for the effective release of reovirus cores into the cytoplasm. Drugs that limit NPC1's activity are effective against several viruses, including SARS-CoV and Type I Feline Coronavirus (F-CoV). These findings reveal NPC1 as a potential therapeutic target for treating viral illnesses and demonstrate its significance for several viral infections. This article provides a synopsis of NPC1's function in viral infections and a review of NPC1 inhibitors that may be used to counteract viral infections. Video Abstract.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Ghaheri
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Rezvani
- Anesthesiology Department, Case Western Reserve University, Cleveland, USA
| | - Dorsa Azizi Khezri
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Zahra Bahmanyar
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Barrado-Gil L, García-Dorival I, Galindo I, Alonso C, Cuesta-Geijo MÁ. Insights into the function of ESCRT complex and LBPA in ASFV infection. Front Cell Infect Microbiol 2023; 13:1163569. [PMID: 38125905 PMCID: PMC10731053 DOI: 10.3389/fcimb.2023.1163569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
The African swine fever virus (ASFV) is strongly dependent on an intact endocytic pathway and a certain cellular membrane remodeling for infection, possibly regulated by the endosomal sorting complexes required for transport (ESCRT). The ESCRT machinery is mainly involved in the coordination of membrane dynamics; hence, several viruses exploit this complex and its accessory proteins VPS4 and ALIX for their own benefit. In this work, we found that shRNA-mediated knockdown of VPS4A decreased ASFV replication and viral titers, and this silencing resulted in an enhanced expression of ESCRT-0 component HRS. ASFV infection slightly increased HRS expression but not under VPS4A depletion conditions. Interestingly, VPS4A silencing did not have an impact on ALIX expression, which was significantly overexpressed upon ASFV infection. Further analysis revealed that ALIX silencing impaired ASFV infection at late stages of the viral cycle, including replication and viral production. In addition to ESCRT, the accessory protein ALIX is involved in endosomal membrane dynamics in a lysobisphosphatydic acid (LBPA) and Ca2+-dependent manner, which is relevant for intraluminal vesicle (ILV) biogenesis and endosomal homeostasis. Moreover, LBPA interacts with NPC2 and/or ALIX to regulate cellular cholesterol traffic, and would affect ASFV infection. Thus, we show that LBPA blocking impacted ASFV infection at both early and late infection, suggesting a function for this unconventional phospholipid in the ASFV viral cycle. Here, we found for the first time that silencing of VPS4A and ALIX affects the infection later on, and blocking LBPA function reduces ASFV infectivity at early and later stages of the viral cycle, while ALIX was overexpressed upon infection. These data suggested the relevance of ESCRT-related proteins in ASFV infection.
Collapse
Affiliation(s)
| | | | | | | | - Miguel Ángel Cuesta-Geijo
- Departmento Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
11
|
de Médina P, Ayadi S, Soulès R, Payre B, Rup-Jacques S, Silvente-Poirot S, Samadi M, Poirot M. Chemical synthesis and biochemical properties of cholestane-5α,6β-diol-3-sulfonate: A non-hydrolysable analogue of cholestane-5α,6β-diol-3β-sulfate. J Steroid Biochem Mol Biol 2023; 234:106396. [PMID: 37683773 DOI: 10.1016/j.jsbmb.2023.106396] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Cholestane-3β,5α,6β-triol (CT) is a primary metabolite of 5,6-epoxycholesterols (5,6-EC) that is catalyzed by the cholesterol-5,6-epoxide hydrolase (ChEH). CT is a well-known biomarker for Niemann-Pick disease type C (NP-C), a progressive inherited neurodegenerative disease. On the other hand, CT is known to be metabolized by the 11β-hydroxysteroid-dehydrogenase of type 2 (11β-HSD2) into a tumor promoter named oncosterone that stimulates the growth of breast cancer tumors. Sulfation is a major metabolic transformation leading to the production of sulfated oxysterols. The production of cholestane-5α,6β-diol-3β-O-sulfate (CDS) has been reported in breast cancer cells. However, no data related to CDS biological properties have been reported so far. These studies have been hampered because sulfate esters of sterols and steroids are rapidly hydrolyzed by steroid sulfatase to give free steroids and sterols. In order to get insight into the biological properties of CDS, we report herein the synthesis and the characterization of cholestane-5α,6β-diol-3β-sulfonate (CDSN), a non-hydrolysable analogue of CDS. We show that CDSN is a potent inhibitor of 11β-HSD2 that blocks oncosterone production on cell lysate. The inhibition of oncosterone biosynthesis of a whole cell assay was observed but results from the blockage by CDSN of the uptake of CT in MCF-7 cells. While CDSN inhibits MCF-7 cell proliferation, we found that it potentiates the cytotoxic activity of post-lanosterol cholesterol biosynthesis inhibitors such as tamoxifen and PBPE. This effect was associated with an increase of free sterols accumulation and the appearance of giant multilamellar bodies, a structural feature reminiscent of Type C Niemann-Pick disease cells and consistent with a possible inhibition by CDSN of NPC1. Altogether, our data showed that CDSN is biologically active and that it is a valuable tool to study the biological properties of CDS and more specifically its impact on immunity and viral infection.
Collapse
Affiliation(s)
- Philippe de Médina
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France; French network for Nutrition physical Acitivity And Cancer Research (NACRe network), France.
| | - Silia Ayadi
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France
| | - Régis Soulès
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France; French network for Nutrition physical Acitivity And Cancer Research (NACRe network), France
| | - Bruno Payre
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Rangueil, Toulouse, France
| | - Sandrine Rup-Jacques
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, 57070 Metz, France
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France; French network for Nutrition physical Acitivity And Cancer Research (NACRe network), France.
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, 57070 Metz, France.
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse, Team INOV: Cholesterol Metabolism and Therapeutic Innovations, Toulouse, France; Equipe labellisée par la Ligue Nationale contre le Cancer, France; French network for Nutrition physical Acitivity And Cancer Research (NACRe network), France.
| |
Collapse
|
12
|
Shi Q, Zhan T, Bi X, Ye BC, Qi N. Cholesterol-autoxidation metabolites in host defense against infectious diseases. Eur J Immunol 2023; 53:e2350501. [PMID: 37369622 DOI: 10.1002/eji.202350501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Cholesterol plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized to oxysterols by enzymatic or nonenzymatic ways. Nonenzymatic cholesterol metabolites, also called cholesterol-autoxidation metabolites, are formed dependent on the oxidation of reactive oxygen species (ROS) such as OH• or reactive nitrogen species, such as ONOO- . Cholesterol-autoxidation metabolites are abundantly produced in diseases such as inflammatory bowel disease and atherosclerosis, which are associated with oxidative stress. Recent studies have shown that cholesterol-autoxidation metabolites can further regulate the immune system. Here, we review the literature and summarize how cholesterol-autoxidation metabolites, such as 25-hydroxycholesterol (25-OHC), 7α/β-OHC, and 7-ketocholesterol, deal with the occurrence and development of infectious diseases through pattern recognition receptors, inflammasomes, ROS production, nuclear receptors, G-protein-coupled receptor 183, and lipid availability. In addition, we include the research regarding the roles of these metabolites in COVID-19 infection and discuss our viewpoints on the future research directions.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tingzhu Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Nan Qi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Department of Basic Research, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Xia B, Zheng L, Li Y, Sun W, Liu Y, Li L, Pang J, Chen J, Li J, Cheng H. The brief overview, antivirus and anti-SARS-CoV-2 activity, quantitative methods, and pharmacokinetics of cepharanthine: a potential small-molecule drug against COVID-19. Front Pharmacol 2023; 14:1098972. [PMID: 37583901 PMCID: PMC10423819 DOI: 10.3389/fphar.2023.1098972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
To effectively respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an increasing number of researchers are focusing on the antiviral activity of cepharanthine (CEP), which is a clinically approved drug being used for over 70 years. This review aims to provide a brief overview of CEP and summarize its recent findings in quantitative analysis, pharmacokinetics, therapeutic potential, and mechanism in antiviral and anti-SARS-CoV-2 activity. Given its remarkable capacity against SARS-CoV-2 infection in vitro and in vivo, with its primary target organ being the lungs, and its good pharmacokinetic profile; mature and stable manufacturing technique; and its advantages of safety, effectiveness, and accessibility, CEP has become a promising drug candidate for treating COVID-19 despite being an old drug.
Collapse
Affiliation(s)
- Binbin Xia
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Li Zheng
- Department of Pharmacy, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Yali Li
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wenfang Sun
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Liushui Li
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jingyao Pang
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Chen
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jiaxin Li
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Hua Cheng
- Department of Pharmacy, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Liu K, Hong B, Wang S, Lou F, You Y, Hu R, Shafqat A, Fan H, Tong Y. Pharmacological Activity of Cepharanthine. Molecules 2023; 28:5019. [PMID: 37446681 DOI: 10.3390/molecules28135019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Cepharanthine, a natural bisbenzylisoquinoline (BBIQ) alkaloid isolated from the plant Stephania Cephalantha Hayata, is the only bisbenzylisoquinoline alkaloid approved for human use and has been used in the clinic for more than 70 years. Cepharanthine has a variety of medicinal properties, including signaling pathway inhibitory activities, immunomodulatory activities, and antiviral activities. Recently, cepharanthine has been confirmed to greatly inhibit SARS-CoV-2 infection. Therefore, we aimed to describe the pharmacological properties and mechanisms of cepharanthine, mainly including antitumor, anti-inflammatory, anti-pathogen activities, inhibition of bone resorption, treatment of alopecia, treatment of snake bite, and other activities. At the same time, we analyzed and summarized the potential antiviral mechanism of cepharanthine and concluded that one of the most important anti-viral mechanisms of cepharanthine may be the stability of plasma membrane fluidity. Additionally, we explained its safety and bioavailability, which provides evidence for cepharanthine as a potential drug for the treatment of a variety of diseases. Finally, we further discuss the potential new clinical applications of cepharanthine and provide direction for its future development.
Collapse
Affiliation(s)
- Ke Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bixia Hong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yecheng You
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruolan Hu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Amna Shafqat
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Metallo-antiviral aspirants: Answer to the upcoming virusoutbreak. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2023; 8:100104. [PMID: 37035854 PMCID: PMC10070197 DOI: 10.1016/j.ejmcr.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023]
Abstract
In light of the current SARS-CoV-2 outbreak, about one million research papers (articles, reviews, communications, etc.) were published in the last one and a half years. It was also noticed that in the past few years; infectious diseases, mainly those of viral origin, burdened the public health systems worldwide. The current wave of the Covid-19 pandemic has unmasked critical demand for compounds that can be swiftly mobilized for the treatment of re-emerging or emerging viral infections. With the potential chemical and structural characteristics of organic motifs, the coordination compounds might be a promising and flexible option for drug development. Their therapeutic consequence may be tuned by varying metal nature and its oxidation number, ligands characteristics, and stereochemistry of the species formed. The emerging successes of cisplatin in cancer chemotherapy inspire researchers to make new efforts for studying metallodrugs as antivirals. Metal-based compounds have immense therapeutic potential in terms of structural diversity and possible mechanisms of action; therefore, they might offer an excellent opportunity to achieve new antivirals. This review is an attempt to summarize the current status of antiviral therapies against SARS-CoV-2 from the available literature sources, discuss the specific challenges and solutions in the development of metal-based antivirals, and also talk about the possibility to accelerate discovery efforts in this direction.
Collapse
|
16
|
Calò LA, Sgarabotto L, Stefanelli LF, Di Vico V, Davis PA. COVID 19, Paxlovid and the lesson from rare genetic diseases with naturally occurring protection from SARS-CoV-2 infection. J Nephrol 2023; 36:925-927. [PMID: 36114370 PMCID: PMC9483540 DOI: 10.1007/s40620-022-01439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/08/2022] [Indexed: 10/27/2022]
Affiliation(s)
- Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy.
| | - Luca Sgarabotto
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Lucia Federica Stefanelli
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Valentina Di Vico
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Paul A Davis
- Department of Nutrition, University of California, Davis, USA
| |
Collapse
|
17
|
Abou-Hamdan M, Saleh R, Mani S, Dournaud P, Metifiot M, Blondot ML, Andreola ML, Abdel-Sater F, De Reggi M, Gressens P, Laforge M. Potential antiviral effects of pantethine against SARS-CoV-2. Sci Rep 2023; 13:2237. [PMID: 36754974 PMCID: PMC9906591 DOI: 10.1038/s41598-023-29245-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
SARS-CoV-2 interacts with cellular cholesterol during many stages of its replication cycle. Pantethine was reported to reduce total cholesterol levels and fatty acid synthesis and potentially alter different processes that might be involved in the SARS-CoV-2 replication cycle. Here, we explored the potential antiviral effects of pantethine in two in vitro experimental models of SARS-CoV-2 infection, in Vero E6 cells and in Calu-3a cells. Pantethine reduced the infection of cells by SARS-CoV-2 in both preinfection and postinfection treatment regimens. Accordingly, cellular expression of the viral spike and nucleocapsid proteins was substantially reduced, and we observed a significant reduction in viral copy numbers in the supernatant of cells treated with pantethine. In addition, pantethine inhibited the infection-induced increase in TMPRSS2 and HECT E3 ligase expression in infected cells as well as the increase in antiviral interferon-beta response and inflammatory gene expression in Calu-3a cells. Our results demonstrate that pantethine, which is well tolerated in humans, was very effective in controlling SARS-CoV-2 infection and might represent a new therapeutic drug that can be repurposed for the prevention or treatment of COVID-19 and long COVID syndrome.
Collapse
Affiliation(s)
- M Abou-Hamdan
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.,Biology Department, Faculty of Sciences (I), Lebanese University, Beirut, Lebanon
| | - R Saleh
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - S Mani
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - P Dournaud
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - M Metifiot
- Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France
| | - M L Blondot
- Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France
| | - M L Andreola
- Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France
| | - F Abdel-Sater
- Biochemistry Department, Faculty of Sciences (I), Lebanese University, Beirut, Lebanon
| | - M De Reggi
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - P Gressens
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - M Laforge
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.
| |
Collapse
|
18
|
Miranda KM, Ridnour LA, Cheng RY, Wink DA, Thomas DD. The Chemical Biology of NO that Regulates Oncogenic Signaling and Metabolism: NOS2 and Its Role in Inflammatory Disease. Crit Rev Oncog 2023; 28:27-45. [PMID: 37824385 PMCID: PMC11318306 DOI: 10.1615/critrevoncog.2023047302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Nitric oxide (NO) and the enzyme that synthesizes it, nitric oxide synthase 2 (NOS2), have emerged as key players in inflammation and cancer. Expression of NOS2 in tumors has been correlated both with positive outcomes and with poor prognoses. The chemistry of NO is the major determinate to the biological outcome and the concentration of NO, which can range over five orders of magnitude, is critical in determining which pathways are activated. It is the activation of specific oncogenic and immunological mechanisms that shape the outcome. The kinetics of specific reactions determine the mechanisms of action. In this review, the relevant reactions of NO and related species are discussed with respect to these oncogenic and immunological signals.
Collapse
Affiliation(s)
| | - Lisa A. Ridnour
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Robert Y.S. Cheng
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - David A. Wink
- Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Douglas D. Thomas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
19
|
Li J, Xue Y, Wang X, Smith LS, He B, Liu S, Zhu H. Tissue- and cell-expression of druggable host proteins provide insights into repurposing drugs for COVID-19. Clin Transl Sci 2022; 15:2796-2811. [PMID: 36259251 PMCID: PMC9747131 DOI: 10.1111/cts.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/26/2023] Open
Abstract
Several human host proteins play important roles in the lifecycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many drugs targeting these host proteins have been investigated as potential therapeutics for coronavirus disease 2019 (COVID-19). The tissue-specific expressions of selected host proteins were summarized using proteomics data retrieved from the Human Protein Atlas, ProteomicsDB, Human Proteome Map databases, and a clinical COVID-19 study. Protein expression features in different cell lines were summarized based on recent proteomics studies. The half-maximal effective concentration or half-maximal inhibitory concentration values were collected from in vitro studies. The pharmacokinetic data were mainly from studies in healthy subjects or non-COVID-19 patients. Considerable tissue-specific expression patterns were observed for several host proteins. ACE2 expression in the lungs was significantly lower than in many other tissues (e.g., the kidneys and intestines); TMPRSS2 expression in the lungs was significantly lower than in other tissues (e.g., the prostate and intestines). The expression levels of endocytosis-associated proteins CTSL, CLTC, NPC1, and PIKfyve in the lungs were comparable to or higher than most other tissues. TMPRSS2 expression was markedly different between cell lines, which could be associated with the cell-dependent antiviral activities of several drugs. Drug delivery receptor ICAM1 and CTSB were expressed at a higher level in the lungs than in other tissues. In conclusion, the cell- and tissue-specific proteomics data could help interpret the in vitro antiviral activities of host-directed drugs in various cells and aid the transition of the in vitro findings to clinical research to develop safe and effective therapeutics for COVID-19.
Collapse
Affiliation(s)
- Jiapeng Li
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Yanling Xue
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Xinwen Wang
- Department of Pharmaceutical SciencesNortheast Ohio Medical University College of PharmacyRootstownOhioUSA
| | - Logan S. Smith
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Bing He
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Shuhan Liu
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Hao‐Jie Zhu
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| |
Collapse
|
20
|
Basu A, Sarkar A, Bandyopadhyay S, Maulik U. In silico strategies to identify protein-protein interaction modulator in cell-to-cell transmission of SARS CoV2. Transbound Emerg Dis 2022; 69:3896-3905. [PMID: 36379049 DOI: 10.1111/tbed.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
RNA sequence data from SARS CoV2 patients helps to construct a gene network related to this disease. A detailed analysis of the human host response to SARS CoV2 with expression profiling by high-throughput sequencing has been accomplished with primary human lung epithelial cell lines. Using this data, the clustered gene annotation and gene network construction are performed with the help of the String database. Among the four clusters identified, only 1 with 44 genes could be annotated. Interestingly, this corresponded to basal cells with p = 1.37e - 05, which is relevant for respiratory tract infection. Functional enrichment analysis of genes present in the gene network has been completed using the String database and the Network Analyst tool. Among three types of cell-cell communication, only the anchoring junction between the basal cell membrane and the basal lamina in the host cell is involved in the virus transmission. In this junction point, a hemidesmosome structure plays a vital role in virus spread from one cell to basal lamina in the respiratory tract. In this protein complex structure, different integrin protein molecules of the host cell are used to promote the spread of virus infection into the extracellular matrix. So, small molecular blockers of different anchoring junction proteins, such as integrin alpha 3, integrin beta 1, can provide efficient protection against this deadly viral disease. ORF8 from SARS CoV2 virus can interact with both integrin proteins of human host. By using molecular docking technique, a ternary complex of these three proteins is modelled. Several oligopeptides are predicted as modulators for this ternary complex. In silico analysis of these modulators is very important to develop novel therapeutics for the treatment of SARS CoV2.
Collapse
Affiliation(s)
- Anamika Basu
- Department of Biochemistry, Gurudas College, Kolkata, India
| | - Anasua Sarkar
- Computer Science and Engineering Department, Jadavpur University, Kolkata, India
| | | | - Ujjwal Maulik
- Computer Science and Engineering Department, Jadavpur University, Kolkata, India
| |
Collapse
|
21
|
The FDA-approved drug Auranofin has a dual inhibitory effect on SARS-CoV-2 entry and NF-κB signaling. iScience 2022; 25:105066. [PMID: 36093378 PMCID: PMC9439859 DOI: 10.1016/j.isci.2022.105066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Patients with severe COVID-19 show an altered immune response that fails to control the viral spread and suffer from exacerbated inflammatory response, which eventually can lead to death. A major challenge is to develop an effective treatment for COVID-19. NF-κB is a major player in innate immunity and inflammatory process. By a high-throughput screening approach, we identified FDA-approved compounds that inhibit the NF-κB pathway and thus dampen inflammation. Among these, we show that Auranofin prevents post-translational modifications of NF-κB effectors and their recruitment into activating complexes in response to SARS-CoV-2 infection or cytokine stimulation. In addition, we demonstrate that Auranofin counteracts several steps of SARS-CoV-2 infection. First, it inhibits a raft-dependent endocytic pathway involved in SARS-CoV-2 entry into host cells; Second, Auranofin alters the ACE2 mobility at the plasma membrane. Overall, Auranofin should prevent SARS-CoV-2 infection and inflammatory damages, offering new opportunities as a repurposable drug candidate to treat COVID-19. Original high throughput screening of NF-κB inhibitory drugs Auranofin inhibits SARS-CoV-2 replication Auranofin increases the ACE2 mobility at the plasma membrane Auranofin inhibits ACE-2-dependent SARS-CoV-2 endocytosis
Collapse
|
22
|
El-Amawy HS, Dawoud H. Lysosomal storage diseases in the era of COVID-19: a report of an Egyptian case of alpha-fucosidosis and a summary of the lysosomal storage diseases-COVID-19 relationship. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022; 23:138. [PMID: 37521839 PMCID: PMC9483389 DOI: 10.1186/s43042-022-00350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background We present a case of alpha-fucosidosis, a lysosomal storage disorder, from Egypt. The report also includes a brief review of the COVID-19 and lysosomal storage diseases relationship. Case presentation A female patient aged 18 years, diagnosed with type II fucosidosis, based on the cutaneous signs, characteristic facies, and systemic symptoms, and diagnosis was confirmed using genetic analysis. The patient died from COVID-19 pneumonia during the COVID-19 pandemic after getting the infection from her father and being hospitalized. Conclusions Patients with lysosomal storage diseases with local or systemic immune suppression may be predisposed to respiratory complications of COVID-19. Intense care with protective guidelines should be applied to those patients.
Collapse
Affiliation(s)
| | - Heba Dawoud
- Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
23
|
Wang T, Cao Y, Zhang H, Wang Z, Man CH, Yang Y, Chen L, Xu S, Yan X, Zheng Q, Wang Y. COVID-19 metabolism: Mechanisms and therapeutic targets. MedComm (Beijing) 2022; 3:e157. [PMID: 35958432 PMCID: PMC9363584 DOI: 10.1002/mco2.157] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dysregulates antiviral signaling, immune response, and cell metabolism in human body. Viral genome and proteins hijack host metabolic network to support viral biogenesis and propagation. However, the regulatory mechanism of SARS-CoV-2-induced metabolic dysfunction has not been elucidated until recently. Multiomic studies of coronavirus disease 2019 (COVID-19) revealed an intensive interaction between host metabolic regulators and viral proteins. SARS-CoV-2 deregulated cellular metabolism in blood, intestine, liver, pancreas, fat, and immune cells. Host metabolism supported almost every stage of viral lifecycle. Strikingly, viral proteins were found to interact with metabolic enzymes in different cellular compartments. Biochemical and genetic assays also identified key regulatory nodes and metabolic dependencies of viral replication. Of note, cholesterol metabolism, lipid metabolism, and glucose metabolism are broadly involved in viral lifecycle. Here, we summarized the current understanding of the hallmarks of COVID-19 metabolism. SARS-CoV-2 infection remodels host cell metabolism, which in turn modulates viral biogenesis and replication. Remodeling of host metabolism creates metabolic vulnerability of SARS-CoV-2 replication, which could be explored to uncover new therapeutic targets. The efficacy of metabolic inhibitors against COVID-19 is under investigation in several clinical trials. Ultimately, the knowledge of SARS-CoV-2-induced metabolic reprogramming would accelerate drug repurposing or screening to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tianshi Wang
- Shanghai Key Laboratory for Tumor Microenvironment and InflammationDepartment of Biochemistry and Molecular Cell BiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ying Cao
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyan Zhang
- Bai Jia Obstetrics and Gynecology HospitalShanghaiChina
| | - Zihao Wang
- Fudan University Shanghai Cancer CenterKey Laboratory of Breast Cancer in ShanghaiShanghai Key Laboratory of Radiation OncologyCancer Instituteand The Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- The International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghaiChina
| | - Cheuk Him Man
- Division of HematologyDepartment of MedicineUniversity of Hong KongPokfulamHong Kong, China
| | - Yunfan Yang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Lingchao Chen
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersShanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationNeurosurgical Institute of Fudan UniversityShanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Shuangnian Xu
- Department of HematologySouthwest HospitalArmy Medical UniversityChongqingChina
| | - Xiaojing Yan
- Department of HematologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Quan Zheng
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Ping Wang
- Fudan University Shanghai Cancer CenterKey Laboratory of Breast Cancer in ShanghaiShanghai Key Laboratory of Radiation OncologyCancer Instituteand The Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- The International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghaiChina
| |
Collapse
|
24
|
Yu X, Wang L, Zheng X, Wen Y, Zhang Z, Fan L, Zhou Q, Yang X, Xue B, Lin Y. Moraxella occupied the largest proportion in the nasal microbiome in healthy children, which potential protect them from COVID-19. Microb Pathog 2022; 170:105685. [PMID: 35870694 PMCID: PMC9299982 DOI: 10.1016/j.micpath.2022.105685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND In the prevalence of COVID-19, infection symptoms are different in children and adults. In this study to investigate the differences in the upper respiratory tract microbiome profile between healthy children and adults and to explore which microbiome protect them from COVID-19. METHODS Thirty healthy children and 24 healthy adults were enrolled between October 2020 and January 2021. Nasal and throat swabs were obtained at enrollment, and DNA was extracted. We performed 16S rDNA sequencing to compare the alpha and beta diversity of the nasal and throat microbiomes between children and adults and assessed potential microbiome biomarkers. RESULTS In the nasal microbiome, there were significant differences between healthy children and adults, and Moraxella occupied the largest proportion in healthy children. Notably, there was no significant difference between healthy children and adults in the throat microbiome, and it was predominated by Firmicutes. In the function analysis, compared with adults, there was increased enrichment in pathways related to amino acid metabolism and lipid metabolism, in children. CONCLUSIONS In the upper respiratory tract microbiome profiles, Moraxella may be involved in protecting children from COVID-19 infections and may be involved the amino acid metabolism and lipid metabolism.
Collapse
Affiliation(s)
- Xia Yu
- Department of Clinical Laboratory, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Li Wang
- Department of Clinical Laboratory, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - XueMei Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yizhou Wen
- Department of Pediatric Cardiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Zhirong Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Lingxia Fan
- Department of Pediatric Cardiology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Qin Zhou
- Department of Clinical Laboratory, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Binqian Xue
- Department of Clinical Laboratory, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yonghong Lin
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|
25
|
Clerbaux LA, Albertini MC, Amigó N, Beronius A, Bezemer GFG, Coecke S, Daskalopoulos EP, del Giudice G, Greco D, Grenga L, Mantovani A, Muñoz A, Omeragic E, Parissis N, Petrillo M, Saarimäki LA, Soares H, Sullivan K, Landesmann B. Factors Modulating COVID-19: A Mechanistic Understanding Based on the Adverse Outcome Pathway Framework. J Clin Med 2022; 11:4464. [PMID: 35956081 PMCID: PMC9369763 DOI: 10.3390/jcm11154464] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Addressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology. This framework aims to model the sequence of events leading to an adverse health outcome. Several linear AOPs depicting pathways from the binding of the virus to ACE2 up to clinical outcomes observed in COVID-19 have been developed and integrated into a network offering a unique overview of the mechanisms underlying the disease. As SARS-CoV-2 infectibility and ACE2 activity are the major starting points and inflammatory response is central in the development of COVID-19, we evaluated how those eleven intrinsic and extrinsic factors modulate those processes impacting clinical outcomes. Applying this AOP-aligned approach enables the identification of current knowledge gaps orientating for further research and allows to propose biomarkers to identify of high-risk patients. This approach also facilitates expertise synergy from different disciplines to address public health issues.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | | | - Núria Amigó
- Biosfer Teslab SL., 43204 Reus, Spain;
- Department of Basic Medical Sciences, Universitat Rovira i Virgili (URV), 23204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Gillina F. G. Bezemer
- Impact Station, 1223 JR Hilversum, The Netherlands;
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Evangelos P. Daskalopoulos
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Giusy del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Ceze, France;
| | - Alberto Mantovani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium;
| | - Elma Omeragic
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Nikolaos Parissis
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Mauro Petrillo
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Laura A. Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Helena Soares
- Laboratory of Immunobiology and Pathogenesis, Chronic Diseases Research Centre, Faculdade de Ciências Médicas Medical School, University of Lisbon, 1649-004 Lisbon, Portugal;
| | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, DC 20016, USA;
| | - Brigitte Landesmann
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| |
Collapse
|
26
|
Song B. The Cholesterol Transport Inhibitor U18666A Interferes with Pseudorabies Virus Infection. Viruses 2022; 14:v14071539. [PMID: 35891519 PMCID: PMC9319728 DOI: 10.3390/v14071539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Many viruses require the maintenance of lysosomal cholesterol homeostasis for a successful infection; however, the role of lysosomal cholesterol homeostasis in the alphaherpesvirus life cycle is not clear. Here we show that the lysosomal cholesterol transport inhibitor U18666A interferes with the replication of pseudorabies virus (PRV), a member of the alphaherpesvirus subfamily. The treatment with U18666A caused a significant reduction in the production of infectious virus particles. The U18666A treatment was shown to suppress the release of PRV particles. Pretreating PRV virions with U18666A did not affect virus production, whereas pretreating target cells with U18666A led to a substantial reduction in virus yield. Our previous study showed that two cyclodextrin derivatives, 2-hydroxypropyl-β-cyclodextrin (HPβCD) and 2-hydroxypropyl-γ-cyclodextrin (HPγCD), can rescue the cholesterol accumulation defect in primary fibroblasts derived from a Niemann–Pick disease type C (NPC) patient. Here, we demonstrate that treatment with HPβCD or HPγCD not only rescues the U18666A-induced cholesterol accumulation but also rescues the U18666A-induced inhibition of PRV production. Collectively, our data suggest that U18666A interferes with PRV infection via altering cellular functions that are critical for the viral life cycle and may include lysosomal cholesterol homeostasis.
Collapse
Affiliation(s)
- Byeongwoon Song
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN 37208, USA; ; Tel.: +1-(615)-327-6698; Fax: +1-(615)-327-6021
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
27
|
Mazidimoradi A, Alemzadeh E, Alemzadeh E, Salehiniya H. The effect of polyunsaturated fatty acids on the severity and mortality of COVID patients: A systematic review. Life Sci 2022; 299:120489. [PMID: 35358595 PMCID: PMC8958853 DOI: 10.1016/j.lfs.2022.120489] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/11/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Covid-19 mortality is largely associated with a severe increase in inflammatory cytokines and polyunsaturated fatty acids (PUFAs) play an important role in modulating immune pathways and inflammatory responses; so this study was done to evaluate the effect of polyunsaturated fatty acids on the prognosis of Covid-19 disease. METHODS AND MATERIALS A comprehensive search was conducted in PubMed, Scopus and Web of Science. For systematic identification, the search was performed based on the following keywords COVID-19, SARS-CoV-2, COVID, Coronavirus Disease 19, SARS COV- 2 Infection, SARS-CoV-2, COVID19, Coronavirus Disease, Fatty Acids, Omega-3, Omega-3 Fatty Acid, Omega-6, n 3 Fatty and Omega-9 in the mentioned databases, using OR, and AND. All searched articles were included in the study and retrieved, and End-Note X7 software was used to manage the studies. RESULTS Findings on the relationship between omega-3 and omega-6 fatty acids and the risk of Covid-19 are various, but omega-3 supplements have been found to be 12 to 21% effective in reducing the risk of Covid-19. Most studies emphasized the increasing severity of the disease and the need for mechanical ventilation and hospitalization due to polyunsaturated fatty acid deficiency. It is also demonstrated that omega-3 fatty acid deficiency increased mortality in patients with Covid-19. However, there is also a warning that in critical cases, elevated levels of fatty acids in patients' lungs and a cytokine storm are the main reasons for mortality in Covid-19 patients. CONCLUSION Polyunsaturated fatty acids can reduce the risk of covid-19 which could be considered as a preventative, inexpensive and safe method. However, the risk of taking high-dose omega-3 supplements before or during SARS-COV-2 infection needs to be investigated.
Collapse
Affiliation(s)
| | - Esmat Alemzadeh
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Science, Birjand, Iran; Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Effat Alemzadeh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| | - Hamid Salehiniya
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
28
|
Roncato R, Angelini J, Pani A, Talotta R. Lipid rafts as viral entry routes and immune platforms: A double-edged sword in SARS-CoV-2 infection? Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159140. [PMID: 35248801 PMCID: PMC8894694 DOI: 10.1016/j.bbalip.2022.159140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Lipid rafts are nanoscopic compartments of cell membranes that serve a variety of biological functions. They play a crucial role in viral infections, as enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can exploit rafts to enter or quit target cells. On the other hand, lipid rafts contribute to the formation of immune synapses and their proper functioning is a prerequisite for adequate immune response and viral clearance. In this narrative review we dissect the panorama focusing on this singular aspect of cell biology in the context of SARS-CoV-2 infection and therapy. A lipid raft-mediated mechanism can be hypothesized for many drugs recommended or considered for the treatment of SARS-CoV-2 infection, such as glucocorticoids, antimalarials, immunosuppressants and antiviral agents. Furthermore, the additional use of lipid-lowering agents, like statins, may affect the lipid composition of membrane rafts and thus influence the processes occurring in these compartments. The combination of drugs acting on lipid rafts may be successful in the treatment of more severe forms of the disease and should be reserved for further investigation.
Collapse
Affiliation(s)
- Rossana Roncato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a carattere Scientifico (IRCCS), via Gallini, 33081 Aviano (PN), Italy
| | - Jacopo Angelini
- Clinical Pharmacology Institute, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), via Pozzuolo, 33100 Udine, Italy
| | - Arianna Pani
- Toxicology Department of Oncology and Hemato-Oncology, University of Milan, via Vanvitelli, 20133 Milan, Italy
| | - Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU "Gaetano Martino", University of Messina, 98100 Messina, Italy
| |
Collapse
|
29
|
Raghavan S, Leo MD. Histamine Potentiates SARS-CoV-2 Spike Protein Entry Into Endothelial Cells. Front Pharmacol 2022; 13:872736. [PMID: 35548336 PMCID: PMC9084361 DOI: 10.3389/fphar.2022.872736] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 01/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which causes coronavirus disease (COVID-19) is one of the most serious global health crises in recent history. COVID-19 patient symptoms range from life-threatening to mild and asymptomatic, which presents unique problems in identifying, quarantining, and treating the affected individuals. The emergence of unusual symptoms among survivors, now referred to as “Long COVID”, is concerning, especially since much about the condition and the treatment of it is still relatively unknown. Evidence so far also suggests that some of these symptoms can be attributed to vascular inflammation. Although famotidine, the commonly used histamine H2 receptor (H2R) blocker, was shown to have no antiviral activity, recent reports indicate that it could prevent adverse outcomes in COVID-19 patients. Histamine is a classic proinflammatory mediator, the levels of which increase along with other cytokines during COVID-19 infection. Histamine activates H2R signaling, while famotidine specifically blocks H2R activation. Investigating the effects of recombinant SARS-CoV-2 spike protein S1 Receptor-Binding Domain (Spike) on ACE2 expression in cultured human coronary artery endothelial cells, we found that the presence of histamine potentiated spike-mediated ACE2 internalization into endothelial cells. This effect was blocked by famotidine, protein kinase A inhibition, or by H2 receptor protein knockdown. Together, these results indicate that histamine and histamine receptor signaling is likely essential for spike protein to induce ACE2 internalization in endothelial cells and cause endothelial dysfunction and that this effect can be blocked by the H2R blocker, famotidine.
Collapse
|
30
|
Dai J, Wang H, Liao Y, Tan L, Sun Y, Song C, Liu W, Qiu X, Ding C. Coronavirus Infection and Cholesterol Metabolism. Front Immunol 2022; 13:791267. [PMID: 35529872 PMCID: PMC9069556 DOI: 10.3389/fimmu.2022.791267] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Host cholesterol metabolism remodeling is significantly associated with the spread of human pathogenic coronaviruses, suggesting virus-host relationships could be affected by cholesterol-modifying drugs. Cholesterol has an important role in coronavirus entry, membrane fusion, and pathological syncytia formation, therefore cholesterol metabolic mechanisms may be promising drug targets for coronavirus infections. Moreover, cholesterol and its metabolizing enzymes or corresponding natural products exert antiviral effects which are closely associated with individual viral steps during coronavirus replication. Furthermore, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 infections are associated with clinically significant low cholesterol levels, suggesting cholesterol could function as a potential marker for monitoring viral infection status. Therefore, weaponizing cholesterol dysregulation against viral infection could be an effective antiviral strategy. In this review, we comprehensively review the literature to clarify how coronaviruses exploit host cholesterol metabolism to accommodate viral replication requirements and interfere with host immune responses. We also focus on targeting cholesterol homeostasis to interfere with critical steps during coronavirus infection.
Collapse
Affiliation(s)
- Jun Dai
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Experimental Animal Center, Zunyi Medical University, Zunyi City, China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Xusheng Qiu, ; Chan Ding,
| |
Collapse
|
31
|
Paneghetti L, Bellettato CM, Sechi A, Stepien KM, Scarpa M. One year of COVID-19: infection rates and symptoms in patients with inherited metabolic diseases followed by MetabERN. Orphanet J Rare Dis 2022; 17:109. [PMID: 35246188 PMCID: PMC8894822 DOI: 10.1186/s13023-022-02247-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Since the beginning of the COVID-19 pandemic, MetabERN has been monitoring the SARS-CoV-2 infection rates within its metabolic community. To gather data on the total number of cases and the severity of symptoms among IMD patients one year into the pandemic, an online survey was distributed among all MetabERN healthcare providers (HCP). Epidemiological analysis was performed by integrating the survey’s data with the MetabERN database. Results Survey’s respondents reported a total of 452 cases of COVID-19 among their IMD patients (213 paediatric and 239 adults). Considering the total number of patients followed by the respondents (n = 26,347), the registered prevalence of COVID-19 in the IMD population was of 1716 × 100,000. Italy emerged as the most affected country (25.4% of cases), followed by the United Kingdom (14.2% of cases). Most of the paediatric cases of COVID-19 displayed no or mild symptoms during the disease: 34% of HCP reported having asymptomatic patients in 75–100% of cases, while 37.5% reported mild symptoms in about a quarter of their patients. Similarly to paediatric cases, most adult IMD patients with COVID-19 were asymptomatic or had mild symptoms: about one third of respondents reported 75–100% asymptomatic patients and about 65% of HCP had between 0 and 50% of patients with mild symptoms. The majority of the respondents reported no deaths due to COVID-19 in adult and paediatric patients with IMDs. Conclusions Most of MetabERN’s IMD patients who got COVID-19 during the first year of the pandemic had mild symptoms and a positive outcome of the disease. However, fatal events were recorded in paediatric patients; this, together with the lack of information on the long-term effects of COVID-19 in IMDs, call for caution in the metabolic population. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02247-3.
Collapse
Affiliation(s)
- Laura Paneghetti
- MetabERN, Regional Coordinating Center for Rare Diseases, Udine University Hospital, Udine, Italy
| | - Cinzia Maria Bellettato
- MetabERN, Regional Coordinating Center for Rare Diseases, Udine University Hospital, Udine, Italy
| | - Annalisa Sechi
- MetabERN, Regional Coordinating Center for Rare Diseases, Udine University Hospital, Udine, Italy
| | - Karolina M Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Salford, UK
| | - Maurizio Scarpa
- MetabERN, Regional Coordinating Center for Rare Diseases, Udine University Hospital, Udine, Italy.
| |
Collapse
|
32
|
Nieto-Garai JA, Contreras FX, Arboleya A, Lorizate M. Role of Protein-Lipid Interactions in Viral Entry. Adv Biol (Weinh) 2022; 6:e2101264. [PMID: 35119227 DOI: 10.1002/adbi.202101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Indexed: 12/25/2022]
Abstract
The viral entry consists of several sequential events that ensure the attachment of the virus to the host cell and the introduction of its genetic material for the continuation of the replication cycle. Both cellular and viral lipids have gained a wider focus in recent years in the field of viral entry, as they are found to play key roles in different steps of the process. The specific role is summarized that lipids and lipid membrane nanostructures play in viral attachment, fusion, and immune evasion and how they can be targeted with antiviral therapies. Finally, some of the limitations of techniques commonly used for protein-lipid interactions studies are discussed, and new emerging tools are reviewed that can be applied to this field.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Aroa Arboleya
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, E-48940, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| |
Collapse
|
33
|
Winkler MBL, Nel L, Frain KM, Dedic E, Olesen E, Pedersen BP. Sterol uptake by the NPC system in eukaryotes: a Saccharomyces cerevisiae perspective. FEBS Lett 2022; 596:160-179. [PMID: 34897668 DOI: 10.1002/1873-3468.14253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Sterols are an essential component of membranes in all eukaryotic cells and the precursor of multiple indispensable cellular metabolites. After endocytotic uptake, sterols are integrated into the lysosomal membrane by the Niemann-Pick type C (NPC) system before redistribution to other membranes. The process is driven by two proteins that, together, compose the NPC system: the lysosomal sterol shuttle protein NPC2 and the membrane protein NPC1 (named NCR1 in fungi), which integrates sterols into the lysosomal membrane. The Saccharomyces cerevisiae NPC system provides a compelling model to study the molecular mechanism of sterol integration into membranes and sterol homeostasis. This review summarizes recent advances in the field, and by interpreting available structural data, we propose a unifying conceptual model for sterol loading, transfer and transport by NPC proteins.
Collapse
Affiliation(s)
- Mikael B L Winkler
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Lynette Nel
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Kelly M Frain
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Emil Dedic
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Esben Olesen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | |
Collapse
|
34
|
Cuesta-Geijo MÁ, García-Dorival I, del Puerto A, Urquiza J, Galindo I, Barrado-Gil L, Lasala F, Cayuela A, Sorzano COS, Gil C, Delgado R, Alonso C. New insights into the role of endosomal proteins for African swine fever virus infection. PLoS Pathog 2022; 18:e1009784. [PMID: 35081156 PMCID: PMC8820605 DOI: 10.1371/journal.ppat.1009784] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/07/2022] [Accepted: 01/11/2022] [Indexed: 01/01/2023] Open
Abstract
African swine fever virus (ASFV) infectious cycle starts with the viral adsorption and entry into the host cell. Then, the virus is internalized via clathrin/dynamin mediated endocytosis and macropinocytosis. Similar to other viruses, ASF virion is then internalized and incorporated into the endocytic pathway. While the endosomal maturation entails luminal acidification, the decrease in pH acts on the multilayer structure of the virion dissolving the outer capsid. Upon decapsidation, the inner viral membrane is exposed to interact with the limiting membrane of the late endosome for fusion. Viral fusion is then necessary for the egress of incoming virions from endosomes into the cytoplasm, however this remains an intriguing and yet essential process for infection, specifically for the egress of viral nucleic acid into the cytoplasm for replication. ASFV proteins E248R and E199L, located at the exposed inner viral membrane, might be implicated in the fusion step. An interaction between these viral proteins and cellular endosomal proteins such as the Niemann-Pick C type 1 (NPC1) and lysosomal membrane proteins (Lamp-1 and -2) was shown. Furthermore, the silencing of these proteins impaired ASFV infection. It was also observed that NPC1 knock-out cells using CRISPR jeopardized ASFV infection and that the progression and endosomal exit of viral cores was arrested within endosomes at viral entry. These results suggest that the interactions of ASFV proteins with some endosomal proteins might be important for the membrane fusion step. In addition to this, reductions on ASFV infectivity and replication in NPC1 KO cells were accompanied by fewer and smaller viral factories. Our findings pave the way to understanding the role of proteins of the endosomal membrane in ASFV infection. African swine fever virus (ASFV) causes a deadly disease of pigs and wild boars that was endemic in Africa but has spread in recent years to Europe, Asia and Oceania with a high socioeconomic impact. ASFV enters the cell by endocytosis and has adapted to the endosomal conditions to acquire infectivity. Fusion of the internal viral membrane with the endosomal membrane is required for the exit of viral DNA into the cytoplasm to start replication. We have found that ASF virion internal membrane proteins E248R and E199L interact with the endosomal proteins Niemann Pick C1 (NPC1) and lysosomal membrane proteins (Lamp)-1 and -2. And, appear to be required for endosomal trafficking of ASF virions endosomal traffic and exit to the cytoplasm in the cell entry process. These molecules act regulating cholesterol flux from the endosome to the endoplasmic reticulum, and appear to be important for the viral infection cycle. In silenced and knockout cells, ASFV infection was affected at early and later stages. In null cells, virion entry and progression through the endosomal pathway at entry was arrested and several viral cores were retained at late endosomes without entering the fusion phase for cytoplasmic exit. These results provide new insights into the role of endosomal proteins for ASFV infection.
Collapse
Affiliation(s)
- Miguel Ángel Cuesta-Geijo
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Isabel García-Dorival
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Ana del Puerto
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Jesús Urquiza
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Inmaculada Galindo
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Lucía Barrado-Gil
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Fátima Lasala
- Instituto de Investigación Hospital 12 de Octubre Imas12, Madrid, Spain
| | - Ana Cayuela
- Centro Nacional de Biotecnología CSIC, Madrid, Spain
| | | | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | - Rafael Delgado
- Instituto de Investigación Hospital 12 de Octubre Imas12, Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Covadonga Alonso
- Departmento de Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- * E-mail:
| |
Collapse
|
35
|
Dietl P, Frick M. Channels and Transporters of the Pulmonary Lamellar Body in Health and Disease. Cells 2021; 11:45. [PMID: 35011607 PMCID: PMC8750383 DOI: 10.3390/cells11010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
36
|
Palacios-Rápalo SN, De Jesús-González LA, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, Martínez-Mier G, Quistián-Galván J, Muñoz-Pérez A, Bernal-Dolores V, del Ángel RM, Reyes-Ruiz JM. Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry. Front Immunol 2021; 12:796855. [PMID: 34975904 PMCID: PMC8719300 DOI: 10.3389/fimmu.2021.796855] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Since its appearance, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), the causal agent of Coronavirus Disease 2019 (COVID-19), represents a global problem for human health that involves the host lipid homeostasis. Regarding, lipid rafts are functional membrane microdomains with highly and tightly packed lipid molecules. These regions enriched in sphingolipids and cholesterol recruit and concentrate several receptors and molecules involved in pathogen recognition and cellular signaling. Cholesterol-rich lipid rafts have multiple functions for viral replication; however, their role in SARS-CoV-2 infection remains unclear. In this review, we discussed the novel evidence on the cholesterol-rich lipid rafts as a platform for SARS-CoV-2 entry, where receptors such as the angiotensin-converting enzyme-2 (ACE-2), heparan sulfate proteoglycans (HSPGs), human Toll-like receptors (TLRs), transmembrane serine proteases (TMPRSS), CD-147 and HDL-scavenger receptor B type 1 (SR-B1) are recruited for their interaction with the viral spike protein. FDA-approved drugs such as statins, metformin, hydroxychloroquine, and cyclodextrins (methyl-β-cyclodextrin) can disrupt cholesterol-rich lipid rafts to regulate key molecules in the immune signaling pathways triggered by SARS-CoV-2 infection. Taken together, better knowledge on cholesterol-rich lipid rafts in the SARS-CoV-2-host interactions will provide valuable insights into pathogenesis and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Gustavo Martínez-Mier
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Judith Quistián-Galván
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Armando Muñoz-Pérez
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Víctor Bernal-Dolores
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| | - Rosa María del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS) Veracruz Norte, Veracruz, Mexico
| |
Collapse
|
37
|
Assessment of Polyunsaturated Fatty Acids on COVID-19-Associated Risk Reduction. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 32:50-64. [PMID: 34876760 PMCID: PMC8638948 DOI: 10.1007/s43450-021-00213-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Pooled evidence conveys the association between polyunsaturated fatty acids and infectious disease. SARS-CoV-2, an enveloped mRNA virus, was also reported to interact with polyunsaturated fatty acids. The present review explores the possible mode of action, immunology, and consequences of these polyunsaturated fatty acids during the viral infection. Polyunsaturated fatty acids control protein complex formation in lipid rafts associated with the function of two SARS-CoV-2 entry gateways: angiotensin-converting enzyme-2 and cellular protease transmembrane protease serine-2. Therefore, the viral entry can be mitigated by modulating polyunsaturated fatty acids contents in the body. α-Linolenic acid is the precursor of two clinically important eicosanoids eicosapentaenoic acid and docosahexaenoic acid, the members of ω-3 fats. Resolvins, protectins, and maresins derived from docosahexaenoic acid suppress inflammation and augment phagocytosis that lessens microbial loads. Prostaglandins of 3 series, leukotrienes of 5 series, and thromboxane A3 from eicosapentaenoic acid exhibit anti-inflammatory, vasodilatory, and platelet anti-aggregatory effects that may also contribute to the control of pre-existing pulmonary and cardiac diseases. In contrast, ω-6 linoleic acid-derived arachidonic acid increases the prostaglandin G2, lipoxins A4 and B4, and thromboxane A2. These cytokines are pro-inflammatory and enhance the immune response but aggravate the COVID-19 severity. Therefore, the rational intake of ω-3-enriched foods or supplements might lessen the complications in COVID-19 and might be a preventive measure. Graphic Abstract
Collapse
|
38
|
Hijikata A, Shionyu-Mitsuyama C, Nakae S, Shionyu M, Ota M, Kanaya S, Hirokawa T, Nakajima S, Watashi K, Shirai T. Evaluating cepharanthine analogues as natural drugs against SARS-CoV-2. FEBS Open Bio 2021; 12:285-294. [PMID: 34850606 PMCID: PMC8727928 DOI: 10.1002/2211-5463.13337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022] Open
Abstract
Cepharanthine (CEP) is a natural biscoclaurine alkaloid of plant origin and was recently demonstrated to have anti‐severe acute respiratory syndrome coronavirus 2 (anti‐SARS‐CoV‐2) activity. In this study, we evaluated whether natural analogues of CEP may act as potential anti‐coronavirus disease 2019 drugs. A total of 24 compounds resembling CEP were extracted from the KNApSAcK database, and their binding affinities to target proteins, including the spike protein and main protease of SARS‐CoV‐2, NPC1 and TPC2 in humans, were predicted via molecular docking simulations. Selected analogues were further evaluated by a cell‐based SARS‐CoV‐2 infection assay. In addition, the efficacies of CEP and its analogue tetrandrine were assessed. A comparison of the docking conformations of these compounds suggested that the diphenyl ester moiety of the molecules was a putative pharmacophore of the CEP analogues.
Collapse
Affiliation(s)
- Atsushi Hijikata
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| | | | - Setsu Nakae
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| | - Masafumi Shionyu
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| | - Motonori Ota
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Japan
| | - Shigehiko Kanaya
- Computational Biology Laboratory Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Japan.,Transborder Medical Research Center, University of Tsukuba, Japan.,Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Shogo Nakajima
- Department of Virology II, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Shinjuku-ku, Japan.,Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Japan.,Department of Applied Biological Sciences, Tokyo University of Science, Noda, Japan
| | - Tsuyoshi Shirai
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| |
Collapse
|
39
|
Tobór-Świętek E, Sykut-Cegielska J, Bik-Multanowski M, Walczak M, Rokicki D, Kałużny Ł, Wierzba J, Pac M, Jahnz-Różyk K, Więsik-Szewczyk E, Kieć-Wilk B. COVID-19 Pandemic and Patients with Rare Inherited Metabolic Disorders and Rare Autoinflammatory Diseases-Organizational Challenges from the Point of View of Healthcare Providers. J Clin Med 2021; 10:jcm10214862. [PMID: 34768381 PMCID: PMC8584872 DOI: 10.3390/jcm10214862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 01/12/2023] Open
Abstract
COVID-19 pandemic is an organisational challenge for both healthcare providers and patients. People with rare inherited metabolic disorders (IMD) and rare autoinflammatory diseases (AD) are vulnerable patients whose well-being is deeply connected with regular follow-ups. This study aimed to assess how e one year of coronavirus pandemic has impacted the treatment of patients with IMD and AD in Poland. Surveys were distributed to all healthcare providers that coordinate the treatment of IMD and AD patients. Thirty-two responders (55%) answered the survey. They provide care to 1726 patients with IMD/AD, including 246 patients on dedicated treatment. In 35% of units, the regular appointments were disrupted, primarily because of patient infection. In 18 hospitals, remote visits were implemented, but only 66.6% of patients used this form of consultation. In 14/32 hospitals, administration of the therapy was delayed (median: 17.4 days). Forty-four patients suffered from SARS-COV-2 infection, in majority with mild symptoms. However, four adult patients developed complications, and one died following a SARS-COV-2 infection. Although most hospitals managed to maintain regular visits during the pandemic, more comprehensive implementation of telemedicine and switch to oral therapy or home infusions would be a reasonable solution for the current epidemic situation.
Collapse
Affiliation(s)
- Ewa Tobór-Świętek
- Department of Metabolic Diseases, Jagiellonian University Medical College, 31-008 Cracow, Poland;
- Department of Metabolic Diseases, University Hospital, Jakubowskiego 2 Street, 30-688 Cracow, Poland
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Paediatrics, Institute of Mother and Child, Kasprzaka 17a Street, 01-211 Warsaw, Poland;
| | - Mirosław Bik-Multanowski
- Department of Medical Genetics, Medical College, Jagiellonian University, Wielicka 265 Street, 30-633 Cracow, Poland;
| | - Mieczysław Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University, Unii Lubelskiej 1 Street, 71-242 Szczecin, Poland;
| | - Dariusz Rokicki
- Department of Paediatrics, Nutrition and Metabolic Diseases, Institute “Children’s Memorial Health Institute”, al. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Łukasz Kałużny
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33 Street, 60-572 Poznan, Poland;
| | - Joanna Wierzba
- Department of Paediatrics, Hematology and Oncology Medical University of Gdansk, Debniki 7, 80-752 Gdansk, Poland;
| | - Małgorzata Pac
- Department of Immunology, Institute “Children’s Memorial Health Institute”, al. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Karina Jahnz-Różyk
- Department of Internal Diseases, Pneumology, Allergology and Clinical Immunology, Military Medical Institute, Szaserów 128 Street, 04-141 Warsaw, Poland; (K.J.-R.); (E.W.-S.)
| | - Ewa Więsik-Szewczyk
- Department of Internal Diseases, Pneumology, Allergology and Clinical Immunology, Military Medical Institute, Szaserów 128 Street, 04-141 Warsaw, Poland; (K.J.-R.); (E.W.-S.)
| | - Beata Kieć-Wilk
- Unit of Rare Metabolic Diseases, Department of Metabolic Diseases Jagiellonian University, Medical College, University Hospital, Jakubowskiego 2 Street, 30-688 Cracow, Poland
- Correspondence: ; Tel.: +48-12-400-29-50
| |
Collapse
|
40
|
Prasad H. Protons to Patients: targeting endosomal Na + /H + exchangers against COVID-19 and other viral diseases. FEBS J 2021; 288:5071-5088. [PMID: 34490733 PMCID: PMC8646450 DOI: 10.1111/febs.16163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022]
Abstract
While there is undeniable evidence to link endosomal acid‐base homeostasis to viral pathogenesis, the lack of druggable molecular targets has hindered translation from bench to bedside. The recent identification of variants in the interferon‐inducible endosomal Na+/H+ exchanger 9 associated with severe coronavirus disease‐19 (COVID‐19) has brought a shift in the way we envision aberrant endosomal acidification. Is it linked to an increased susceptibility to viral infection or a propensity to develop critical illness? This review summarizes the genetic and cellular evidence linking endosomal Na+/H+ exchangers and viral diseases to suggest how they can act as a broad‐spectrum modulator of viral infection and downstream pathophysiology. The review also presents novel insights supporting the complex role of endosomal acid‐base homeostasis in viral pathogenesis and discusses the potential causes for negative outcomes of clinical trials utilizing alkalinizing drugs as therapies for COVID‐19. These findings lead to a pathogenic model of viral disease that predicts that nonspecific targeting of endosomal pH might fail, even if administered early on, and suggests that endosomal Na+/H+ exchangers may regulate key host antiviral defence mechanisms and mediators that act to drive inflammatory organ injury.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
41
|
Stoyanov GS, Dzhenkov DL, Popov H, Lyutfi E, Petkova L. Cerebral Palsy, COVID-19, and Neurolipidosis in an 18-Year-Old Female. Cureus 2021; 13:e18294. [PMID: 34722070 PMCID: PMC8547376 DOI: 10.7759/cureus.18294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 11/05/2022] Open
Abstract
Since the novel coronavirus (COVID-19) pandemic started, children and young adults have seldom been placed in high-risk groups, despite reports that they are at increased risk of severe forms of the disease and death in the presence of comorbidities. Herein we report an autopsy case of an 18-year-old female with a history of cerebral palsy (CP), recurrent respiratory infections, and newly diagnosed COVID-19, and who expired 22 days after presenting with symptoms of the disease. Gross findings were concurrent with CP-significant hypotrophy, with deep and wide brain sulci. The lungs grossly were with increased weight and blood-filled. Histopathology of the respiratory system showed the well-established COVID-19-associated alveolar multinucleated cells, type two pneumocyte hyperplasia, and vascular changes. Furthermore, foci of groups of enlarged cells with foamy cytoplasm were identified in the pulmonary interstitium. Similar changes were also seen in the spleen, liver, and central nervous system, concurrent with an unrecognized lipid storage disease. The clinically unrecognized neurolipidosis, corresponding morphologically and clinically to Niemann-Pick disease type B, leading to interstitial lung disease and recurrent respiratory infections, inevitably played a role in the severity and progression of COVID-19 in our case, despite the age.
Collapse
Affiliation(s)
- George S Stoyanov
- General and Clinical Pathology/Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Deyan L Dzhenkov
- General and Clinical Pathology/Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Hristo Popov
- General and Clinical Pathology/Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| | - Emran Lyutfi
- Neurological Diseases and Neuroscience, Medical University of Varna, Varna, BGR
| | - Lilyana Petkova
- General and Clinical Pathology/Forensic Medicine and Deontology, Medical University of Varna, Varna, BGR
| |
Collapse
|
42
|
García-Dorival I, Cuesta-Geijo MÁ, Barrado-Gil L, Galindo I, Garaigorta U, Urquiza J, Puerto AD, Campillo NE, Martínez A, Gastaminza P, Gil C, Alonso C. Identification of Niemann-Pick C1 protein as a potential novel SARS-CoV-2 intracellular target. Antiviral Res 2021; 194:105167. [PMID: 34450201 PMCID: PMC8382594 DOI: 10.1016/j.antiviral.2021.105167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022]
Abstract
Niemann-Pick type C1 (NPC1) receptor is an endosomal membrane protein that regulates intracellular cholesterol traffic. This protein has been shown to play an important role for several viruses. It has been reported that SARS-CoV-2 enters the cell through plasma membrane fusion and/or endosomal entry upon availability of proteases. However, the whole process is not fully understood yet and additional viral/host factors might be required for viral fusion and subsequent viral replication. Here, we report a novel interaction between the SARS-CoV-2 nucleoprotein (N) and the cholesterol transporter NPC1. Furthermore, we have found that some compounds reported to interact with NPC1, carbazole SC816 and sulfides SC198 and SC073, were able to reduce SARS-CoV-2 viral infection with a good selectivity index in human cell infection models. These findings suggest the importance of NPC1 for SARS-CoV-2 viral infection and a new possible potential therapeutic target to fight against COVID-19.
Collapse
Affiliation(s)
- Isabel García-Dorival
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040, Madrid, Spain
| | - Miguel Ángel Cuesta-Geijo
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040, Madrid, Spain; Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Lucía Barrado-Gil
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040, Madrid, Spain; Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Inmaculada Galindo
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040, Madrid, Spain
| | - Urtzi Garaigorta
- Centro Nacional de Biotecnología CSIC, Calle Darwin 3, 28049, Madrid, Spain
| | - Jesús Urquiza
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040, Madrid, Spain
| | - Ana Del Puerto
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040, Madrid, Spain
| | - Nuria E Campillo
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Pablo Gastaminza
- Centro Nacional de Biotecnología CSIC, Calle Darwin 3, 28049, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Covadonga Alonso
- Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040, Madrid, Spain.
| |
Collapse
|
43
|
Zhang Q, Wadgaonkar P, Xu L, Thakur C, Fu Y, Bi Z, Qiu Y, Almutairy B, Zhang W, Stemmer P, Chen F. Environmentally-induced mdig contributes to the severity of COVID-19 through fostering expression of SARS-CoV-2 receptor NRPs and glycan metabolism. Am J Cancer Res 2021; 11:7970-7983. [PMID: 34335974 PMCID: PMC8315075 DOI: 10.7150/thno.62138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
The novel β-coronavirus, SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), has infected more than 177 million people and resulted in 3.84 million death worldwide. Recent epidemiological studies suggested that some environmental factors, such as air pollution, might be the important contributors to the mortality of COVID-19. However, how environmental exposure enhances the severity of COVID-19 remains to be fully understood. In the present report, we provided evidence showing that mdig, a previously reported environmentally-induced oncogene that antagonizes repressive trimethylation of histone proteins, is an important regulator for SARS-CoV-2 receptors neuropilin-1 (NRP1) and NRP2, cathepsins, glycan metabolism and inflammation, key determinants for viral infection and cytokine storm of the patients. Depletion of mdig in bronchial epithelial cells by CRISPR-Cas-9 gene editing resulted in a decreased expression of NRP1, NRP2, cathepsins, and genes involved in protein glycosylation and inflammation, largely due to a substantial enrichment of lysine 9 and/or lysine 27 trimethylation of histone H3 (H3K9me3/H3K27me3) on these genes as determined by ChIP-seq. Meanwhile, we also validated that environmental factor arsenic is able to induce mdig, NRP1 and NRP2, and genetic disruption of mdig lowered expression of NRP1 and NRP2. Furthermore, mdig may coordinate with the Neanderthal variants linked to an elevated mortality of COVID-19. These data, thus, suggest that mdig is a key mediator for the severity of COVID-19 in response to environmental exposure and targeting mdig may be the one of the effective strategies in ameliorating the symptom and reducing the mortality of COVID-19.
Collapse
|
44
|
Raj CTD, Kandaswamy DK, Danduga RCSR, Rajasabapathy R, James RA. COVID-19: molecular pathophysiology, genetic evolution and prospective therapeutics-a review. Arch Microbiol 2021. [PMID: 33555378 DOI: 10.1007/s00203-021-02183-z/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
The Covid-19 pandemic is highly contagious and has spread rapidly across the globe. To date there have been no specific treatment options available for this life-threatening disease. During this medical emergency, target-based drug repositioning/repurposing with a continuous monitoring and recording of results is an effective method for the treatment and drug discovery. This review summarizes the recent findings on COVID-19, its genomic organization, molecular evolution through phylogenetic analysis and has recapitulated the drug targets by analyzing the viral molecular machinery as drug targets and repurposing of most frequently used drugs worldwide and their therapeutic applications in COVID-19. Data from solidarity trials have shown that the treatment with Chloroquine, hydroxychloroquine and lopinavir-ritonavir had no effect in reducing the mortality rate and also had adverse side effects. Remdesivir, Favipiravir and Ribavirin might be a safer therapeutic option for COVID-19. Recent clinical trial has revealed that dexamethasone and convalescent plasma treatment can reduce mortality in patients with severe forms of COVID-19.
Collapse
Affiliation(s)
- C T Dhanya Raj
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India
| | - Dinesh Kumar Kandaswamy
- Department of Epidemiology and Public Health, Central University of Tamilnadu, Thiruvarur, Tamil Nadu, India.
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | | | - Raju Rajasabapathy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
45
|
Raj CTD, Kandaswamy DK, Danduga RCSR, Rajasabapathy R, James RA. COVID-19: molecular pathophysiology, genetic evolution and prospective therapeutics-a review. Arch Microbiol 2021; 203:2043-2057. [PMID: 33555378 PMCID: PMC7868660 DOI: 10.1007/s00203-021-02183-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/20/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022]
Abstract
The Covid-19 pandemic is highly contagious and has spread rapidly across the globe. To date there have been no specific treatment options available for this life-threatening disease. During this medical emergency, target-based drug repositioning/repurposing with a continuous monitoring and recording of results is an effective method for the treatment and drug discovery. This review summarizes the recent findings on COVID-19, its genomic organization, molecular evolution through phylogenetic analysis and has recapitulated the drug targets by analyzing the viral molecular machinery as drug targets and repurposing of most frequently used drugs worldwide and their therapeutic applications in COVID-19. Data from solidarity trials have shown that the treatment with Chloroquine, hydroxychloroquine and lopinavir-ritonavir had no effect in reducing the mortality rate and also had adverse side effects. Remdesivir, Favipiravir and Ribavirin might be a safer therapeutic option for COVID-19. Recent clinical trial has revealed that dexamethasone and convalescent plasma treatment can reduce mortality in patients with severe forms of COVID-19.
Collapse
Affiliation(s)
- C T Dhanya Raj
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India
| | - Dinesh Kumar Kandaswamy
- Department of Epidemiology and Public Health, Central University of Tamilnadu, Thiruvarur, Tamil Nadu, India.
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | | | - Raju Rajasabapathy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
46
|
Potential pharmacological strategies targeting the Niemann-Pick C1 receptor and Ebola virus glycoprotein interaction. Eur J Med Chem 2021; 223:113654. [PMID: 34175537 DOI: 10.1016/j.ejmech.2021.113654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Niemann-Pick C1 (NPC1) receptor is an intracellular protein located in late endosomes and lysosomes whose main function is to regulate intracellular cholesterol trafficking. Besides being postulated as necessary for the infection of highly pathogenic viruses in which the integrity of cholesterol transport is required, this protein also allows the entry of the Ebola virus (EBOV) into the host cells acting as an intracellular receptor. EBOV glycoprotein (EBOV-GP) interaction with NPC1 at the endosomal membrane triggers the release of the viral material into the host cell, starting the infective cycle. Disruption of the NPC1/EBOV-GP interaction could represent an attractive strategy for the development of drugs aimed at inhibiting viral entry and thus infection. Some of the today available EBOV inhibitors were proposed to interrupt this interaction, but molecular and structural details about their mode of action are still preliminary thus more efforts are needed to properly address these points. Here, we provide a critical discussion of the potential of NPC1 and its interaction with EBOV-GP as a therapeutic target for viral infections.
Collapse
|
47
|
Luo R, Delaunay‐Moisan A, Timmis K, Danchin A. SARS-CoV-2 biology and variants: anticipation of viral evolution and what needs to be done. Environ Microbiol 2021; 23:2339-2363. [PMID: 33769683 PMCID: PMC8251359 DOI: 10.1111/1462-2920.15487] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
The global propagation of SARS-CoV-2 and the detection of a large number of variants, some of which have replaced the original clade to become dominant, underscores the fact that the virus is actively exploring its evolutionary space. The longer high levels of viral multiplication occur - permitted by high levels of transmission -, the more the virus can adapt to the human host and find ways to success. The third wave of the COVID-19 pandemic is starting in different parts of the world, emphasizing that transmission containment measures that are being imposed are not adequate. Part of the consideration in determining containment measures is the rationale that vaccination will soon stop transmission and allow a return to normality. However, vaccines themselves represent a selection pressure for evolution of vaccine-resistant variants, so the coupling of a policy of permitting high levels of transmission/virus multiplication during vaccine roll-out with the expectation that vaccines will deal with the pandemic, is unrealistic. In the absence of effective antivirals, it is not improbable that SARS-CoV-2 infection prophylaxis will involve an annual vaccination campaign against 'dominant' viral variants, similar to influenza prophylaxis. Living with COVID-19 will be an issue of SARS-CoV-2 variants and evolution. It is therefore crucial to understand how SARS-CoV-2 evolves and what constrains its evolution, in order to anticipate the variants that will emerge. Thus far, the focus has been on the receptor-binding spike protein, but the virus is complex, encoding 26 proteins which interact with a large number of host factors, so the possibilities for evolution are manifold and not predictable a priori. However, if we are to mount the best defence against COVID-19, we must mount it against the variants, and to do this, we must have knowledge about the evolutionary possibilities of the virus. In addition to the generic cellular interactions of the virus, there are extensive polymorphisms in humans (e.g. Lewis, HLA, etc.), some distributed within most or all populations, some restricted to specific ethnic populations and these variations pose additional opportunities for/constraints on viral evolution. We now have the wherewithal - viral genome sequencing, protein structure determination/modelling, protein interaction analysis - to functionally characterize viral variants, but access to comprehensive genome data is extremely uneven. Yet, to develop an understanding of the impacts of such evolution on transmission and disease, we must link it to transmission (viral epidemiology) and disease data (patient clinical data), and the population granularities of these. In this editorial, we explore key facets of viral biology and the influence of relevant aspects of human polymorphisms, human behaviour, geography and climate and, based on this, derive a series of recommendations to monitor viral evolution and predict the types of variants that are likely to arise.
Collapse
Affiliation(s)
- Ruibang Luo
- Department of Computer ScienceThe University of Hong KongBonham RoadPokfulamHong Kong
| | - Agnès Delaunay‐Moisan
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Kenneth Timmis
- Institute of MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | - Antoine Danchin
- Kodikos Labs, Institut Cochin, 24 rue du Faubourg Saint‐JacquesParis75014France
- School of Biomedical Sciences, Li Kashing Faculty of MedicineUniversity of Hong Kong21 Sassoon RoadHong Kong
| |
Collapse
|
48
|
Wiweger M, Majewski L, Adamek-Urbanska D, Wasilewska I, Kuznicki J. npc2-Deficient Zebrafish Reproduce Neurological and Inflammatory Symptoms of Niemann-Pick Type C Disease. Front Cell Neurosci 2021; 15:647860. [PMID: 33986646 PMCID: PMC8111220 DOI: 10.3389/fncel.2021.647860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disease that is caused by a mutation of the NPC1 or NPC2 gene, in which un-esterified cholesterol and sphingolipids accumulate mainly in the liver, spleen, and brain. Abnormal lysosomal storage leads to cell damage, neurological problems, and premature death. The time of onset and severity of symptoms of NPC disease are highly variable. The molecular mechanisms that are responsible for NPC disease pathology are far from being understood. The present study generated and characterized a zebrafish mutant that lacks Npc2 protein that may be useful for studies at the organismal, cellular, and molecular levels and both small-scale and high-throughput screens. Using CRISPR/Cas9 technology, we knocked out the zebrafish homolog of NPC2. Five-day-old npc2 mutants were morphologically indistinguishable from wildtype larvae. We found that live npc2-/- larvae exhibited stronger Nile blue staining. The npc2-/- larvae exhibited low mobility and a high anxiety-related response. These behavioral changes correlated with downregulation of the mcu (mitochondrial calcium uniporter) gene, ppp3ca (calcineurin) gene, and genes that are involved in myelination (mbp and mpz). Histological analysis of adult npc2-/- zebrafish revealed that pathological changes in the nervous system, kidney, liver, and pancreas correlated with inflammatory responses (i.e., the upregulation of il1, nfκβ, and mpeg; i.e., hallmarks of NPC disease). These findings suggest that the npc2 mutant zebrafish may be a model of NPC disease.
Collapse
Affiliation(s)
- Malgorzata Wiweger
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Lukasz Majewski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Dobrochna Adamek-Urbanska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iga Wasilewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
49
|
Villoutreix BO, Krishnamoorthy R, Tamouza R, Leboyer M, Beaune P. Chemoinformatic Analysis of Psychotropic and Antihistaminic Drugs in the Light of Experimental Anti-SARS-CoV-2 Activities. Adv Appl Bioinform Chem 2021; 14:71-85. [PMID: 33880039 PMCID: PMC8051956 DOI: 10.2147/aabc.s304649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction There is an urgent need to identify therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. Objective Based upon clinical observations, we proposed that some psychotropic and antihistaminic drugs could protect psychiatric patients from SARS-CoV-2 infection. This observation is investigated in the light of experimental in vitro data on SARS-CoV-2. Methods SARS-CoV-2 high-throughput screening results are available at the NCATS COVID-19 portal. We investigated the in vitro anti-viral activity of many psychotropic and antihistaminic drugs using chemoinformatics approaches. Results and Discussion We analyze our clinical observations in the light of SARS-CoV-2 experimental screening results and propose that several cationic amphiphilic psychotropic and antihistaminic drugs could protect people from SARS-CoV-2 infection; some of these molecules have very limited adverse effects and could be used as prophylactic drugs. Other cationic amphiphilic drugs used in other disease areas are also highlighted. Recent analyses of patient electronic health records reported by several research groups indicate that some of these molecules could be of interest at different stages of the disease progression. In addition, recently reported drug combination studies further suggest that it might be valuable to associate several cationic amphiphilic drugs. Taken together, these observations underline the need for clinical trials to fully evaluate the potentials of these molecules, some fitting in the so-called category of broad-spectrum antiviral agents. Repositioning orally available drugs that have moderate side effects and should act on molecular mechanisms less prone to drug resistance would indeed be of utmost importance to deal with COVID-19.
Collapse
Affiliation(s)
- Bruno O Villoutreix
- INSERM U1141, NeuroDiderot, Université de Paris, Hôpital Robert-Debré, Paris, F-75019, France
| | - Rajagopal Krishnamoorthy
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuropsychiatrie Translationnelle, AP-HP, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Hôpital Henri Mondor, Fondation FondaMental, Créteil, F-94010, France
| | - Ryad Tamouza
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuropsychiatrie Translationnelle, AP-HP, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Hôpital Henri Mondor, Fondation FondaMental, Créteil, F-94010, France
| | - Marion Leboyer
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuropsychiatrie Translationnelle, AP-HP, Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Hôpital Henri Mondor, Fondation FondaMental, Créteil, F-94010, France
| | - Philippe Beaune
- INSERM U1138, Centre de Recherche des Cordeliers, Université de Paris, Paris, 75006, France
| |
Collapse
|
50
|
Liang EY, Li GH, Wang WG, Qiu XM, Ke PF, He M, Huang XZ. Clinical relevance of serum α-l-fucosidase activity in the SARS-CoV-2 infection. Clin Chim Acta 2021; 519:26-31. [PMID: 33826953 PMCID: PMC8019593 DOI: 10.1016/j.cca.2021.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 11/18/2022]
Abstract
Background and aims The reduced fucosylation in the spike glycoprotein of SARS-CoV-2 and the IgG antibody has been observed in COVID-19. However, the clinical relevance of α-l-fucosidase, the enzyme for defucosylation has not been discovered. Materials and methods 585 COVID-19 patients were included to analyze the correlations of α-l-fucosidase activity with the nucleic acid test, IgM/IgG, comorbidities, and disease progression. Results Among the COVID-19 patients, 5.75% were double-negative for nucleic acid and antibodies. All of them had increased α-l-fucosidase, while only one had abnormal serum amyloid A (SAA) and C-reactive protein (CRP). The abnormal rate of α-l-fucosidase was 81.82% before the presence of IgM, 100% in the presence of IgM, and 66.2% in the presence of IgG. 73.42% of patients with glucometabolic disorders had increased α-l-fucosidase activity and had the highest mortality of 6.33%. The increased α-l-fucosidase was observed in 55.8% of non-severe cases and 72.9% of severe cases, with an odds ratio of 2.118. The α-l-fucosidase mRNA was irrelevant to its serum activity. Conclusion The change in α-l-fucosidase activity in COVID-19 preceded the IgM and SAA and showed a preferable relation with glucometabolic disorders, which may be conducive to virus invasion or invoke an immune response against SARS-CoV-2.
Collapse
Affiliation(s)
- En-Yu Liang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Guo-Hua Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan 430015, China
| | - Wen-Gong Wang
- Hubei Integrated Traditional Chinese and Western Medicine Hospital, Wuhan 430015, China
| | - Xin-Min Qiu
- Genetic Testing Lab, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Pei-Feng Ke
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Min He
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|