1
|
Banzato M, Furlan A, Locatelli P, Sgrignani J, Ongaro A, Dolmella A, De Martin S, Comai S, Cavalli A, Inturrisi C, Bettini E, Manfredi PL, Mattarei A. New Synthesis and Pharmacological Evaluation of Enantiomerically Pure ( R)- and ( S)-Methadone Metabolites as N-Methyl-d-aspartate Receptor Antagonists. J Med Chem 2025; 68:5455-5470. [PMID: 39999356 PMCID: PMC11912475 DOI: 10.1021/acs.jmedchem.4c02605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
N-Methyl-d-aspartate receptor (NMDAR) is gaining increasing interest as a pharmacological target for the development of fast-acting antidepressants. (S)-Methadone (esmethadone), has recently shown promising efficacy for the treatment of major depressive disorder. However, methods for its enantiopure preparation still rely on complex and expensive resolution procedures. In addition, enantiopure methadone metabolites have never been evaluated for their NMDAR activity. Here, we report the development of a novel chiral pool approach, based on cyclic sulfamidate ring-opening reaction, for the asymmetric synthesis of (R)- and (S)-methadone, and the application of this methodology to the stereodivergent synthesis of 20 enantiopure methadone metabolites. The compounds were evaluated for their NMDAR antagonism and for their affinity toward a series of relevant CNS receptors. Strikingly, N-demethylated (6R)-methadol metabolites retain the higher NMDAR uncompetitive antagonism of (R)-methadone, while presenting lower opioid receptor affinity compared to (S)-methadone. These compounds could represent novel candidates for drug development in CNS disorders.
Collapse
Affiliation(s)
- Marco Banzato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| | - Alberto Furlan
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
- Institute for Research in Biomedicine, Via Chiesa 5, 6500 Bellinzona, Switzerland
| | - Patrizia Locatelli
- Institute for Research in Biomedicine, Via Chiesa 5, 6500 Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Via Chiesa 5, 6500 Bellinzona, Switzerland
| | - Alberto Ongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| | - Alessandro Dolmella
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padua, Italy
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, Quebec H3A 1A1, Canada
- IRCSS San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Via Chiesa 5, 6500 Bellinzona, Switzerland
| | | | - Ezio Bettini
- In Vitro Pharmacology Department, Aptuit, An Evotec Company, Via Alessandro Fleming, 4, 37135 Verona, Italy
| | - Paolo L Manfredi
- Relmada Therapeutics, Coral Gables, Florida 33134, United States
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, 35131 Padua, Italy
| |
Collapse
|
2
|
Liu R, Liu N, Ma L, Liu Y, Huang Z, Peng X, Zhuang C, Niu J, Yu J, Du J. Research Progress on NMDA Receptor Enhancement Drugs for the Treatment of Depressive Disorder. CNS Drugs 2024; 38:985-1002. [PMID: 39379772 DOI: 10.1007/s40263-024-01123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Major depressive disorder (MDD) is a severe mental illness with a complex etiology. Currently, many medications employed in clinical treatment exhibit limitations such as delayed onset of action and a high incidence of adverse reactions. Therefore, there is a pressing need to develop antidepressants that exhibit enhanced efficacy and safety. The N-methyl-D-aspartate receptor (NMDAR), a distinctive glutamate-gated ion channel receptor, has been implicated in the onset and progression of depressive disorder, as evidenced by both preclinical and clinical research. The NMDAR antagonist, ketamine, exhibits rapid and sustained antidepressant effects, holding promise as a novel therapeutic approach for depressive disorder. However, its psychotomimetic impact and potential for addiction have restricted its widespread clinical application. Notably, over the past decade, studies have suggested that enhancing NMDAR functionality can produce antidepressant effects with improved safety, especially with the emergence of NMDAR-positive allosteric modulators (PAMs). We view this as a potential novel strategy for treating depression, forming the basis for the narrative review that follows.
Collapse
Affiliation(s)
- Ruyun Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing, China
| | - Xiaodong Peng
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jianguo Niu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
- School of Basic Medicine, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| | - Juan Du
- School of Pharmacy, Ningxia Medical University, 1160 Shengli St, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
3
|
Kielhold ML, Jacobs DS, Torrado-Pacheco A, Lebowitz JJ, Langdon AJ, Williams JT, Zweifel LS, Moghaddam B. Reductions of Grin2a in adolescent dopamine neurons confers aberrant salience and related psychosis phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620713. [PMID: 39554173 PMCID: PMC11565768 DOI: 10.1101/2024.10.28.620713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Psychosis is a hallmark of schizophrenia. It typically emerges in late adolescence and is associated with dopamine abnormalities and aberrant salience. Most genes associated with schizophrenia risk involve ubiquitous targets that may not explain delayed emergence of dopaminergic disruptions. This includes GRIN2A, the gene encoding the GluN2A subunit of the NMDA receptor. Both common and rare variants of GRIN2A are considered genetic risk factors for schizophrenia diagnosis. We find that Grin2a knockout in dopamine neurons during adolescence is sufficient to produce a behavioral phenotype that mirrors aspects of psychosis. These include disruptions in effort optimization, salience attribution, and ability to utilize feedback to guide behavior. We also find a selective effect of this manipulation on dopamine release during prediction error signaling. These data provide mechanistic insight into how variants of GRIN2A may lead to the latent presentation of aberrant salience and abnormalities in dopamine dynamics. This etiologically relevant model may aid future discovery of course altering treatments for schizophrenia.
Collapse
|
4
|
Meka DP, Richter M, Rücker T, Voss H, Rissiek A, Krisp C, Kumar NH, Schwanke B, Fornasiero EF, Schlüter H, Calderon de Anda F. Protocol for differential multi-omic analyses of distinct cell types in the mouse cerebral cortex. STAR Protoc 2024; 5:102793. [PMID: 38157295 PMCID: PMC10792265 DOI: 10.1016/j.xpro.2023.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Here, we present a protocol for differential multi-omic analyses of distinct cell types in the developing mouse cerebral cortex. We describe steps for in utero electroporation, subsequent flow-cytometry-based isolation of developing mouse cortical cells, bulk RNA sequencing or quantitative liquid chromatography-tandem mass spectrometry, and bioinformatic analyses. This protocol can be applied to compare the proteomes and transcriptomes of developing mouse cortical cell populations after various manipulations (e.g., epigenetic). For complete details on the use and execution of this protocol, please refer to Meka et al. (2022).1.
Collapse
Affiliation(s)
- Durga Praveen Meka
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Melanie Richter
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Tabitha Rücker
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Hannah Voss
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anne Rissiek
- Cytometry und Cell Sorting Core Unit, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Krisp
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nisha Hemandhar Kumar
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Birgit Schwanke
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany; Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Hartmut Schlüter
- Diagnostic Center, Section Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Froylan Calderon de Anda
- RG Neuronal Development, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
5
|
Huang X, Chen W, Zhu S. Expression and Purification of Mammalian NMDA Receptor Protein for Functional Characterization. Methods Mol Biol 2024; 2799:13-27. [PMID: 38727900 DOI: 10.1007/978-1-0716-3830-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
N-methyl-D-aspartate (NMDA) receptors are critical for brain function and serve as drug targets for the treatment of neurological and psychiatric disorders. They typically form the tetrameric assembly of GluN1-GluN2 (2A to 2D) subtypes, with their diverse three-dimensional conformations linked with the physiologically relevant function in vivo. Purified proteins of tetrameric assembled NMDA receptors have broad applications in the structural elucidation, hybridoma technology for antibody production, and high-throughput drug screening. However, obtaining sufficient quantity and monodisperse NMDA receptor protein is still technically challenging. Here, we summarize a paradigm for the expression and purification of diverse NMDA receptor subtypes, with detailed descriptions on screening constructs by fluorescence size-exclusion chromatography (FSEC), generation of recombinant baculovirus, expression in the eukaryotic expression system, protein purification by affinity chromatography and size-exclusion chromatography (SEC), biochemical and functional validation assays.
Collapse
Affiliation(s)
- Xuejing Huang
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wanjin Chen
- Department of Neurology, The First Affiliated Hospital, Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Hanson JE, Yuan H, Perszyk RE, Banke TG, Xing H, Tsai MC, Menniti FS, Traynelis SF. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Neuropsychopharmacology 2024; 49:51-66. [PMID: 37369776 PMCID: PMC10700609 DOI: 10.1038/s41386-023-01614-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptors mediate a slow component of excitatory synaptic transmission, are widely distributed throughout the central nervous system, and regulate synaptic plasticity. NMDA receptor modulators have long been considered as potential treatments for psychiatric disorders including depression and schizophrenia, neurodevelopmental disorders such as Rett Syndrome, and neurodegenerative conditions such as Alzheimer's disease. New interest in NMDA receptors as therapeutic targets has been spurred by the findings that certain inhibitors of NMDA receptors produce surprisingly rapid and robust antidepressant activity by a novel mechanism, the induction of changes in the brain that well outlast the presence of drug in the body. These findings are driving research into an entirely new paradigm for using NMDA receptor antagonists in a host of related conditions. At the same time positive allosteric modulators of NMDA receptors are being pursued for enhancing synaptic function in diseases that feature NMDA receptor hypofunction. While there is great promise, developing the therapeutic potential of NMDA receptor modulators must also navigate the potential significant risks posed by the use of such agents. We review here the emerging pharmacology of agents that target different NMDA receptor subtypes, offering new avenues for capturing the therapeutic potential of targeting this important receptor class.
Collapse
Affiliation(s)
- Jesse E Hanson
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tue G Banke
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hao Xing
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ming-Chi Tsai
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Liu X, Yu J, Tan X, Zhang Q, Niu J, Hou Z, Wang Q. Necroptosis involved in sevoflurane-induced cognitive dysfunction in aged mice by activating NMDA receptors increasing intracellular calcium. Neurotoxicology 2024; 100:35-46. [PMID: 38070654 DOI: 10.1016/j.neuro.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Perioperative neurocognitive disorders are a common surgical and postanesthesia complication. Necroptosis contributes to the emergence of various neurological disorders. We conjecture that cognitive impairment is associated with necroptosis of hippocampal neurons, which is mediated by NMDA receptors leading to cytoplasmic calcium imbalance. C57BL/6 J male mice ( 18 months) were randomly divided into the C ( control group), S ( sevoflurane group), S+M ( sevoflurane plus the NMDA receptor antagonist memantine group) and S+N ( sevoflurane plus necrostatin-1) group. We exposed the mice to 3% sevoflurane for 2 h a day for three consecutive days in the S, S+M and S+N groups. Memantine ( 20 mg/kg) or Nec-1 ( 10 mg/kg) was injected intraperitoneally 1 h before sevoflurane anesthesia in the S+M or S+N group. We used the animal behavior tests to evaluate the cognitive function. Pathological damage, the rate of necroptosis, [Ca2+]i, and the expression of necroptosis-related proteins were evaluated. The cognitive function tests, pathological damage, the rate of necroptosis, the expression of necroptosis-related proteins, NMDAR2A and NMDAR2B were significantly different in the S group ( P < 0.05). Alleviated pathological damage, decreased the rate of necroptosis and down-regulated the expression of necroptosis-related proteins occurred in the S+M and S+N group ( P < 0.05). The lower elevated [Ca2+]i, expression of NMDAR2A and NMDAR2B were found in the S+M group. Our findings highlighted sevoflurane-induced cognitive dysfunction is associated with an imbalance in cytoplasmic calcium homeostasis by activating NMDA receptors, which causes hippocampus neurons to undergo necroptosis and ultimately affects cognitive performance in aged mice.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China; Department of Anesthesiology, Children's Hospital of Hebei Province, Shijiazhuang 050030, China
| | - Jiaxu Yu
- Department of Anesthesiology, Cang Zhou Centrol Hospital, Cangzhou 061017, Hebei, China
| | - Xiaona Tan
- Department of Neurological Rehabilitation, Children's Hospital of Hebei Province, Shijiazhuang 050030, China
| | - Qi Zhang
- Department of Anesthesiology, Children's Hospital of Hebei Province, Shijiazhuang 050030, China
| | - Junfang Niu
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Zhiyong Hou
- Center of Emergency and Trauma, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Qiujun Wang
- Department of Anesthesiology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei, China.
| |
Collapse
|
8
|
Bliznyuk A, Grossman Y. Role of NMDA Receptor in High-Pressure Neurological Syndrome and Hyperbaric Oxygen Toxicity. Biomolecules 2023; 13:1786. [PMID: 38136657 PMCID: PMC10742241 DOI: 10.3390/biom13121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Professional divers exposed to pressures greater than 11 ATA (1.1 MPa) may suffer from high-pressure neurological syndrome (HPNS). Divers who use closed-circuit breathing apparatus and patients and medical attendants undergoing hyperbaric oxygen therapy (HBOT) face the risk of CNS hyperbaric oxygen toxicity (HBOTx) at oxygen pressure above 2 ATA (0.2 MPa). Both syndromes are characterized by reversible CNS hyperexcitability, accompanied by cognitive and motor deficits, and N-methyl-D-aspartate receptor (NMDAR) plays a crucial role in provoking them. Various NMDAR subtypes respond differently under hyperbaric conditions. The augmented currents observed only in NMDAR containing GluN2A subunit increase glutamatergic synaptic activity and cause dendritic hyperexcitability and abnormal neuronal activity. Removal of the resting Zn2+ voltage-independent inhibition exerted by GluN2A present in the NMDAR is the major candidate for the mechanism underlying the increase in receptor conductance. Therefore, this process should be the main target for future research aiming at developing neuroprotection against HPNS and HBOTx.
Collapse
Affiliation(s)
- Alice Bliznyuk
- Ilse Katz Institute for Nanoscale Science and Technology (IKI), Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Yoram Grossman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| |
Collapse
|
9
|
Wu E, Zhang J, Zhang J, Zhu S. Structural insights into gating mechanism and allosteric regulation of NMDA receptors. Curr Opin Neurobiol 2023; 83:102806. [PMID: 37950957 DOI: 10.1016/j.conb.2023.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 11/13/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) belong to the ionotropic glutamate receptors (iGluRs) superfamily and act as coincidence detectors that are crucial to neuronal development and synaptic plasticity. They typically assemble as heterotetramers of two obligatory GluN1 subunits and two alternative GluN2 (from 2A to 2D) and/or GluN3 (3A and 3B) subunits. These alternative subunits mainly determine the diverse biophysical and pharmacological properties of different NMDAR subtypes. Over the past decade, the unprecedented advances in structure elucidation of these tetrameric NMDARs have provided atomic insights into channel gating, allosteric modulation and the action of therapeutic drugs. A wealth of structural and functional information would accelerate the artificial intelligence-based drug design to exploit more NMDAR subtype-specific molecules for the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Enjiang Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. https://twitter.com/DuDaDa_Flower
| | - Jilin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
D’Erasmo M, Akins NS, Ma P, Jing Y, Swanger SA, Sharma SK, Bartsch PW, Menaldino DS, Arcoria PJ, Bui TT, Pons-Bennaceur A, Le P, Allen JP, Ullman EZ, Nocilla KA, Zhang J, Perszyk RE, Kim S, Acker TM, Taz A, Burton SL, Coe K, Fritzemeier RG, Burnashev N, Yuan H, Liotta DC, Traynelis SF. Development of a Dihydroquinoline-Pyrazoline GluN2C/2D-Selective Negative Allosteric Modulator of the N-Methyl-d-aspartate Receptor. ACS Chem Neurosci 2023; 14:3059-3076. [PMID: 37566734 PMCID: PMC10485906 DOI: 10.1021/acschemneuro.3c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Subunit-selective inhibition of N-methyl-d-aspartate receptors (NMDARs) is a promising therapeutic strategy for several neurological disorders, including epilepsy, Alzheimer's and Parkinson's disease, depression, and acute brain injury. We previously described the dihydroquinoline-pyrazoline (DQP) analogue 2a (DQP-26) as a potent NMDAR negative allosteric modulator with selectivity for GluN2C/D over GluN2A/B. However, moderate (<100-fold) subunit selectivity, inadequate cell-membrane permeability, and poor brain penetration complicated the use of 2a as an in vivo probe. In an effort to improve selectivity and the pharmacokinetic profile of the series, we performed additional structure-activity relationship studies of the succinate side chain and investigated the use of prodrugs to mask the pendant carboxylic acid. These efforts led to discovery of the analogue (S)-(-)-2i, also referred to as (S)-(-)-DQP-997-74, which exhibits >100- and >300-fold selectivity for GluN2C- and GluN2D-containing NMDARs (IC50 0.069 and 0.035 μM, respectively) compared to GluN2A- and GluN2B-containing receptors (IC50 5.2 and 16 μM, respectively) and has no effects on AMPA, kainate, or GluN1/GluN3 receptors. Compound (S)-(-)-2i is 5-fold more potent than (S)-2a. In addition, compound 2i shows a time-dependent enhancement of inhibitory actions at GluN2C- and GluN2D-containing NMDARs in the presence of the agonist glutamate, which could attenuate hypersynchronous activity driven by high-frequency excitatory synaptic transmission. Consistent with this finding, compound 2i significantly reduced the number of epileptic events in a murine model of tuberous sclerosis complex (TSC)-induced epilepsy that is associated with upregulation of the GluN2C subunit. Thus, 2i represents a robust tool for the GluN2C/D target validation. Esterification of the succinate carboxylate improved brain penetration, suggesting a strategy for therapeutic development of this series for NMDAR-associated neurological conditions.
Collapse
Affiliation(s)
- Michael
P. D’Erasmo
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Nicholas S. Akins
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Peipei Ma
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yao Jing
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sharon A. Swanger
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| | - Savita K. Sharma
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Perry W. Bartsch
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - David S. Menaldino
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Paul J. Arcoria
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Thi-Thien Bui
- INMED,
INSERM, Aix Marseille University, 13284 Marseille, France
| | | | - Phuong Le
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| | - James P. Allen
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| | - Elijah Z. Ullman
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| | - Kelsey A. Nocilla
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| | - Jing Zhang
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| | - Riley E. Perszyk
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| | - Sukhan Kim
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| | - Timothy M. Acker
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Azmain Taz
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Samantha L. Burton
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kevin Coe
- Janssen
Research & Development, LLC, San Diego, California 92121, United States
| | | | - Nail Burnashev
- INMED,
INSERM, Aix Marseille University, 13284 Marseille, France
| | - Hongjie Yuan
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| | - Dennis C. Liotta
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Stephen F. Traynelis
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Nardi L, Chhabra S, Leukel P, Krueger-Burg D, Sommer CJ, Schmeisser MJ. Neuroanatomical changes of ionotropic glutamatergic and GABAergic receptor densities in male mice modeling idiopathic and syndromic autism spectrum disorder. Front Psychiatry 2023; 14:1199097. [PMID: 37547211 PMCID: PMC10401048 DOI: 10.3389/fpsyt.2023.1199097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Autism spectrum disorder (ASD) comprises a wide range of neurodevelopment conditions primarily characterized by impaired social interaction and repetitive behavior, accompanied by a variable degree of neuropsychiatric characteristics. Synaptic dysfunction is undertaken as one of the key underlying mechanisms in understanding the pathophysiology of ASD. The excitatory/inhibitory (E/I) hypothesis is one of the most widely held theories for its pathogenesis. Shifts in E/I balance have been proven in several ASD models. In this study, we investigated three mouse lines recapitulating both idiopathic (the BTBR strain) and genetic (Fmr1 and Shank3 mutants) forms of ASD at late infancy and early adulthood. Using receptor autoradiography for ionotropic excitatory (AMPA and NMDA) and inhibitory (GABAA) receptors, we mapped the receptor binding densities in brain regions known to be associated with ASD such as prefrontal cortex, dorsal and ventral striatum, dorsal hippocampus, and cerebellum. The individual mouse lines investigated show specific alterations in excitatory ionotropic receptor density, which might be accounted as specific hallmark of each individual line. Across all the models investigated, we found an increased binding density to GABAA receptors at adulthood in the dorsal hippocampus. Interestingly, reduction in the GABAA receptor binding density was observed in the cerebellum. Altogether, our findings suggest that E/I disbalance individually affects several brain regions in ASD mouse models and that alterations in GABAergic transmission might be accounted as unifying factor.
Collapse
Affiliation(s)
- Leonardo Nardi
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Stuti Chhabra
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dilja Krueger-Burg
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Clemens J. Sommer
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Konno K, Yamasaki M, Miyazaki T, Watanabe M. Glyoxal fixation: An approach to solve immunohistochemical problem in neuroscience research. SCIENCE ADVANCES 2023; 9:eadf7084. [PMID: 37450597 PMCID: PMC10348680 DOI: 10.1126/sciadv.adf7084] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
The gold-standard fixative for immunohistochemistry is 4% formaldehyde; however, it limits antibody access to target molecules that are buried within specialized neuronal components, such as ionotropic receptors at the postsynapse and voltage-gated ion channels at the axon initial segment, often requiring additional antigen-exposing techniques to detect their authentic signals. To solve this problem, we used glyoxal, a two-carbon atom di-aldehyde. We found that glyoxal fixation greatly improved antibody penetration and immunoreactivity, uncovering signals for buried molecules by conventional immunohistochemical procedures at light and electron microscopic levels. It also enhanced immunosignals of most other molecules, which are known to be detectable in formaldehyde-fixed sections. Furthermore, we unearthed several specific primary antibodies that were once judged to be unusable in formaldehyde-fixed tissues, allowing us to successfully localize so far controversial synaptic adhesion molecule Neuroligin 1. Thus, glyoxal is a highly effective fixative for immunostaining, and a side-by-side comparison of glyoxal and formaldehyde fixation is recommended for routine immunostaining in neuroscience research.
Collapse
Affiliation(s)
- Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
13
|
Gawande DY, Shelkar GP, Narasimhan KKS, Liu J, Dravid SM. GluN2D subunit-containing NMDA receptors regulate reticular thalamic neuron function and seizure susceptibility. Neurobiol Dis 2023; 181:106117. [PMID: 37031803 DOI: 10.1016/j.nbd.2023.106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/11/2023] Open
Abstract
Thalamic regulation of cortical function is important for several behavioral aspects including attention and sensorimotor control. This region has also been studied for its involvement in seizure activity. Among the NMDA receptor subunits GluN2C and GluN2D are particularly enriched in several thalamic nuclei including nucleus reticularis of the thalamus (nRT). We have previously found that GluN2C deletion does not have a strong influence on the basal excitability and burst firing characteristics of reticular thalamus neurons. Here we find that GluN2D ablation leads to reduced depolarization-induced spike frequency and reduced hyperpolarization-induced rebound burst firing in nRT neurons. Furthermore, reduced inhibitory neurotransmission was observed in the ventrobasal thalamus (VB). A model with preferential downregulation of GluN2D from parvalbumin (PV)-positive neurons was generated. Conditional deletion of GluN2D from PV neurons led to a decrease in excitability and burst firing. In addition, reduced excitability and burst firing was observed in the VB neurons together with reduced inhibitory neurotransmission. Finally, young mice with GluN2D downregulation in PV neurons showed significant resistance to pentylenetetrazol-induced seizure and differences in sensitivity to isoflurane anesthesia but were normal in other behaviors. Conditional deletion of GluN2D from PV neurons also affected expression of other GluN2 subunits and GABA receptor in the nRT. Together, these results identify a unique role of GluN2D-containing receptors in the regulation of thalamic circuitry and seizure susceptibility which is relevant to mutations in GRIN2D gene found to be associated with pediatric epilepsy.
Collapse
Affiliation(s)
- Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
14
|
Quantitative analysis of NMDA receptor subunits proteins in mouse brain. Neurochem Int 2023; 165:105517. [PMID: 36913980 DOI: 10.1016/j.neuint.2023.105517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023]
Abstract
NMDA-type glutamate receptors (NMDARs) are tetrameric channel complex composed of two subunits of GluN1, which is encoded by a single gene and diversified by alternative splicing, and two subunits from four subtypes of GluN2, leading to various combinations of subunits and channel specificities. However, there is no comprehensive quantitative analysis of GluN subunit proteins for relative comparison, and their compositional ratios at various regions and developmental stages have not been clarified. Here we prepared six chimeric subunits, by fusing an N-terminal side of the GluA1 subunit with a C-terminal side of each of two splicing isoforms of GluN1 subunit and four GluN2 subunits, with which titers of respective NMDAR subunit antibodies could be standardized using common GluA1 antibody, thus enabling quantification of relative protein levels of each NMDAR subunit by western blotting. We determined relative protein amounts of NMDAR subunits in crude, membrane (P2) and microsomal fractions prepared from the cerebral cortex, hippocampus and cerebellum in adult mice. We also examined amount changes in the three brain regions during developmental stages. Their relative amounts in the cortical crude fraction were almost parallel to those of mRNA expression, except for some subunits. Interestingly, a considerable amount of GluN2D protein existed in adult brains, although its transcription level declines after early postnatal stages. GluN1 was larger in quantity than GluN2 in the crude fraction, whereas GluN2 increased in the membrane component-enriched P2 fraction, except in the cerebellum. These data will provide the basic spatio-temporal information on the amount and composition of NMDARs.
Collapse
|
15
|
Sabo SL, Lahr JM, Offer M, Weekes ALA, Sceniak MP. GRIN2B-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms. Front Synaptic Neurosci 2023; 14:1090865. [PMID: 36704660 PMCID: PMC9873235 DOI: 10.3389/fnsyn.2022.1090865] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The GRIN2B-related neurodevelopmental disorder is a rare disease caused by mutations in the GRIN2B gene, which encodes the GluN2B subunit of NMDA receptors. Most individuals with GRIN2B-related neurodevelopmental disorder present with intellectual disability and developmental delay. Motor impairments, autism spectrum disorder, and epilepsy are also common. A large number of pathogenic de novo mutations have been identified in GRIN2B. However, it is not yet known how these variants lead to the clinical symptoms of the disease. Recent research has begun to address this issue. Here, we describe key experimental approaches that have been used to better understand the pathophysiology of this disease. We discuss the impact of several distinct pathogenic GRIN2B variants on NMDA receptor properties. We then critically review pivotal studies examining the synaptic and neurodevelopmental phenotypes observed when disease-associated GluN2B variants are expressed in neurons. These data provide compelling evidence that various GluN2B mutants interfere with neuronal differentiation, dendrite morphogenesis, synaptogenesis, and synaptic plasticity. Finally, we identify important open questions and considerations for future studies aimed at understanding this complex disease. Together, the existing data provide insight into the pathophysiological mechanisms that underlie GRIN2B-related neurodevelopmental disorder and emphasize the importance of comparing the effects of individual, disease-associated variants. Understanding the molecular, cellular and circuit phenotypes produced by a wide range of GRIN2B variants should lead to the identification of core neurodevelopmental phenotypes that characterize the disease and lead to its symptoms. This information could help guide the development and application of effective therapeutic strategies for treating individuals with GRIN2B-related neurodevelopmental disorder.
Collapse
Affiliation(s)
- Shasta L. Sabo
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States,Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States,Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States,*Correspondence: Shasta L. Sabo
| | - Jessica M. Lahr
- Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Madelyn Offer
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Anika LA Weekes
- Program in Biochemistry, Cell and Molecular Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Michael P. Sceniak
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
16
|
Chen H, Dong Y, Wu Y, Yi F. Targeting NMDA receptor signaling for therapeutic intervention in brain disorders. Rev Neurosci 2023:revneuro-2022-0096. [PMID: 36586105 DOI: 10.1515/revneuro-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/03/2022] [Indexed: 01/01/2023]
Abstract
N-Methyl-d-aspartate (NMDA) receptor hyperfunction plays a key role in the pathological processes of depression and neurodegenerative diseases, whereas NMDA receptor hypofunction is implicated in schizophrenia. Considerable efforts have been made to target NMDA receptor function for the therapeutic intervention in those brain disorders. In this mini-review, we first discuss ion flux-dependent NMDA receptor signaling and ion flux-independent NMDA receptor signaling that result from structural rearrangement upon binding of endogenous agonists. Then, we review current strategies for exploring druggable targets of the NMDA receptor signaling and promising future directions, which are poised to result in new therapeutic agents for several brain disorders.
Collapse
Affiliation(s)
- He Chen
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yuanping Dong
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yun Wu
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| | - Feng Yi
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
17
|
Ramírez A, Monjaraz E, Manjarrez E, Moyaho A, Cebada J, Flores A. Pharmacological characterization and differential expression of NMDA receptor subunits in the chicken vestibular system during development. Synapse 2023; 77:e22252. [PMID: 36099479 DOI: 10.1002/syn.22252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 01/29/2023]
Abstract
Previous studies demonstrated that in vitro preparations of the isolated vestibular system of diverse animal species still exhibit stable resting electrical activity and mechanically evoked synaptic transmission between hair cells and primary afferent endings. However, there are no reports related to their neurodevelopment. Therefore, this research aimed to examine whether NMDA receptors mediate these electrical signals in an isolated preparation of the chicken vestibular system at three developmental stages, E15, E18, and E21. We found that the spontaneous and mechanically evoked discharges from primary afferents of the posterior semicircular canal were modulated by agonists NMDA and glycine, but not by the agonist d-serine applied near the synapses. Moreover, the individually applied by bath perfusion of three NMDA receptor antagonists (MK-801, ifenprodil, and 2-naphthoic acid) or high Mg2+ decreased the resting discharge rate, the NMDA response, and the discharge rate of mechanically evoked activity from these primary afferents. Furthermore, we found that the vestibular ganglion shows a stage-dependent increase in the expression of NMDA receptor subunits GluN1, GluN2 (A-C), and GluN3 (A-B), being greater at E21, except for GluN2D, which was inversely related to the developmental stage. However, in the crista ampullaris, the expression pattern remained constant throughout development. This could suggest the possible existence of presynaptic NMDA receptors. Our results highlight that although the NMDA receptors are functionally active at the early embryonic stages of the vestibular system, NMDA and glycine reach their mature functionality to increase NMDA responses close to hatching (E21).
Collapse
Affiliation(s)
- Ana Ramírez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México.,Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Eduardo Monjaraz
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Elías Manjarrez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Alejandro Moyaho
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Jorge Cebada
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Amira Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
18
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
19
|
Khantakova JN, Bondar NP, Sapronova AA, Reshetnikov VV. Delayed effects of neonatal immune activation on brain neurochemistry and hypothalamic-pituitary-adrenal axis functioning. Eur J Neurosci 2022; 56:5931-5951. [PMID: 36156830 DOI: 10.1111/ejn.15831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022]
Abstract
During the postnatal period, the brain is highly sensitive to stress and inflammation, which are hazardous to normal growth and development. There is increasing evidence that inflammatory processes in the early postnatal period increase the risk of psychopathologies and cognitive impairment later in life. On the other hand, there are few studies on the ability of infectious agents to cause long-term neuroinflammation, leading to changes in the hypothalamic-pituitary-adrenal axis functioning and an imbalance in the neurotransmitter system. In this review, we examine short- and long-term effects of neonatal-induced inflammation in rodents on glutamatergic, GABAergic and monoaminergic systems and on hypothalamic-pituitary-adrenal axis activity.
Collapse
Affiliation(s)
- Julia N Khantakova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Federal State Budgetary Scientific Institution 'Research Institute of Fundamental and Clinical Immunology' (RIFCI), Novosibirsk, Russia
| | - Natalia P Bondar
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Anna A Sapronova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Vasiliy V Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
20
|
Alfaro‐Ruiz R, Aguado C, Martín‐Belmonte A, Moreno‐Martínez AE, Merchán‐Rubira J, Hernández F, Ávila J, Fukazawa Y, Luján R. Different modes of synaptic and extrasynaptic NMDA receptor alteration in the hippocampus of P301S tau transgenic mice. Brain Pathol 2022; 33:e13115. [PMID: 36058615 PMCID: PMC9836375 DOI: 10.1111/bpa.13115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/12/2022] [Indexed: 01/21/2023] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are pivotal players in the synaptic transmission and synaptic plasticity underlying learning and memory. Accordingly, dysfunction of NMDARs has been implicated in the pathophysiology of Alzheimer disease (AD). Here, we used histoblot and sodium dodecylsulphate-digested freeze-fracture replica labelling (SDS-FRL) techniques to investigate the expression and subcellular localisation of GluN1, the obligatory subunit of NMDARs, in the hippocampus of P301S mice. Histoblots showed that GluN1 expression was significantly reduced in the hippocampus of P301S mice in a laminar-specific manner at 10 months of age but was unaltered at 3 months. Using the SDS-FRL technique, excitatory synapses and extrasynaptic sites on spines of pyramidal cells and interneuron dendrites were analysed throughout all dendritic layers in the CA1 field. Our ultrastructural approach revealed a high density of GluN1 in synaptic sites and a substantially lower density at extrasynaptic sites. Labelling density for GluN1 in excitatory synapses established on spines was significantly reduced in P301S mice, compared with age-matched wild-type mice, in the stratum oriens (so), stratum radiatum (sr) and stratum lacunosum-moleculare (slm). Density for synaptic GluN1 on interneuron dendrites was significantly reduced in P301S mice in the so and sr but unaltered in the slm. Labelling density for GluN1 at extrasynaptic sites showed no significant differences in pyramidal cells, and only increased density in the interneuron dendrites of the sr. This differential alteration of synaptic versus extrasynaptic NMDARs supports the notion that the progressive accumulation of phospho-tau is associated with changes in NMDARs, in the absence of amyloid-β pathology, and may be involved in the mechanisms causing abnormal network activity of the hippocampal circuit.
Collapse
Affiliation(s)
- Rocío Alfaro‐Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Alejandro Martín‐Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain,Present address:
Pharmacology Unit, Department of Pathology and Experimental TherapeuticsFaculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona08907 L'Hospitalet de LlobregatSpain
| | - Ana Esther Moreno‐Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | | | - Félix Hernández
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain,Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasISCIIIMadridSpain
| | - Jesús Ávila
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain,Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasISCIIIMadridSpain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical ScienceUniversity of FukuiFukuiJapan,Life Science Innovation CenterUniversity of FukuiFukuiJapan
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| |
Collapse
|
21
|
Min C, Ling R, Chen M, Xia D, Chen R, Li X. Enriched environment rescues neonatal pain induced cognitive deficits and the impaired hippocampal synaptic plasticity later in life. Dev Neurobiol 2022; 82:545-561. [PMID: 35945168 DOI: 10.1002/dneu.22898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/04/2022] [Accepted: 07/27/2022] [Indexed: 11/06/2022]
Abstract
Although extensive and untreated pain that occurs during a critical developmental window may impair cognition later in life, environmental interventions at early might promote. However, the underlying mechanism is poorly understood. Our current study utilized a rat model of "repetitive needle pricks" from the day of birth (P0) to postnatal day 7 (P7) to mimic the painful experience of preterm neonates in the Neonatal intensive care unit (NICU). Enriched environment (EE) during development period (from P15 to P70) was implemented as a nonpharmacological intervention approach. Electrophysiological recording, behavioral tests and biochemical analysis were performed after the end of EE (between P71 and P80). Results showed neonatal repetitive pain resulted in a reduction in mechanical withdrawal thresholds by the von Frey test in P70 (P < 0.001). Furthermore, neonatal repetitive pain impaired spatial learning and memory (P < 0.05) and even led to dysfunction in fear memory (P < 0.01). In contrast, EE rescued neonatal pain induced cognitive deficits and normalized hippocampal long-term potentiation in rats exposed to neonatal pain (P < 0.05). The beneficial effect of EE might be the improvements in hippocampal synaptic plasticity via up-regulating neurotrophic factors and N-methyl-D-aspartate (NMDA) receptors in the hippocampus. Our findings provide evidence that early environmental intervention might be a safe strategy to overcome neurodevelopmental abnormalities in preterm infants who experienced multiple procedural painful events during the early critical period. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cuiting Min
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Ru Ling
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Mengying Chen
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Dongqing Xia
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Ran Chen
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, P.R. China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, P.R. China
| |
Collapse
|
22
|
Smart K, Zheng MQ, Ahmed H, Fang H, Xu Y, Cai L, Holden D, Kapinos M, Haider A, Felchner Z, Ropchan JR, Tamagnan G, Innis RB, Pike VW, Ametamey SM, Huang Y, Carson RE. Comparison of three novel radiotracers for GluN2B-containing NMDA receptors in non-human primates: (R)-[ 11C]NR2B-Me, (R)-[ 18F]of-Me-NB1, and (S)-[ 18F]of-NB1. J Cereb Blood Flow Metab 2022; 42:1398-1409. [PMID: 35209743 PMCID: PMC9274863 DOI: 10.1177/0271678x221084416] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
The NMDA receptor GluN2B subunit is a target of interest in neuropsychiatric disorders but to date there is no selective radiotracer available to quantify its availability in vivo. Here we report direct comparisons in non-human primates of three GluN2B-targeting radioligands: (R)-[11C]NR2B-Me, (R)-[18F]OF-Me-NB1, and (S)-[18F]OF-NB1. Plasma free fraction, metabolism, tissue distribution and kinetics, and quantitative kinetic modeling methods and parameters were evaluated in two adult rhesus macaques. Free fraction in plasma was <2% for (R)-[11C]NR2B-Me and (R)-[18F]OF-Me-NB1 and higher for (S)-[18F]OF-NB1 (15%). All radiotracers showed good brain uptake and distribution throughout grey matter, with substantial (>68%) blockade across the brain by the GluN2B-targeting drug Co-101,244 (0.25 mg/kg), including in the cerebellum. Time-activity curves were well-fitted by the one-tissue compartment model, with volume of distribution values of 20-40 mL/cm3 for (R)-[11C]NR2B-Me, 8-16 mL/cm3 for (R)-[18F]OF-Me-NB1, and 15-35 mL/cm3 for (S)-[18F]OF-NB1. Estimates of regional non-displaceable binding potential were in the range of 2-3 for (R)-[11C]NR2B-Me and (S)-[18F]-OF-NB1, and 0.5-1 for (R)-[18F]OF-Me-NB1. Altogether, each radiotracer showed an acceptable profile for quantitative imaging of GluN2B. (S)-[18F]OF-NB1 has particularly promising imaging characteristics for potential translation into humans. However, the source of unexpected displaceable binding in the cerebellum for each of these compounds requires further investigation.
Collapse
Affiliation(s)
- Kelly Smart
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Ming-Qiang Zheng
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Hazem Ahmed
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Hanyi Fang
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Xu
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
- Jiangsu Institute of Nuclear Medicine, Jiangsu, China
| | - Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Daniel Holden
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Michael Kapinos
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Ahmed Haider
- Institute of Pharmaceutical Sciences, Zurich, Switzerland
| | - Zachary Felchner
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Jim R Ropchan
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Gilles Tamagnan
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Simon M Ametamey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Yiyun Huang
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Richard E Carson
- Yale School of Medicine, Yale PET Center, New Haven, Connecticut, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| |
Collapse
|
23
|
Benske TM, Mu TW, Wang YJ. Protein quality control of N-methyl-D-aspartate receptors. Front Cell Neurosci 2022; 16:907560. [PMID: 35936491 PMCID: PMC9352929 DOI: 10.3389/fncel.2022.907560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 12/23/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated cation channels that mediate excitatory neurotransmission and are critical for synaptic development and plasticity in the mammalian central nervous system (CNS). Functional NMDARs typically form via the heterotetrameric assembly of GluN1 and GluN2 subunits. Variants within GRIN genes are implicated in various neurodevelopmental and neuropsychiatric disorders. Due to the significance of NMDAR subunit composition for regional and developmental signaling at synapses, properly folded receptors must reach the plasma membrane for their function. This review focuses on the protein quality control of NMDARs. Specifically, we review the quality control mechanisms that ensure receptors are correctly folded and assembled within the endoplasmic reticulum (ER) and trafficked to the plasma membrane. Further, we discuss disease-associated variants that have shown disrupted NMDAR surface expression and function. Finally, we discuss potential targeted pharmacological and therapeutic approaches to ameliorate disease phenotypes by enhancing the expression and surface trafficking of subunits harboring disease-associated variants, thereby increasing their incorporation into functional receptors.
Collapse
Affiliation(s)
| | - Ting-Wei Mu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ya-Juan Wang
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
24
|
Nagarajan L, Pisani F, Ghosh S. CARFS 7: A guide and proforma for reading a preterm neonate's EEG. Neurophysiol Clin 2022; 52:265-279. [PMID: 35718626 DOI: 10.1016/j.neucli.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES The important role of the EEG in preterm and term babies in investigating brain function and seizures, predicting outcomes, evaluating therapeutic interventions and decision-making is being increasingly acknowledged. Development of the brain in the last trimester of pregnancy results in rapid changes in the EEG patterns in this period. Acquiring and interpreting the EEG of a preterm baby can be challenging. The aim of this study was to develop a proforma titled CARFS7 (Continuity, Amplitude, Reactivity, Frequency, Synchrony, Symmetry, Sleep, Sharps, Shapes, Size and Seizures) to enable neurologists to read EEGs of premature babies with greater confidence, ease and accuracy and produce a report more easily repeatable and homogenous among operators. METHODS The CARFS7proforma was developed based on a literature review and the personal experience of the authors. The parameters of the EEG evaluated and scored in the proforma are Continuity, Amplitude, Reactivity/Variability, Frequency, Synchrony, Symmetry, Sleep, Sharps, Shapes/Patterns, Size and Seizures. We also assessed the interrater reliability of the proposed scoring system incorporated in the proforma. RESULTS CARFS7 proforma incorporates a number of parameters that help evaluate the preterm EEG. The interrater reliability of the proposed scoring system in the CARFS7proforma was high. CONCLUSIONS CARFS7 is a user friendly proforma for reading EEGs in the preterm infant. Interrater reliability using Cohen's k shows high agreement between two child neurologists who independently rated the EEGs of 25 premature babies using this proforma. CARFS7 has the potential to provide, accurate, reproducible and valuable information on brain function in the preterm infant in clinical practice.
Collapse
Affiliation(s)
- Lakshmi Nagarajan
- Children's Neuroscience Service, Department of Neurology, Perth Children's Hospital, Nedlands, Australia; School of Medicine, University of Western Australia, Perth, Australia.
| | - Francesco Pisani
- Child Neuropsychiatry Unit, Medicine & Surgery Department, Neuroscience Division, University of Parma, Parma, Italy
| | - Soumya Ghosh
- Children's Neuroscience Service, Department of Neurology, Perth Children's Hospital, Nedlands, Australia; Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, Australia
| |
Collapse
|
25
|
Jing PB, Chen XH, Lu HJ, Gao YJ, Wu XB. Enhanced function of NR2C/2D-containing NMDA receptor in the nucleus accumbens contributes to peripheral nerve injury-induced neuropathic pain and depression in mice. Mol Pain 2022; 18:17448069211053255. [PMID: 35057644 PMCID: PMC8785348 DOI: 10.1177/17448069211053255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) dysfunction in the nucleus accumbens (NAc) participates in regulating many neurological and psychiatric disorders such as drug addiction, chronic pain, and depression. NMDARs are heterotetrameric complexes generally composed of two NR1 and two NR2 subunits (NR2A, NR2B, NR2C and NR2D). Much attention has been focused on the role of NR2A and NR2B-containing NMDARs in a variety of neurological disorders; however, the function of NR2C/2D subunits at NAc in chronic pain remains unknown. In this study, spinal nerve ligation (SNL) induced a persistent sensory abnormity and depressive-like behavior. The whole-cell patch clamp recording on medium spiny neurons (MSNs) in the NAc showed that the amplitude of NMDAR-mediated excitatory postsynaptic currents (EPSCs) was significantly increased when membrane potential held at −40 to 0 mV in mice after 14 days of SNL operation. In addition, selective inhibition of NR2C/2D-containing NMDARs with PPDA caused a larger decrease on peak amplitude of NMDAR-EPSCs in SNL than that in sham-operated mice. Appling of selective potentiator of NR2C/2D, CIQ, markedly enhanced the evoked NMDAR-EPSCs in SNL-operated mice, but no change in sham-operated mice. Finally, intra-NAc injection of PPDA significantly attenuated SNL-induced mechanical allodynia and depressive-like behavior. These results for the first time showed that the functional change of NR2C/2D subunits-containing NMDARs in the NAc might contribute to the sensory and affective components in neuropathic pain.
Collapse
Affiliation(s)
- Peng-Bo Jing
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Hong Chen
- Department of Anesthesiology, Tumor Hospital Affiliated to Nantong University and Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
26
|
Panagiotakos G, Pasca SP. A matter of space and time: Emerging roles of disease-associated proteins in neural development. Neuron 2022; 110:195-208. [PMID: 34847355 PMCID: PMC8776599 DOI: 10.1016/j.neuron.2021.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 01/21/2023]
Abstract
Recent genetic studies of neurodevelopmental disorders point to synaptic proteins and ion channels as key contributors to disease pathogenesis. Although many of these proteins, such as the L-type calcium channel Cav1.2 or the postsynaptic scaffolding protein SHANK3, have well-studied functions in mature neurons, new evidence indicates that they may subserve novel, distinct roles in immature cells as the nervous system is assembled in prenatal development. Emerging tools and technologies, including single-cell sequencing and human cellular models of disease, are illuminating differential isoform utilization, spatiotemporal expression, and subcellular localization of ion channels and synaptic proteins in the developing brain compared with the adult, providing new insights into the regulation of developmental processes. We propose that it is essential to consider the temporally distinct and cell-specific roles of these proteins during development and maturity in our framework for understanding neuropsychiatric disorders.
Collapse
Affiliation(s)
- Georgia Panagiotakos
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| | - Sergiu P Pasca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
27
|
France G, Volianskis R, Ingram R, Bannister N, Rothärmel R, Irvine MW, Fang G, Burnell ES, Sapkota K, Costa BM, Chopra DA, Dravid SM, Michael-Titus AT, Monaghan DT, Georgiou J, Bortolotto ZA, Jane DE, Collingridge GL, Volianskis A. Differential regulation of STP, LTP and LTD by structurally diverse NMDA receptor subunit-specific positive allosteric modulators. Neuropharmacology 2022; 202:108840. [PMID: 34678377 PMCID: PMC8803579 DOI: 10.1016/j.neuropharm.2021.108840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
Different types of memory are thought to rely on different types of synaptic plasticity, many of which depend on the activation of the N-Methyl-D Aspartate (NMDA) subtype of glutamate receptors. Accordingly, there is considerable interest in the possibility of using positive allosteric modulators (PAMs) of NMDA receptors (NMDARs) as cognitive enhancers. Here we firstly review the evidence that NMDA receptor-dependent forms of synaptic plasticity: short-term potentiation (STP), long-term potentiation (LTP) and long-term depression (LTD) can be pharmacologically differentiated by using NMDAR ligands. These observations suggest that PAMs of NMDAR function, depending on their subtype selectivity, might differentially regulate STP, LTP and LTD. To test this hypothesis, we secondly performed experiments in rodent hippocampal slices with UBP714 (a GluN2A/2B preferring PAM), CIQ (a GluN2C/D selective PAM) and UBP709 (a pan-PAM that potentiates all GluN2 subunits). We report here, for the first time, that: (i) UBP714 potentiates sub-maximal LTP and reduces LTD; (ii) CIQ potentiates STP without affecting LTP; (iii) UBP709 enhances LTD and decreases LTP. We conclude that PAMs can differentially regulate distinct forms of NMDAR-dependent synaptic plasticity due to their subtype selectivity. This article is part of the Neuropharmacology Special Issue on ‘Glutamate Receptors – NMDA receptors’. NMDAR-dependent STP, LTP and LTD can be dissociated pharmacologically GluN2A/2B PAM UBP714 potentiates LTP and reduces LTD GluN2C/D PAM CIQ potentiates STP without affecting LTP NMDAR pan-PAM UBP709 potentiates LTD and reduces LTP
Collapse
Affiliation(s)
- G France
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - R Volianskis
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - R Ingram
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - N Bannister
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - R Rothärmel
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - M W Irvine
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - G Fang
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - E S Burnell
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; University of Exeter, St Luke's Campus, Heavitree Road, Exeter, UK
| | - K Sapkota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - B M Costa
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA & Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - D A Chopra
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - S M Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - A T Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - D T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - J Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Z A Bortolotto
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - D E Jane
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - G L Collingridge
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Department of Physiology, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - A Volianskis
- Schools of Clinical Sciences and Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK; Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK; School of Biosciences, Museum Avenue, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
28
|
Sapkota K, Burnell ES, Irvine MW, Fang G, Gawande DY, Dravid SM, Jane DE, Monaghan DT. Pharmacological characterization of a novel negative allosteric modulator of NMDA receptors, UBP792. Neuropharmacology 2021; 201:108818. [PMID: 34610288 DOI: 10.1016/j.neuropharm.2021.108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023]
Abstract
N-methyl-d-aspartate (NMDA) receptors (NMDARs) are a subtype of ionotropic glutamate receptor with important roles in CNS function. Since excessive NMDAR activity can lead to neuronal cell death and epilepsy, there is interest in developing NMDAR negative allosteric modulators (NAMs) as neuroprotective agents. In this study, we characterize the inhibitory properties of a novel NMDAR antagonist, UBP792. This compound displays partial subtype-selectivity by having a varied maximal inhibition of GluN2A-, GluN2B-, GluN2C-, and GluN2D-containing receptors (52%, 70%, 87%, 89%, respectively) with IC50s 4-10 μM. UBP792 inhibited NMDAR responses by reducing l-glutamate and glycine potencies and efficacies. Consistent with non-competitive inhibition, increasing agonist concentrations 30-fold did not reduce UBP792 potency. UBP792 inhibition was also not competitive with the structurally-related positive allosteric modulator (PAM) UBP684. UBP792 activity was voltage-independent, unaffected by GluN1's exon-5, and reduced at low pH (except for GluN1/GluN2A receptors which were more sensitive at acidic pH). UBP792 binding appeared independent of agonist binding and may be entering the plasma membrane to gain access to its binding site. Inhibition by UBP792 is reduced when the ligand-binding domain (LBD) of the GluN2 subunit, but not that of the GluN1 subunit, is cross-linked in the closed-cleft, activated conformation. Thus, UBP792 may be inhibiting by stabilizing an open GluN2-LBD cleft associated with channel inactivation or by stabilizing downstream closed channel conformations allosterically-coupled to the GluN2-LBD. These findings further expand the repertoire displayed by NMDAR NAMs thus expanding the opportunities for developing NMDAR modulators with the most appropriate selectivity and physiological actions for specific therapeutic indications.
Collapse
Affiliation(s)
- Kiran Sapkota
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | - Erica S Burnell
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK; University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Mark W Irvine
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK; Hello Bio, Unit 3, Io Centre Cabot Park/Moorend Farm Ave, Bristol, BS11 0QL, UK
| | - Guangyu Fang
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK; Hello Bio, Unit 3, Io Centre Cabot Park/Moorend Farm Ave, Bristol, BS11 0QL, UK
| | - Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, 68178, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE, 68178, USA
| | - David E Jane
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Daniel T Monaghan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA.
| |
Collapse
|
29
|
Ruden JB, Dixit M, Zepeda JC, Grueter BA, Dugan LL. Robust Expression of Functional NMDA Receptors in Human Induced Pluripotent Stem Cell-Derived Neuronal Cultures Using an Accelerated Protocol. Front Mol Neurosci 2021; 14:777049. [PMID: 34899184 PMCID: PMC8661903 DOI: 10.3389/fnmol.2021.777049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are critical for higher-order nervous system function, but in previously published protocols to convert human induced pluripotent stem cells (iPSCs) to mature neurons, functional NMDA receptors (NMDARs) are often either not reported or take an extended time to develop. Here, we describe a protocol to convert human iPSC-derived neural progenitor cells (NPCs) to mature neurons in only 37 days. We demonstrate that the mature neurons express functional NMDARs exhibiting ligand-activated calcium flux, and we document the presence of NMDAR-mediated electrically evoked postsynaptic current. In addition to being more rapid than previous procedures, our protocol is straightforward, does not produce organoids which are difficult to image, and does not involve co-culture with rodent astrocytes. This could enhance our ability to study primate/human-specific aspects of NMDAR function and signaling in health and disease.
Collapse
Affiliation(s)
- Jacob B Ruden
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Mrinalini Dixit
- Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - José C Zepeda
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Laura L Dugan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States.,Division of Geriatric Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,VA Tennessee Valley Geriatric Research, Education, and Clinical Center (GRECC), Nashville, TN, United States
| |
Collapse
|
30
|
Bauersachs HG, Bengtson CP, Weiss U, Hellwig A, García-Vilela C, Zaremba B, Kaessmann H, Pruunsild P, Bading H. N-methyl-d-aspartate Receptor-mediated Preconditioning Mitigates Excitotoxicity in Human induced Pluripotent Stem Cell-derived Brain Organoids. Neuroscience 2021; 484:83-97. [DOI: 10.1016/j.neuroscience.2021.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
|
31
|
Lee LC, Su MT, Huang HY, Cho YC, Yeh TK, Chang CY. Association of CaMK2A and MeCP2 signaling pathways with cognitive ability in adolescents. Mol Brain 2021; 14:152. [PMID: 34607601 PMCID: PMC8491411 DOI: 10.1186/s13041-021-00858-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022] Open
Abstract
The glutamatergic signaling pathway is involved in molecular learning and human cognitive ability. Specific single variants (SNVs, formerly single-nucleotide polymorphisms) in the genes encoding N-methyl-d-aspartate receptor subunits have been associated with neuropsychiatric disorders by altering glutamate transmission. However, these variants associated with cognition and mental activity have rarely been explored in healthy adolescents. In this study, we screened for SNVs in the glutamatergic signaling pathway to identify genetic variants associated with cognitive ability. We found that SNVs in the subunits of ionotropic glutamate receptors, including GRIA1, GRIN1, GRIN2B, GRIN2C, GRIN3A, GRIN3B, and calcium/calmodulin-dependent protein kinase IIα (CaMK2A) are associated with cognitive function. Plasma CaMK2A level was correlated positively with the cognitive ability of Taiwanese senior high school students. We demonstrated that elevating CaMK2A increased its autophosphorylation at T286 and increased the expression of its downstream targets, including GluA1 and phosphor- GluA1 in vivo. Additionally, methyl-CpG binding protein 2 (MeCP2), a downstream target of CaMK2A, was found to activate the expression of CaMK2A, suggesting that MeCP2 and CaMK2A can form a positive feedback loop. In summary, two members of the glutamatergic signaling pathway, CaMK2A and MeCP2, are implicated in the cognitive ability of adolescents; thus, altering the expression of CaMK2A may affect cognitive ability in youth.
Collapse
Affiliation(s)
- Li-Ching Lee
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chou Rd., Taipei, 11677, Taiwan, Republic of China
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsing-Ying Huang
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chou Rd., Taipei, 11677, Taiwan, Republic of China
| | - Ying-Chun Cho
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chou Rd., Taipei, 11677, Taiwan, Republic of China
| | - Ting-Kuang Yeh
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chou Rd., Taipei, 11677, Taiwan, Republic of China. .,Institute of Marine Environment Science and Technology, National Taiwan Normal University, Taipei, Taiwan. .,Department of Earth Science, National Taiwan Normal University, Taipei, Taiwan.
| | - Chun-Yen Chang
- Science Education Center and Graduate Institute of Science Education, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chou Rd., Taipei, 11677, Taiwan, Republic of China. .,Department of Earth Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
32
|
Takashima K, Nakajima K, Shimizu S, Ojiro R, Tang Q, Okano H, Takahashi Y, Ozawa S, Jin M, Yoshinari T, Yoshida T, Sugita-Konishi Y, Shibutani M. Disruption of postnatal neurogenesis and adult-stage suppression of synaptic plasticity in the hippocampal dentate gyrus after developmental exposure to sterigmatocystin in rats. Toxicol Lett 2021; 349:69-83. [PMID: 34126181 DOI: 10.1016/j.toxlet.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Exposure to sterigmatocystin (STC) raises concerns on developmental neurological disorders. The present study investigated the effects of maternal oral STC exposure on postnatal hippocampal neurogenesis of offspring in rats. Dams were exposed to STC (1.7, 5.0, and 15.0 ppm in diet) from gestational day 6 until day 21 post-delivery (weaning), and offspring were maintained without STC exposure until adulthood on postnatal day (PND) 77, in accordance with OECD chemical testing guideline Test No. 426. On PND 21, 15.0-ppm STC decreased type-3 neural progenitor cell numbers in the subgranular zone (SGZ) due to suppressed proliferation. Increased γ-H2AX-immunoreactive (+) cell numbers in the SGZ and Ercc1 upregulation and Brip1 downregulation in the dentate gyrus suggested induction of DNA double-strand breaks in SGZ cells. Upregulation of Apex1 and Ogg1 and downregulation of antioxidant genes downstream of NRF2-Keap1 signaling suggested induction of oxidative DNA damage. Increased p21WAF1/CIP1+ SGZ cell numbers and suppressed cholinergic signaling through CHRNB2-containing receptors in GABAergic interneurons suggested potential neurogenesis suppression mechanisms. Multiple mechanisms involving N-methyl-d-aspartate (NMDA) receptor-mediated glutamatergic signaling and various GABAergic interneuron subpopulations, including CHRNA7-expressing somatostatin+ interneurons activated by BDNF-TrkB signaling, may be involved in ameliorating the neurogenesis. Upregulation of Arc, Ptgs2, and genes encoding NMDA receptors and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors suggested synaptic plasticity facilitation. On PND 77, ARC+ granule cells decreased, and Nos2 was upregulated following 15.0 ppm STC exposure, suggesting oxidative stress-mediated synaptic plasticity suppression. Inverse pattern in gene expression changes in vesicular glutamate transporter isoforms, Slc17a7 and Slc17a6, from weaning might also be responsible for the synaptic plasticity suppression. The no-observed-adverse-effect level of maternal oral STC exposure for offspring neurogenesis was determined to be 5.0 ppm, translating to 0.34-0.85 mg/kg body weight/day.
Collapse
Affiliation(s)
- Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Saori Shimizu
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, PR China.
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Yoshiko Sugita-Konishi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
33
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
34
|
Chen MH, Fang C, Wu NY, Xia YH, Zeng YJ, Ouyang W. Genetic variation of rs12918566 affects GRIN2A expression and is associated with spontaneous movement response during sevoflurane anesthesia induction. Brain Behav 2021; 11:e02165. [PMID: 34291608 PMCID: PMC8413822 DOI: 10.1002/brb3.2165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 11/09/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors mediate excitatory neurotransmission in the nervous system and are preferentially inhibited by general anesthetics such as sevoflurane. Spontaneous movement is a common complication during sevoflurane anesthesia induction and seriously affects operations. In this study, we investigated the relationship between NMDA polymorphisms and spontaneous movement during sevoflurane induction. This prospective clinical study enrolled 393 patients undergoing sevoflurane anesthesia as part of their surgical routine. In the GRIN1, GRIN2A, and GRIN2B genes, 13 polymorphisms that form a heteromeric complex as part of the NMDA receptor were selected using Haploview and genotyped using matrix-assisted laser desorption ionization-time of flight mass spectrometry MassARRAY. Both RNAfold and Genotype-Tissue Expression portals were used to identify gene expression profiles. Our data showed that 35.8% of subjects exhibited spontaneous movement. The GRIN2A rs12918566 polymorphism was associated with spontaneous movement during sevoflurane induction. A logistic regression analysis of additive, dominant, and recessive models indicated a significant association (odds ratio [OR] (95% confidence limit [CI]): 0.58 (0.42-0.80), p = .00086; OR (95% CI): 0.51 (0.31-0.84), p = .0075, and OR (95% CI): 0.47 (0.27-0.81), p = .0060, respectively). After false discovery rate (FDR) correction, the additive model was still significant with a PFDR =0.010. Bioinformatics demonstrated that the rs12918566 genomic variation affected GRIN2A expression in brain tissue. We also revealed that GRIN2A rs12918566 was significantly associated with spontaneous movement during sevoflurane induction. We believe the NMDA receptor plays an important role in regulating the anesthetic effects of sevoflurane.
Collapse
Affiliation(s)
- Ming-Hua Chen
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Chao Fang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China.,Postdoctoral Research Station of Clinical Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Na-Yiyuan Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu-Hao Xia
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - You-Jie Zeng
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
35
|
Arias-Cavieres A, Fonteh A, Castro-Rivera CI, Garcia AJ. Intermittent Hypoxia causes targeted disruption to NMDA receptor dependent synaptic plasticity in area CA1 of the hippocampus. Exp Neurol 2021; 344:113808. [PMID: 34256046 DOI: 10.1016/j.expneurol.2021.113808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022]
Abstract
Changed NMDA receptor (NMDAr) physiology is implicated with cognitive deficit resulting from conditions ranging from normal aging to neurological disease. Using intermittent hypoxia (IH) to experimentally model untreated sleep apnea, a clinical condition whose comorbidities include neurocognitive impairment, we recently demonstrated that IH causes a pro-oxidant condition that contributes to deficits in spatial memory and in NMDAr-dependent long-term potentiation (LTP). However, the impact of IH on additional forms of synaptic plasticity remains ill-defined. Here we show that IH prevents the induction of NMDAr-dependent LTP and long-term depression (LTD) in hippocampal brain slices from mice exposed to ten days of IH (IH10) yet spares NMDAr-independent forms of synaptic plasticity. Deficits in synaptic plasticity were accompanied by a reduction in hippocampal GluN1 expression. Acute manipulation of redox state using the reducing agent, Dithiothreitol (DTT) stimulated the NMDAr-dependent fEPSP following IH10. However, acute use of either DTT or MnTMPyP did not restore NMDAr-dependent synaptic plasticity after IH10 or prevent the IH-dependent reduction in GluN1, the obligatory subunit of the NMDAr. In contrast, MnTMPyP during IH10 (10-MnTMPyP), prevented the suppressive effects of IH on both NMDAr-dependent synaptic plasticity and GluN1 expression. These findings indicate that while the IH-dependent pro-oxidant state causes reversible oxidative neuromodulation of NMDAr activity, acute manipulation of redox state is ineffective in rescuing two key effects of IH related to the NMDAr within the hippocampus. These IH-dependent changes associated with the NMDAr may be a primary avenue by which IH enhances the vulnerability to impaired learning and memory when sleep apnea is left untreated in normal aging and in disease.
Collapse
Affiliation(s)
- Alejandra Arias-Cavieres
- Institute for Integrative Physiology, The University of Chicago, USA; Department of Medicine, Section of Emergency Medicine, The University of Chicago, USA
| | - Ateh Fonteh
- Department of Medicine, Section of Emergency Medicine, The University of Chicago, USA
| | - Carolina I Castro-Rivera
- Institute for Integrative Physiology, The University of Chicago, USA; Grossman Institute for Neuroscience, Quantitative Biology & Human Behavior, The University of Chicago, USA
| | - Alfredo J Garcia
- Institute for Integrative Physiology, The University of Chicago, USA; Grossman Institute for Neuroscience, Quantitative Biology & Human Behavior, The University of Chicago, USA; Department of Medicine, Section of Emergency Medicine, The University of Chicago, USA.
| |
Collapse
|
36
|
Sapuppo A, Portale L, Massimino CR, Presti S, Tardino L, Marino S, Polizzi A, Falsaperla R, Praticò AD. GRIN2A and GRIN2B and Their Related Phenotypes. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractGlutamate is the most relevant excitatory neurotransmitter of the central nervous system; it binds with several receptors, including N-methyl-D-aspartate receptors (NMDARs), a subtype of ionotropic glutamate receptor that displays voltage-dependent block by Mg2+ and a high permeability to Ca2+. GRIN2A and GRIN2B genes encode the GluN2A and GluN2B subunits of the NMDARs, which play important roles in synaptogenesis, synaptic transmission, and synaptic plasticity, as well as contributing to neuronal loss and dysfunction in several neurological disorders. Recently, individuals with a range of childhood-onset drug-resistant epilepsies, such as Landau–Kleffner or Lennox–Gastaut syndrome, intellectual disability (ID), and other neurodevelopmental abnormalities have been found to carry mutations in GRIN2A and GRIN2B, with high variable expressivity in phenotype. The first one is found mainly in epilepsy-aphasia syndromes, while the second one mainly in autism, schizophrenia, and ID, such as autism spectrum disorders. Brain magnetic resonance imaging alterations are found in some patients, even if without a clear clinical correlation. At the same time, increasing data on genotype–phenotype correlation have been found, but this is still not fully demonstrated. There are no specific therapies for the treatment of correlated NMDARs epilepsy, although some evidence with memantine, an antagonist of glutamate receptor, is reported in the literature in selected cases with mutation determining a gain of function.
Collapse
Affiliation(s)
- Annamaria Sapuppo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Portale
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carmela R. Massimino
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Santiago Presti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lucia Tardino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Simona Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous Systemin Childhood, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
37
|
Anticonvulsant Action of GluN2A-Preferring Antagonist PEAQX in Developing Rats. Pharmaceutics 2021; 13:pharmaceutics13030415. [PMID: 33808912 PMCID: PMC8003757 DOI: 10.3390/pharmaceutics13030415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
The GluN2A subunit of N-methyl-D-aspartate (NMDA) receptors becomes dominant during postnatal development, overgrowing the originally dominant GluN2B subunit. The aim of our study was to show changes of anticonvulsant action of the GluN2A subunit-preferring antagonist during postnatal development of rats. Possible anticonvulsant action of GluN2A-preferring antagonist of NMDA receptors P = [[[(1S)-1-(4-bromophenyl)ethyl]amino](1,2,3,4-tetrahydro-2,3-dioxo-5-quinoxalinyl)methyl]phosphonic acid tetrasodium salt (PEAQX) (5, 10, 20 mg/kg s.c.) was tested in 12-, 18-, and 25-day-old rats in three models of convulsive seizures. Pentylenetetrazol-induced generalized seizures with a loss of righting reflexes generated in the brainstem were suppressed in all three age groups in a dose-dependent manner. Minimal clonic seizures with preserved righting ability exhibited only moderately prolonged latency after the highest dose of PEAQX. Anticonvulsant action of all three doses of PEAQX against cortical epileptic afterdischarges (generated in the forebrain) was found in the 25-day-old animals. The highest dose (20 mg/kg) was efficient also in the two younger groups, which might be due to lower specificity of PEAQX and its partial affinity to the GluN2B subunit. Our results are in agreement with the postero-anterior maturation gradient of subunit composition of NMDA receptors (i.e., an increase of GluN2A representation). In spite of the lower selectivity of PEAQX, our data demonstrate, for the first time, developmental differences in comparison with an antagonist of NMDA receptors with a dominant GluN2B subunit.
Collapse
|
38
|
Sun JY, Kumata K, Chen Z, Zhang YD, Chen JH, Hatori A, Fu HL, Rong J, Deng XY, Yamasaki T, Xie L, Hu K, Fujinaga M, Yu QZ, Shao T, Collier TL, Josephson L, Shao YH, Du YF, Wang L, Xu H, Zhang MR, Liang SH. Synthesis and preliminary evaluation of novel 11C-labeled GluN2B-selective NMDA receptor negative allosteric modulators. Acta Pharmacol Sin 2021; 42:491-498. [PMID: 32661351 PMCID: PMC8027431 DOI: 10.1038/s41401-020-0456-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play critical roles in the physiological function of the mammalian central nervous system (CNS), including learning, memory, and synaptic plasticity, through modulating excitatory neurotransmission. Attributed to etiopathology of various CNS disorders and neurodegenerative diseases, GluN2B is one of the most well-studied subtypes in preclinical and clinical studies on NMDARs. Herein, we report the synthesis and preclinical evaluation of two 11C-labeled GluN2B-selective negative allosteric modulators (NAMs) containing N,N-dimethyl-2-(1H-pyrrolo[3,2-b]pyridin-1-yl)acetamides for positron emission tomography (PET) imaging. Two PET ligands, namely [11C]31 and [11C]37 (also called N2B-1810 and N2B-1903, respectively) were labeled with [11C]CH3I in good radiochemical yields (decay-corrected 28% and 32% relative to starting [11C]CO2, respectively), high radiochemical purity (>99%) and high molar activity (>74 GBq/μmol). In particular, PET ligand [11C]31 demonstrated moderate specific binding to GluN2B subtype by in vitro autoradiography studies. However, because in vivo PET imaging studies showed limited brain uptake of [11C]31 (up to 0.5 SUV), further medicinal chemistry and ADME optimization are necessary for this chemotype attributed to low binding specificity and rapid metabolism in vivo.
Collapse
Affiliation(s)
- Ji-Yun Sun
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Zhen Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Yi-Ding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Jia-Hui Chen
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Akiko Hatori
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Hua-Long Fu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jian Rong
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Xiao-Yun Deng
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Qing-Zhen Yu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Tuo Shao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Thomas Lee Collier
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Yi-Han Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Yun-Fei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
39
|
Gordon A, Yoon SJ, Tran SS, Makinson CD, Park JY, Andersen J, Valencia AM, Horvath S, Xiao X, Huguenard JR, Pașca SP, Geschwind DH. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat Neurosci 2021; 24:331-342. [PMID: 33619405 PMCID: PMC8109149 DOI: 10.1038/s41593-021-00802-y] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/12/2021] [Indexed: 01/31/2023]
Abstract
Human stem-cell-derived models provide the promise of accelerating our understanding of brain disorders, but not knowing whether they possess the ability to mature beyond mid- to late-fetal stages potentially limits their utility. We leveraged a directed differentiation protocol to comprehensively assess maturation in vitro. Based on genome-wide analysis of the epigenetic clock and transcriptomics, as well as RNA editing, we observe that three-dimensional human cortical organoids reach postnatal stages between 250 and 300 days, a timeline paralleling in vivo development. We demonstrate the presence of several known developmental milestones, including switches in the histone deacetylase complex and NMDA receptor subunits, which we confirm at the protein and physiological levels. These results suggest that important components of an intrinsic in vivo developmental program persist in vitro. We further map neurodevelopmental and neurodegenerative disease risk genes onto in vitro gene expression trajectories to provide a resource and webtool (Gene Expression in Cortical Organoids, GECO) to guide disease modeling.
Collapse
Affiliation(s)
- Aaron Gordon
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Se-Jin Yoon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Stephen S Tran
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Integrative Biology, University of California Los Angeles, Angeles, CA, USA
| | - Christopher D Makinson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jin Young Park
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Alfredo M Valencia
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Xinshu Xiao
- Department of Integrative Biology, University of California Los Angeles, Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Bertocchi I, Eltokhi A, Rozov A, Chi VN, Jensen V, Bus T, Pawlak V, Serafino M, Sonntag H, Yang B, Burnashev N, Li SB, Obenhaus HA, Both M, Niewoehner B, Single FN, Briese M, Boerner T, Gass P, Rawlins JNP, Köhr G, Bannerman DM, Sprengel R. Voltage-independent GluN2A-type NMDA receptor Ca 2+ signaling promotes audiogenic seizures, attentional and cognitive deficits in mice. Commun Biol 2021; 4:59. [PMID: 33420383 PMCID: PMC7794508 DOI: 10.1038/s42003-020-01538-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
The NMDA receptor-mediated Ca2+ signaling during simultaneous pre- and postsynaptic activity is critically involved in synaptic plasticity and thus has a key role in the nervous system. In GRIN2-variant patients alterations of this coincidence detection provoked complex clinical phenotypes, ranging from reduced muscle strength to epileptic seizures and intellectual disability. By using our gene-targeted mouse line (Grin2aN615S), we show that voltage-independent glutamate-gated signaling of GluN2A-containing NMDA receptors is associated with NMDAR-dependent audiogenic seizures due to hyperexcitable midbrain circuits. In contrast, the NMDAR antagonist MK-801-induced c-Fos expression is reduced in the hippocampus. Likewise, the synchronization of theta- and gamma oscillatory activity is lowered during exploration, demonstrating reduced hippocampal activity. This is associated with exploratory hyperactivity and aberrantly increased and dysregulated levels of attention that can interfere with associative learning, in particular when relevant cues and reward outcomes are disconnected in space and time. Together, our findings provide (i) experimental evidence that the inherent voltage-dependent Ca2+ signaling of NMDA receptors is essential for maintaining appropriate responses to sensory stimuli and (ii) a mechanistic explanation for the neurological manifestations seen in the NMDAR-related human disorders with GRIN2 variant-meidiated intellectual disability and focal epilepsy.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Via Cherasco 15, 10126, Torino, Italy
- Neuroscience Institute-Cavalieri-Ottolenghi Foundation (NICO), Laboratory of Neuropsychopharmacology, Regionale Gonzole 10, 10043 Orbassano, Torino, Italy
| | - Ahmed Eltokhi
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Otfried-Müller Str. 27, 72076, Tübingen, Germany
| | - Andrey Rozov
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
- OpenLab of Neurobiology, Kazan Federal University, 8 Kremlyovskaya Street, Kazan, 420008, Russian Federation
- Federal Center of Brain Research and Neurotechnologies, Ostrovityanova Str 1/10, Moscow, 117997, Russia
| | - Vivan Nguyễn Chi
- Department of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Vidar Jensen
- Department of Molecular Medicine, Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Thorsten Bus
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Verena Pawlak
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Behavior and Brain Organization, Research Center Caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Marta Serafino
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- FARMA-DERMA s.r.l. Via dell'Artigiano 6-8, 40010, Sala Bolognese, Italy
| | - Hannah Sonntag
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Boyi Yang
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 JieFang Road, Wuhan, Hubei, 430030, China
| | - Nail Burnashev
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- INSERM UMR 1249 Mediterranean Institute of Neurobiology (INMED), Aix-Marseille University, Parc Scientifique de Luminy, 163 avenue de Luminy BP13, 13273, Marseille Cedex 09, France
| | - Shi-Bin Li
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford Way, Rm E152, Stanford, CA, 94305, USA
| | - Horst A Obenhaus
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
- Kavli Institute for Systems Neuroscience, Faculty of Medicine and Health Sciences, NTNU, Postboks 8905, NO-7491, Trondheim, Norway
| | - Martin Both
- Department of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Burkhard Niewoehner
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK
| | - Frank N Single
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Friedrich-Ebert-Str. 68, 51429, Bergisch Gladbach, Germany
| | - Michael Briese
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacherstraße 5, 97080, Wuerzburg, Germany
| | - Thomas Boerner
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK
| | - Peter Gass
- RG Animal Models in Psychiatry, Animal Models Psychatry, Central Institute of Mental Health (CIMH), Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - John Nick P Rawlins
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK
| | - Georg Köhr
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
- Department of Neurophysiology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Radcliffe Observatory, Anna Watts Building, Woodstock Rd, Oxford, OX2 6GG, UK.
| | - Rolf Sprengel
- Departments Molecular Neurobiology and Physiology at the Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany.
- Research Group of the Max Planck Institute for Medical Research at the Institute for Anatomy and Cell Biology of the Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| |
Collapse
|
41
|
Strong KL, Epplin MP, Ogden KK, Burger PB, Kaiser TM, Wilding TJ, Kusumoto H, Camp CR, Shaulsky G, Bhattacharya S, Perszyk RE, Menaldino DS, McDaniel MJ, Zhang J, Le P, Banke TG, Hansen KB, Huettner JE, Liotta DC, Traynelis SF. Distinct GluN1 and GluN2 Structural Determinants for Subunit-Selective Positive Allosteric Modulation of N-Methyl-d-aspartate Receptors. ACS Chem Neurosci 2021; 12:79-98. [PMID: 33326224 DOI: 10.1021/acschemneuro.0c00561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are ionotropic ligand-gated glutamate receptors that mediate fast excitatory synaptic transmission in the central nervous system (CNS). Several neurological disorders may involve NMDAR hypofunction, which has driven therapeutic interest in positive allosteric modulators (PAMs) of NMDAR function. Here we describe modest changes to the tetrahydroisoquinoline scaffold of GluN2C/GluN2D-selective PAMs that expands activity to include GluN2A- and GluN2B-containing recombinant and synaptic NMDARs. These new analogues are distinct from GluN2C/GluN2D-selective compounds like (+)-(3-chlorophenyl)(6,7-dimethoxy-1-((4-methoxyphenoxy)methyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone (CIQ) by virtue of their subunit selectivity, molecular determinants of action, and allosteric regulation of agonist potency. The (S)-enantiomers of two analogues (EU1180-55, EU1180-154) showed activity at NMDARs containing all subunits (GluN2A, GluN2B, GluN2C, GluN2D), whereas the (R)-enantiomers were primarily active at GluN2C- and GluN2D-containing NMDARs. Determination of the actions of enantiomers on triheteromeric receptors confirms their unique pharmacology, with greater activity of (S) enantiomers at GluN2A/GluN2D and GluN2B/GluN2D subunit combinations than (R) enantiomers. Evaluation of the (S)-EU1180-55 and EU1180-154 response of chimeric kainate/NMDA receptors revealed structural determinants of action within the pore-forming region and associated linkers. Scanning mutagenesis identified structural determinants within the GluN1 pre-M1 and M1 regions that alter the activity of (S)-EU1180-55 but not (R)-EU1180-55. By contrast, mutations in pre-M1 and M1 regions of GluN2D perturb the actions of only the (R)-EU1180-55 but not the (S) enantiomer. Molecular modeling supports the idea that the (S) and (R) enantiomers interact distinctly with GluN1 and GluN2 pre-M1 regions, suggesting that two distinct sites exist for these NMDAR PAMs, each of which has different functional effects.
Collapse
Affiliation(s)
- Katie L. Strong
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Matthew P. Epplin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Kevin K. Ogden
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Pieter B. Burger
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Thomas M. Kaiser
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Timothy J. Wilding
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri 63110, United States
| | - Hiro Kusumoto
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chad R. Camp
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Gil Shaulsky
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Auburn University, Auburn, Alabama 36849, United States
| | - Riley E. Perszyk
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - David S. Menaldino
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Miranda J. McDaniel
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jing Zhang
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Phuong Le
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Tue G. Banke
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Kasper B. Hansen
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
- Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, Division for Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - James E. Huettner
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri 63110, United States
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Stephen F. Traynelis
- Department of Pharmacology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
42
|
Cavanagh SE, Hunt LT, Kennerley SW. A Diversity of Intrinsic Timescales Underlie Neural Computations. Front Neural Circuits 2020; 14:615626. [PMID: 33408616 PMCID: PMC7779632 DOI: 10.3389/fncir.2020.615626] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/18/2020] [Indexed: 12/05/2022] Open
Abstract
Neural processing occurs across a range of temporal scales. To facilitate this, the brain uses fast-changing representations reflecting momentary sensory input alongside more temporally extended representations, which integrate across both short and long temporal windows. The temporal flexibility of these representations allows animals to behave adaptively. Short temporal windows facilitate adaptive responding in dynamic environments, while longer temporal windows promote the gradual integration of information across time. In the cognitive and motor domains, the brain sets overarching goals to be achieved within a long temporal window, which must be broken down into sequences of actions and precise movement control processed across much shorter temporal windows. Previous human neuroimaging studies and large-scale artificial network models have ascribed different processing timescales to different cortical regions, linking this to each region's position in an anatomical hierarchy determined by patterns of inter-regional connectivity. However, even within cortical regions, there is variability in responses when studied with single-neuron electrophysiology. Here, we review a series of recent electrophysiology experiments that demonstrate the heterogeneity of temporal receptive fields at the level of single neurons within a cortical region. This heterogeneity appears functionally relevant for the computations that neurons perform during decision-making and working memory. We consider anatomical and biophysical mechanisms that may give rise to a heterogeneity of timescales, including recurrent connectivity, cortical layer distribution, and neurotransmitter receptor expression. Finally, we reflect on the computational relevance of each brain region possessing a heterogeneity of neuronal timescales. We argue that this architecture is of particular importance for sensory, motor, and cognitive computations.
Collapse
Affiliation(s)
- Sean E. Cavanagh
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom
| | - Laurence T. Hunt
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
- Max Planck-UCL Centre for Computational Psychiatry and Aging, University College London, London, United Kingdom
- Department of Psychiatry, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Steven W. Kennerley
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom
| |
Collapse
|
43
|
Spectral blueshift of biophotonic activity and transmission in the ageing mouse brain. Brain Res 2020; 1749:147133. [PMID: 32971084 DOI: 10.1016/j.brainres.2020.147133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/31/2020] [Accepted: 09/16/2020] [Indexed: 11/20/2022]
Abstract
The brain is considered to be a complex system with extremely low energy consumption and high-efficiency information transmission and processing, and this system has not been replicated by any artificial systems so far. Several studies indicate that the activity and transmission of biophotons in neural circuits may play an important role in neural information communication, while the biophotonic spectral redshift from lower to higher in animals may be related to the evolution of intelligence. The ageing processes of higher organisms are often accompanied by a decline in brain functions; however, the underlying mechanisms are unclear. Combining an ultraweak biophoton imaging system with the improved biophoton spectral analysis device, we compared and analyzed the spectra of glutamate-induced biophotonic emissions in mouse brain slices at different ages (newborn, 1, 3, 6, 12, 15, and 18 months). We found that the glutamate-induced biophotonic emissions presented a spectral blueshift from young to old mice, suggesting that the brain may transform to use relatively high-energy biophotons for neural information transmission and processing during the ageing process. Such a change may lead to a gradual decrease in the efficiency of the nervous system and provide a new biophysical mechanism for explaining the ageing-related changes in cognitive functions.
Collapse
|
44
|
High Salt Intake Recruits Tonic Activation of NR2D Subunit-Containing Extrasynaptic NMDARs in Vasopressin Neurons. J Neurosci 2020; 41:1145-1156. [PMID: 33303677 DOI: 10.1523/jneurosci.1742-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 11/21/2022] Open
Abstract
In addition to producing a classical excitatory postsynaptic current via activation of synaptic NMDA receptors (NMDARs), glutamate in the brain also induces a tonic NMDAR current (I NMDA) via activation of extrasynaptic NMDARs (eNMDARs). However, since Mg2+ blocks NMDARs in nondepolarized neurons, the potential contribution of eNMDARs to the overall neuronal excitatory/inhibitory (E/I) balance remains unknown. Here, we demonstrate that chronic (7 d) salt loading (SL) recruited NR2D subunit-containing NMDARs to generate an Mg2+-resistant tonic I NMDA in nondepolarized [V h (holding potential) -70 mV] vasopressin (VP; but not oxytocin) supraoptic nucleus (SON) neurons in male rodents. Conversely, in euhydrated (EU) and 3 d SL mice, Mg2+-resistant tonic I NMDA was not observed. Pharmacological and genetic intervention of NR2D subunits blocked the Mg2+-resistant tonic I NMDA in VP neurons under SL conditions, while an NR2B antagonist unveiled Mg2+-sensitive tonic I NMDA but not Mg2+-resistant tonic I NMDA In the EU group VP neurons, an Mg2+-resistant tonic I NMDA was not generated by increased ambient glutamate or treatment with coagonists (e.g., d-serine and glycine). Chronic SL significantly increased NR2D expression but not NR2B expression in the SON relative to the EU group or after 3 d under SL conditions. Finally, Mg2+-resistant tonic I NMDA selectively upregulated neuronal excitability in VP neurons under SL conditions, independent of ionotropic GABAergic input. Our results indicate that the activation of NR2D-containing NMDARs constitutes a novel mechanism that generates an Mg2+-resistant tonic I NMDA in nondepolarized VP neurons, thus causing an E/I balance shift in VP neurons to compensate for the hormonal demands imposed by a chronic osmotic challenge.SIGNIFICANCE STATEMENT The hypothalamic supraoptic nucleus (SON) consists of two different types of magnocellular neurosecretory cells (MNCs) that synthesize and release the following two peptide hormones: vasopressin (VP), which is necessary for regulation of fluid homeostasis; and oxytocin (OT), which plays a major role in lactation and parturition. NMDA receptors (NMDARs) play important roles in shaping neuronal firing patterns and hormone release from the SON MNCs in response to various physiological challenges. Our results show that prolonged (7 d) salt loading generated a Mg2+-resistant tonic NMDA current mediated by NR2D subunit-containing receptors, which efficiently activated nondepolarized VP (but not OT) neurons. Our findings support the hypothesis that NR2D subunit-containing NMDARs play an important adaptive role in adult brain in response to a sustained osmotic challenge.
Collapse
|
45
|
GluN2 Subunit-Dependent Redox Modulation of NMDA Receptor Activation by Homocysteine. Biomolecules 2020; 10:biom10101441. [PMID: 33066432 PMCID: PMC7602226 DOI: 10.3390/biom10101441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022] Open
Abstract
Homocysteine (HCY) molecule combines distinct pharmacological properties as an agonist of N-methyl-d-aspartate receptors (NMDARs) and a reducing agent. Whereas NMDAR activation by HCY was elucidated, whether the redox modulation contributes to its action is unclear. Here, using patch-clamp recording and imaging of intracellular Ca2+, we study dithiothreitol (DTT) effects on currents and Ca2+ responses activated by HCY through native NMDARs and recombinant diheteromeric GluN1/2A, GluN1/2B, and GluN1/2C receptors. Within a wide range (1–800 μM) of [HCY]s, the concentration–activation relationships for recombinant NMDARs revealed a biphasicness. The high-affinity component obtained between 1 and 100 µM [HCY]s corresponding to the NMDAR activation was not affected by 1 mM DTT. The low-affinity phase observed at [HCY]s above 200 μM probably originated from thiol-dependent redox modulation of NMDARs. The reduction of NMDAR disulfide bonds by either 1 mM DTT or 1 mM HCY decreased GluN1/2A currents activated by HCY. In contrast, HCY-elicited GluN1/2B currents were enhanced due to the remarkable weakening of GluN1/2B desensitization. In fact, cleaving NMDAR disulfide bonds in neurons reversed the HCY-induced Ca2+ accumulation, making it dependent on GluN2B- rather than GluN2A-containing NMDARs. Thus, estimated concentrations for the HCY redox effects exceed those in the plasma during intermediate hyperhomocysteinemia but may occur during severe hyperhomocysteinemia.
Collapse
|
46
|
Ahmed H, Haider A, Ametamey SM. N-Methyl-D-Aspartate (NMDA) receptor modulators: a patent review (2015-present). Expert Opin Ther Pat 2020; 30:743-767. [PMID: 32926646 DOI: 10.1080/13543776.2020.1811234] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION - The NMDA receptor is implicated in various diseases including neurodegenerative, neurodevelopmental and mood disorders. However, only a limited number of clinically approved NMDA receptor modulators are available. Today, apparent NMDA receptor drug development strategies entail 1) exploring the unknown chemical space to identify novel scaffolds; 2) using the clinically available NMDA receptor modulators to expand the therapeutic indication space; 3) and to trace physiological functions of the NMDA receptor. AREAS COVERED - The current review reflects on the functional and pharmacological facets of NMDA receptors and the current clinical status quo of NMDA receptor modulators. Patent literature covering 2015 till April 2020 is discussed with emphasis on new indications. EXPERT OPINION - Supporting evidence shows that subtype-selective NMDA receptor antagonists show an improved safety profile compared to broad-spectrum channel blockers. Although GluN2B-selective antagonists are by far the most extensively investigated subtype-selective modulators, they have shown only modest clinical efficacy so far. To overcome the limitations that have hampered the clinical development of previous subtype-selective NMDA receptor antagonists, future studies with improved animal models that better reflect human NMDA receptor pathophysiology are warranted. The increased availability of subtype-selective probes will allow target engagement studies and proper dose finding in future clinical trials.
Collapse
Affiliation(s)
- Hazem Ahmed
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich , Zurich, Switzerland
| | - Ahmed Haider
- Department of Nuclear Medicine, University Hospital Zurich , Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich , Schlieren, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich , Zurich, Switzerland
| |
Collapse
|
47
|
Epplin MP, Mohan A, Harris LD, Zhu Z, Strong KL, Bacsa J, Le P, Menaldino DS, Traynelis SF, Liotta DC. Discovery of Dihydropyrrolo[1,2- a]pyrazin-3(4 H)-one-Based Second-Generation GluN2C- and GluN2D-Selective Positive Allosteric Modulators (PAMs) of the N-Methyl-d-Aspartate (NMDA) Receptor. J Med Chem 2020; 63:7569-7600. [PMID: 32538088 DOI: 10.1021/acs.jmedchem.9b01733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is an ion channel that mediates the slow, Ca2+-permeable component of glutamatergic synaptic transmission in the central nervous system (CNS). NMDARs are known to play a significant role in basic neurological functions, and their dysfunction has been implicated in several CNS disorders. Herein, we report the discovery of second-generation GluN2C/D-selective NMDAR-positive allosteric modulators (PAMs) with a dihydropyrrolo[1,2-a]pyrazin-3(4H)-one core. The prototype, R-(+)-EU-1180-453, exhibits log unit improvements in the concentration needed to double receptor response, lipophilic efficiency, and aqueous solubility, and lowers cLogP by one log unit compared to the first-generation prototype CIQ. Additionally, R-(+)-EU-1180-453 was found to increase glutamate potency 2-fold, increase the response to maximally effective concentration of agonist 4-fold, and the racemate is brain-penetrant. These compounds are useful second-generation in vitro tools and a promising step toward in vivo tools for the study of positive modulation of GluN2C- and GluN2D-containing NMDA receptors.
Collapse
Affiliation(s)
- Matthew P Epplin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Ayush Mohan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Lynnea D Harris
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Zongjian Zhu
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Katie L Strong
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Phuong Le
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - David S Menaldino
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Dennis C Liotta
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
48
|
Kalev-Zylinska ML, Hearn JI, Makhro A, Bogdanova A. N-Methyl-D-Aspartate Receptors in Hematopoietic Cells: What Have We Learned? Front Physiol 2020; 11:577. [PMID: 32625106 PMCID: PMC7311790 DOI: 10.3389/fphys.2020.00577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/08/2020] [Indexed: 12/24/2022] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR) provides a pathway for glutamate-mediated inter-cellular communication, best known for its role in the brain but with multiple examples of functionality in non-neuronal cells. Data previously published by others and us provided ex vivo evidence that NMDARs regulate platelet and red blood cell (RBC) production. Here, we summarize what is known about these hematopoietic roles of the NMDAR. Types of NMDAR subunits expressed in megakaryocytes (platelet precursors) and erythroid cells are more commonly found in the developing rather than adult brain, suggesting trophic functions. Nevertheless, similar to their neuronal counterparts, hematopoietic NMDARs function as ion channels, and are permeable to calcium ions (Ca2+). Inhibitors that block open NMDAR (memantine and MK-801) interfere with megakaryocytic maturation and proplatelet formation in primary culture. The effect on proplatelet formation appears to involve Ca2+ influx-dependent regulation of the cytoskeletal remodeling. In contrast to normal megakaryocytes, NMDAR effects in leukemic Meg-01 cells are diverted away from differentiation to increase proliferation. NMDAR hypofunction triggers differentiation of Meg-01 cells with the bias toward erythropoiesis. The underlying mechanism involves changes in the intracellular Ca2+ homeostasis, cell stress pathways, and hematopoietic transcription factors that upon NMDAR inhibition shift from the predominance of megakaryocytic toward erythroid regulators. This ability of NMDAR to balance both megakaryocytic and erythroid cell fates suggests receptor involvement at the level of a bipotential megakaryocyte-erythroid progenitor. In human erythroid precursors and circulating RBCs, NMDAR regulates intracellular Ca2+ homeostasis. NMDAR activity supports survival of early proerythroblasts, and in mature RBCs NMDARs impact cellular hydration state, hemoglobin oxygen affinity, and nitric oxide synthase activity. Overexcitation of NMDAR in mature RBCs leads to Ca2+ overload, K+ loss, RBC dehydration, and oxidative stress, which may contribute to the pathogenesis of sickle cell disease. In summary, there is growing evidence that glutamate-NMDAR signaling regulates megakaryocytic and erythroid cells at different stages of maturation, with some intriguing differences emerging in NMDAR expression and function between normal and diseased cells. NMDAR signaling may provide new therapeutic opportunities in hematological disease, but in vivo applicability needs to be confirmed.
Collapse
Affiliation(s)
- Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Pathology and Laboratory Medicine, LabPlus Haematology, Auckland City Hospital, Auckland, New Zealand
| | - James I. Hearn
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Asya Makhro
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
49
|
GluN2D-mediated excitatory drive onto medial prefrontal cortical PV+ fast-spiking inhibitory interneurons. PLoS One 2020; 15:e0233895. [PMID: 32497062 PMCID: PMC7272025 DOI: 10.1371/journal.pone.0233895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
Deficits in fast-spiking inhibitory interneurons (FSINs) within the dorsolateral prefrontal cortex (dlPFC) are hypothesized to underlie cognitive impairment associated with schizophrenia. Though representing a minority of interneurons, this key cell type coordinates broad neural network gamma-frequency oscillations, associated with cognition and cognitive flexibility. Here we report expression of GluN2D mRNA selectively in parvalbumin positive cells of human postmortem dlPFC tissue, but not pyramidal neurons, with little to no GluN2C expression in either cell type. In acute murine mPFC slices the GluN2C/D selective positive allosteric modulator (PAM), CIQ(+), increased the intrinsic excitability as well as enhanced NMDAR-mediated EPSCs onto FSINs. This increase in intrinsic excitability with GluN2C/D PAM was also observed in the Dlx 5/6+/- FSIN developmental deficit model with reported FSIN hypoexcitability. Together these data speak to selective modulation of FSINs by a GluN2D PAM, providing a potential mechanism to counter the FSIN-deficit seen in schizophrenia.
Collapse
|
50
|
Liu Y, Xu S, Bian H, Qian Y, Li H, Shu S, Chen J, Cao X, Gu Y, Jin J, Zhang X, Xu Y, Zhu X. Xingnaojing ameliorates synaptic plasticity and memory deficits in an Aβ 1-42 induced mouse model of Alzheimer's disease. J Pharmacol Sci 2020; 143:245-254. [PMID: 32482409 DOI: 10.1016/j.jphs.2020.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/11/2020] [Accepted: 03/23/2020] [Indexed: 11/26/2022] Open
Abstract
The accumulation of insoluble amyloid β (Aβ) peptides is one of the pathological changes in Alzheimer's disease (AD), which induced synaptic plasticity impairment and excitatory amino acid toxicity associated with decreased memory function. Xingnaojing (XNJ), a well-known prescription in traditional Chinese medicine, has been used for the treatment of stroke for many years in China. In this study, we aim to investigate the therapeutic effects of XNJ in a hippocampus of Aβ1-42 induced mouse model of AD which showed significant memory loss and impaired synaptic morphology and function. Treatment of XNJ could attenuate spatial and working memory dysfunction, increase dendritic spine density and improve long-term potential (LTP) induction. In addition, XNJ treatment significantly increased the level of N-methyl-d-aspartate receptors (NMDARs) and inhibit the NMDA/α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) ratio in AD mice. XNJ treatment also activated the AKT/mechanistic target of rapamycin (mTOR) pathway, while inhibition of the mTOR pathway by rapamycin could reverse the protective effects of XNJ treatment. In conclusion, XNJ protected against synaptic plasticity and memory impairment in AD mice via the activation of AKT/mTOR signaling pathway, suggesting XNJ as an alternative treatment for AD.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Siyi Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Huijie Bian
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yi Qian
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Huiya Li
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Jiang Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xi Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|