1
|
Li G, Li C, Liu H, Song Y, Zhang Y, Chen P, Zhang H, Wu S. Association of ambient air pollution with hospital admissions for major osteoarthritis diseases: A national case-crossover study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118255. [PMID: 40318404 DOI: 10.1016/j.ecoenv.2025.118255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/26/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVES To investigate the acute effects of short-term exposure to ambient air pollution on the risk of hospital admissions for osteoarthritis (OA) and its major subtypes. METHODS Hospital admission data on OA and its major subtypes were sourced from two major urban medical insurance systems in China, covering the period from 2013 to 2017. A two-stage, time-stratified case-crossover design was used to investigate the acute effects of short-term exposure to ambient air pollutants on hospital admissions for OA across 278 Chinese cities with available hospital admission data over 50 cases. The conditional logistic regression model was utilized to assess city-specific associations, which were subsequently pooled by employing a random-effects model. RESULTS A total of 1,404,095 OA-related hospital admissions were included. At the main time windows, per interquartile range increases in PM2.5 (particulate matter with an aerodynamic diameter of ≤ 2.5 μm), PM10 (particulate matter with an aerodynamic diameter of ≤ 10 μm), NO2 (nitrogen dioxide), SO2 (sulfur dioxide), O3 (ozone), and CO (carbon monoxide) were associated with significant increases in OA-related admissions by 0.70 % (95 % CI: 0.12 %, 1.28 %), 1.08 % (95 % CI: 0.47 %, 1.69 %), 4.50 % (95 % CI: 3.36 %, 5.65 %), 2.75 % (95 % CI: 1.79 %, 3.72 %), 1.33 % (95 % CI: 0.57 %, 2.10 %) and 1.77 % (95 % CI: 0.76 %, 2.79 %), respectively. Short-term exposures to ambient air pollutants were also associated with increased hospital admissions for major OA subtypes, especially gonarthrosis. The attributable fractions of OA admissions ranged from 0.87 % for PM2.5 to 6.22 % for NO2. CONCLUSIONS Short-term exposure to ambient air pollution is significantly associated with an increased risk and burden of OA admissions.
Collapse
Affiliation(s)
- Ge Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China; Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi 710054, China
| | - Chao Li
- Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Huimeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China
| | - Yunlong Song
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi 710054, China
| | - Yuchen Zhang
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi 710054, China
| | - Ping Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi 710054, China
| | - Hong Zhang
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi 710054, China; School of Humanities and Social Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Tuberculosis Hospital of Shaanxi Province, Xi'an, Shaanxi 710100, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi 710061, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Jung YS, Choma E, Delaney S, Mork D, Audirac M, Braun D, Kessler W, Coull B, Nadeau K, Zanobetti A. Extreme heat and hospital admissions in older adults: A small-area analysis in the Greater Boston metropolitan area. Environ Epidemiol 2025; 9:e395. [PMID: 40342591 PMCID: PMC12058651 DOI: 10.1097/ee9.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/17/2025] [Indexed: 05/11/2025] Open
Abstract
Extreme heat (EH) is a leading cause of weather-related fatalities in the United States. In Massachusetts, average temperatures have increased by 1.9 °C since the 20th century, higher than the global average increase of 1.1 °C. EH disproportionately impacts communities, exacerbating social inequities. This study examined the risks of heat-related hospitalizations in each small area of the Greater Boston Metropolitan Area using Medicare data (2000-2016). EH events included daily heat index (HI), days with an HI above the 90th percentile, and heat waves (≥2 consecutive EH days). We applied a case-crossover design to estimate area-specific associations between EH and hospitalizations and assessed effect modifications by an individual (age ≥85, sex, Medicaid dual eligibility) and ZIP-code characteristics (green space, poverty, educational attainment, and household income). Results were pooled using random effects meta-analysis. Area-specific analysis revealed higher hospitalization risks in Boston compared with surrounding areas. Pooled results indicated heat-related hospitalizations increased by 9.0% (95% CI = 5.7, 12.3) per 10 °C rise in HI, 14.4% (95% CI = 8.8, 20.3) on EH days, and 17.9% (95% CI = 11.1, 25.1) during heat waves. Risks were more pronounced in Boston, and some indications of elevated risk among males and residents in low-income, low-education areas. These findings underscore that heat-related health risks may be different across the level of geographic units and suggest the need for targeted public health strategies to mitigate the impacts of EH.
Collapse
Affiliation(s)
- Youn Soo Jung
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ernani Choma
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Scott Delaney
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Daniel Mork
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Michelle Audirac
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - William Kessler
- NIEHS Center for Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kari Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
3
|
Croft DP, Utell MJ, Hopke PK, Liu H, Lin S, Thurston SW, Thandra S, Chen Y, Islam MR, Thevenet-Morrison K, Johnston CJ, Zhao T, Yount C, Rich DQ. Comparison of the rate of healthcare encounters for influenza from source-specific PM 2.5 before and after tier 3 vehicle standards in New York state. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:205-213. [PMID: 39127830 PMCID: PMC12009738 DOI: 10.1038/s41370-024-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Influenza healthcare encounters in adults associated with specific sources of PM2.5 is an area of active research. OBJECTIVE Following 2017 legislation requiring reductions in emissions from light-duty vehicles, we hypothesized a reduced rate of influenza healthcare encounters would be associated with concentrations of PM2.5 from traffic sources in the early implementation period of this regulation (2017-2019). METHODS We used the Statewide Planning and Research Cooperative System (SPARCS) to study adult patients hospitalized (N = 5328) or treated in the emergency department (N = 18,247) for influenza in New York State. Using a modified case-crossover design, we estimated the excess rate (ER) of influenza hospitalizations and emergency department visits associated with interquartile range increases in source-specific PM2.5 concentrations (e.g., spark-ignition emissions [GAS], biomass burning [BB], diesel [DIE]) in lag day(s) 0, 0-3 and 0-6. We then evaluated whether ERs differed after Tier 3 implementation (2017-2019) compared to the period prior to implementation (2014-2016). RESULTS Each interquartile range increase in DIE in lag days 0-6 was associated with a 21.3% increased rate of influenza hospitalization (95% CI: 6.9, 37.6) in the 2014-2016 period, and a 6.3% decreased rate (95% CI: -12.7, 0.5) in the 2017-2019 period. The GAS/influenza excess rates were larger in the 2017-2019 period than the 2014-2016 period for emergency department visits. We also observed a larger ER associated with increased BB in the 2017-2019 period compared to the 2014-2016 period. IMPACT STATEMENT We present an accountability study on the impact of the early implementation period of the Tier 3 vehicle emission standards on the association between specific sources of PM2.5 air pollution on influenza healthcare encounters in New York State. We found that the association between gasoline emissions and influenza healthcare encounters did not lessen in magnitude between periods, possibly because the emissions standards were not yet fully implemented. The reduction in the rates of influenza healthcare encounters associated with diesel emissions may be reflective of past policies to reduce the toxicity of diesel emissions. Accountability studies can help policy makers and environmental scientists better understand the timing of pollution changes and associated health effects.
Collapse
Affiliation(s)
- Daniel P Croft
- Pulmonary and Critical Care Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Mark J Utell
- Pulmonary and Critical Care Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA
| | - Han Liu
- Population Studies and Training Center, Brown University, Providence, RI, USA
| | - Shao Lin
- Department of Environmental Health Sciences. University at Albany, the State University of New York, Albany, NY, USA
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sathvik Thandra
- Department of Environmental Health Sciences. University at Albany, the State University of New York, Albany, NY, USA
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Md Rayhanul Islam
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Kelly Thevenet-Morrison
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Carl J Johnston
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Tianming Zhao
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine Yount
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - David Q Rich
- Pulmonary and Critical Care Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
4
|
Nawa N, Nishimura H, Fushimi K, Fujiwara T. Association between heat exposure and intussusception in children in Japan from 2011 to 2022. Pediatr Res 2025:10.1038/s41390-025-03930-4. [PMID: 39972154 DOI: 10.1038/s41390-025-03930-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Exposure to heat may increase the risk of intussusception through various mechanisms, including alterations in dietary intake. However, no nationwide studies have examined the association between daily heat exposure and intussusception in children. This study aims to examine the association between higher daily ambient temperatures and intussusception in children. METHODS The daily number of intussusception hospitalizations among children up to 5 years old from 2011 to 2022 was extracted from Japan's nationwide administrative claims database. Daily mean temperature data were obtained from the Japan Meteorological Agency. Since the focus is on heat exposure, the analysis examines hospitalizations that occurred during the five warmest months (May to September). A time-stratified case-crossover design with conditional quasi-Poisson regression analysis was applied to estimate the relative risk of heat exposure on intussusception with a lag of 0-4 days. RESULTS There were 13,083 cases of intussusception hospitalizations. Higher daily mean temperatures were associated with an elevated risk of intussusception hospitalizations. Specifically, exposure to extremely high daily mean temperatures at the 99th percentile was associated with a 39% increase in hospitalization risk (95% CI: 1.05, 1.83). CONCLUSION The study found the association between higher daily mean temperatures and an increased risk of hospitalization for intussusception. Future research should clarify the mechanisms of the association between higher daily mean temperatures and the increased risk of intussusception hospitalizations. IMPACT While exposure to heat may increase the risk of intussusception through mechanisms such as alterations in dietary intake and intestinal motility, no nationwide studies have investigated the association between daily heat exposure and intussusception in children. The study found the association between higher daily mean temperatures and an increased risk of hospitalization for intussusception. Both caregivers and healthcare providers should be aware of a potential increase in pediatric intussusception cases during warmer days, which may become even more critical as climate change results in more frequent and severe heat events.
Collapse
Affiliation(s)
- Nobutoshi Nawa
- Department of Public Health, Institute of Science Tokyo, Tokyo, Japan.
| | - Hisaaki Nishimura
- Department of Public Health, Institute of Science Tokyo, Tokyo, Japan
| | - Kiyohide Fushimi
- Department of Health Policy and Informatics, Institute of Science Tokyo, Tokyo, Japan
| | - Takeo Fujiwara
- Department of Public Health, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Lin S, Xue Y, Thandra S, Qi Q, Thurston SW, Croft DP, Utell MJ, Hopke PK, Rich DQ. Source specific fine particles and rates of asthma and COPD healthcare encounters pre- and post-implementation of the Tier 3 vehicle emissions control regulations. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136737. [PMID: 39642739 DOI: 10.1016/j.jhazmat.2024.136737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
We examined associations between seven source-specific PM2.5 concentrations and rates of asthma and COPD hospitalizations and emergency department (ED) visits in New York State and compared the changes in excess rates (ERs) between pre- (2014-2016) and post-implementation (2017-2019) of the Tier 3 automobile emission controls on new vehicles policy. A modified time-stratified case-crossover design and conditional logistic regression were employed to estimate the ERs of asthma and COPD hospitalizations and ED visits associated with interquartile range (IQR) increases in source-specific PM2.5 concentrations. The 7 PM2.5 sources were spark-ignition emissions (GAS), diesel (DIE), biomass burning (BB), road dust (RD), secondary nitrate (SN), secondary sulfate (SS), and pyrolyzed organic rich (OP). Residual PM2.5 (PM2.5 - specific source [e.g., GAS]), daily temperature, relative humidity, weekday, and holidays were included in the model. IQR increases in GAS, SS, RD, BB, and SN were associated with increased ERs of asthma ED visits (highest ERs: 0.5 %-3.1 %), while a negative association was observed with DIE and OP. The rate of asthma hospitalizations was associated with increased RD concentrations (ERs: 1.3 %-1.7 %). Both COPD ED visit and hospitalization rates were associated with increased OP (ERs: 2.1 %-3.4 %), and increased SS was positively associated with COPD ED visits (ER = 3.8 %). In summary, after Tier 3 implementation (2017-2019), we found lower ERs for COPD admissions associated with BB, RD, SN, and SS compared to 2014-2016. However, rates of asthma ED visits associated with source-specific PM2.5 concentrations were generally higher for all sources, except DIE, post- versus pre-implementation, requiring further research for validation.
Collapse
Affiliation(s)
- Shao Lin
- Department of Environmental Health Sciences, College of Integrated Health Science, University at Albany, the State University of New York, Albany, New York; Department of Epidemiology/Biostatistics, College of Integrated Health Science, University at Albany, the State University of New York, Albany, New York
| | - Yukang Xue
- Department of Educational and Counseling Psychology, University at Albany, the State University of New York, Albany, New York
| | - Sathvik Thandra
- Department of Mathematics and Statistics, University at Albany, State University of New York, Albany, New York
| | - Quan Qi
- Department of Economics, University at Albany, the State University of New York, Albany, New York
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | - Daniel P Croft
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, New York
| | - Mark J Utell
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, New York
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York; Institute for a Sustainable Environment, Clarkson University, Potsdam, New York
| | - David Q Rich
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York; Department of Medicine, Division of Pulmonary and Critical Care, University of Rochester Medical Center, Rochester, New York; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
6
|
Zhang J, Zhang J, Li P, Xu Y, Zhou X, Qiu J, Tang X, Ding Z, Xu M, Wang C. Associations between short-term exposure to air pollution and acute exacerbation of chronic bronchitis: A time-stratified case-crossover study. Prev Med 2025; 191:108217. [PMID: 39743149 DOI: 10.1016/j.ypmed.2024.108217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE This study aimed to explore the associations between short-term air pollution exposure and acute exacerbation of chronic bronchitis (AECB). METHODS AECB data were collected from hospital surveillance systems in Shanghai, China, during 2018-2022. Exposure pollution data were obtained from China high resolution high quality near-surface air pollution datasets and assigned to individuals based on their residential addresses. The time-stratified case crossover design combined with the conditional logistic regression model were used to estimate the associations between air pollution and AECB. Weighted quantile sum regression evaluated combined pollution effects and key pollutants. RESULTS A total of 2202 hospitalized cases with AECB were included. On day 7 of the average lag (lag 07-day), the odds ratios (OR) of air pollution (Particulate matter with aerodynamic diameters of ≤2.5 μm (PM2.5), 2.5-10 μm (PM2.5-10), and ≤ 10 μm (PM10), Ozone (O3), Sulfur dioxide (SO2), Nitrogen dioxide (NO2)) with AECB increased by 10 μg/m3 were 1.07 (95 % confidence interval (CI): 1.02-1.12), 1.13 (1.06, 1.21), 1.06 (1.03-1.09), 1.03 (1.01-1.06), 2.05 (1.51-2.80) and 1.11 (1.05-1.18), respectively. Combined exposure was also positively associated with the risk of AECB (OR 1.04, 95 % CI 1.00-1.08), with O3 being the most significant. CONCLUSIONS This study demonstrates that short-term exposure to air pollution was significantly associated with higher risk of AECB. O3 might contribute the most to AECB. Policymakers should pay more attention to air pollution control.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingwei Zhang
- Department of Environmental and Occupational Health, Jinshan District Center for Disease Control and Prevention, Shanghai, China
| | - Pengfei Li
- Institute of Medical Technology, Peking University, Beijing 100191, China; Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
| | - Yandan Xu
- Department of Environmental and Occupational Health, Jinshan District Center for Disease Control and Prevention, Shanghai, China
| | - Xuesong Zhou
- Department of Environmental and Occupational Health, Jinshan District Center for Disease Control and Prevention, Shanghai, China
| | - Jia Qiu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiuli Tang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongao Ding
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Mingjia Xu
- Department of Environmental and Occupational Health, Jinshan District Center for Disease Control and Prevention, Shanghai, China.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
7
|
Ma Y, Bai L, Jiang Y, Wang J, Wei C, Li Y, Tian Y, Wu S. Ambient coarse particulate matter pollution and hospital admissions for schizophrenia. Schizophr Res 2025; 276:79-87. [PMID: 39862446 DOI: 10.1016/j.schres.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
OBJECTIVE To investigate the association between ambient coarse particulate matter (PM2.5-10) pollution and risk of acute schizophrenia episodes. METHODS A time-stratified case-crossover study with a two-stage analytical approach was conducted to investigate the association between ambient PM2.5-10 pollution and schizophrenia admissions (an indicator for acute schizophrenia episodes) across 259 Chinese cities of prefecture-level or above during 2013-2017. A conditional logistic regression model was constructed to estimate city-specific changes in hospital admissions for schizophrenia associated with per interquartile range (IQR) increase in ambient PM2.5-10, and the overall associations were obtained by pooling the city-specific associations using the random-effects model. RESULTS A total of 817,296 schizophrenia admissions were included in the analysis. Per IQR increase (28.43 μg/m3) in PM2.5-10 at lag01 was associated with an increase of 1.66 % (95 % CI: 0.68 %, 2.65 %) in schizophrenia admissions. Compared to concentrations <30 μg/m3, PM2.5-10 concentrations of 30-49 μg/m3 and ≥50 μg/m3 were associated with increases of 2.25 % (95 % CI: 0.73 %%, 3.79 %) and 4.03 % (95 % CI: 1.92 %, 6.18 %) in schizophrenia admissions, respectively. City-level urbanization has the potential to attenuate the association between ambient PM2.5-10 and schizophrenia admissions (P = 0.0002). CONCLUSIONS Our study provides novel evidence for the acute adverse effects of ambient PM2.5-10 on schizophrenia and calls for special attention on the control of high PM2.5-10 pollution in disease prevention.
Collapse
Affiliation(s)
- Yating Ma
- Institute of Social Psychology, School of Humanities and Social Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lijun Bai
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Yunxing Jiang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Jinxi Wang
- Yunyi Health Technology Co. Ltd., Beijing, China
| | - Chen Wei
- Yunyi Health Technology Co. Ltd., Beijing, China
| | - Yinxiang Li
- China-Europe Association for Technical and Economic Cooperation, Beijing, China
| | - Yumei Tian
- Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China.
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Yun H, Ahn S, Oh J, Kang C, Kim A, Kwon D, Ahn S, Park J, Park J, Kim E, Kim H, Lee W. Short-term exposure to outdoor nitrogen dioxide and respiratory mortality, with high-risk populations: a nationwide time-stratified case-crossover study. BMC Public Health 2024; 24:3484. [PMID: 39696118 DOI: 10.1186/s12889-024-21048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
Numerous existing studies reported the negative impacts of outdoor nitrogen dioxide (NO2) on respiratory mortality. However, the evidence of related high-risk populations was considerably limited, especially associated with ages, causes of death, and district-level characteristics. In addition, most earlier studies were based on monitored areas, thus previous risk estimates of NO2 could be biased to provide nationwide risk estimates and high-risk populations. Therefore, this study performed a nationwide time-stratified case-crossover study to evaluate the association between short-term ambient NO2 and respiratory mortality in South Korea (2015-2019). A machine learning-ensemble daily NO2 prediction model was used to cover unmonitored areas. To examine high-risk populations, we assessed NO2 risk estimates by age group, sex, cause of mortality, and district-level characteristics. In the total population, NO2 was weakly associated with increased mortality risk due to respiratory disease (OR [odds ratio]: 1.011, 95% CI [confidence interval]: 0.995-1.027), and the association became evident only in individuals aged 80 y or older (1.022, 1.000-1.044), especially related to pneumonia. Further, in people aged 60-69 years, NO2 was marginally associated with mortality for chronic lower respiratory diseases. Lower district-level socioeconomic status and medical services were marginally related to higher respiratory mortality risks related to NO2. The excess respiratory mortality fractions and YLL (year of life lost) attributable to NO2 were 4.13% and 93,851.63 years, and around 70% of the excess deaths were due to noncompliance with the World Health Organization air quality guidelines (daily average NO2 > 25 µg/m3). This study provides evidence for high-risk populations and the appropriateness of target-specific action plans against NO2. In addition, based on the excess death estimates, we suggest stricter NO2 standards are required.
Collapse
Affiliation(s)
- Hyewon Yun
- Graduate School of Data Science, Pusan National University, Busan, South Korea
| | - Seoyeong Ahn
- Department of Information Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, Yangsan, South Korea
| | - Jieun Oh
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Cinoo Kang
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Ayoung Kim
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Dohoon Kwon
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Sojin Ahn
- Graduate School of Data Science, Pusan National University, Busan, South Korea
| | - Jiwoo Park
- Department of Information Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, Yangsan, South Korea
| | - Jinah Park
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Ejin Kim
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Ho Kim
- Department of Information Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, Yangsan, South Korea
| | - Whanhee Lee
- School of Biomedical Convergence Engineering, College of Information and Biomedical Engineering, Pusan National University, 49-Budandaehak-Ro, Yangsan, Gyeongsangnam-do, South Korea.
- Research and Management Center for Health Risk of Particulate Matter, Seoul, South Korea.
| |
Collapse
|
9
|
Park J, Oh J, Yoon H, Kim A, Kang C, Kwon D, Park J, Kim H, Lee W. Association between fine particulate matter (PM2.5) and violence cases in South Korea: A nationwide time-stratified care-crossover study. PLoS One 2024; 19:e0315914. [PMID: 39689126 DOI: 10.1371/journal.pone.0315914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024] Open
Abstract
Several studies reported the roles of short-term exposure to fine particulate matter (PM2.5) on violent behaviors; however, existing findings had a limitation in assessing the population-representative association between violence and PM2.5 due to the limited data availability: most studies have been based on homicides in monitored urban areas. This study collected violence data from the National Hospital Discharge In-depth Injury Survey in South Korea (2015-2019), based on population-representative samples. To cover unmonitored areas, we used the daily modeled PM2.5, the predicted result driven by a machine-learning ensemble model covering all inland districts in South Korea (R2>0.94). We evaluated the national association between short-term exposure to PM2.5 and violence cases with a time-stratified case-crossover design. A total of 2,867 violence cases were included. We found an approximately linear association between short-term exposure to PM2.5 (lag 0-2 days) and an increased risk of violence, with an estimated odd ratio (OR) per 10 μg/m3 of PM2.5 of 1.07 with 95% CI: 1.02-1.12. This relationship was more prominent in males and individuals aged 64 years or less than in females and individuals aged 65 years or older for the most part. The estimated excess fraction of violence cases attributable to PM2.5 was 14.53% (95% CI: 4.54%-22.92%), and 6.42% (95% CI: 1.97%-10.26%) of the excess violence was attributable to non-compliance with the WHO guidelines (daily PM2.5 > 15 μg/m3). Our findings might be evidence of the need to establish elaborate action plans and stricter air quality guidelines to reduce the hazardous impacts of PM2.5 on violence in South Korea.
Collapse
Affiliation(s)
- Jiwoo Park
- Department of Information Convergence Engineering, Pusan National University, Yangsan, South Korea
| | - Jieun Oh
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Hyewon Yoon
- Graduate School of Data Science, Pusan National University, Pusan, South Korea
| | - Ayoung Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Cinoo Kang
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Dohoon Kwon
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Jinah Park
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Ho Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Whanhee Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan, South Korea
- Research and Management Center for Health Risk of Particulate Matter, Seoul, Republic of Korea
| |
Collapse
|
10
|
Nawa N, Nishimura H, Fushimi K, Fujiwara T. Association between heat exposure and Kawasaki disease: A time-stratified case-crossover study. ENVIRONMENTAL RESEARCH 2024; 263:120231. [PMID: 39490545 DOI: 10.1016/j.envres.2024.120231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Nationwide studies investigating the association between daily mean temperature and Kawasaki disease are lacking. This study aimed to examine the association between ambient temperature and Kawasaki disease by utilizing daily data from nationwide administrative claims databases. The daily number of Kawasaki disease patients younger than 15 years old, who were hospitalized from 2011 to 2022, was extracted from the nationwide administrative claims database of hospitalizations in Japan. Daily mean temperature data and relative humidity data were obtained from the Japan Meteorological Agency. Since the exposure of interest includes heat, hospitalizations during the five warmest months (May through September) were used for analysis. A time-stratified case-crossover study with conditional quasi-Poisson regression analysis was used to estimate the relative risk (RR) of weather exposure for Kawasaki disease hospitalization with a lag of 0-5 days by prefecture. Relative humidity was included in the model simultaneously to control for its potential confounding effect. Random-effects meta-analysis was used to estimate pooled RRs. There was a total of 48,784 cases of Kawasaki disease hospitalization during the study period, of which 87.9% were under 5 years of age. Exposure to high daily mean temperatures was associated with an increased risk of hospitalization for Kawasaki disease. Specifically, exposure to extreme high daily mean temperatures (99th percentile high temperature) was associated with higher risk of hospitalization by 33% (RR 1.33, 95% confidence interval (CI):1.08, 1.65). Similar results were obtained from sensitivity analysis. Future research should elucidate the mechanisms by which high temperature is associated with hospitalization for Kawasaki disease.
Collapse
Affiliation(s)
- Nobutoshi Nawa
- Department of Public Health, Institute of Science Tokyo, Tokyo, Japan.
| | - Hisaaki Nishimura
- Department of Public Health, Institute of Science Tokyo, Tokyo, Japan
| | - Kiyohide Fushimi
- Department of Health Policy and Informatics, Institute of Science Tokyo, Tokyo, Japan
| | - Takeo Fujiwara
- Department of Public Health, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Dos Santos Silva JC, Potgieter-Vermaak S, Medeiros SHW, da Silva LV, Ferreira DV, Godoi AFL, Yamamoto CI, Godoi RHM. A fingerprint of source-specific health risk of PM 2.5-bound components over a coastal industrial city. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136369. [PMID: 39522203 DOI: 10.1016/j.jhazmat.2024.136369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The influence of specific local land-use activities (continuously redistributing elements across environments) and environmental conditions (altering the chemical composition of airborne particulate matter) on the intrinsic health risk of PM2.5 exposure is sparsely reported. To fill this gap, we employed a novel integrated approach to address the influence of short-term changes in source-specific PM2.5 composition on the exposure-response risk, while controlling for weather conditions. We combine receptor-based source apportionment with conditional logistic regression in a space-time-stratified case-crossover design. This approach is different from previous studies as it: i) controls the impact of spatiotemporal variations in air pollution and human mobility using multilocation-specific fixed and disjointed space-time strata ii) addresses the spatial heterogeneity of personal exposure separating its variable effect from other predictors by allowing different baseline hazards for each space-time stratum; iii) aligns case/control periods with strong/regular episodes of source-specific PM-multipollutant fingerprint contributions rather than health outcomes. This enabled comprehensive examination of the association between source-specific PM2.5-bound species and cardiorespiratory disease hospitalizations. The epidemiological findings were that primary anthropogenic emissions [industrial (ORs 2.5 - 4.8)] were associated with higher 1-day moving average PM-induced risks. Natural-related sources [fresh / aged sea salt aerosol, dust, soil resuspension] and secondary sulfate formation were consistently associated with higher health risks (ORs 1.0 - 1.54) after 1 to 5-days since exposure. The results emphasize the importance of source-specific air quality management in complex areas and our research provides an adaptable universal tool to support targeted place-based policy interventions to mitigate air pollution impacts on health.
Collapse
Affiliation(s)
| | - Sanja Potgieter-Vermaak
- Ecology & Environment Research Centre, Department of Natural Science, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom; Molecular Science Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Sandra Helena Westrupp Medeiros
- Department of Environmental and Sanitary Engineering, University of the Region of Joinville, Joinville, Santa Catarina, Brazil
| | - Luiz Vitor da Silva
- Department of Environmental and Sanitary Engineering, University of the Region of Joinville, Joinville, Santa Catarina, Brazil
| | - Danielli Ventura Ferreira
- Department of Environmental and Sanitary Engineering, University of the Region of Joinville, Joinville, Santa Catarina, Brazil
| | | | - Carlos Itsuo Yamamoto
- Department of Chemical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ricardo Henrique Moreton Godoi
- Postgraduate Program in Water Resources and Environmental Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil; Department of Environmental Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil; Department of Chemical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
12
|
Wang Y, Wang Z, Zhang Y, Zhang J, Shen J, Tan Y, Zhang Y, Peng M, Zheng H, Zhang Y. Developing and validating intracity spatiotemporal air quality health index in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175556. [PMID: 39153638 DOI: 10.1016/j.scitotenv.2024.175556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Recently pilot published city-level air quality health index (AQHI) provides a useful tool for communicating short-term health risks of ambient air pollution, but fails to account for intracity spatial heterogeneity in exposure and associated population health impacts. This study aims to develop the intracity spatiotemporal AQHI (ST-AQHI) via refined air pollution-related health risk assessments. METHODS A three-stage analysis was conducted through integrating province-wide death surveillance data and high-resolution gridded estimates of air pollution and climate factors spanning 2016-2019 in Jiangsu Province, eastern China. First, an individual-level case-crossover design was employed to quantify the short-term risk of nonaccidental mortality associated with residential exposure to individual pollutant (i.e., PM2.5, NO2, O3, and SO2). Second, we accumulated and scaled the excess risks arising from multiple pollutants to formulate daily gridded ST-AQHI estimates at 0.1° × 0.1°, dividing exposure-related risks into low (0-3), moderate (4-6), high (7-9), and extreme high (10+) levels. Finally, the effectiveness of ST-AQHI as composite risk communication was validated through checking the dose-response associations of individual ST-AQHI exposure with deaths from nonaccidental and major cardiopulmonary causes via repeating case-crossover analyses. RESULTS We analyzed a total of 1,905,209 nonaccidental death cases, comprising 785,567 from circulatory diseases and 247,336 from respiratory diseases. In the first-stage analysis, for each 10-μg/m3 rise in PM2.5, NO2, O3, and SO2 exposure at lag-01 day, population risk of nonaccidental death was increased by 0.8% (95% confidence interval: 0.7%, 0.9%), 1.9% (1.7%, 2.0%), 0.4% (0.3%, 0.5%), and 4.1% (3.7%, 4.5%), respectively. Spatiotemporal distribution of ST-AQHI exhibited a consistent declining trend throughout the study period (2016-2019), with annual average ST-AQHI decreasing from 5.2 ± 1.3 to 4.0 ± 1.0 and high-risk days dropping from 15.8% (58 days) to 1.6% (6 days). Exposure associated health risks showed great intracity- and between-city heterogeneities. In the validation analysis, ST-AQHI demonstrated approximately linear, threshold-free associations with multiple death events from nonaccidental and major cardiopulmonary causes, suggesting excellent performance in predicting exposure-related health risks. Specifically, each 1-unit rise in ST-AQHI was significantly associated with an excess risk of 2.0% (1.8%, 2.1%) for nonaccidental mortality, 2.3% (2.1%, 2.6%) for overall circulatory mortality, and 2.7% (2.3%, 3.1%) for overall respiratory mortality, as well as 1.7%-3.0% for major cardiopulmonary sub-causes. CONCLUSIONS ST-AQHI developed in this study performed well in predicting intracity spatiotemporal heterogeneity of death risks related to multiple air pollutants, and may hold significant practical importance in communicating air pollution-related health risks to the public at the community scales.
Collapse
Affiliation(s)
- Yixiang Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhen Wang
- Department of Pediatrics, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yuanyuan Zhang
- Wuhan Center for Disease Control and Prevention, Wuhan 430022, China
| | - Jingjing Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jiajun Shen
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuxi Tan
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yalin Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Minjin Peng
- Department of Outpatient, Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
13
|
Wesselink AK, Gause EL, Spangler KR, Hystad P, Kirwa K, Willis MD, Wellenius GA, Wise LA. Exposure to Ambient Heat and Risk of Spontaneous Abortion: A Case-Crossover Study. Epidemiology 2024; 35:864-873. [PMID: 39058555 DOI: 10.1097/ede.0000000000001774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
BACKGROUND Few epidemiologic studies have examined the association of ambient heat with spontaneous abortion, a common and devastating pregnancy outcome. METHODS We conducted a case-crossover study nested within Pregnancy Study Online, a preconception cohort study (2013-2022). We included all participants reporting spontaneous abortion (N = 1,524). We defined the case window as the 7 days preceding the event and used time-stratified referent selection to select control windows matched on calendar month and day of week. Within each 7-day case and control window, we measured the mean, maximum, and minimum of daily maximum outdoor air temperatures. We fit splines to examine nonlinear relationships across the entire year and conditional logistic regression to estimate odds ratios (ORs) and 95% confidence interval (CI) of spontaneous abortion with increases in temperature during the warm season (May-September) and decreases during the cool season (November-March). RESULTS We found evidence of a U-shaped association between outdoor air temperature and spontaneous abortion risk based on year-round data. When restricting to warm season events (n = 657), the OR for a 10-percentile increase in the mean of lag 0-6 daily maximum temperatures was 1.1 (95% CI: 0.96, 1.2) and, for the maximum, 1.1 (95% CI: 0.99, 1.2). The OR associated with any extreme heat days (>95th county-specific percentile) in the preceding week was 1.2 (95% CI: 0.95, 1.5). Among cool season events (n = 615), there was no appreciable association between lower temperatures and spontaneous abortion risk. CONCLUSION Our study provides evidence of an association between high outdoor temperatures and the incidence of spontaneous abortion.
Collapse
Affiliation(s)
- Amelia K Wesselink
- From the Department of Epidemiology, Boston University School of Public Health, Boston, MA
- Center for Climate and Health, Boston University School of Public Health, Boston, MA
| | - Emma L Gause
- Center for Climate and Health, Boston University School of Public Health, Boston, MA
| | - Keith R Spangler
- Center for Climate and Health, Boston University School of Public Health, Boston, MA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | - Perry Hystad
- College of Health, Oregon State University, Corvallis, OR
| | - Kipruto Kirwa
- Center for Climate and Health, Boston University School of Public Health, Boston, MA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | - Mary D Willis
- From the Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Gregory A Wellenius
- Center for Climate and Health, Boston University School of Public Health, Boston, MA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA
| | - Lauren A Wise
- From the Department of Epidemiology, Boston University School of Public Health, Boston, MA
| |
Collapse
|
14
|
Wade TJ, Herbert C. Weather conditions and legionellosis: a nationwide case-crossover study among Medicare recipients. Epidemiol Infect 2024; 152:e125. [PMID: 39417401 PMCID: PMC11502464 DOI: 10.1017/s0950268824000979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 10/19/2024] Open
Abstract
Legionellosis is a respiratory infection caused by Legionella sp. that is found in water and soil. Infection may cause pneumonia (Legionnaires' Disease) and a milder form (Pontiac Fever). Legionella colonizes water systems and results in exposure by inhalation of aerosolized bacteria. The incubation period ranges from 2 to 14 days. Precipitation and humidity may be associated with increased risk. We used Medicare records from 1999 to 2020 to identify hospitalizations for legionellosis. Precipitation, temperature, and relative humidity were obtained from the PRISM Climate Group for the zip code of residence. We used a time-stratified bi-directional case-crossover design with lags of 20 days. Data were analyzed using conditional logistic regression and distributed lag non-linear models. A total of 37 883 hospitalizations were identified. Precipitation and relative humidity at lags 8 through 13 days were associated with an increased risk of legionellosis. The strongest association was precipitation at day 10 lag (OR = 1.08, 95% CI = 1.05-1.11 per 1 cm). Over 20 days, 3 cm of precipitation increased the odds of legionellosis over four times. The association was strongest in the Northeast and Midwest and during summer and fall. Precipitation and humidity were associated with hospitalization among Medicare recipients for legionellosis at lags consistent with the incubation period for infection.
Collapse
Affiliation(s)
- Timothy J. Wade
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA
| | - Carly Herbert
- Oak Ridge Associated Universities, United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA
| |
Collapse
|
15
|
Li L, Wang W, Chang HH, Alonso A, Liu Y. Wildland Fire-Related Smoke PM 2.5 and Cardiovascular Disease ED Visits in the Western United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.08.24314367. [PMID: 39484248 PMCID: PMC11527094 DOI: 10.1101/2024.10.08.24314367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background The impact of short-term exposure to fine particulate matter (PM 2.5 ) due to wildland fire smoke on the risk of cardiovascular disease (CVD) remains unclear. We investigated the association between short-term exposure to wildfire smoke PM 2.5 and Emergency Department (ED) visits for acute CVD in the Western United States from 2007 to 2018. Methods ED visits for primary or secondary diagnoses of atrial fibrillation (AF), acute myocardial infarction (AMI), heart failure (HF), stroke, and total CVD were obtained from hospital associations or state health departments in California, Arizona, Nevada, Oregon, and Utah. ED visits included those that were subsequently hospitalized. Daily smoke, non-smoke, and total PM 2.5 were estimated using a satellite-driven multi-stage model with a high resolution of 1 km. The data were aggregated to the zip code level and a case-crossover study design was employed. Temperature, relative humidity, and day of the year were included as covariates. Results We analyzed 49,759,958 ED visits for primary or secondary CVD diagnoses, which included 6,808,839 (13.7%) AFs, 1,222,053 (2.5%) AMIs, 7,194,474 (14.5%) HFs, and 808,396 (1.6%) strokes. Over the study period from 2007-01-01 to 2018-12-31, the mean smoke PM 2.5 was 1.27 (Q1: 0, Q3: 1.29) µg/m 3 . A 10 µg/m 3 increase in smoke PM 2.5 was associated with a minuscule decreased risk for AF (OR 0.994, 95% CI 0.991-0.997), HF (OR 0.995, 95% CI 0.992-0.998), and CVD (OR 0.9997, 95% CI 0.996-0.998), but not for AMI and stroke. Adjusting for non-smoke PM 2.5 did not alter these associations. A 10 µg/m 3 increase in total PM 2.5 was linked to a small increased risk for all outcomes except stroke (OR for CVD 1.006, 95% CI 1.006-1.007). Associations were similar across sex and age groups. Conclusion We identified an unexpected slight lower risk of CVD ED visits associated with short-term wildfire smoke PM 2.5 exposure. Whether these findings are due to methodological issues, behavioral changes, or other factors requires further investigation.
Collapse
|
16
|
Bai L, Jiang Y, Wang K, Xie C, Yan H, You Y, Liu H, Chen J, Wang J, Wei C, Li Y, Lei J, Su H, Sun S, Deng F, Guo X, Wu S. Ambient Air Pollution and Hospitalizations for Schizophrenia in China. JAMA Netw Open 2024; 7:e2436915. [PMID: 39356505 PMCID: PMC11447564 DOI: 10.1001/jamanetworkopen.2024.36915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/27/2024] [Indexed: 10/03/2024] Open
Abstract
Importance Schizophrenia episodes may be triggered by short-term environmental stimuli. Short-term increases in ambient air pollution levels may elevate the risk of schizophrenia episodes, yet few epidemiologic studies have examined this association. Objective To investigate whether short-term increases in air pollution levels are associated with an additional risk of schizophrenia episodes, independent of absolute air pollution concentrations, and whether sustained increases in air pollution levels for several days are associated with more pronounced risks of schizophrenia episodes. Design, Setting, and Participants This nationwide, population-based, time-stratified case-crossover study was performed based on hospitalization records for schizophrenia across 295 administrative divisions of prefecture-level or above cities in China. Records were extracted from 2 major health insurance systems from January 1, 2013, to December 31, 2017. Thirty-six cities with a small number of schizophrenia hospitalizations (n < 50) were excluded. Data analysis for this study was performed from January to March 2024. Exposure Daily absolute concentrations of fine particulate matter (PM2.5), inhalable particulate matter (PM10), nitrogen dioxide, sulfur dioxide, ozone, and carbon monoxide were collected. Air pollution increases between neighboring days (APINs) were generated as the differences in absolute air pollution concentrations on the current day minus that on the previous day. Sustained increases (APIN ≥5 μg/m3 for PM2.5 and PM10, APIN ≥1 μg/m3 for nitrogen dioxide and sulfur dioxide, and APIN ≥0.05 mg/m3 for carbon monoxide) lasting for 1 or more to 4 or more days were defined for different air pollutants. Main Outcome and Measure Patients with schizophrenia episodes were identified by principal discharge diagnoses of schizophrenia. A conditional logistic regression model was used to capture the associations of absolute concentrations, APINs, and sustained increase events for different air pollutants with risks of schizophrenia hospitalizations. Results The study included 817 296 hospitalization records for schizophrenia across 259 Chinese cities (30.6% aged 0-39 years, 56.4% aged 40-64 years, and 13.0% aged ≥65 years; 55.04% male). After adjusting for the absolute concentrations of respective air pollutants, per-IQR increases in 6-day moving average (lag0-5) APINs of PM2.5, PM10, nitrogen dioxide, sulfur dioxide, and carbon monoxide were associated with increases of 2.37% (95% CI, 0.88%-3.88%), 2.95% (95% CI, 1.46%-4.47%), 4.61% (95% CI, 2.93%-6.32%), 2.16% (95% CI, 0.59%-3.76%), and 2.02% (95% CI, 0.39%-3.68%) in schizophrenia hospitalizations, respectively. Greater risks of schizophrenia hospitalizations were associated with sustained increases in air pollutants lasting for longer durations up to 4 or more days. Conclusions and Relevance This case-crossover study of the association between ambient air pollution increases and schizophrenia hospitalizations provides novel evidence that short-term increases in ambient air pollution levels were positively associated with an elevated risk of schizophrenia episodes. Future schizophrenia prevention practices should pay additional attention to APINs, especially sustained increases in air pollution levels for longer durations, besides the absolute air pollution concentrations.
Collapse
Affiliation(s)
- Lijun Bai
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Yunxing Jiang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Cuiyao Xie
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Hairong Yan
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Yu You
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Huimeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Juan Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Jinxi Wang
- Yunyi Health Technology Co Ltd, Beijing, China
| | - Chen Wei
- Yunyi Health Technology Co Ltd, Beijing, China
| | - Yinxiang Li
- China-Europe Association for Technical and Economic Cooperation, Beijing, China
| | - Jian Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shiquan Sun
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Center for Single-Cell Omics and Health, Key Laboratory of Trace Elements and Endemic Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi’an, Shaanxi, China
| |
Collapse
|
17
|
Ding F, Liu X, Hu Z, Liu W, Zhang Y, Zhao Y, Zhao S, Zhao Y. Association between ambient temperature, PM 2.5 and tuberculosis in Northwest China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3173-3187. [PMID: 38153391 DOI: 10.1080/09603123.2023.2299236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Existing evidence suggested that the risk of tuberculosis (TB) infection was associated to the variations in temperature and PM2.5. A total of 9,111 cases of TB were reported in Ningxia Hui Autonomous Region, China from 2013 to 2015 on a daily basis, and 57.2% of them were male. The TB risk was more prominent for a lower temperature in males (RR of 1.724, 95% CI: 1.241, 2.394), the aged over 64 years (RR of 2.241, 95% CI: 1.554, 3.231), and the high mobility occupation subpopulation (RR of 2.758, 95% CI: 1.745, 4.359). High concentration of PM2.5 showed a short-term effect and was only associated with an increased risk in the early stages of exposure for the female, and aged 36-64 years group. There were 15.06% (1370 cases) of cases of TB may be attributable to the temperature, and 2.94% (268 cases) may be attributable to the increase of PM2.5 exposures. Low temperatures may be associated with significantly increase in the risk of TB, and high PM2.5 concentrations have a short-term association on increasing the risk of TB. Strengthening the monitoring and regular prevention and control of high risk groups will provide scientific guidance to reduce the incidence of TB.
Collapse
Affiliation(s)
- Fan Ding
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Xianglong Liu
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Zengyun Hu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Weichen Liu
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Yajuan Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Yi Zhao
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, China
- Centre for Health Systems and Policy Research, Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Yu Zhao
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
18
|
Zhao T, Hopke PK, Utell MJ, Croft DP, Thurston SW, Lin S, Ling FS, Chen Y, Yount CS, Rich DQ. A case-crossover study of ST-elevation myocardial infarction and organic carbon and source-specific PM 2.5 concentrations in Monroe County, New York. Front Public Health 2024; 12:1369698. [PMID: 39148650 PMCID: PMC11324441 DOI: 10.3389/fpubh.2024.1369698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Background Previous work reported increased rates of cardiovascular hospitalizations associated with increased source-specific PM2.5 concentrations in New York State, despite decreased PM2.5 concentrations. We also found increased rates of ST elevation myocardial infarction (STEMI) associated with short-term increases in concentrations of ultrafine particles and other traffic-related pollutants in the 2014-2016 period, but not during 2017-2019 in Rochester. Changes in PM2.5 composition and sources resulting from air quality policies (e.g., Tier 3 light-duty vehicles) may explain the differences. Thus, this study aimed to estimate whether rates of STEMI were associated with organic carbon and source-specific PM2.5 concentrations. Methods Using STEMI patients treated at the University of Rochester Medical Center, compositional and source-apportioned PM2.5 concentrations measured in Rochester, a time-stratified case-crossover design, and conditional logistic regression models, we estimated the rate of STEMI associated with increases in mean primary organic carbon (POC), secondary organic carbon (SOC), and source-specific PM2.5 concentrations on lag days 0, 0-3, and 0-6 during 2014-2019. Results The associations of an increased rate of STEMI with interquartile range (IQR) increases in spark-ignition emissions (GAS) and diesel (DIE) concentrations in the previous few days were not found from 2014 to 2019. However, IQR increases in GAS concentrations were associated with an increased rate of STEMI on the same day in the 2014-2016 period (Rate ratio [RR] = 1.69; 95% CI = 0.98, 2.94; 1.73 μg/m3). In addition, each IQR increase in mean SOC concentration in the previous 6 days was associated with an increased rate of STEMI, despite imprecision (RR = 1.14; 95% CI = 0.89, 1.45; 0.42 μg/m3). Conclusion Increased SOC concentrations may be associated with increased rates of STEMI, while there seems to be a declining trend in adverse effects of GAS on triggering of STEMI. These changes could be attributed to changes in PM2.5 composition and sources following the Tier 3 vehicle introduction.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
- Center for Air and Aquatic Resources Engineering and Sciences, Clarkson University, Potsdam, NY, United States
| | - Mark J Utell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Daniel P Croft
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Shao Lin
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, Rensselaer, NY, United States
| | - Frederick S Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Catherine S Yount
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
19
|
Hart JE, Hu CR, Yanosky JD, Holland I, Iyer HS, Borchert W, Laden F, Albert CM. Short-term exposures to temperature and risk of sudden cardiac death in women: A case-crossover analysis in the Nurses' Health Study. Environ Epidemiol 2024; 8:e322. [PMID: 38983881 PMCID: PMC11233109 DOI: 10.1097/ee9.0000000000000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Background Sudden cardiac death (SCD) is a major source of mortality and is the first manifestation of heart disease for most cases. Thus, there is a definite need to identify risk factors for SCD that can be modified on the population level. Short-term exposures to temperature have been implicated as a potential risk factor. Our objective was to determine if short-term temperature exposures were associated with increased risk of SCD in a US-based time-stratified case-crossover study. Methods A total of 465 cases of SCD were identified among participants of the prospective Nurses' Health Study (NHS). Control days were selected from all other matching days of the week within the same month as the case day. Average ambient temperature on the current day (Lag0) and preceding 27 days (Lags1-27) was determined at the residence level using 800-m resolution estimates. Conditional logistic distributed lag nonlinear models (DLNMs) were used to assess the relative risk (RR) of the full range of temperature exposures over the lag period. Results Warmer exposures in the days before event and colder temperatures 21-28 days prior were associated with increased risks of SCD. These results were driven by associations in regions other than the Northeast and among married women. Conclusions Both warm and cold ambient temperatures are suggestively associated with risks of SCD among middle-aged and older women living across the United States.
Collapse
Affiliation(s)
- Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Cindy R. Hu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jeff D. Yanosky
- Department of Public Health Sciences, College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Isabel Holland
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Hari S. Iyer
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
- Section of Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - William Borchert
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Christine M. Albert
- Divisions of Preventative Medicine and Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
20
|
Wen T, Puett RC, Liao D, Kanter J, Mittleman MA, Lanzkron SM, Yanosky JD. Short-term air pollution levels and sickle cell disease hospital encounters in South Carolina: A case-crossover analysis. ENVIRONMENTAL RESEARCH 2024; 252:118766. [PMID: 38583660 DOI: 10.1016/j.envres.2024.118766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Sickle cell disease (SCD) is a genetic disorder and symptoms may be sensitive to environmental stressors. Although it has been hypothesized that exposure to outdoor air pollution could trigger acute SCD events, evidence is limited. METHODS We obtained SCD administrative data on hospital encounters in South Carolina from 2002 to 2019. We estimated outdoor air pollutant (particulate matter<2.5 μm (PM2.5), ozone (O3), and PM2.5 elemental carbon (EC) concentrations at residential zip codes using spatio-temporal models. Using a random bi-directional, fixed-interval case-crossover study design, we investigated the relationship between air pollution exposure over 1-, 3-, 5-, 9-, and14-day periods with SCD hospital encounters. RESULTS We studied 8410 patients with 144,129 hospital encounters. We did not observe associations among all patients with SCD and adults for PM2.5, O3, and EC. We observed positive associations among children for 9- and 14-day EC (OR: 1.05 (95% confidence interval (CI): 1.02, 1.08) and OR: 1.05 (95% CI: 1.02, 1.09), respectively) and 9- and 14-day O3 (OR: 1.04 (95%CI: 1.00, 1.08)) for both. CONCLUSIONS Our findings suggest that short-term (within two-weeks) levels of EC and O3 and may be associated with SCD hospital encounters among children. Two-pollutant model results suggest that EC is more likely responsible for effects on SCD than O3. More research is needed to confirm our findings.
Collapse
Affiliation(s)
- Tong Wen
- Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Robin C Puett
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Julie Kanter
- Division of Hematology and Oncology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Murray A Mittleman
- Department of Epidemiology, TH Chan Harvard School of Public Health, Boston, MA, USA
| | - Sophie M Lanzkron
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jeff D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
21
|
do Nascimento FP, Gouveia N. Ambient air pollution and mortality: The role of socioeconomic conditions. Environ Epidemiol 2024; 8:e297. [PMID: 38617429 PMCID: PMC11008627 DOI: 10.1097/ee9.0000000000000297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/25/2024] [Indexed: 04/16/2024] Open
Abstract
Background There is a vast body of literature covering the association between air pollution exposure and nonaccidental mortality. However, the role of socioeconomic status (SES) in this relationship is still not fully understood. Objectives We investigated if individual and contextual SES modified the relationship between short-term exposure to ozone (O3), nitrogen dioxide (NO2), and particulate matter with aerodynamic diameter <10 µm (PM10) on cardiovascular, respiratory, and all nonaccidental mortality. Methods We conducted a time-stratified case-crossover study. Analyses were based on information on 280,685 deaths from 2011 to 2015 in the city of São Paulo. Education was used as an individual SES, and information on the district of residence was used to build a contextual SES. Exposure to PM10, NO2, and O3 was accessed from monitoring stations and linked to each case based on the date of death. Conditional logistic regression models were used to estimate the effects of air pollutants, and interaction terms were added to access the effect modification of SES. Results Individuals with lower education had an increased chance of dying for all nonaccidental outcomes (1.54% [0.91%, 2.14%]) associated with exposure to PM10. Individuals living in lower SES areas had an increased chance of dying for nonaccidental (0.52% [0.16%, 0.88%]), cardiovascular (1.17% [0.88%, 1.46%]), and respiratory (1.70% [0.47%, 2.93%]) causes owing to NO2 exposure. Conclusion Exposure to air pollutants increases the chance of dying by nonaccidental, cardiovascular, and respiratory causes. Lower educational levels and living on lower contextual SES increased the risk of mortality associated with air pollution exposure.
Collapse
Affiliation(s)
| | - Nelson Gouveia
- School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Terada S, Nishimura H, Miyasaka N, Fujiwara T. Ambient temperature and preterm birth: A case-crossover study. BJOG 2024; 131:632-640. [PMID: 37984435 DOI: 10.1111/1471-0528.17720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE To investigate the association between ambient temperature and preterm birth (PTB) and to estimate the population attributable fraction (PAF) of PTBs due to low and high temperatures. DESIGN Time-stratified case-crossover design. SETTING Japan (46 prefectures, excluding Okinawa), 2011-2020. SAMPLE 214 050 PTBs registered in the Japan Perinatal Registry Network database among 1 908 168 singleton live births. METHODS A quasi-Poisson regression model with a distributed lag nonlinear model was employed to assess the associations between daily mean temperature and PTBs for a lag of 0-27 days in each prefecture. A random effects meta-analysis was conducted by combining effect estimates from the 46 prefectures to estimate pooled relative risks (RRs). The PAFs of the PTBs due to below or above the mean of the 46 median temperatures (16.0°C) were calculated. MAIN OUTCOME MEASURES Preterm singleton live births. RESULTS The association between daily mean temperature and PTB risk exhibited a U-shaped curve. The adjusted RRs were 1.15 (95% confidence interval [CI] 1.05-1.25) at the mean of the 1st percentiles (0.8°C) and 1.08 (95% CI 1.00-1.17) at the mean of the 99th percentiles (30.2°C) of 46 prefectures, with 16.0°C as the reference temperature. Approximately 2.3% (95% CI 0.6-4.0) of PTBs were attributable to low temperatures. CONCLUSIONS Both low and possibly high temperatures were associated with an increased risk of PTBs. These findings may help to inform preventive measures for pregnant women.
Collapse
Affiliation(s)
- Shuhei Terada
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hisaaki Nishimura
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoyuki Miyasaka
- Department of Obstetrics and Gynaecology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeo Fujiwara
- Department of Global Health Promotion, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
23
|
Ma Y, Zhang X, Zhang Y, Du J, Chu N, Wei J, Cui L, Zhou C. The threaten of typhoons to the health of residents in inland areas: a study on the vulnerability of residents to death risk during typhoon "Lekima" : In Jinan, China. BMC Public Health 2024; 24:606. [PMID: 38409004 PMCID: PMC10895747 DOI: 10.1186/s12889-024-17667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Studies had suggested increased risk of death of residents was associated with typhoons, particularly coastal regions. However, these findings ignored the impact of inland typhoons on the health of residents, especially the indirect death risk caused by typhoons. This study aimed to investigate the acute death risk of residents during inland typhoon Lekima in Jinan, further identify vulnerable populations and areas. METHODS We selected the daily death from 11 to 27th August 2019 in Jinan as case period, and conducted a time-stratified case-crossover design to match the contemporaneous data from 2016 to 2018 as control period. We used the generalized linear Poisson models to estimate the related effects of death risk during typhoon Lekima and lag days. RESULTS During the Lekima typhoon month, there were 3,366 deaths occurred in Jinan. Compared to unexposed periods, the acute death risk of non-accidental diseases (especially circulatory diseases), female and the older adults increased significantly in the second week after the typhoon. The maximum significant effect of circulatory disease deaths, female and older adult deaths were appeared on lag9, lag9, and lag13 respectively. And the typhoon-associated RR were 1.19 (95%CI:1.05,1.34), 1.28 (95%CI:1.08,1.52), and 1.22 (95%CI:1.06,1.42) respectively. The acute death risk of residents living in TQ and CQ increased significantly on Lag2 and Lag6 after the typhoon, respectively, while those living in LX, LC, HY, JY, and SH occurred from Lag 8 to Lag 13 after the typhoon. LC lasted the longest days. CONCLUSIONS Typhoons would increase the vulnerability of residents living in Jinan which mainly occurred from the seventh day after the typhoon. Residents suffering from non-accidental diseases (circulatory diseases), female and the older adults were more vulnerable. The vulnerability of TQ and CQ occurred on Lag2 and Lag6 after typhoon Lekima, respectively, and the other areas except ZQ and PY occurred from Lag 8 to Lag 13. LC lasted the longest duration. Our findings emphasized the importance of the emergency response, which would help policymakers to identify vulnerable regions and populations accurately during typhoons and formulate the emergency response plan.
Collapse
Affiliation(s)
- Yiwen Ma
- School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wen-hua-xi Road, Jinan, Shandong, 250012, China
| | - Xianhui Zhang
- Jinan Municipal Center for Disease Control and Prevention, affiliated to Shandong University, 2 Weiliu Road, Huaiyin District, Jinan, 250021, China
| | - Yingjian Zhang
- Jinan Municipal Center for Disease Control and Prevention, affiliated to Shandong University, 2 Weiliu Road, Huaiyin District, Jinan, 250021, China
| | - Jipei Du
- School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wen-hua-xi Road, Jinan, Shandong, 250012, China
| | - Nan Chu
- School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wen-hua-xi Road, Jinan, Shandong, 250012, China
| | - Jinli Wei
- School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wen-hua-xi Road, Jinan, Shandong, 250012, China
| | - Liangliang Cui
- Jinan Municipal Center for Disease Control and Prevention, affiliated to Shandong University, 2 Weiliu Road, Huaiyin District, Jinan, 250021, China.
| | - Chengchao Zhou
- School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wen-hua-xi Road, Jinan, Shandong, 250012, China.
- NHC Key Lab of Health Economics and Policy Research, Shandong University, 44 Wen-hua-xi Road, Jinan, Shandong, 250012, China.
- Institute of Health and Elderly Care, Shandong University, 44 Wen-hua-xi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
24
|
Stowell JD, Sun Y, Gause EL, Spangler KR, Schwartz J, Bernstein A, Wellenius GA, Nori-Sarma A. Warm season ambient ozone and children's health in the USA. Int J Epidemiol 2024; 53:dyae035. [PMID: 38553030 PMCID: PMC10980558 DOI: 10.1093/ije/dyae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/15/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Over 120 million people in the USA live in areas with unsafe ozone (O3) levels. Studies among adults have linked exposure to worse lung function and higher risk of asthma and chronic obstructive pulmonary disease (COPD). However, few studies have examined the effects of O3 in children, and existing studies are limited in terms of their geographic scope or outcomes considered. METHODS We leveraged a dataset of encounters at 42 US children's hospitals from 2004-2015. We used a one-stage case-crossover design to quantify the association between daily maximum 8-hour O3 in the county in which the hospital is located and risk of emergency department (ED) visits for any cause and for respiratory disorders, asthma, respiratory infections, allergies and ear disorders. RESULTS Approximately 28 million visits were available during this period. Per 10 ppb increase, warm-season (May through September) O3 levels over the past three days were associated with higher risk of ED visits for all causes (risk ratio [RR]: 0.3% [95% confidence interval (CI): 0.2%, 0.4%]), allergies (4.1% [2.5%, 5.7%]), ear disorders (0.8% [0.3%, 1.3%]) and asthma (1.3% [0.8%, 1.9%]). When restricting to levels below the current regulatory standard (70 ppb), O3 was still associated with risk of ED visits for all-cause, allergies, ear disorders and asthma. Stratified analyses suggest that the risk of O3-related all-cause ED visits may be higher in older children. CONCLUSIONS Results from this national study extend prior research on the impacts of daily O3 on children's health and reinforce the presence of important adverse health impacts even at levels below the current regulatory standard in the USA.
Collapse
Affiliation(s)
- Jennifer D Stowell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Yuantong Sun
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Emma L Gause
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Keith R Spangler
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health Boston, MA, USA
| | - Aaron Bernstein
- Division of General Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Gregory A Wellenius
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Amruta Nori-Sarma
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
25
|
Chen C, Schwarz L, Rosenthal N, Marlier ME, Benmarhnia T. Exploring spatial heterogeneity in synergistic effects of compound climate hazards: Extreme heat and wildfire smoke on cardiorespiratory hospitalizations in California. SCIENCE ADVANCES 2024; 10:eadj7264. [PMID: 38306434 PMCID: PMC10836726 DOI: 10.1126/sciadv.adj7264] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/29/2023] [Indexed: 02/04/2024]
Abstract
Extreme heat and wildfire smoke events are increasingly co-occurring in the context of climate change, especially in California. Extreme heat and wildfire smoke may have synergistic effects on population health that vary over space. We leveraged high-resolution satellite and monitoring data to quantify spatially varying compound exposures to extreme heat and wildfire smoke in California (2006-2019) at ZIP Code Tabulation Area (ZCTA) level. We found synergistic effects between extreme heat and wildfire smoke on daily cardiorespiratory hospitalizations at the state level. We also found spatial heterogeneity in such synergistic effects across ZCTAs. Communities with lower education attainment, lower health insurance coverage, lower income, lower proportion of automobile ownership, lower tree canopy coverage, higher population density, and higher proportions of racial/ethnic minorities experienced higher synergistic effects. This study highlights the need to incorporate compound hazards and environmental justice considerations into evidence-based policy development to protect populations from increasingly prevalent compound hazards.
Collapse
Affiliation(s)
- Chen Chen
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lara Schwarz
- Herbert Wertheim School of Public Health and Longevity Science, University of California San Diego, La Jolla, CA, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Noam Rosenthal
- Department of Environmental Health Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Miriam E. Marlier
- Department of Environmental Health Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Demoury C, Aerts R, Berete F, Lefebvre W, Pauwels A, Vanpoucke C, Van der Heyden J, De Clercq EM. Impact of short-term exposure to air pollution on natural mortality and vulnerable populations: a multi-city case-crossover analysis in Belgium. Environ Health 2024; 23:11. [PMID: 38267996 PMCID: PMC10809644 DOI: 10.1186/s12940-024-01050-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND The adverse effect of air pollution on mortality is well documented worldwide but the identification of more vulnerable populations at higher risk of death is still limited. The aim of this study was to evaluate the association between natural mortality (overall and cause-specific) and short-term exposure to five air pollutants (PM2.5, PM10, NO2, O3 and black carbon) and identify potential vulnerable populations in Belgium. METHODS We used a time-stratified case-crossover design with conditional logistic regressions to assess the relationship between mortality and air pollution in the nine largest Belgian agglomerations. Then, we performed a random-effect meta-analysis of the pooled results and described the global air pollution-mortality association. We carried out stratified analyses by individual characteristics (sex, age, employment, hospitalization days and chronic preexisting health conditions), living environment (levels of population density, built-up areas) and season of death to identify effect modifiers of the association. RESULTS The study included 304,754 natural deaths registered between 2010 and 2015. We found percentage increases for overall natural mortality associated with 10 μg/m3 increases of air pollution levels of 0.6% (95% CI: 0.2%, 1.0%) for PM2.5, 0.4% (0.1%, 0.8%) for PM10, 0.5% (-0.2%, 1.1%) for O3, 1.0% (0.3%, 1.7%) for NO2 and 7.1% (-0.1%, 14.8%) for black carbon. There was also evidence for increases of cardiovascular and respiratory mortality. We did not find effect modification by individual characteristics (sex, age, employment, hospitalization days). However, this study suggested differences in risk of death for people with preexisting conditions (thrombosis, cardiovascular diseases, asthma, diabetes and thyroid affections), season of death (May-September vs October-April) and levels of built-up area in the neighborhood (for NO2). CONCLUSIONS This work provided evidence for the adverse health effects of air pollution and contributed to the identification of specific population groups. These findings can help to better define public-health interventions and prevention strategies.
Collapse
Affiliation(s)
- Claire Demoury
- Risk and Health Impact Assessment, Sciensano, Brussels, Belgium.
| | - Raf Aerts
- Risk and Health Impact Assessment, Sciensano, Brussels, Belgium
- Division Ecology, Evolution and Biodiversity Conservation, KU Leuven, Louvain, Belgium
- Center for Environmental Sciences, University of Hasselt, Hasselt, Belgium
| | | | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Arno Pauwels
- Risk and Health Impact Assessment, Sciensano, Brussels, Belgium
- Health Information, Sciensano, Brussels, Belgium
| | | | | | - Eva M De Clercq
- Risk and Health Impact Assessment, Sciensano, Brussels, Belgium
| |
Collapse
|
27
|
He Q, Liu Y, Yin P, Gao Y, Kan H, Zhou M, Chen R, Li Y. Differentiating the impacts of ambient temperature on pneumonia mortality of various infectious causes: a nationwide, individual-level, case-crossover study. EBioMedicine 2023; 98:104854. [PMID: 38251462 PMCID: PMC10628343 DOI: 10.1016/j.ebiom.2023.104854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND It remains unknown how ambient temperature impact pneumonia of various infectious causes. METHODS Based on the national death registry covering all counties in Chinese mainland, we conducted an individual-level case-crossover study in China from 2013 to 2019. Exposures were assigned at residential addresses for each decedent. Conditional logistic regression model combined with distributed lag non-linear models were used to estimate the exposure-response associations. The attributable fractions due to non-optimum temperature were calculated after accounting for spatial and temporal patterns for the excess risks. FINDINGS The exposure-response curves were inversely J-shaped with both low and high temperature increasing the risks, and the effect of low temperature was stronger. Extremely low temperature was associated with higher magnitude of influenza-related pneumonia [relative risk (RR): 2.46, 95% confidence interval (CI): 1.62-3.74], than viral pneumonia (RR: 1.89, 95% CI: 1.55-2.30) and bacterial pneumonia (RR: 1.81, 95% CI: 1.56-2.09). The magnitudes of RRs associated with extremely high temperature were similar among the three categories of pneumonia. The mortality attributable fraction for influenza-related pneumonia (29.78%) was the highest. The effects were stronger in people of low education level or residence in the north. INTERPRETATION This nationwide study presents findings on the varied risk and burden of pneumonia mortality of various infectious causes, and highlights the susceptibility of influenza-related pneumonia to ambient low temperature. FUNDING This study is supported by the National Key Research and Development Program (2022YFC3702701), the Shanghai Municipal Science and Technology Commission (21TQ015) and Shanghai International Science and Technology Partnership Project (21230780200).
Collapse
Affiliation(s)
- Qinglin He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yunning Liu
- National Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Peng Yin
- National Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Maigeng Zhou
- National Center for Chronic Non-communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
28
|
Lv X, Shi W, Yuan K, Zhang Y, Cao W, Li C, Xu L, Wu L, Sun S, Hong F. Hourly Air Pollution Exposure and Emergency Hospital Admissions for Stroke: A Multicenter Case-Crossover Study. Stroke 2023; 54:3038-3045. [PMID: 37901948 DOI: 10.1161/strokeaha.123.044191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Daily exposure to ambient air pollution is associated with stroke morbidity and mortality; however, the association between hourly exposure to air pollutants and risk of emergency hospital admissions for stroke and its subtypes remains relatively unexplored. METHODS We obtained hourly concentrations of fine particulate matter (PM2.5), respirable particulate matter (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO) from the China National Environmental Monitoring Center. We conducted a time-stratified case-crossover study among 86 635 emergency hospital admissions for stroke across 10 hospitals in 3 cities (Jinhua, Hangzhou, and Zhoushan) in Zhejiang province, China, between January 1, 2016 and December 31, 2021. Using a conditional logistic regression combined with a distributed lag linear model, we estimated the association between hourly exposure to multiple air pollutants and risk of emergency hospital admissions for total stroke, ischemic stroke, hemorrhagic stroke, and undetermined type. RESULTS Hourly exposure to PM2.5, PM10, NO2, and SO2 was associated with an increased risk of hospital admissions for total stroke and ischemic stroke. The associations were most pronounced during the concurrent hour of exposure and lasted for ≈2 hours. We found that the risk was more pronounced among male patients or those aged <65 years old. CONCLUSIONS Our findings suggest that exposure to PM2.5, PM10, NO2, and SO2, but not CO and O3, is associated with emergency hospital admissions for total stroke or ischemic stroke shortly after exposure. Implementing targeted pollution emission reduction measures may have significant public health implications in controlling and reducing the burden of stroke.
Collapse
Affiliation(s)
- Xin Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China (X.L., W.S., K.Y., Y.Z., S.S.)
| | - Wanying Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China (X.L., W.S., K.Y., Y.Z., S.S.)
| | - Kun Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China (X.L., W.S., K.Y., Y.Z., S.S.)
| | - Yangchang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China (X.L., W.S., K.Y., Y.Z., S.S.)
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China (W.C.)
| | - Chunrong Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China (C.L.)
| | - Lufei Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Human Resources, Peking University Cancer Hospital and Institute, China (L.X.)
| | - Lizhi Wu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China (L.W.)
| | - Shengzhi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China (X.L., W.S., K.Y., Y.Z., S.S.)
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China (S.S., F.H.)
| | - Feng Hong
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China (S.S., F.H.)
| |
Collapse
|
29
|
Zhang R, Lai KY, Liu W, Liu Y, Ma X, Webster C, Luo L, Sarkar C. Associations between Short-Term Exposure to Ambient Air Pollution and Influenza: An Individual-Level Case-Crossover Study in Guangzhou, China. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127009. [PMID: 38078424 PMCID: PMC10711742 DOI: 10.1289/ehp12145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Influenza imposes a heavy burden on public health. Little is known, however, of the associations between detailed measures of exposure to ambient air pollution and influenza at an individual level. OBJECTIVE We examined individual-level associations between six criteria air pollutants and influenza using case-crossover design. METHODS In this individual-level time-stratified case-crossover study, we linked influenza cases collected by the Guangzhou Center for Disease Control and Prevention from 1 January 2013 to 31 December 2019 with individual residence-level exposure to particulate matter (PM 2.5 and PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), ozone (O 3 ) and carbon monoxide (CO). The exposures were estimated for the day of onset of influenza symptoms (lag 0), 1-7 d before the onset (lags 1-7), as well as an 8-d moving average (lag07), using a random forest model and linked to study participants' home addresses. Conditional logistic regression was developed to investigate the associations between short-term exposure to air pollution and influenza, adjusting for mean temperature, relative humidity, public holidays, population mobility, and community influenza susceptibility. RESULTS N = 108,479 eligible cases were identified in our study. Every 10 - μ g / m 3 increase in exposure to PM 2.5 , PM 10 , NO 2 , and CO and every 5 - μ g / m 3 increase in SO 2 over 8-d moving average (lag07) was associated with higher risk of influenza with a relative risk (RR) of 1.028 (95% CI: 1.018, 1.038), 1.041 (95% CI: 1.032, 1.049), 1.169 (95% CI: 1.151, 1.188), 1.004 (95% CI: 1.003, 1.006), and 1.134 (95% CI: 1.107, 1.163), respectively. There was a negative association between O 3 and influenza with a RR of 0.878 (95% CI: 0.866, 0.890). CONCLUSIONS Our findings suggest that short-term exposure to air pollution, except for O 3 , is associated with greater risk for influenza. Further studies are necessary to decipher underlying mechanisms and design preventive interventions and policies. https://doi.org/10.1289/EHP12145.
Collapse
Affiliation(s)
- Rong Zhang
- Healthy High Density Cities Lab, HKUrbanLab, University of Hong Kong (HKU), Hong Kong, China
- Department of Urban Planning and Design, HKU, Hong Kong, China
| | - Ka Yan Lai
- Healthy High Density Cities Lab, HKUrbanLab, University of Hong Kong (HKU), Hong Kong, China
- Department of Urban Planning and Design, HKU, Hong Kong, China
| | - Wenhui Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Yanhui Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Xiaowei Ma
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Chris Webster
- Healthy High Density Cities Lab, HKUrbanLab, University of Hong Kong (HKU), Hong Kong, China
- Department of Urban Planning and Design, HKU, Hong Kong, China
| | - Lei Luo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Chinmoy Sarkar
- Healthy High Density Cities Lab, HKUrbanLab, University of Hong Kong (HKU), Hong Kong, China
- Department of Urban Planning and Design, HKU, Hong Kong, China
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Landguth EL, Knudson J, Graham J, Orr A, Coyle EA, Smith P, Semmens EO, Noonan C. Seasonal extreme temperatures and short-term fine particulate matter increases child respiratory hospitalizations in a sparsely populated region of the intermountain western United States. RESEARCH SQUARE 2023:rs.3.rs-3438033. [PMID: 37886498 PMCID: PMC10602161 DOI: 10.21203/rs.3.rs-3438033/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background Western Montana, USA, experiences complex air pollution patterns with predominant exposure sources from summer wildfire smoke and winter wood smoke. In addition, climate change related temperatures events are becoming more extreme and expected to contribute to increases in hospital admissions for a range of health outcomes. Few studies have evaluated these exposures (air pollution and temperature) that often occur simultaneously and may act synergistically on health. Methods We explored short-term exposure to air pollution on childhood respiratory health outcomes and how extreme temperature or seasonal period modify the risk of air pollution-associated hospitalizations. The main outcome measure included all respiratory-related hospital admissions for three categories: asthma, lower respiratory tract infections (LRTI), and upper respiratory tract infections (URTI) across western Montana for all individuals aged 0-17 from 2017-2020. We used a time-stratified, case-crossover analysis and distributed lag models to identify sensitive exposure windows of fine particulate matter (PM2.5) lagged from 0 (same-day) to 15 prior-days modified by temperature or season. Results Short-term exposure increases of 1 μg/m3 in PM2.5 were associated with elevated odds of all three respiratory hospital admission categories. PM2.5 was associated with the largest increased odds of hospitalizations for asthma at lag 7-13 days [1.87(1.17-2.97)], for LRTI at lag 6-12 days [2.18(1.20-3.97)], and for URTI at a cumulative lag of 13 days [1.29(1.07-1.57)]. The impact of PM2.5 varied by temperature and season for each respiratory outcome scenario. For asthma, PM2.5 was associated most strongly during colder temperatures [3.11(1.40-6.89)] and the winter season [3.26(1.07-9.95)]. Also in colder temperatures, PM2.5 was associated with increased odds of LRTI hospitalization [2.61(1.15-5.94)], but no seasonal effect was observed. Finally, 13 days of cumulative PM2.5 prior to admissions date was associated with the greatest increased odds of URTI hospitalization during summer days [3.35(1.85-6.04)] and hotter temperatures [1.71(1.31-2.22)]. Conclusions Children's respiratory-related hospital admissions were associated with short-term exposure to PM2.5. PM2.5 associations with asthma and LRTI hospitalizations were strongest during cold periods, whereas associations with URTI were largest during hot periods. Classification environmental public health, fine particulate matter air pollution, respiratory infections.
Collapse
|
31
|
Gutiérrez-Avila I, Riojas-Rodríguez H, Colicino E, Rush J, Tamayo-Ortiz M, Borja-Aburto VH, Just AC. Short-term exposure to PM 2.5 and 1.5 million deaths: a time-stratified case-crossover analysis in the Mexico City Metropolitan Area. Environ Health 2023; 22:70. [PMID: 37848890 PMCID: PMC10580614 DOI: 10.1186/s12940-023-01024-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Satellite-based PM2.5 predictions are being used to advance exposure science and air-pollution epidemiology in developed countries; including emerging evidence about the impacts of PM2.5 on acute health outcomes beyond the cardiovascular and respiratory systems, and the potential modifying effects from individual-level factors in these associations. Research on these topics is lacking in low and middle income countries. We aimed to explore the association between short-term exposure to PM2.5 with broad-category and cause-specific mortality outcomes in the Mexico City Metropolitan Area (MCMA), and potential effect modification by age, sex, and SES characteristics in such associations. METHODS We used a time-stratified case-crossover study design with 1,479,950 non-accidental deaths from the MCMA for the period of 2004-2019. Daily 1 × 1 km PM2.5 (median = 23.4 μg/m3; IQR = 13.6 μg/m3) estimates from our satellite-based regional model were employed for exposure assessment at the sub-municipality level. Associations between PM2.5 with broad-category (organ-system) and cause-specific mortality outcomes were estimated with distributed lag conditional logistic models. We also fit models stratifying by potential individual-level effect modifiers including; age, sex, and individual SES-related characteristics namely: education, health insurance coverage, and job categories. Odds ratios were converted into percent increase for ease of interpretation. RESULTS PM2.5 exposure was associated with broad-category mortality outcomes, including all non-accidental, cardiovascular, cerebrovascular, respiratory, and digestive mortality. A 10-μg/m3 PM2.5 higher cumulative exposure over one week (lag06) was associated with higher cause-specific mortality outcomes including hypertensive disease [2.28% (95%CI: 0.26%-4.33%)], acute ischemic heart disease [1.61% (95%CI: 0.59%-2.64%)], other forms of heart disease [2.39% (95%CI: -0.35%-5.20%)], hemorrhagic stroke [3.63% (95%CI: 0.79%-6.55%)], influenza and pneumonia [4.91% (95%CI: 2.84%-7.02%)], chronic respiratory disease [2.49% (95%CI: 0.71%-4.31%)], diseases of the liver [1.85% (95%CI: 0.31%-3.41%)], and renal failure [3.48% (95%CI: 0.79%-6.24%)]. No differences in effect size of associations were observed between age, sex and SES strata. CONCLUSIONS Exposure to PM2.5 was associated with non-accidental, broad-category and cause-specific mortality outcomes beyond the cardiovascular and respiratory systems, including specific death-causes from the digestive and genitourinary systems, with no indication of effect modification by individual-level characteristics.
Collapse
Affiliation(s)
- Iván Gutiérrez-Avila
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
| | | | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| | - Johnathan Rush
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| | - Marcela Tamayo-Ortiz
- Instituto Mexicano del Seguro Social, Unidad de Investigación en Salud Ocupacional, México City, México
| | | | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
32
|
Liu Y, Dong X, Li Z, Zhu S, Lin Z, He G, Gong W, Hu J, Hou Z, Meng R, Zhou C, Yu M, Huang B, Lin L, Xiao J, Zhong J, Jin D, Xu Y, Lv L, Huang C, Liu T, Ma W. The Combined Effects of Short-Term Exposure to Multiple Meteorological Factors on Unintentional Drowning Mortality: Large Case-Crossover Study. JMIR Public Health Surveill 2023; 9:e46792. [PMID: 37471118 PMCID: PMC10401198 DOI: 10.2196/46792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/05/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Drowning is a serious public health problem worldwide. Previous epidemiological studies on the association between meteorological factors and drowning mainly focused on individual weather factors, and the combined effect of mixed exposure to multiple meteorological factors on drowning is unclear. OBJECTIVE We aimed to investigate the combined effects of multiple meteorological factors on unintentional drowning mortality in China and to identify the important meteorological factors contributing to drowning mortality. METHODS Unintentional drowning death data (based on International Classification of Diseases, 10th Edition, codes W65-74) from January 1, 2013, to December 31, 2018, were collected from the Disease Surveillance Points System for Guangdong, Hunan, Zhejiang, Yunnan, and Jilin Provinces, China. Daily meteorological data, including daily mean temperature, relative humidity, sunlight duration, and rainfall in the same period were obtained from the Chinese Academy of Meteorological Science Data Center. We constructed a time-stratified case-crossover design and applied a generalized additive model to examine the effect of individual weather factors on drowning mortality, and then used quantile g-computation to estimate the joint effect of the mixed exposure to meteorological factors. RESULTS A total of 46,179 drowning deaths were reported in the 5 provinces in China from 2013 to 2018. In an effect analysis of individual exposure, we observed a positive effect for sunlight duration, a negative effect for relative humidity, and U-shaped associations for temperature and rainfall with drowning mortality. In a joint effect analysis of the above 4 meteorological factors, a 2.99% (95% CI 0.26%-5.80%) increase in drowning mortality was observed per quartile rise in exposure mixture. For the total population, sunlight duration was the most important weather factor for drowning mortality, with a 93.1% positive contribution to the overall effects, while rainfall was mainly a negative factor for drowning deaths (90.5%) and temperature and relative humidity contributed 6.9% and -9.5% to the overall effects, respectively. CONCLUSIONS This study found that mixed exposure to temperature, relative humidity, sunlight duration, and rainfall was positively associated with drowning mortality and that sunlight duration, rather than temperature, may be the most important meteorological factor for drowning mortality. These findings imply that it is necessary to incorporate sunshine hours and temperature into early warning systems for drowning prevention in the future.
Collapse
Affiliation(s)
- Yingyin Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Zhixing Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- Department of Nosocomial Infection Management, Affiliated Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Weiwei Gong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianxiong Hu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Zhulin Hou
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - Ruilin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Chunliang Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Min Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Biao Huang
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - Lifeng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jieming Zhong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Donghui Jin
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Yiqing Xu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Lingshuang Lv
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Tao Liu
- Disease Control and Prevention Institute of Jinan University, School of Medicine, Jinan University, Guangzhou, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
33
|
Gallo E, Bressan S, Baraldo S, Bottigliengo D, Geremia S, Acar AS, Zagolin L, Marson G, Da Dalt L, Gregori D. Increased risk of emergency department presentations for bronchiolitis in infants exposed to air pollution. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:1137-1144. [PMID: 35989078 DOI: 10.1111/risa.14007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Air pollution has been linked to an increased risk of several respiratory diseases in children, especially respiratory tract infections. The present study aims to evaluate the association between pediatric emergency department (PED) presentations for bronchiolitis and air pollution. PED presentations due to bronchiolitis in children aged less than 1 year were retrospectively collected from 2007 to 2018 in Padova, Italy, together with daily environmental data. A conditional logistic regression based on a time-stratified case-crossover design was performed to evaluate the association between PED presentations and exposure to NO2 , PM2.5, and PM10. Models were adjusted for temperature, relative humidity, atmospheric pressure, and public holidays. Delayed effects in time were evaluated using distributed lag non-linear models. Odds ratio for lagged exposure from 0 to 14 days were obtained. Overall, 2251 children presented to the PED for bronchiolitis. Infants' exposure to higher concentrations of PM10 and PM2.5 in the 5 days before the presentation to the PED increased the risk of accessing the PED by more than 10%, whereas high concentrations of NO2 between 2 and 12 days before the PED presentation were associated with an increased risk of up to 30%. The association between pollutants and infants who required hospitalization was even greater. A cumulative effect of NO2 among the 2 weeks preceding the presentation was also observed. In summary, PM and NO2 concentrations are associated with PED presentations and hospitalizations for bronchiolitis. Exposure of infants to air pollution could damage the respiratory tract mucosa, facilitating viral infections and exacerbating symptoms.
Collapse
Affiliation(s)
- Elisa Gallo
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Silvia Bressan
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Division of Pediatric Emergency Medicine, University Hospital of Padova, Padova, Italy
| | - Simonetta Baraldo
- Respiratory Diseases Clinic, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Daniele Bottigliengo
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Sara Geremia
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- University of Bologna, Bologna, Italy
| | | | - Luca Zagolin
- Environmental Protection and Prevention Agency of the Veneto Region, Venezia, Italy
| | - Giovanna Marson
- Environmental Protection and Prevention Agency of the Veneto Region, Venezia, Italy
| | - Liviana Da Dalt
- Department of Women's and Children's Health, University of Padova, Padova, Italy
- Division of Pediatric Emergency Medicine, University Hospital of Padova, Padova, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
34
|
Shahn Z, Hernán MA, Robins JM. A formal causal interpretation of the case-crossover design. Biometrics 2023; 79:1330-1343. [PMID: 36001285 PMCID: PMC11115970 DOI: 10.1111/biom.13749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 12/08/2021] [Indexed: 11/27/2022]
Abstract
The case-crossover design of Maclure is widely used in epidemiology and other fields to study causal effects of transient treatments on acute outcomes. However, its validity and causal interpretation have only been justified under informal conditions. Here, we place the design in a formal counterfactual framework for the first time. Doing so helps to clarify its assumptions and interpretation. In particular, when the treatment effect is nonnull, we identify a previously unnoticed bias arising from strong common causes of the outcome at different person-times. We analyze this bias and demonstrate its potential importance with simulations. We also use our derivation of the limit of the case-crossover estimator to analyze its sensitivity to treatment effect heterogeneity, a violation of one of the informal criteria for validity. The upshot of this work for practitioners is that, while the case-crossover design can be useful for testing the causal null hypothesis in the presence of baseline confounders, extra caution is warranted when using the case-crossover design for point estimation of causal effects.
Collapse
Affiliation(s)
- Zach Shahn
- CUNY School of Public Health, New York, New York, USA
- IBM Research, Yorktown Heights, New York, USA
| | - Miguel A. Hernán
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- CAUSALab, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - James M. Robins
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- CAUSALab, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Halldorsdottir S, Finnbjornsdottir RG, Elvarsson BT, Gunnarsdottir OS, Gudmundsson G, Rafnsson V. Ambient air pollution and emergency department visits and hospitalisation for cardiac arrest: a population-based case-crossover study in Reykjavik, Iceland. BMJ Open 2023; 13:e066743. [PMID: 37188467 DOI: 10.1136/bmjopen-2022-066743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVES To assess the association between traffic-related ambient air pollution and emergency hospital visits for cardiac arrest. DESIGN Case-crossover design was used with a lag time to 4 days. SETTING The Reykjavik capital area and the study population was the inhabitants 18 years and older identified by encrypted personal identification numbers and zip codes. PARTICIPANTS AND EXPOSURE Cases were those with emergency visits to Landspitali University Hospital during the period 2006-2017 and who were given the primary discharge diagnosis of cardiac arrest according to the International Classification of Diseases 10th edition (ICD-10) code I46. The pollutants were nitrogen dioxide (NO2), particulate matter with aerodynamic diameter less than 10 µm (PM10), particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) and sulfur dioxide (SO2) with adjustment for hydrogen sulfide (H2S), temperature and relative humidity. MAIN OUTCOME MEASURE OR and 95% CIs per 10 µg/m3 increase in concentration of pollutants. RESULTS The 24-hour mean NO2 was 20.7 µg/m3, mean PM10 was 20.5 µg/m3, mean PM2.5 was 12.5 µg/m3 and mean SO2 was 2.5 µg/m3. PM10 level was positively associated with the number of emergency hospital visits (n=453) for cardiac arrest. Each 10 µg/m3 increase in PM10 was associated with increased risk of cardiac arrest (ICD-10: I46), OR 1.096 (95% CI 1.033 to 1.162) on lag 2, OR 1.118 (95% CI 1.031 to 1.212) on lag 0-2, OR 1.150 (95% CI 1.050 to 1.261) on lag 0-3 and OR 1.168 (95% CI 1.054 to 1.295) on lag 0-4. Significant associations were shown between exposure to PM10 on lag 2 and lag 0-2 and increased risk of cardiac arrest in the age, gender and season strata. CONCLUSIONS A new endpoint was used for the first time in this study: cardiac arrest (ICD-10 code: I46) according to hospital discharge registry. Short-term increase in PM10 concentrations was associated with cardiac arrest. Future ecological studies of this type and their related discussions should perhaps concentrate more on precisely defined endpoints.
Collapse
Affiliation(s)
| | | | | | | | | | - Vilhjalmur Rafnsson
- Department of Preventive Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
36
|
Hasegawa K, Tsukahara T, Nomiyama T. Short-term associations of low-level fine particulate matter (PM 2.5) with cardiorespiratory hospitalizations in 139 Japanese cities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114961. [PMID: 37137261 DOI: 10.1016/j.ecoenv.2023.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
There have been few studies in non-western countries on the relationship between low levels of daily fine particulate matter (PM2.5) exposure and morbidity or mortality, and the impact of PM2.5 concentrations below 15 μg/m3, which is the latest World Health Organization Air Quality Guideline (WHO AQG) value for the 24-h mean, is not yet clear. We assessed the associations between low-level PM2.5 exposure and cardiorespiratory admissions in Japan. We collected the daily hospital admission count data, air pollutant data, and meteorological condition data recorded from April 2016 to March 2019 in 139 Japanese cities. City-specific estimates were obtained from conditional logistic regression models in a time-stratified case-crossover design and pooled by random-effect models. We estimated that every 10-μg/m3 increase in the concurrent-day PM2.5 concentration was related to a 0.52% increase in cardiovascular admissions (95% CI: 0.13-0.92%) and a 1.74% increase in respiratory admissions (95% CI: 1.41-2.07%). These values were nearly the same when the datasets were filtered to contain only daily PM2.5 concentrations <15 μg/m3. The exposure-response curves showed approximately sublinear-to-linear curves with no indication of thresholds. These associations with cardiovascular diseases weakened after adjusting for nitrogen dioxide or sulfur dioxide, but associations with respiratory diseases were almost unchanged when additionally adjusted for other pollutants. This study demonstrated that associations between daily PM2.5 and daily cardiorespiratory hospitalizations might persist at low concentrations, including those below the latest WHO AQG value. Our findings suggest that the updated guideline value may still be insufficient from the perspective of public health.
Collapse
Affiliation(s)
- Kohei Hasegawa
- Department of Preventive Medicine and Public Health, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | - Teruomi Tsukahara
- Department of Preventive Medicine and Public Health, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Department of Occupational Medicine, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Tetsuo Nomiyama
- Department of Preventive Medicine and Public Health, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Department of Occupational Medicine, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
37
|
Stowell JD, Sun Y, Spangler KR, Milando CW, Bernstein A, Weinberger KR, Sun S, Wellenius GA. Warm-season temperatures and emergency department visits among children with health insurance. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:015002. [PMID: 36337257 PMCID: PMC9623446 DOI: 10.1088/2752-5309/ac78fa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/17/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023]
Abstract
High ambient temperatures have become more likely due to climate change and are linked to higher rates of heat-related illness, respiratory and cardiovascular diseases, mental health disorders, and other diseases. To date, far fewer studies have examined the effects of high temperatures on children versus adults, and studies including children have seldom been conducted on a national scale. Compared to adults, children have behavioral and physiological differences that may give them differential heat vulnerability. We acquired medical claims data from a large database of commercially insured US children aged 0-17 from May to September (warm-season) 2016-2019. Daily maximum ambient temperature and daily mean relative humidity estimates were aggregated to the county level using the Parameter-elevation Relationships on Independent Slopes dataset, and extreme heat was defined as the 95th percentile of the county-specific daily maximum temperature distribution. Using a case-crossover design and temperature lags 0-5 days, we estimated the associations between extreme heat and cause-specific emergency department visits (ED) in children aged <18 years, using the median county-specific daily maximum temperature distribution as the reference. Approximately 1.2 million ED visits in children from 2489 US counties were available during the study period. The 95th percentile of warm-season temperatures ranged from 71 °F to 112 °F (21.7 °C to 44.4 °C). Comparing 95th to the 50th percentile, extreme heat was associated with higher rates of ED visits for heat-related illness; endocrine, nutritional and metabolic diseases; and otitis media and externa, but not for all-cause admissions. Subgroup analyses suggested differences by age, with extreme heat positively associated with heat-related illness for both the 6-12 year (odds ratio [OR]: 1.34, 95% confidence interval [CI]: 1.16, 1.56) and 13-17 year age groups (OR: 1.55, 95% CI: 1.37, 1.76). Among children with health insurance across the US, days of extreme heat were associated with higher rates of healthcare utilization. These results highlight the importance of individual and population-level actions to protect children and adolescents from extreme heat, particularly in the context of continued climate change.
Collapse
Affiliation(s)
- Jennifer D Stowell
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States of America
| | - Yuantong Sun
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States of America
| | - Keith R Spangler
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States of America
| | - Chad W Milando
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States of America
- Optum Labs Visiting Scholar, Eden Prairie, MN, United States of America
| | - Aaron Bernstein
- Boston Children’s Hospital, Boston, MA, United States of America
| | - Kate R Weinberger
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shengzhi Sun
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States of America
- Optum Labs Visiting Scholar, Eden Prairie, MN, United States of America
| | - Gregory A Wellenius
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States of America
- Optum Labs Visiting Scholar, Eden Prairie, MN, United States of America
| |
Collapse
|
38
|
Lavigne E, Maltby A, Côté JN, Weinberger KR, Hebbern C, Vicedo-Cabrera AM, Wilk P. The effect modification of extreme temperatures on mental and behavior disorders by environmental factors and individual-level characteristics in Canada. ENVIRONMENTAL RESEARCH 2023; 219:114999. [PMID: 36565843 DOI: 10.1016/j.envres.2022.114999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Ambient extreme temperatures have been associated with mental and behavior disorders (MBDs). However, few studies have assesed whether vulnerability factors such as ambient air pollution, pre-existing mental health conditions and residential environmental factors increase susceptibility. This study aims to evaluate the associations between short-term variations in outdoor ambient extreme temperatures and MBD-related emergency department (ED) visits and how these associations are modified by vulnerability factors. METHODS We conducted a case-crossover study of 9,958,759 MBD ED visits in Alberta and Ontario, Canada made between March 1st, 2004 and December 31st, 2020. Daily average temperature was assigned to individual cases with ED visits for MBD using gridded data at a 1 km × 1 km spatial resolution. Conditional logistic regression was used to estimate associations between extreme temperatures (i.e., risk of ED visit at the 2.5th percentile temperature for cold and 97.5th percentile temperature for heat for each health region compared to the minimal temperature risk) and MBD ED visits. Age, sex, pre-existing mental health conditions, ambient air pollution (i.e. PM2.5, NO2 and O3) and residential environmental factors (neighborhood deprivation, residential green space exposure and urbanization) were evaluated as potential effect modifiers. RESULTS Cumulative exposure to extreme heat over 0-5 days (odds ratio [OR] = 1.145; 95% CI: 1.121-1.171) was associated with ED visits for any MBD. However, cumulative exposure to extreme cold was associated with lower risk of ED visits for any MBD (OR = 0.981; 95% CI: 0.976-0.987). We also found heat to be associated with ED visits for specific MBDs such as substance use disorders, dementia, neurotic disorders, schizophrenia and personality behavior disorder. Individuals with pre-existing mental health conditions, those exposed to higher daily concentrations of NO2 and O3 and those residing in neighborhoods with greater material and social deprivation were at higher risk of heat-related MBD ED visits. Increasing tree canopy coverage appeared to mitigate risks of the effect of heat on MBD ED visits. CONCLUSIONS Findings provide evidence that the impacts of heat on MBD ED visits may vary across different vulnerability factors.
Collapse
Affiliation(s)
- Eric Lavigne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada; School of Epidemiology & Public Health, University of Ottawa, Ottawa, Ontario, Canada.
| | - Alana Maltby
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jean-Nicolas Côté
- Department of Applied Geomatics, Sherbrooke University, Sherbrooke, Quebec, Canada
| | - Kate R Weinberger
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Piotr Wilk
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
39
|
Liu J, Wang M, Zhao Y, Chen H, Liu H, Yang B, Shan H, Li H, Shi Y, Wang L, Wang G, Han C. Associations between short-term exposure to ambient PM 2.5 and incident cases of cerebrovascular disease in Yantai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21970-21977. [PMID: 36282388 DOI: 10.1007/s11356-022-23626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
There are limited studies examining the association between PM2.5 exposure and incident cerebrovascular disease (CD) cases in China. In this study, daily counts of incident CD cases and daily PM2.5 concentrations were obtained in Yantai, Shandong Province, China from 2014 to 2019. We used a combination of the Poisson-distribution generalized linear model (GLM) and a distributed lag nonlinear model (DLNM) to examine the association of short-term exposure to ambient PM2.5 and incident cases of CD. The results revealed that for every 10 μg/m3 increment of PM2.5 would increase the incident CD cases by 0.216% (RR:1.00216, 95%CI:1.0016-1.0028) at lag4. The stratified analysis demonstrated that the females and residents aged 65 years or above presented higher short-term PM2.5-associated CD risks than the males and aged below 65 years. Targeted prevention strategies should be adopted to reduce the PM2.5-related CD burden, especially for the susceptible population in China.
Collapse
Affiliation(s)
- Junyan Liu
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Maobo Wang
- Yantai Center for Disease Control and Prevention, Yantai, 264003, Shandong, China
| | - Yang Zhao
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
- The George Institute for Global Health, Peking University Health Science Center, Beijing, China
| | - Haotian Chen
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Haiyun Liu
- Department of Public Health, Shandong College of Traditional Chinese Medicine, 264199, Yantai, China
| | - Baoshun Yang
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Haifeng Shan
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hongyu Li
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yukun Shi
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Luyang Wang
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Guangcheng Wang
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Chunlei Han
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
40
|
Lin C, Jiang W, Gao X, He Y, Li J, Zhou C, Yang L. Attributable risk and economic burden of pneumonia among older adults admitted to hospital due to short-term exposure to airborne particulate matter: a time-stratified case-crossover study from China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45342-45352. [PMID: 36705825 DOI: 10.1007/s11356-023-25530-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023]
Abstract
Many studies have proven the relationship between air pollutants and respiratory diseases, but few studies have assessed the impacts of air particulate matter exposure on older patients with pneumonia. This study aimed to reveal the impacts of short-term exposure to air particulate matter on the daily number of older adult patients hospitalized due to pneumonia and calculate the economic costs attributable to this exposure. We collected inpatient data from 9 city hospitals in Sichuan Province, China, from January 1, 2018, to December 31, 2019, and calculated odds ratios and 95% confidence intervals using a time-stratified case-crossover study design and an attributable risk model to calculate the economic burden due to particulate matter pollution. It was found that for every 10 μg/m3 increase in PM2.5 and PM10 concentrations, the daily number of older adult pneumonia inpatients increased by 1.5% (95% CI: 1.010-1.021) and 1.0% (95% CI: 1.006-1.014), respectively. Those 65 ~ 79 years old were more susceptible to air particulate pollutants (P < 0.05). During the study period, the total hospitalization costs and out-of-pocket expenses attributable to PM2.5 and PM10 exposure were 44.60 million CNY (6.22%) and 16.03 million CNY (6.21%), respectively, with PM2.5 being the primary influencing factor. This study revealed the relationship between particulate matter pollution and pneumonia among older adults. The role of policies to limit particulate matter concentrations in reducing disease burden among older adults can be further explored.
Collapse
Affiliation(s)
- Chengwei Lin
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Wanyanhan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xi Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Yi He
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Jia Li
- School of Management, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Chengchao Zhou
- School of Public Health, Shandong University, Jinan, 250100, Shandong, China
| | - Lian Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
41
|
Zhang F, Tang H, Zhao D, Zhang X, Zhu S, Zhao G, Zhang X, Li T, Wei J, Li D, Zhu W. Short-term exposure to ambient particulate matter and mortality among HIV/AIDS patients: Case-crossover evidence from all counties of Hubei province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159410. [PMID: 36257445 DOI: 10.1016/j.scitotenv.2022.159410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) has been a worrisome public health problem in the world. However, evidence for associations between short-term exposure to particulate matter (PM) and mortality among HIV/AIDS patients is scarce. METHODS We collected daily death records in people with HIV/AIDS from all counties (N = 103) of Hubei province, China from 2018 to 2019. The county-level daily concentrations of PM1, PM2.5 and PM10 in the same period were extracted from ChinaHighAirPollutants dataset. A time-stratified case-crossover design with conditional logistic regression analysis was performed to assess the associations between PM and mortality. RESULTS Each 1 μg/m3 increased in PM1 corresponded with 0.89 % elevated in all-cause deaths (ACD) at lag 0-4 days. The largest effects of PM1, PM2.5 and PM10 on AIDS-related deaths (ARD) were detected at lag 0-4 days, and PM1 [percent changes in odds ratio: 2.51 % (95 % CIs: 0.82, 4.22)] appeared greater health hazards than PM2.5 [1.24 % (95 % CIs: 0.33, 2.15)] as well as PM10 [0.65 % (95 % CIs: 0.01, 1.30)]. In subgroup analyses, the significant associations of PM1/PM2.5 and ACD were only found in male and the cold season. We also observed the effects of PM1 and PM10 on ARD were significantly stronger (P for interaction <0.05) in males than females. In addition, we caught sight of HIV/AIDS patients aged over 60 years old were more susceptible to ARD caused by PM than younger population. CONCLUSIONS Our study suggested PM1 was positively linked with the risk of ACD and ARD. Male patients with HIV/AIDS were more significantly susceptible to PM1, PM2.5 and PM10. PM1/PM2.5 appeared stronger associations with ARD in HIV/AIDS patients aged over 60 years old and in the cold season.
Collapse
Affiliation(s)
- Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Hen Tang
- Institute of Chronic Infectious Disease Prevention and Control, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Dingyuan Zhao
- Institute of Chronic Infectious Disease Prevention and Control, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Xupeng Zhang
- Department of Public Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Gaichan Zhao
- Department of Public Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Tianzhou Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA.
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China.
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
42
|
Gutiérrez-Avila I, Riojas-Rodríguez H, Colicino E, Rush J, Tamayo-Ortiz M, Borja-Aburto VH, Just AC. Daily exposure to PM 2.5 and 1.5 million deaths: A time-stratified case-crossover analysis in the Mexico City Metropolitan Area. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.15.23284576. [PMID: 36711599 PMCID: PMC9882435 DOI: 10.1101/2023.01.15.23284576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Satellite-based PM2.5 predictions are being used to advance exposure science and air-pollution epidemiology in developed countries; including emerging evidence about the impacts of PM2.5 on acute health outcomes beyond the cardiovascular and respiratory systems, and the potential modifying effects from individual-level factors in these associations. Research on these topics is lacking in Latin America. Methods We used a time-stratified case-crossover study design with 1,479,950 non-accidental deaths from Mexico City Metropolitan Area for the period of 2004-2019. Daily 1×1 km PM2.5 (median=23.4 μg/m3; IQR=13.6 μg/m3) estimates from our satellite-based regional model were employed for exposure assessment at the sub-municipality level. Associations between PM2.5 with broad-category (organ-system) and cause-specific mortality outcomes were estimated with distributed lag conditional logistic models. We also fit models stratifying by potential individual-level effect modifiers including; age, sex, and individual SES-related characteristics namely: education, health insurance coverage, and job categories. Results PM2.5 exposure was associated with higher total non-accidental, cardiovascular, cerebrovascular, respiratory, and digestive mortality. A 10-μg/m3 PM2.5 higher cumulative exposure over one week (lag06) was associated with higher cause-specific mortality outcomes including hypertensive disease [2.28% (95%CI: 0.26%-4.33%)], acute ischemic heart disease [1.61% (95%CI: 0.59%-2.64%)], other forms of heart disease [2.39% (95%CI: -0.35%-5.20%)], hemorrhagic stroke [3.63% (95%CI: 0.79%-6.55%)], influenza and pneumonia [4.91% (95%CI: 2.84%-7.02%)], chronic respiratory disease [2.49% (95%CI: 0.71%-4.31%)], diseases of the liver [1.85% (95%CI: 0.31%-3.41%)], and renal failure [3.48% (95%CI: 0.79%-6.24%)]. No differences in effect size of associations were observed between SES strata. Conclusions Exposure to PM2.5 was associated with mortality outcomes beyond the cardiovascular and respiratory systems, including specific death-causes from the digestive and genitourinary systems, with no indications of effect modification by individual SES-related characteristics.
Collapse
Affiliation(s)
- Iván Gutiérrez-Avila
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johnathan Rush
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Tamayo-Ortiz
- Instituto Mexicano del Seguro Social. Unidad de Investigación en Salud Ocupacional, México City, México
| | | | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
Yount CS, Utell MJ, Hopke PK, Thurston SW, Lin S, Ling FS, Chen Y, Chalupa D, Deng X, Rich DQ. Triggering of ST-elevation myocardial infarction by ultrafine particles in New York: Changes following Tier 3 vehicle introduction. ENVIRONMENTAL RESEARCH 2023; 216:114445. [PMID: 36181892 DOI: 10.1016/j.envres.2022.114445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Previously, we found increased rates of ST-elevation myocardial infarction (STEMI) associated with increased ultrafine particle (UFP; <100 nm) concentrations in the previous few hours in Rochester, New York. Relative rates were higher after air quality policies and a recession reduced pollutant concentrations (2014-2016 versus 2005-2013), suggesting PM composition had changed and the same PM mass concentration had become more toxic. Tier 3 light duty vehicles, which should produce less primary organic aerosols and oxidizable gaseous compounds, likely making PM less toxic, were introduced in 2017. Thus, we hypothesized we would observe a lower relative STEMI rate in 2017-2019 than 2014-2016. METHODS Using STEMI events treated at the University of Rochester Medical Center (2014-2019), UFP and other pollutants measured in Rochester, a case-crossover design, and conditional logistic regression models, we estimated the rate of STEMI associated with increased UFP and other pollutants in the previous hours and days in the 2014-2016 and 2017-2019 periods. RESULTS An increased rate of STEMI was associated with each 3111 particles/cm3 increase in UFP concentration in the previous hour in 2014-2016 (lag hour 0: OR = 1.22; 95% CI = 1.06, 1.39), but not in 2017-2019 (OR = 0.94; 95% CI = 0.80, 1.10). There were similar patterns for black carbon, UFP11-50nm, and UFP51-100nm. In contrast, increased rates of STEMI were associated with each 0.6 ppb increase in SO2 concentration in the previous 120 h in both periods (2014-2016: OR = 1.26, 95% CI = 1.03, 1.55; 2017-2019: OR = 1.21, 95% CI = 0.87, 1.68). CONCLUSIONS Greater rates of STEMI were associated with short term increases in concentrations of UFP and other motor vehicle related pollutants before Tier 3 introduction (2014-2016), but not afterwards (2017-2019). This change may be due to changes in PM composition after Tier 3 introduction, as well as to increased exposure misclassification and greater underestimation of effects from 2017 to 2019.
Collapse
Affiliation(s)
- Catherine S Yount
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA
| | - Mark J Utell
- Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA; Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA; Center for Air and Aquatic Resources Engineering and Sciences, Clarkson University, 8 Clarkson Avenue Box 5708, Potsdam, NY, 13699, USA
| | - Sally W Thurston
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA; Department of Biostatistics and Computational Biology, 265 Crittenden Boulevard CU420630, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shao Lin
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, 1 University Place, Rensselaer, NY, 12144, USA
| | - Frederick S Ling
- Division of Cardiology, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yunle Chen
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA
| | - Xinlei Deng
- Department of Environmental Health, University at Albany School of Public Health, State University of New York, 1 University Place, Rensselaer, NY, 12144, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, 265 Crittenden Boulevard CU420644, Rochester, NY, 14642, USA; Division of Pulmonary and Critical Care, Department of Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA; Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue Box EHSC, Rochester, NY, 14642, USA.
| |
Collapse
|
44
|
Demoury C, De Troeyer K, Berete F, Aerts R, Van Schaeybroeck B, Van der Heyden J, De Clercq EM. Association between temperature and natural mortality in Belgium: Effect modification by individual characteristics and residential environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158336. [PMID: 36037893 DOI: 10.1016/j.scitotenv.2022.158336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND There is strong evidence of mortality being associated to extreme temperatures but the extent to which individual or residential factors modulate this temperature vulnerability is less clear. METHODS We conducted a multi-city study with a time-stratified case-crossover design and used conditional logistic regression to examine the association between extreme temperatures and overall natural and cause-specific mortality. City-specific estimates were pooled using a random-effect meta-analysis to describe the global association. Cold and heat effects were assessed by comparing the mortality risks corresponding to the 2.5th and 97.5th percentiles of the daily temperature, respectively, with the minimum mortality temperature. For cold, we cumulated the risk over lags of 0 to 28 days before death and 0 to 7 days for heat. We carried out stratified analyses and assessed effect modification by individual characteristics, preexisting chronic health conditions and residential environment (population density, built-up area and air pollutants: PM2.5, NO2, O3 and black carbon) to identify more vulnerable population subgroups. RESULTS Based on 307,859 deaths from natural causes, we found significant cold effect (OR = 1.42, 95%CI: 1.30-1.57) and heat effect (OR = 1.17, 95%CI: 1.12-1.21) for overall natural mortality and for respiratory causes in particular. There were significant effects modifications for some health conditions: people with asthma were at higher risk for cold, and people with psychoses for heat. In addition, people with long or frequent hospital admissions in the year preceding death were at lower risk. Despite large uncertainties, there was suggestion of effect modification by air pollutants: the effect of heat was higher on more polluted days of O3 and black carbon, and a higher cold effect was observed on more polluted days of PM2.5 and NO2 while for O3, the effect was lower. CONCLUSIONS These findings allow for targeted planning of public-health measures aiming to prevent the effects of extreme temperatures.
Collapse
Affiliation(s)
- Claire Demoury
- Risk and Health Impact Assessment, Sciensano, Brussels, Belgium.
| | | | - Finaba Berete
- Lifestyle and Chronic Diseases, Sciensano, Brussels, Belgium
| | - Raf Aerts
- Risk and Health Impact Assessment, Sciensano, Brussels, Belgium; Division Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium; Center for Environmental Sciences, University of Hasselt, Hasselt, Belgium
| | - Bert Van Schaeybroeck
- Department of Meteorological Research and Development, Royal Meteorological Institute of Belgium, Brussels, Belgium
| | | | - Eva M De Clercq
- Risk and Health Impact Assessment, Sciensano, Brussels, Belgium
| |
Collapse
|
45
|
Zhang F, Zhang X, Zhu S, Zhao G, Li T, Han A, Zhang X, Zhao T, Li D, Zhu W. The associations between short-term exposure to ambient particulate matter and hospitalizations for osteoporotic fracture in Hangzhou: a time-stratified case-crossover study. Arch Osteoporos 2022; 18:4. [PMID: 36469172 DOI: 10.1007/s11657-022-01192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Our results suggested that short-term exposure to particulate matter (PM) might increase the risks of hospitalizations for osteoporotic fractures. Government should protect its citizens by putting in place policies to reduce unhealthy emissions and air pollution. INTRODUCTION Osteoporotic fractures are accompanied by high rates of disability and mortality. PM has been linked with many health outcomes. However, few studies focus on the association of short-term exposure to ambient PM and osteoporotic fractures. METHODS Data on daily mean air pollution, meteorological factors, and hospitalizations for osteoporotic fractures were collected from Hangzhou, China, 2020-2021. A time-stratified case-crossover design with extended Cox proportional hazards regression was applied to assess the associations between PM and osteoporotic fractures. RESULTS Short-term exposure to PM significantly increased the risks of hospitalizations for osteoporotic fractures at cumulative lag days. Per 10 μg/m3 increased in PM2.5 (PM with an aerodynamic diameter ≤ 2.5 μm), PMC (PM with an aerodynamic diameter between 2.5 μm and 10 μm), and PM10 (PM with an aerodynamic diameter ≤ 10 μm) were associated with 5.65% (95% confidence intervals (CIs): 1.29, 10.19), 3.19% (0.11, 6.36), and 2.45% (0.57, 4.37) increase in hospitalizations for osteoporotic fractures, respectively. Significant PM-osteoporotic fracture associations were only observed in females and people aged over 65 years old. For the season, the estimates of PM on hospitalizations for osteoporotic fractures were 6.30% (95% CIs: 1.62, 11.20) in the cold season vs. 2.16% (95% CIs: - 4.62, 9.42) in the warm season for per 10 μg/m3 increase of PM2.5, and 0.99 (95% CIs: - 2.69, 4.80) vs. 6.72% (95% CIs: 0.68, 13.13) for PMC. CONCLUSIONS Our study showed PM was positively linked with the risk of osteoporotic fractures. Females and people aged over 65 years old were more susceptible to PM. The adverse impacts of PM2.5 in the cold season and PMC in the warm season were worthy of special attention.
Collapse
Affiliation(s)
- Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xupeng Zhang
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Gaichan Zhao
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Tianzhou Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Aojing Han
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Tingxiao Zhao
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
46
|
Zhou P, Hu J, Yu C, Bao J, Luo S, Shi Z, Yuan Y, Mo S, Yin Z, Zhang Y. Short-term exposure to fine particulate matter constituents and mortality: case-crossover evidence from 32 counties in China. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2527-2538. [PMID: 35713841 DOI: 10.1007/s11427-021-2098-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
A growing number of studies associated increased mortality with exposures to specific fine particulate (PM2.5) constituents, while great heterogeneity exists between locations. In China, evidence linking PM2.5 constituents and mortality was extensively sparse. This study primarily aimed to quantify short-term associations between PM2.5 constituents and non-accidental mortality among the Chinese population. We collected daily mortality records from 32 counties in China between January 1, 2011, and December 31, 2013. Daily concentrations of main PM2.5 constituents (organic carbon (OC), elemental carbon (EC), nitrate (NO3-), sulfate (SO42-), and ammonium (NH4+)) were estimated using the modified Community Multiscale Air Quality model. Time-stratified case-crossover design with conditional logistic regression models was adopted to estimate mortality risks associated with short-term exposures to PM2.5 mass and its constituents. Stratification analyses were done by sex, age, and season. A total of 116,959 non-accidental deaths were investigated. PM2.5 concentrations on the day of death were averaged at 75.7 µg m-3 (control day: 75.6 µg m-3), with an interquartile range (IQR) of 65.2 µg m-3. Per IQR rise in PM2.5, EC, OC, NO3-, SO42-, and NH4+ at lag-04 day was associated with an increase in non-accidental mortality of 2.4% (95% confidence interval, (1.0-3.7), 1.7% (0.8-2.7), 2.9% (1.6-4.3), 2.1% (0.4-3.9), 1.0% (0.2-1.9), and 1.6% (0.3-2.9), respectively. Both PM2.5 mass and its constituents were strongly associated with elevated cardiovascular mortality risks, but only PM2.5, EC, and OC were positively associated with respiratory mortality at lag-3 day. PM2.5 mass and its constituents associated effects on mortality varied among sex- and age-specific subpopulations. Differences in the seasonal pattern of associations exist among PM2.5 constituents, with stronger effects related to EC and NO3- in warm months but SO42- and NH4+ in cold months. Short-term exposures to PM2.5 compositions were positively associated with increased risks of mortality, particularly those constituents from combustion-related sources.
Collapse
Affiliation(s)
- Peixuan Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jianlin Hu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Junzhe Bao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Siqi Luo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhihao Shi
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yang Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shaocai Mo
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhouxin Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
47
|
Guolo F, Stivanello E, Pizzi L, Georgiadis T, Cremonini L, Musti MA, Nardino M, Ferretti F, Marzaroli P, Perlangeli V, Pandolfi P, Miglio R. Emergency Department Visits and Summer Temperatures in Bologna, Northern Italy, 2010-2019: A Case-Crossover Study and Geographically Weighted Regression Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15592. [PMID: 36497667 PMCID: PMC9736574 DOI: 10.3390/ijerph192315592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The aim of the study is to evaluate the association between summer temperatures and emergency department visits (EDVs) in Bologna (Italy) and assess whether this association varies across areas with different socioeconomic and microclimatic characteristics. We included all EDVs within Bologna residences during the summers of 2010-2019. Each subject is attributed a deprivation and a microclimatic discomfort index according to the residence. A time-stratified case-crossover design was conducted to estimate the risk of EDV associated with temperature and the effect modification of deprivation and microclimatic characteristics. In addition, a spatial analysis of data aggregated at the census block level was conducted by applying a Poisson and a geographically weighted Poisson regression model. For each unit increase in temperature above 26 °C, the risk of EDV increases by 0.4% (95%CI: 0.05-0.8). The temperature-EDV relationship is not modified by the microclimatic discomfort index but rather by the deprivation index. The spatial analysis shows that the EDV rate increases with deprivation homogeneously, while it diminishes with increases in median income and microclimatic discomfort, with differences across areas. In conclusion, in Bologna, the EDV risk associated with high temperatures is not very relevant overall, but it tends to increase in areas with a low socioeconomic level.
Collapse
Affiliation(s)
- Francesco Guolo
- Department of Public Health, Local Health Authority of Bologna, 40121 Bologna, Italy
- Department of Statistical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisa Stivanello
- Department of Public Health, Local Health Authority of Bologna, 40121 Bologna, Italy
| | - Lorenzo Pizzi
- Governance of Screening Programs Unit, Local Health Authority of Bologna, 40121 Bologna, Italy
| | | | | | - Muriel Assunta Musti
- Department of Public Health, Local Health Authority of Bologna, 40121 Bologna, Italy
| | | | - Filippo Ferretti
- Department of Public Health, Local Health Authority of Bologna, 40121 Bologna, Italy
| | - Paolo Marzaroli
- Department of Public Health, Local Health Authority of Bologna, 40121 Bologna, Italy
| | - Vincenza Perlangeli
- Department of Public Health, Local Health Authority of Bologna, 40121 Bologna, Italy
| | - Paolo Pandolfi
- Department of Public Health, Local Health Authority of Bologna, 40121 Bologna, Italy
| | - Rossella Miglio
- Department of Statistical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
48
|
Zhang Y, Li W, Jiang N, Liu S, Liang J, Wei N, Liu Y, Tian Y, Feng D, Wang J, Wei C, Tang X, Li T, Gao P. Associations between short-term exposure of PM 2.5 constituents and hospital admissions of cardiovascular diseases among 18 major Chinese cities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114149. [PMID: 36228357 DOI: 10.1016/j.ecoenv.2022.114149] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Previous studies showed different risk effects on exposure of fine particulate matter (PM2.5) mass for cardiovascular disease (CVD) globally, which is likely due to different constituents of PM2.5. This study aimed to investigate the association between short-term exposure of PM2.5 constituents and hospital admissions of CVD. Daily counts of city-specific hospital admissions for CVD in 18 cities in China between 2014 and 2017 were extracted from the national Urban Employee Basic Medical Insurance database and the Beijing Municipal Commission of Health and Family Planning Information Center database. Directly measured PM2.5 constituents, including ions and polycyclic aromatic hydrocarbons, were collected by the Chinese Environmental Public Health Tracking system. We used the time-stratified case-crossover design to estimate the association between PM2.5 constituents and hospital admissions of CVD. Concentrations of ions accounted for the majority of the detected constituents. Excess risk (ER) of average ions concentrations for CVD was highest as 2.30% (95% CI: 1.62-2.99%) for NH4+, whose major sources are residential and agricultural emissions. This was followed by 1.85% (1.30-2.41%) for NO3- (generally from vehicles), 0.95% (0.28-1.63%) for SO42- (often from fossil fuel burning) respectively. The association for ions were generally consistent with ischemic heart disease (IHD) and ischemic stroke, e.g., NH4+ was associated with IHD (2.50%; 1.52-3.48%) and ischemic stroke (1.77%; 0.65-2.9%). For polycyclic aromatic hydrocarbons (PAHs), mainly from coal and vehicle-related oil combustion, the constituents were all associated with ischemic stroke but not for IHD. The ER for ischemic stroke was highest at 1.69% (0.99-2.39%) for indeno (123-cd) pyrene. Thus, in terms of the subtypes of CVD, the risks of hospital admissions varied with exposure to different PM2.5 constituents. Exposed to NH4+ had the highest risk to IHD and ischemic stroke, whereas PAHs were predominately associated with ischemic stroke only.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Ning Jiang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shudan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jingyuan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Nana Wei
- The Inner Mongolia Autonomous Region Comprehensive Center or Disease Control and Prevention, Hohhot, Inner Mongolia, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da Feng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinxi Wang
- Beijing HealthCom Data Technology Co, Ltd, Beijing, China
| | - Chen Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xun Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Pei Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Center for Real-world Evidence evaluation, Peking University Clinical Research Institute, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China.
| |
Collapse
|
49
|
Kim H, Samet JM, Bell ML. Association between Short-Term Exposure to Air Pollution and COVID-19 Mortality: A Population-Based Case-Crossover Study Using Individual-Level Mortality Registry Confirmed by Medical Examiners. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:117006. [PMID: 36367781 PMCID: PMC9651183 DOI: 10.1289/ehp10836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Studies have suggested links between ambient air pollution and coronavirus 2019 (COVID-19) mortality, yet confirmation by well-designed epidemiological studies with individual data is needed. OBJECTIVES We aimed to examine whether short-term exposure to air pollution is associated with risk of mortality from COVID-19 for those infected with COVID-19. METHODS The Cook County Medical Examiner's Office reports individual-level data for deaths from COVID-19 that occur in its jurisdiction, which includes all confirmed COVID-19 deaths in Cook County, Illinois. Case-crossover analysis was conducted to estimate the associations of estimated short-term exposures to particulate matter (PM) with aerodynamic diameter ≤2.5μm (PM2.5) and ozone (O3) on the day of death and up to 21 d before death at location of death with COVID-19. A total of 7,462 deaths from COVID-19 that occurred up to 28 February 2021 were included in the final analysis. We adjusted for potential confounders by time-stratified case-crossover design and by covariate adjustments (i.e., time-invariant factors, meteorological factors, viral transmission, seasonality, and time trend). RESULTS Of the 7,462 case and 25,457 self-control days, almost all were days with exposure levels below the PM2.5 24-h National Ambient Air Quality Standard (NAAQS) (35 μg/m3); 98.9% had O3 levels below the maximum 8-h NAAQS (35.7 μg/m3 or 70 parts per billion). An interquartile range (IQR) increase (5.2 μg/m3) in cumulative 3-wk PM2.5 exposure was associated with a 69.6% [95% confidence interval (CI): 34.6, 113.8] increase in risk of COVID-19 mortality. An IQR increase (8.2 μg/m3) in 3-d O3 exposure was associated with a 29.0% (95% CI: 9.9, 51.5) increase in risk of COVID-19 mortality. The associations differed by demographics or race/ethnicity. There was indication of modification of the associations by some comorbid conditions. DISCUSSION Short-term exposure to air pollution below the NAAQS may increase the mortality burden from COVID-19. https://doi.org/10.1289/EHP10836.
Collapse
Affiliation(s)
- Honghyok Kim
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, Illinois, USA
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Department of Environmental & Occupational Health, Colorado School of Public Health, Aurora, Colorado, USA
| | - Michelle L. Bell
- School of the Environment, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
50
|
Li H, Dalbeth N, Wallace ZS, Sparks JA, Li X, Zeng C, Wang Y, Xie D, Lei G, Wei J, Zhang Y. Risk of gout flares after COVID-19 vaccination: A case-crossover study. Semin Arthritis Rheum 2022; 56:152059. [PMID: 35797765 PMCID: PMC9239705 DOI: 10.1016/j.semarthrit.2022.152059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Routine vaccinations are associated with an increased risk of gout flares. We examined the association between COVID-19 vaccination, an immunization program implemented to a large proportion of population, and the risk of gout flares. METHODS We conducted a time-stratified case-crossover study among patients with gout who experienced gout flares between December 2020 and September 2021, using data from The Health Improvement Network. We compared the risk of gout flares on each of the seven days on and after the day of COVID-19 vaccination vs. no vaccination during that period using conditional logistic regression. In addition, we performed subgroup analyses stratified by different COVID-19 vaccines (i.e., BNT162b2, hereafter referred to as BNT, and ChAdOx1 nCov-19, hereafter referred to as ChAd). RESULTS Among 5,904 patients with gout (mean age: 63·1 years; 85·5% male) who experienced gout flares within one month, the risk of gout flares slightly increased on the second day after COVID-19 vaccination (odds ratio: 1·44; 95% CI: 1·02 to 2·07). The risk of gout flares also slightly increased after receiving COVID-19 vaccine on other remaining days (ORs ranged from 1·03 to 1·22); however, none of them was statistically significant. An increased risk of gout flares on the second day after vaccination was mainly observed for the ChAd vaccine (odds ratio: 1·44; 95% CI: 1·00 to 2·05), but not for BNT vaccine (odds ratio: 1·18; 95% CI: 0·67 to 2·02). CONCLUSION COVID-19 vaccination, mainly ChAd vaccination, slightly increases the risk of gout flares on the second day after vaccination. This finding reassures the safety of COVID-19 vaccination for patients with gout.
Collapse
Affiliation(s)
- Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Zachary S Wallace
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiaoxiao Li
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yilun Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Dongxing Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China,Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China,Department of Epidemiology and Health statistics, Xiangya School of Public Health, Central South University, Changsha, China,Corresponding authors
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Corresponding authors
| |
Collapse
|