1
|
Inaba H, Namba H, Kida S, Nawa H. The dopamine D2 agonist quinpirole impairs frontal mismatch responses to sound frequency deviations in freely moving rats. Neuropsychopharmacol Rep 2021; 41:405-415. [PMID: 34296531 PMCID: PMC8411315 DOI: 10.1002/npr2.12199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/21/2022] Open
Abstract
Aim A reduced mismatch negativity (MMN) response is a promising electrophysiological endophenotype of schizophrenia that reflects neurocognitive impairment. Dopamine dysfunction is associated with symptoms of schizophrenia. However, whether the dopamine system is involved in MMN impairment remains controversial. In this study, we investigated the effects of the dopamine D2‐like receptor agonist quinpirole on mismatch responses to sound frequency changes in an animal model. Methods Event‐related potentials were recorded from electrocorticogram electrodes placed on the auditory and frontal cortices of freely moving rats using a frequency oddball paradigm consisting of ascending and equiprobable (ie, many standards) control sequences before and after the subcutaneous administration of quinpirole. To detect mismatch responses, difference waveforms were obtained by subtracting nondeviant control waveforms from deviant waveforms. Results Here, we show the significant effects of quinpirole on frontal mismatch responses to sound frequency deviations in rats. Quinpirole delayed the frontal N18 and P30 mismatch responses and reduced the frontal N55 MMN‐like response, which resulted from the reduction in the N55 amplitude to deviant stimuli. Importantly, the magnitude of the N55 amplitude was negatively correlated with the time of the P30 latency in the difference waveforms. In contrast, quinpirole administration did not clearly affect the temporal mismatch responses recorded from the auditory cortex. Conclusion These results suggest that the disruption of dopamine D2‐like receptor signaling by quinpirole reduces frontal MMN to sound frequency deviations and that delays in early mismatch responses are involved in this MMN impairment. The subcutaneous administration of quinpirole delayed early mismatch response latencies and reduced a late MMN‐like response amplitude recorded from the frontal cortex but had no effect on those recorded from the auditory cortex. These observations suggest that increased dopamine D2‐like receptor signaling impairs MMN generation to sound frequency changes in the frontal cortex and that the neurochemical mechanisms of MMN vary according to the cortical area. As MMN is associated with cognitive function, these new findings may help develop treatment modalities for cognitive dysfunctions in schizophrenia.![]()
Collapse
Affiliation(s)
- Hiroyoshi Inaba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Satoshi Kida
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
2
|
Higgins A, Lewandowski KE, Liukasemsarn S, Hall MH. Longitudinal relationships between mismatch negativity, cognitive performance, and real-world functioning in early psychosis. Schizophr Res 2021; 228:385-393. [PMID: 33549980 PMCID: PMC7987838 DOI: 10.1016/j.schres.2021.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Reduced mismatch negativity (MMN) is observed in early psychosis (EP) and correlated with cognition and functioning, but few studies have examined their longitudinal relationships and diagnostic specificity. We examined MMN, neuro- and social-cognition, and functional measures in EP patients with schizophrenia-spectrum (SZ) or bipolar disorder (BD) over a 1-year follow-up. METHODS 54 EP patients (SZ: n = 24; BD: n = 30) and 42 healthy controls completed baseline measures: MMN, neuro- and social-cognition, and functional assessments. 30 EP patients completed 12-month follow-up assessments. Patients and controls were compared on MMN at baseline and follow-up, and diagnostic subgroup analyses were performed. Associations amongst MMN, neuro- and social cognition, and clinical measures were examined and predictive models of follow-up outcomes were conducted. RESULTS EP patients showed significantly reduced MMN compared to controls at baseline (p = 0.023). MMN was impaired in SZ patients at baseline (p = 0.017) and follow-up (p = 0.003); BD patients did not differ from controls at either timepoint. MMN was associated with symptom severity and functioning at baseline, and with social cognition and functioning at follow up, but was not predictive of functional outcomes at follow-up. CONCLUSIONS MMN abnormalities were evident in EP SZ-spectrum disorders at both timepoints, but not in BD at either timepoint. MMN was associated with functioning cross-sectionally, but did not predict future functional outcomes. However, deficits in MMN were associated with social cognition, which may have downstream effects on community functioning. Implications for targeted interventions to improve social processing and community outcomes are discussed.
Collapse
Affiliation(s)
- Amy Higgins
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Kathryn Eve Lewandowski
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Saran Liukasemsarn
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Mei-Hua Hall
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Shiga T, Horikoshi S, Kanno K, Kanno-Nozaki K, Hikita M, Itagaki S, Miura I, Yabe H. Plasma levels of dopamine metabolite correlate with mismatch negativity in patients with schizophrenia. Psychiatry Clin Neurosci 2020; 74:289-293. [PMID: 31994282 DOI: 10.1111/pcn.12984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/20/2019] [Accepted: 01/17/2020] [Indexed: 01/10/2023]
Abstract
AIM Mismatch negativity (MMN) deficit is one of the most robust and replicable findings in schizophrenia, and primarily reflects deficient functioning of the N-methyl-D-aspartate (NMDA) receptor system. Although the dopamine receptor is known not to modulate MMN over the short term, it is unclear whether the dopamine system affects MMN in the long term. METHODS We explored correlations between MMN and levels of plasma dopamine and serotonin metabolites in 18 patients with schizophrenia psychiatrically evaluated with the Positive and Negative Syndrome Scale (PANSS). RESULTS A significant negative correlation exists between MMN amplitude and plasma levels of dopamine metabolites. Plasma serotonin metabolite levels were not correlated with MMN. The PANSS total score and Negative score also showed negative correlations with MMN amplitude. CONCLUSION The usual strong therapeutic blockade of dopamine receptors applied in cases of schizophrenia may reduce MMN over the long term.
Collapse
Affiliation(s)
- Tetsuya Shiga
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Sho Horikoshi
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Kazuko Kanno
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Keiko Kanno-Nozaki
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Masayuki Hikita
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Shuntaro Itagaki
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Itaru Miura
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
4
|
Putative TAAR5 agonist alpha-NETA affects event-related potentials in oddball paradigm in awake mice. Brain Res Bull 2020; 158:116-121. [PMID: 32151716 DOI: 10.1016/j.brainresbull.2020.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 11/23/2022]
Abstract
Trace amines have been reported to be neuromodulators of monoaminergic systems. Trace amines receptor 5 (TAAR5) is expressed in several regions of mice central nervous system, such as amygdala, arcuate nucleus and ventromedial hypothalamus, but very limited information is available on its functional role. The purpose of this study is to examine the effect of TAAR5 agonist alpha-NETA on the generation of mismatch negativity (MMN) analogue in C57BL/6 mice. Event-related potentials have been recorded from awake mice in oddball paradigms before and after the alpha-NETA administration. Alpha-NETA has been found to decrease N40 MMN-like difference, which resulted from the increased response to standard stimuli. An opposite effect has been found for the P80 component: the amplitude increased in response both to standard and deviant stimuli. A significant increase in N40 peak latency after the alpha-NETA administration has been found. This may suggest a reduced speed of information processing similar to the increase in P50 and N100 components latencies in schizophrenia patients. These results provide new evidence for a role of TAAR5 in cognitive processes.
Collapse
|
5
|
Elucidating the glutamatergic processes underlying mismatch negativity deficits in early stage bipolar disorder and schizophrenia: A combined 1H-MRS and EEG study. J Psychiatr Res 2019; 113:83-89. [PMID: 30921632 DOI: 10.1016/j.jpsychires.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 02/01/2019] [Accepted: 03/20/2019] [Indexed: 01/31/2023]
Abstract
Impairments in mismatch negativity (MMN) in schizophrenia are well-established; these findings have been extended to show impairments at early illness stages and in bipolar disorder. A substantial literature supports MMN as an index of NMDA receptor output, however, few studies have conducted in vivo assessments to elucidate the neurochemical underpinnings of MMN. Sixty young (16-33 years) participants with bipolar disorder (n = 47) or schizophrenia (n = 13) underwent 1H-MRS and MMN assessment. Glutamate over creatine (Glu/Cr) levels in the anterior cingulate cortex (ACC) and hippocampus were determined and MMN was measured frontally and temporally. Correlational analyses assessed the relationship between MMN amplitudes and Glu/Cr. Any significant relationships were assessed for specificity with a follow up correlation analysis of MMN and n-acetyleaspartate (NAA/Cr). No associations between frontal or temporal MMN and ACC or hippocampal Glu/Cr were noted in the bipolar group. In the schizophrenia group, frontal and right temporal MMN amplitudes corresponded with increased ACC Glu/Cr at the trend-level. Right temporal MMN was similarly significantly associated with NAA/Cr. MMN was not associated with hippocampal Glu/Cr. This work provides in vivo evidence that glutamatergic processes may underlie MMN generation in early stage schizophrenia but not in early stage bipolar disorder suggesting differences in the MMN mechanism in these groups. The negative association between ACC Glu/Cr and MMN is consistent with findings of reduced MMN and increased in vivo glutamatergic neurometabolite levels in early stage schizophrenia. Furthermore, these results indicate that examining in vivo NAA/Cr may have provide additional insights into the MMN mechanism in schizophrenia.
Collapse
|
6
|
Aleksandrov AA, Knyazeva VM, Volnova AB, Dmitrieva ES, Polyakova NV, Gainetdinov RR. Trace Amine-Associated Receptor 1 Agonist Modulates Mismatch Negativity-Like Responses in Mice. Front Pharmacol 2019; 10:470. [PMID: 31130864 PMCID: PMC6509589 DOI: 10.3389/fphar.2019.00470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/15/2019] [Indexed: 01/12/2023] Open
Abstract
The trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor widely expressed in the mammalian brain, particularly in limbic system and monoaminergic areas. It has proven to be an important modulator of dopaminergic, serotoninergic, and glutamatergic neurotransmission and is considered to be a potential useful target for the pharmacotherapy of neuropsychiatric disorders, including schizophrenia. One of the promising schizophrenia endophenotypes is a deficit in neurocognitive abilities manifested as mismatch negativity (MMN) deficit. This study examines the effect of TAAR1 partial agonist RO5263397 on the MMN-like response in freely moving C57BL/6 mice. Event-related potentials (ERPs) were recorded from awake mice in the oddball paradigm before and after RO5263397 administration. The RO5263397 (but not saline) administration increased the N40 amplitude in response to deviant stimuli. That provided the MMN-like difference at the 36-44 ms interval after the injection. The pitch deviance-elicited changes before the injection and in the control paradigm were established for the P68 component. After TAAR1 agonist administration the P68 amplitude in response both to standard and deviant stimuli was increased. These results suggest that the MMN-like response in mice may be modulated through TAAR1-dependent processes (possibly acting through the direct or indirect glutamate NMDA receptor modulation), indicating the TAAR1 agonists potential antipsychotic and pro-cognitive activity.
Collapse
Affiliation(s)
- Aleksander A. Aleksandrov
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Veronika M. Knyazeva
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anna B. Volnova
- Department of General Physiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Elena S. Dmitrieva
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Nadezhda V. Polyakova
- Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
7
|
Hermens DF, Chitty KM, Kaur M. Mismatch negativity in bipolar disorder: A neurophysiological biomarker of intermediate effect? Schizophr Res 2018; 191:132-139. [PMID: 28450056 DOI: 10.1016/j.schres.2017.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 02/04/2023]
Abstract
The event-related potential, mismatch negativity (MMN), has been touted as a robust and specific neurophysiological biomarker of schizophrenia. Earlier studies often included bipolar disorder (BD) as a clinical comparator and reported that MMN was significantly impaired only in schizophrenia. However, with the increasing number of MMN studies of BD (with larger sample sizes), the literature is now providing somewhat consistent evidence of this biomarker also being perturbed in BD, albeit to a lesser degree than that observed in schizophrenia. Indeed, two meta-analyses have now shown that the effect sizes in BD samples suggest a moderate impairment in MMN, compared to the large effect sizes shown in schizophrenia. Pharmacologically, MMN is an extremely useful non-invasive probe of glutamatergic (more specifically, N-methyl-d-aspartate [NMDA] receptor) disturbances and this system has been implicated in the pathophysiology of both schizophrenia and BD. Therefore, it may be best to conceptualize/utilize MMN as an index of a psychopathology that is shared across psychotic and related disorders, rather than being a diagnosis-specific biomarker. More research is needed, particularly longitudinal designs including studies that assess MMN over an individual's life course and then examine NMDA receptor expression/binding post-mortem. At this point and despite a disproportionate amount of research, the current evidence suggests that with respect to BD, MMN is a neurophysiological biomarker of intermediate effect. With replication and validation of this effect, MMN may prove to be an important indicator of a common psychopathology shared by a significant proportion of individuals with schizophrenia and bipolar spectrum illnesses.
Collapse
Affiliation(s)
- Daniel F Hermens
- Youth Mental Health Team, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
| | - Kate M Chitty
- Translational Australian Clinical Toxicology (TACT) Research Group, Discipline of Pharmacology, Sydney Medical School, The University of Sydney, NSW, Australia
| | - Manreena Kaur
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University Central Clinical School, VIC, Australia
| |
Collapse
|
8
|
Smith DM, Fisher D, Blier P, Ilivitsky V, Knott V. The separate and combined effects of monoamine oxidase A inhibition and nicotine on the mismatch negativity event related potential. Pharmacol Biochem Behav 2015; 137:44-52. [PMID: 26226350 DOI: 10.1016/j.pbb.2015.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/29/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022]
Abstract
The mismatch negativity (MMN) auditory event-related potential (ERP) has been extensively studied as a potential biomarker for abnormal auditory processing in schizophrenia (SZ), a population which exhibits abnormally high smoking rates. The relationship between nicotinic activation and cognition in SZ may be related to underlying nicotinic and NMDA receptor dysfunction within the disease. However, transient cognitive improvements via smoking in patients may also result from monoamine oxidase (MAO) inhibition, achieved through tobacco smoke. In 24 healthy non-smoking males, we investigated the separate and combined effects of nicotine and MAO-A inhibition via moclobemide (75mg) on the optimal-5 variation of the MMN paradigm. No significant drug effects were observed in our total sample, however, stratification of individuals into low (N=12) and high (N=12) baseline MMN amplitude groups revealed increases in duration MMN amplitude relative to placebo by nicotine, as well as moclobemide, but not after the combination of the two. Because previous research has shown there was no effect of monoamine modulation on MMN, this study shows an unexpected effect of moclobemide on duration MMN.
Collapse
Affiliation(s)
- Dylan M Smith
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Derek Fisher
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Royal Ottawa Mental Health Centre, Ottawa, Ontario, Canada
| | | | - Verner Knott
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Royal Ottawa Mental Health Centre, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Gaebler AJ, Mathiak K, Koten JW, König AA, Koush Y, Weyer D, Depner C, Matentzoglu S, Edgar JC, Willmes K, Zvyagintsev M. Auditory mismatch impairments are characterized by core neural dysfunctions in schizophrenia. Brain 2015; 138:1410-23. [PMID: 25743635 DOI: 10.1093/brain/awv049] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/12/2015] [Indexed: 01/18/2023] Open
Abstract
Major theories on the neural basis of schizophrenic core symptoms highlight aberrant salience network activity (insula and anterior cingulate cortex), prefrontal hypoactivation, sensory processing deficits as well as an impaired connectivity between temporal and prefrontal cortices. The mismatch negativity is a potential biomarker of schizophrenia and its reduction might be a consequence of each of these mechanisms. In contrast to the previous electroencephalographic studies, functional magnetic resonance imaging may disentangle the involved brain networks at high spatial resolution and determine contributions from localized brain responses and functional connectivity to the schizophrenic impairments. Twenty-four patients and 24 matched control subjects underwent functional magnetic resonance imaging during an optimized auditory mismatch task. Haemodynamic responses and functional connectivity were compared between groups. These data sets further entered a diagnostic classification analysis to assess impairments on the individual patient level. In the control group, mismatch responses were detected in the auditory cortex, prefrontal cortex and the salience network (insula and anterior cingulate cortex). Furthermore, mismatch processing was associated with a deactivation of the visual system and the dorsal attention network indicating a shift of resources from the visual to the auditory domain. The patients exhibited reduced activation in all of the respective systems (right auditory cortex, prefrontal cortex, and the salience network) as well as reduced deactivation of the visual system and the dorsal attention network. Group differences were most prominent in the anterior cingulate cortex and adjacent prefrontal areas. The latter regions also exhibited a reduced functional connectivity with the auditory cortex in the patients. In the classification analysis, haemodynamic responses yielded a maximal accuracy of 83% based on four features; functional connectivity data performed similarly or worse for up to about 10 features. However, connectivity data yielded a better performance when including more than 10 features yielding up to 90% accuracy. Among others, the most discriminating features represented functional connections between the auditory cortex and the anterior cingulate cortex as well as adjacent prefrontal areas. Auditory mismatch impairments incorporate major neural dysfunctions in schizophrenia. Our data suggest synergistic effects of sensory processing deficits, aberrant salience attribution, prefrontal hypoactivation as well as a disrupted connectivity between temporal and prefrontal cortices. These deficits are associated with subsequent disturbances in modality-specific resource allocation. Capturing different schizophrenic core dysfunctions, functional magnetic resonance imaging during this optimized mismatch paradigm reveals processing impairments on the individual patient level, rendering it a potential biomarker of schizophrenia.
Collapse
Affiliation(s)
- Arnim Johannes Gaebler
- 1 Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany 2 JARA-Translational Brain Medicine, Aachen, Germany
| | - Klaus Mathiak
- 1 Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany 2 JARA-Translational Brain Medicine, Aachen, Germany
| | - Jan Willem Koten
- 3 Neuropsychology Section, Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany 4 Neuropsychology Section, Department of Psychology, Karl Franzens University, Graz, Austria
| | - Andrea Anna König
- 1 Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany 2 JARA-Translational Brain Medicine, Aachen, Germany
| | - Yury Koush
- 5 Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland 6 Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Weyer
- 7 Brain Imaging Facility, IZKF Aachen, RWTH Aachen University, Aachen, Germany
| | - Conny Depner
- 8 Katharina Kasper Via Nobis GmbH, Hospital for Psychiatry and Psychotherapy, Gangelt, Germany
| | - Simeon Matentzoglu
- 8 Katharina Kasper Via Nobis GmbH, Hospital for Psychiatry and Psychotherapy, Gangelt, Germany
| | - James Christopher Edgar
- 9 Department of Radiology, Lurie Family Foundation MEG Imaging Centre, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Klaus Willmes
- 3 Neuropsychology Section, Department of Neurology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Mikhail Zvyagintsev
- 1 Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany 2 JARA-Translational Brain Medicine, Aachen, Germany 7 Brain Imaging Facility, IZKF Aachen, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Mismatch negativity (MMN) deficiency: a break-through biomarker in predicting psychosis onset. Int J Psychophysiol 2015; 95:338-44. [PMID: 25562834 DOI: 10.1016/j.ijpsycho.2014.12.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/14/2014] [Accepted: 12/26/2014] [Indexed: 11/24/2022]
Abstract
Currently, the mismatch negativity (MMN) deficit is one of the most robust and replicable findings in schizophrenia, reflecting cognitive and functional decline, psychosocial and socio-occupational impairment, and executive dysfunction in these patients. An important break-through has very recently taken place here in the prediction of conversion to psychosis when the MMN in particular to change in tone duration was recorded in clinically at risk-mental state (ARMS) individuals. Attenuations in the MMN in these patients may be very useful in helping clinicians determine who are most likely to develop a psychotic disorder, as we will review in the present article.
Collapse
|
11
|
Muthukumaraswamy SD. The use of magnetoencephalography in the study of psychopharmacology (pharmaco-MEG). J Psychopharmacol 2014; 28:815-29. [PMID: 24920134 DOI: 10.1177/0269881114536790] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Magnetoencephalography (MEG) is a neuroimaging technique that allows direct measurement of the magnetic fields generated by synchronised ionic neural currents in the brain with moderately good spatial resolution and high temporal resolution. Because chemical neuromodulation can cause changes in neuronal processing on the millisecond time-scale, the combination of MEG with pharmacological interventions (pharmaco-MEG) is a powerful tool for measuring the effects of experimental modulations of neurotransmission in the living human brain. Importantly, pharmaco-MEG can be used in both healthy humans to understand normal brain function and in patients to understand brain pathologies and drug-treatment effects. In this paper, the physiological and technical basis of pharmaco-MEG is introduced and contrasted with other pharmacological neuroimaging techniques. Ongoing developments in MEG analysis techniques such as source-localisation, functional and effective connectivity analyses, which have allowed for more powerful inferences to be made with recent pharmaco-MEG data, are described. Studies which have utilised pharmaco-MEG across a range of neurotransmitter systems (GABA, glutamate, acetylcholine, dopamine and serotonin) are reviewed.
Collapse
|
12
|
Todd J, Harms L, Schall U, Michie PT. Mismatch negativity: translating the potential. Front Psychiatry 2013; 4:171. [PMID: 24391602 PMCID: PMC3866657 DOI: 10.3389/fpsyt.2013.00171] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/04/2013] [Indexed: 02/05/2023] Open
Abstract
The mismatch negativity (MMN) component of the auditory event-related potential has become a valuable tool in cognitive neuroscience. Its reduced size in persons with schizophrenia is of unknown origin but theories proposed include links to problems in experience-dependent plasticity reliant on N-methyl-d-aspartate glutamate receptors. In this review we address the utility of this tool in revealing the nature and time course of problems in perceptual inference in this illness together with its potential for use in translational research testing animal models of schizophrenia-related phenotypes. Specifically, we review the reasons for interest in MMN in schizophrenia, issues pertaining to the measurement of MMN, its use as a vulnerability index for the development of schizophrenia, the pharmacological sensitivity of MMN and the progress in developing animal models of MMN. Within this process we highlight the challenges posed by knowledge gaps pertaining to the tool and the pharmacology of the underlying system.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lauren Harms
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ulrich Schall
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Patricia T. Michie
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
13
|
Kaur M, Lagopoulos J, Lee RSC, Ward PB, Naismith SL, Hickie IB, Hermens DF. Longitudinal associations between mismatch negativity and disability in early schizophrenia- and affective-spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:161-9. [PMID: 23851120 DOI: 10.1016/j.pnpbp.2013.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/12/2023]
Abstract
BACKGROUND Impaired mismatch negativity (MMN) is a robust finding in schizophrenia and, more recently, similar impairments have been reported in other psychotic- and affective-disorders (including at early stages of illness). Although cross-sectional studies have been numerous, there are few longitudinal studies that have explored the predictive value of this event-related potential in relation to clinical/functional outcomes. This study assessed changes in MMN (and the concomitant P3a) amplitude over time and aimed to determine the longitudinal relationship between MMN/P3a and functional outcomes in patients recruited during the early stage of a schizophrenia- or affective-spectrum disorder. METHODS Sixty young patients with schizophrenia- and affective-spectrum disorders and 30 healthy controls underwent clinical, neuropsychological and neurophysiological assessment at baseline. Thirty-one patients returned for clinical and neuropsychological follow-up 12-30months later, with 28 of these patients also repeating neurophysiological assessment. On both occasions, MMN/P3a was elicited using a two-tone passive auditory paradigm with duration deviants. RESULTS Compared with controls, patients showed significantly impaired temporal MMN amplitudes and trend-level deficits in central MMN/P3a amplitudes at baseline. There were no significant differences for MMN measures between the diagnostic groups, whilst the schizophrenia-spectrum group showed reduced P3a amplitudes compared to those with affective-spectrum disorders. For those patients who returned for follow-up, reduced temporal MMN amplitude at baseline was significantly associated with greater levels of occupational disability, and showed trend-level associations with general and social disability at follow-up. Paired t-tests revealed that MMN amplitudes recorded at the central-midline site were significantly reduced in patients over time. Interestingly, those patients who did not return for follow-up showed reduced frontal MMN and fronto-central P3a amplitudes compared to their peers who did return for repeat assessment. CONCLUSIONS This study provides some evidence of the predictive utility of MMN at the early stages of schizophrenia- and affective-spectrum disorders and demonstrated that MMN impairments in such patients may worsen over time. Specifically, we found that young patients with the most impaired MMN amplitudes at baseline showed the most severe levels of disability at follow-up. Furthermore, in the subset of patients with repeat neurophysiological testing, central MMN was further impaired suggestive of neurodegenerative effects. MMN may serve as a neurophysiological biomarker to more accurately predict functional outcomes and prognosis, particularly at the early stages of illness.
Collapse
Affiliation(s)
- Manreena Kaur
- Clinical Research Unit, Brain and Mind Research Institute, The University of Sydney, Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kaur M, Battisti RA, Lagopoulos J, Ward PB, Hickie IB, Hermens DF. Neurophysiological biomarkers support bipolar-spectrum disorders within psychosis cluster. J Psychiatry Neurosci 2012; 37:313-21. [PMID: 22469054 PMCID: PMC3447130 DOI: 10.1503/jpn.110081] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Mismatch negativity (MMN) and P3a are event-related potentials that index deviance detection and the orienting response, respectively. We have previously shown that the MMN/P3a complex is impaired in patients with schizophrenia and affective spectrum psychoses, which suggests that it may index a common pathophysiology and argues against the purported specificity in schizophrenia. Further research is warranted to determine whether patients with bipolar-spectrum disorders show similar impairments in these biomarkers. METHODS We assessed patients aged 15-30 years with early schizophrenia-spectrum disorders (schizophrenia, schizoaffective disorder, schizophreniform disorder), early bipolar-spectrum disorders (bipolar I or II, with and without psychotic features) and healthy, matched controls. We acquired MMN/P3a amplitudes during a 2-tone, auditory paradigm with 8% duration deviants. Clinical, psychosocial and neuro psychological assessments were also undertaken. RESULTS We included 20 patients with schizophrenia-spectrum disorders, 20 with bipolar-spectrum disorders and 20 controls in our study. Both patient groups showed significantly reduced frontocentral MMN and central P3a amplitudes. The schizophrenia-spectrum group had additional impairments in left temporal MMN and frontal P3a. Both patient groups performed worse than controls across psychosocial and clinical measures; however, only the schizophrenia-spectrum group performed significantly worse than controls for cognitive measures. Correlational analyses between patient groups revealed associations between frontocentral or left temporal MMN and psychiatric symptomatology or quality of life measures. LIMITATIONS Limitations to our study include the modest sample size and the lack of control with regards to the effects of other (i.e., nonantipsychotic) psychotropic medications. CONCLUSION Compared with patients in early stages of schizophrenia-spectrum disorders, those in the early stages of bipolar-spectrum disorders are similarly impaired in established biomarkers for schizophrenia. These findings support a shared diathesis model for psychotic and bipolar disorders. Furthermore, MMN/P3a may be a biomarker for a broader pathophysiology that overlaps traditional diagnostic clusters.
Collapse
Affiliation(s)
- Manreena Kaur
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
15
|
The mismatch negativity (MMN)--a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 2011; 123:424-58. [PMID: 22169062 DOI: 10.1016/j.clinph.2011.09.020] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/14/2022]
Abstract
In this article, we review clinical research using the mismatch negativity (MMN), a change-detection response of the brain elicited even in the absence of attention or behavioural task. In these studies, the MMN was usually elicited by employing occasional frequency, duration or speech-sound changes in repetitive background stimulation while the patient was reading or watching videos. It was found that in a large number of different neuropsychiatric, neurological and neurodevelopmental disorders, as well as in normal ageing, the MMN amplitude was attenuated and peak latency prolonged. Besides indexing decreased discrimination accuracy, these effects may also reflect, depending on the specific stimulus paradigm used, decreased sensory-memory duration, abnormal perception or attention control or, most importantly, cognitive decline. In fact, MMN deficiency appears to index cognitive decline irrespective of the specific symptomatologies and aetiologies of the different disorders involved.
Collapse
|
16
|
Roser P, Haussleiter IS, Chong HJ, Maier C, Kawohl W, Norra C, Juckel G. Inhibition of cerebral type 1 cannabinoid receptors is associated with impaired auditory mismatch negativity generation in the ketamine model of schizophrenia. Psychopharmacology (Berl) 2011; 218:611-20. [PMID: 21590281 DOI: 10.1007/s00213-011-2352-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/06/2011] [Indexed: 01/09/2023]
Abstract
RATIONALE Preclinical and clinical research suggests that the endogenous cannabinoid system is involved in cognitive impairments related to schizophrenia. In particular, the deficient generation of mismatch negativity (MMN) indicating auditory sensory memory is a characteristic finding in schizophrenic patients. Experimental studies implicate deficient N-methyl-D: -aspartate (NMDA) receptor functioning in such abnormalities. OBJECTIVES The primary aim of this study was to investigate the effects of the cannabinoid CB(1) receptor antagonist rimonabant on MMN deficits in the NMDA receptor antagonist model of schizophrenia by using ketamine. METHODS Twenty-four healthy male subjects participated in a randomized, double-blind, placebo-controlled cross-over study with subanesthetic doses of intravenous ketamine. The MMNs to frequency and duration deviants were elicited within an auditory oddball paradigm and recorded by a 32-channel EEG. Psychopathology was assessed using the Psychotomimetic States Inventory. RESULTS Twenty subjects completed both experimental sessions. Ketamine infusion had no significant effect on MMN amplitudes in both deviance conditions. In contrast to placebo, co-administration of rimonabant produced significant deficits in MMN amplitudes to duration deviants at electrode position Fz. CONCLUSIONS The results point to the involvement of the endogenous cannabinoid system in auditory sensory memory as a cognitive key feature in schizophrenia. They particularly suggest that CB(1) receptor antagonism may impair cognitive performance by a disturbed interaction between endocannabinergic activity and glutamatergic neurotransmission implied in schizophrenia.
Collapse
Affiliation(s)
- Patrik Roser
- Department of Psychiatry, LWL University Hospital, Ruhr-University Bochum, Alexandrinenstr. 1, 44791 Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kenemans JL, Kähkönen S. How human electrophysiology informs psychopharmacology: from bottom-up driven processing to top-down control. Neuropsychopharmacology 2011; 36:26-51. [PMID: 20927044 PMCID: PMC3055493 DOI: 10.1038/npp.2010.157] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 01/28/2023]
Abstract
This review surveys human event-related brain potential (ERP) and event-related magnetic field (ERF) approaches to psychopharmacology and psychopathology, and the way in which they complement behavioral studies and other neuroimaging modalities. The major paradigms involving ERP/ERF are P50 suppression, loudness-dependent auditory evoked potential (LDAEP), mismatch negativity (MMN), P300, mental chronometry, inhibitory control, and conflict processing (eg, error-related negativity (ERN)). Together these paradigms cover a range of more bottom-up driven to more top-down controlled processes. A number of relationships between the major neurotransmitter systems and electrocortical mechanisms are highlighted. These include the role of dopamine in conflict processing, and perceptual processing vs motor preparation; the role of serotonin in P50 suppression, LDAEP, and MMN; glutamate/NMDA and MMN; and the role of acetylcholine in P300 generation and memory-related processes. A preliminary taxonomy for these relationships is provided, which should be helpful in attuning possible new treatments or new applications of existing treatments to various disorders.
Collapse
Affiliation(s)
- J Leon Kenemans
- Department of Experimental Psychology and Human Psychopharmacology, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
18
|
Leung S, Croft RJ, Guille V, Scholes K, O'Neill BV, Phan KL, Nathan PJ. Acute dopamine and/or serotonin depletion does not modulate mismatch negativity (MMN) in healthy human participants. Psychopharmacology (Berl) 2010; 208:233-44. [PMID: 20012022 DOI: 10.1007/s00213-009-1723-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 11/02/2009] [Indexed: 01/08/2023]
Abstract
RATIONALE Schizophrenia is commonly associated with impairments in pre-attentive change detection, as represented by reduced mismatch negativity (MMN). While the neurochemical basis of MMN has been linked to N-methyl-D: -aspartic acid (NMDA) receptor function, the roles of the dopaminergic and/or the serotonergic systems are not fully explored in humans. OBJECTIVES The aim of the present study was to investigate the effects of acutely depleting dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) alone or simultaneously by depleting their amino acid precursors on MMN in healthy participants. METHODS Sixteen healthy male subjects participated in a double-blind, placebo-controlled, cross-over design in which each subject's duration MMN was assessed under four acute treatment conditions separated by a 5-day washout period: balanced amino acid control (no depletion), tyrosine/phenylalanine depletion (to reduce DA neurotransmission), tryptophan depletion (to reduce 5-HT neurotransmission) and tryptophan/tyrosine/phenylalanine depletion (to reduce DA and 5-HT neurotransmission simultaneously). RESULTS Acute depletion of either DA and 5-HT alone or simultaneously had no effect on MMN. CONCLUSIONS These findings suggest that modulation of the dopaminergic and serotonergic systems acutely does not lead to changes in MMN.
Collapse
Affiliation(s)
- Sumie Leung
- Brain Sciences Institute, Faculty of Life and Social Sciences, Swinburne University of Technology, P.O. Box 218, John Street Hawthorn, 3122, Melbourne, VIC, Australia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Brønnick KS, Nordby H, Larsen JP, Aarsland D. Disturbance of automatic auditory change detection in dementia associated with Parkinson's disease: A mismatch negativity study. Neurobiol Aging 2010; 31:104-13. [DOI: 10.1016/j.neurobiolaging.2008.02.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 01/11/2008] [Accepted: 02/27/2008] [Indexed: 11/16/2022]
|
20
|
Martin LF, Davalos DB, Kisley MA. Nicotine enhances automatic temporal processing as measured by the mismatch negativity waveform. Nicotine Tob Res 2009; 11:698-706. [PMID: 19436039 DOI: 10.1093/ntr/ntp052] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Cholinergic agonists and, more specifically, nicotine, have been found to enhance a number of cognitive processes. The effect of nicotine on temporal processing is not known. The use of behavioral measures of temporal processing to measure its effect could be confounded by the general effects of nicotine on attention. Mismatch negativity (MMN) has been used as a physiological measure of automatic temporal processing to avoid this potential confound. METHODS A total of 20 subjects (11 nonsmokers and 9 smokers following 2 hr of abstinence) participated in a two-visit single-blind, placebo-controlled crossover study of the effect of nicotine on MMN indices in response to an interstimulus interval deviant. RESULTS Nicotine-enhanced MMN amplitudes from baseline recording to postdrug recording greater than did the placebo condition. This enhancement was seen in both nonsmokers and smokers. Nicotine had no significant effect on MMN latency or N100 amplitude or latency. DISCUSSION This is the first study to demonstrate a nicotine-related enhancement of MMN amplitude to an interstimulus interval duration deviant and confirms our hypothesis that nicotine enhances preattentive temporal processing. Nicotinic agonists may represent a potential therapeutic option for individuals with abnormalities in early sensory or temporal processing related to cholinergic system abnormalities. Methodologically, our paradigm of nicotine administration in abstinent smokers is important because it resulted in both minimal withdrawal symptoms and meaningful data that are not attributable solely to relief of withdrawal.
Collapse
Affiliation(s)
- Laura F Martin
- Research Service, Denver Veterans Affairs Medical Center, Department of Psychiatry, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, C268-71, Denver, CO 80262, USA.
| | | | | |
Collapse
|
21
|
Switch to ziprazidone treatment is associated with changes in MMN amplitude: a case report. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:573-4. [PMID: 19439243 DOI: 10.1016/j.pnpbp.2009.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 11/23/2022]
|
22
|
Garrido MI, Kilner JM, Stephan KE, Friston KJ. The mismatch negativity: a review of underlying mechanisms. Clin Neurophysiol 2009; 120:453-63. [PMID: 19181570 PMCID: PMC2671031 DOI: 10.1016/j.clinph.2008.11.029] [Citation(s) in RCA: 846] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 11/10/2008] [Accepted: 11/29/2008] [Indexed: 12/12/2022]
Abstract
The mismatch negativity (MMN) is a brain response to violations of a rule, established by a sequence of sensory stimuli (typically in the auditory domain) [Näätänen R. Attention and brain function. Hillsdale, NJ: Lawrence Erlbaum; 1992]. The MMN reflects the brain's ability to perform automatic comparisons between consecutive stimuli and provides an electrophysiological index of sensory learning and perceptual accuracy. Although the MMN has been studied extensively, the neurophysiological mechanisms underlying the MMN are not well understood. Several hypotheses have been put forward to explain the generation of the MMN; amongst these accounts, the "adaptation hypothesis" and the "model adjustment hypothesis" have received the most attention. This paper presents a review of studies that focus on neuronal mechanisms underlying the MMN generation, discusses the two major explanatory hypotheses, and proposes predictive coding as a general framework that attempts to unify both.
Collapse
Affiliation(s)
- Marta I Garrido
- Wellcome Trust Centre for Neuroimaging, University College London, UK.
| | | | | | | |
Collapse
|
23
|
Reduced auditory evoked potential component N100 in schizophrenia--a critical review. Psychiatry Res 2008; 161:259-74. [PMID: 18926573 DOI: 10.1016/j.psychres.2008.03.017] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 09/10/2007] [Accepted: 03/14/2008] [Indexed: 11/21/2022]
Abstract
The role of a reduced N100 (or N1) component of the auditory event related potential as a potential trait marker of schizophrenia is critically discussed in this review. We suggest that the extent of the N100 amplitude reduction in schizophrenia depends on experimental and subject factors, as well as on clinical variables: N100 is more consistently reduced in studies using interstimulus intervals (ISIs) >1 s than in studies using shorter ISIs. An increase of the N100 amplitude by allocation of attention is often lacking in schizophrenia patients. A reduction of the N100 amplitude is nevertheless also observed when such an allocation is not required, proposing that both endogenous and exogenous constituents of the N100 are affected by schizophrenia. N100 is more consistently reduced in medicated than unmedicated patients, but a reduction of the N100 amplitude as a consequence of antipsychotic medication was shown in only two of seven studies. In line with that, the association between the N100 reduction and degree of psychopathology of patients appears to be weak overall. A reduced N100 amplitude is found in first degree relatives of schizophrenia patients, but the risk of developing schizophrenia is not reflected in the N100 amplitude reduction.
Collapse
|
24
|
McDonald CR. The use of neuroimaging to study behavior in patients with epilepsy. Epilepsy Behav 2008; 12:600-11. [PMID: 18078790 PMCID: PMC2702661 DOI: 10.1016/j.yebeh.2007.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
Structural and functional neuroimaging continues to play an increasing role in the presurgical evaluation of patients with epilepsy. In addition to its value in localizing the epileptogenic zone and eloquent cortex, neuroimaging is contributing to our understanding of mood comorbidity in epilepsy. Although the vast majority of research has focused on patients with temporal lobe epilepsy (TLE), neuroimaging studies of patients with extratemporal epilepsy and primary generalized epilepsy are increasing in number. In this review, structural and functional imaging modalities that have received considerable research attention in recent years are reviewed, and their strengths and limitations for understanding behavior in epilepsy are assessed. In addition, advances in multimodal imaging are discussed along with their potential application to the presurgical evaluation of patients with seizure disorders.
Collapse
Affiliation(s)
- Carrie R. McDonald
- Department of Psychiatry, University of California, San Diego, Multimodal Imaging Laboratory, University of California, San Diego
| |
Collapse
|
25
|
Fisher DJ, Labelle A, Knott VJ. The right profile: Mismatch negativity in schizophrenia with and without auditory hallucinations as measured by a multi-feature paradigm. Clin Neurophysiol 2008; 119:909-21. [DOI: 10.1016/j.clinph.2007.12.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 11/21/2007] [Accepted: 12/08/2007] [Indexed: 11/26/2022]
|
26
|
The effect of methylphenidate on auditory information processing in healthy volunteers: a combined EEG/MEG study. Psychopharmacology (Berl) 2008; 197:475-86. [PMID: 18264697 DOI: 10.1007/s00213-007-1065-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 12/19/2007] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The psychomotor stimulant methylphenidate (MPH) has been shown to improve attentional processes, reflected in behavioural measures such as vigilance, reaction time and visual attention tasks. The neural mechanisms of MPH action on sensory information processing, however, remain poorly understood. To the authors' knowledge, this present study is the first to investigate whether a single dose of MPH affects neural substrates of passive attention in healthy adults studied with simultaneous whole-head magnetoencephalography (MEG) and electroencephalography (EEG). METHODS Monaural left-ear auditory stimuli were presented in an oddball paradigm with infrequent deviant tones differing in frequency and duration. Neuronal activity was recorded with simultaneous whole-head MEG and EEG in 13 healthy subjects (five females; aged 27 +/- 5 years) after oral administration of 40 mg MPH or placebo in a randomised, double-blind, cross-over design. We analysed both electric and magnetic N100, P200 and mismatch negativity (MMN) components. RESULTS MPH increased arousal levels in visual analogue scales. MPH had no effect on the dipole strength of MMN or MMNm in either frequency or duration deviations. MPH did, however, reduce P200 amplitudes in EEG. CONCLUSIONS The lack of effect of MPH on either MMN or MMNm suggests no association between catecholaminergic activities and MMN generation. However, our findings imply that MPH may change the neural bases of auditory information processing such as the early stimulus evaluation reflected in the P200 component. Dopamine and noradrenaline neurotransmitter systems could be responsible for the modulation of these processes. The exclusive effect of MPH on the P200 component could have a clinical application.
Collapse
|
27
|
Nader MA, Czoty PW. Brain Imaging in Nonhuman Primates: Insights into Drug Addiction. ILAR J 2008; 49:89-102. [DOI: 10.1093/ilar.49.1.89] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Strelnikov K. Can mismatch negativity be linked to synaptic processes? A glutamatergic approach to deviance detection. Brain Cogn 2007; 65:244-51. [PMID: 17513027 DOI: 10.1016/j.bandc.2007.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 04/11/2007] [Accepted: 04/16/2007] [Indexed: 11/15/2022]
Abstract
This article aims to provide a theoretical framework to elucidate the neurophysiological underpinnings of deviance detection as reflected by mismatch negativity. A six-step model of the information processing necessary for deviance detection is proposed. In this model, predictive coding of learned regularities is realized by means of long-term potentiation with a crucial role for NMDA receptors. Mismatch negativity occurs at the last stage of the model, reflecting the increase in free energy associated with the switching on of silent synapses and the formation of new neural circuits required for adaptation to the environmental deviance. The model is discussed with regard to the pathological states most studied in relation to mismatch negativity: alcohol intoxication, alcohol withdrawal, and schizophrenia.
Collapse
Affiliation(s)
- Kuzma Strelnikov
- Brain and Cognition Research Center CerCo, University of Toulouse 3, Faculty of Medicine, CNRS, UMR 5549, 133 route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
29
|
Leung S, Croft RJ, Baldeweg T, Nathan PJ. Acute dopamine D(1) and D(2) receptor stimulation does not modulate mismatch negativity (MMN) in healthy human subjects. Psychopharmacology (Berl) 2007; 194:443-51. [PMID: 17611739 DOI: 10.1007/s00213-007-0865-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE Schizophrenia is commonly associated with an impairment in pre-attentive change detection, as represented by reduced mismatch negativity (MMN), an auditory event related potential. While the neurochemical basis of MMN has been linked to the integrity of the glutamatergic system involving N-methyl-D-aspartate (NMDA) receptors, the role of the dopaminergic system and in particular, the role of D(1) and D(2) receptors on MMN is yet to be determined. OBJECTIVES The aim of the present project was to investigate the acute effects of dopamine D(2) (bromocriptine) and D(1)/D(2) (pergolide) receptor stimulation on the human MMN in healthy subjects. METHODS Fifteen healthy male subjects participated in a double-blind, placebo-controlled, cross-over design in which each subject was tested under three acute treatment conditions separated by a 1-week wash out period; placebo, bromocriptine (2.5 mg) and pergolide (0.1 mg). The subjects were exposed to a duration-MMN paradigm with 50 ms standard tones (91%) and 100 ms deviant tones (9%). RESULTS The results showed that neither D(2) receptor stimulation with bromocriptine, nor simultaneous D(1) and D(2) receptor stimulation with pergolide, modulated MMN. CONCLUSIONS These findings suggest that acute D(1) and D(2) receptor stimulation does not modulate MMN. While the role of dopamine cannot be completely ruled out, the findings support the view that the aberrant MMN reported in schizophrenia may be linked primarily to glutamate dysfunction involving NMDA receptors.
Collapse
Affiliation(s)
- Sumie Leung
- Biological Psychiatry Research Unit, Brain Sciences Institute, Faculty of Life and Social Sciences, Swinburne University of Technology, Melbourne, Australia
| | | | | | | |
Collapse
|
30
|
Kivisaari R, Lehtinen R, Autti T, Puuskari V, Jokela O, Ahveninen J, Rapeli P, Kähkönen S. Impaired pre-attentive auditory processing in opioid dependence with and without benzodiazepine co-dependence revealed by combined magnetoencephalography and electroencephalography. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:1378-86. [PMID: 17614180 DOI: 10.1016/j.pnpbp.2007.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 05/22/2007] [Accepted: 06/01/2007] [Indexed: 11/28/2022]
Abstract
Cognitive dysfunctions may be a significant factor in drug-seeking behavior, reducing the efficiency of rehabilitation in opioid dependence. Neurophysiological basis of these dysfunctions is poorly understood. 21 opioid-dependent patients and 15 healthy controls with no experience of illicit drugs were studied with simultaneous electroencephalography (EEG) and magnetoencephalography (MEG). Among opioid dependents 15 were benzodiazepine co-dependent. In a passive oddball paradigm, a train of 700-Hz standard tones (80%), presented to the left ear, was occasionally interrupted by infrequent deviants, which were either 600-Hz or 400-Hz pure tones or complex novel sounds. The auditory evoked potentials (AEP) and fields (AEF) were analyzed. The strength of the N1m dipoles was enhanced in patients with benzodiazepine co-dependence, but the latency of the response or the source location was not changed. A delay of mismatch negativity (MMN) response of novel tones in EEG, and delay of P3am response on the contralateral hemisphere to stimulated ear in MEG in opioid-dependent patients were observed. There were no differences in source locations or strengths of the dipoles for P1m, MMNm, and P3am determined using equivalent current dipoles. There were no group differences in EEG amplitude measures. In conclusion, our results suggest delayed pre-attentive auditory processing of novel information in opioid dependence. Benzodiazepine co-dependence modulated N1m response.
Collapse
Affiliation(s)
- Reetta Kivisaari
- Medical Imaging Centre, Box 281, Helsinki University Central Hospital, 00029 HUS, Finland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Campbell T, Winkler I, Kujala T. N1 and the mismatch negativity are spatiotemporally distinct ERP components: Disruption of immediate memory by auditory distraction can be related to N1. Psychophysiology 2007; 44:530-40. [PMID: 17532805 DOI: 10.1111/j.1469-8986.2007.00529.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Event-related potentials (ERPs) were recorded for ignored tones presented during the retention interval of a delayed serial recall task. The mismatch negativity (MMN) and N1 ERP components were measured to discern spatiotemporal and functional properties of their generation. A nine-token sequence with nine different tone pitches was more disruptive than an oddball (two-token) sequence, yet this oddball sequence was no more disruptive than a single repeating tone (one-token). Tones of the nine-token sequence elicited augmented N1 amplitudes compared to identical tones delivered in the one-token sequence, yet deviants elicited an additional component (MMN) with distinct temporal properties and topography. These results suggested that MMN and N1 are separate, functionally distinct components. Implications are discussed for the N1 hypothesis and the changing-state hypothesis of the disruption of serial recall performance by auditory distraction.
Collapse
Affiliation(s)
- Tom Campbell
- Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
32
|
Borghetti D, Pizzanelli C, Maritato P, Fabbrini M, Jensen S, Iudice A, Murri L, Sartucci F. Mismatch negativity analysis in drug-resistant epileptic patients implanted with vagus nerve stimulator. Brain Res Bull 2007; 73:81-5. [PMID: 17499640 DOI: 10.1016/j.brainresbull.2007.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 02/01/2007] [Accepted: 02/05/2007] [Indexed: 11/23/2022]
Abstract
It is well known that some epileptic patients does not respond to conventional treatments, despite multiple combination of antiepileptic drugs, and they are therefore considered drug-resistant. For these patients, vagal nerve stimulation (VNS) represents a successful alternative to traditional therapy, and it is generally well tolerated; beside benefits on seizure frequency, VNS showed positive effects on cognition and mood. Aim of this study was to investigate short-term memory changes in a group of 12 patients implanted with VNS, through Mismatch Negativity wave (MMN). After 1 year of follow-up, MMN latencies and amplitudes did not show significant changes following VNS implantation, independently on current intensity, as compared with pre-implantation values. In two patients, MMN values, which were abnormal before VNS implantation, showed a major reduction in latency and an increase in amplitude after implantation, suggesting a likely positive effect of VNS on pre-attentive processes investigated by MMN.
Collapse
Affiliation(s)
- D Borghetti
- Department of Neuroscience, Clinical Neurology, Pisa University School of Medicine, Via Roma, 67, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Price GW, Michie PT, Johnston J, Innes-Brown H, Kent A, Clissa P, Jablensky AV. A multivariate electrophysiological endophenotype, from a unitary cohort, shows greater research utility than any single feature in the Western Australian family study of schizophrenia. Biol Psychiatry 2006; 60:1-10. [PMID: 16368076 DOI: 10.1016/j.biopsych.2005.09.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 07/26/2005] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Previous studies have found several electrophysiological endophenotypes that each co-varies individually with schizophrenia. This study extends these investigations to compare and contrast four electrophysiological endophenotype, mismatch negativity, P50, P300, and antisaccades, and analyze their covariance on the basis of a single cohort tested with all paradigms. We report a multivariate endophenotype that is maximally associated with diagnosis and evaluate this new endophenotype with respect to its application to genetic analysis. METHODS Group differences and covariance were analyzed for probands (n = 60), family members (n = 53), and control subjects (n = 44). Associations between individual endophenotypes and diagnostic groups, as well as between the multivariate endophenotype and diagnostic groups, were investigated with logistic regression. RESULTS Results from all four individual endophenotypes replicated previous findings of deficits in the proband group. The P50 and P300 endophenotypes similarly replicated significant deficits in the family member group, whereas mismatch negativity and antisaccade measures showed a trend. There was minimal correlation between the different endophenotypes. A logistic regression model based on all four features significantly represented the diagnostic grouping (chi(2) = 32.7; p < .001), with 80% accuracy in predicting group membership. CONCLUSIONS A multivariate endophenotype, based on a weighted combination of electrophysiological features, provides greater diagnostic classification power than any single endophenotype.
Collapse
Affiliation(s)
- Gregory W Price
- School of Psychiatry and Clinical Neuroscience and Centre for Clinical Research in Neuropsychiatry, University of Western Australia and Graylands Hospital, Perth, Australia.
| | | | | | | | | | | | | |
Collapse
|
34
|
Foxe JJ, Murray MM, Javitt DC. Filling-in in Schizophrenia: a High-density Electrical Mapping and Source-analysis Investigation of Illusory Contour Processing. Cereb Cortex 2005; 15:1914-27. [PMID: 15772373 DOI: 10.1093/cercor/bhi069] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evidence is accumulating that patients with schizophrenia exhibit relatively severe deficits in early visual sensory processing within the dorsal stream, while processing within the ventral stream appears to be relatively more intact. Here, illusory contour (IC) processing was investigated in a cohort of schizophrenia patients and age-matched healthy controls using high-density visual evoked potentials (VEPs), spatiotemporal topographic analyses and the Local Auto-Regressive Average distributed linear inverse source estimation. IC processing was assessed because it is now known to be an excellent metric of early processing within regions of the ventral visual stream. Results in the present study show that IC processing (106-194 ms) is spared in patients with schizophrenia, providing strong evidence that early ventral stream processing is essentially normal. This is so despite equally strong evidence that early dorsal stream processing is severely impaired in this population, as indexed by a robust decrement in amplitude of the P1 component in patients and a large topographic difference between groups for this component (54-104 ms). Source analysis confirmed that the flow of activity into the dorsal stream was substantially decreased in patients. As such, these results suggest that some aspects of early ventral processing are not entirely reliant on intact inputs from the dorsal stream. Lastly, we show that later phases of visual processing (240-400 ms) also rely on the activity of different brain networks in controls and patients, with the latter recruiting strong frontal activity perhaps as compensation for impaired ventral stream processing during this period. We interpret the present findings in the context of a two-stage processing model. Under this model, it is suggested that the second stage of ventral stream processing is dependent on the fidelity of inputs from the dorsal visual stream and that impairment of this critical modulatory input may underlie the failure of 'higher-level' ventral stream processes in this population.
Collapse
Affiliation(s)
- John J Foxe
- Program in Cognitive Neuroscience, Department of Psychology, The City College of the City University of New York, North Academic Complex (NAC) 138th St. & Convent Avenue, New York, NY 10031, USA
| | | | | |
Collapse
|
35
|
Kähkönen S, Mäkinen V, Jääskeläinen IP, Pennanen S, Liesivuori J, Ahveninen J. Serotonergic modulation of mismatch negativity. Psychiatry Res 2005; 138:61-74. [PMID: 15708302 DOI: 10.1016/j.pscychresns.2004.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 08/12/2004] [Accepted: 09/20/2004] [Indexed: 11/21/2022]
Abstract
Neurochemical mechanisms mediating the interaction between emotional and cognitive processing are not yet fully understood. Here, we utilized acute tryptophan depletion (ATD) to reduce the brain synthesis of serotonin (5-HT), which is thought to have a central role in regulation of emotions and mood in humans. ATD effects on event-related potentials and magnetic fields were studied using a passive odd-ball paradigm in a randomized, double-blinded, controlled, cross-over design. Auditory responses were recorded simultaneously with high-resolution magnetoencephalography (MEG) and electroencephalography (EEG) in 14 healthy subjects, 5 h after ATD or a control condition. ATD significantly increased depressed mood and lowered plasma tryptophan concentration (total tryptophan decreased by 75%, free tryptophan decreased by 39%). As compared with the control condition, ATD increased the amplitudes of mismatch negativity (MMN) to duration and frequency changes and decreased the latencies of magnetic MMN to frequency changes in the hemisphere ipsilateral to the ear stimulated. Further, ATD modulated N1m latencies and decreased P2m source activity. ATD increased the interhemispheric latency difference of MMNm to frequency changes. No effects on P50 were observed. The present results suggest serotonergic modulation of preattentive auditory change detection, suggested to initiate involuntary attention shifting in the human brain.
Collapse
Affiliation(s)
- Seppo Kähkönen
- Cognitive Brain Research Unit, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
36
|
Rosburg T, Marinou V, Haueisen J, Smesny S, Sauer H. Effects of lorazepam on the neuromagnetic mismatch negativity (MMNm) and auditory evoked field component N100m. Neuropsychopharmacology 2004; 29:1723-33. [PMID: 15127083 DOI: 10.1038/sj.npp.1300477] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mismatch negativity (MMN) as an auditory evoked potential is thought to reflect an early, preconscious attention process. While this component has gained great importance in studies on clinical populations and in basic research on auditory information processing, the involvement of different neurotransmitters in the generation of this component is less well understood. We investigated the impact of the benzodiazepine lorazepam as a GABA agonist on the neuromagnetic MMN (MMNm) and auditory evoked field component N100m. A group of 12 healthy subjects was studied in single blind trials under the following three conditions: after the intake of 1.25 mg lorazepam, 100 mg caffeine or placebo. Neuromagnetic recordings were obtained before drug intake and three times after it. Controlled visual attention was tested additionally using a version of the Continuous Performance Test (CPT). The neuromagnetic activity was reconstructed by a single moving dipole, and the dipole moment and its latency were compared between conditions and time points of measurement. Lorazepam diminished the signal detection performance in the CPT 25 min after drug intake. The source of the field component N100m was attenuated, most significantly in the recording 105 min after lorazepam intake. The attenuation of the MMNm under lorazepam became significant at 105 min, but was visually less apparent, because in all conditions a decrease of the MMNm dipole moment within the course of a session was observed. Besides the already known effects of benzodiazepines on controlled attention functions, preconscious attention functions as reflected in the MMN are impaired by acute benzodiazepine intake. MMN studies on clinical populations have to be controlled for the recording time because of the strong habituation of this component.
Collapse
Affiliation(s)
- Timm Rosburg
- Department of Psychiatry, Friedrich-Schiller-University Jena, Jena, Germany.
| | | | | | | | | |
Collapse
|
37
|
Huttunen J, Kähkönen S, Kaakkola S, Ahveninen J, Pekkonen E. Effects of an acute D2-dopaminergic blockade on the somatosensory cortical responses in healthy humans: evidence from evoked magnetic fields. Neuroreport 2003; 14:1609-12. [PMID: 14502085 DOI: 10.1097/00001756-200308260-00013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We tested the possible role of dopaminergic activity in the processing of somatosensory afferent information in healthy humans. Somatosensory evoked magnetic fields (SEFs) were recorded in seven subjects in response to left median nerve stimulation. SEFs were obtained in all subjects after oral administration of 2 mg haloperidol, an antagonist to dopaminergic D2 receptors, and placebo, which were given in a randomized, double-blind cross-over design. SEFs were analyzed using a multiple equivalent current dipole (ECD) model, with one dipole at the right primary somatosensory cortex (SI) and at both left and right secondary somatosensory cortices (SII). The earliest responses from SI, peaking at about 20 ms (N20m) and 35 ms (P35m), were not affected by haloperidol. A later deflection peaking at about 75 ms (P60m), however, was slightly reduced (p < 0.05). Responses arising from SII were not significantly changed. The results suggest that dopaminergic activity may be involved in modulating somatosensory processing after the initial stages of cortical activation.
Collapse
Affiliation(s)
- Juha Huttunen
- BioMag Laboratory, Medical Engineering Centre Department of Clinical Neurophysiology, Helsinki University Central Hospital, P.O. Box 340, FIN-00029 HUS.
| | | | | | | | | |
Collapse
|
38
|
Abstract
AbstractN-methyl-d-aspartate receptor (NMDAR) dysfunction plays a crucial role in schizophrenia, leading to impairments in cognitive coordination. NMDAR agonists (e.g., glycine) ameliorate negative and cognitive symptoms, consistent with NMDAR models. However, not all types of cognitive coordination use NMDAR. Further, not all aspects of cognitive coordination are impaired in schizophrenia, suggesting the need for specificity in applying the cognitive coordination construct.
Collapse
|
39
|
Abstract
AbstractPhillips & Silverstein's focus on schizophrenia as a failure of “cognitive coordination” is welcome. They note that a simple hypothesis of reduced Gamma synchronisation subserving impaired coordination does not fully account for recent observations. We suggest that schizophrenia reflects a dynamic compensation to a core deficit of coordination, expressed either as hyper- or hyposynchronisation, with neurotransmitter systems and arousal as modulatory mechanisms.
Collapse
|
40
|
Abstract
AbstractNumerous searches have failed to identify a single co-occurrence of total blindness and schizophrenia. Evidence that blindness causes loss of certain NMDA-receptor functions is balanced by reports of compensatory gains. Connections between visual and anterior cingulate NMDA-receptor systems may help to explain how blindness could protect against schizophrenia.
Collapse
|
41
|
Setting domain boundaries for convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x0328002x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractThe claim that the disorganized subtype of schizophrenia results from glutamate hypofunction is enhanced by consideration of current subtypology of schizophrenia, symptom definition, interdependence of neurotransmitters, and the nature of the data needed to support the hypothesis. Careful specification clarifies the clinical reality of disorganization as a feature of schizophrenia and increases the utility of the subtype.
Collapse
|
42
|
Abstract
AbstractAlthough context-processing deficits may be core features of schizophrenia, context remains a poorly defined concept. To test Phillips & Silverstein's model, we need to operationalize context more precisely. We offer several useful ways of framing context and discuss enhancing or facilitating schizophrenic patients' performance under different contextual situations. Furthermore, creativity may be a byproduct of cognitive uncoordination.
Collapse
|
43
|
Abstract
AbstractImpairments in cognitive coordination in schizophrenia are supported by phenomenological data that suggest deficits in the processing of visual context. Although the target article is sympathetic to such a phenomenological perspective, we argue that the relevance of phenomenological data for a wider understanding of consciousness in schizophrenia is not sufficiently addressed by the authors.
Collapse
|
44
|
Guarding against over-inclusive notions of “context”: Psycholinguistic and electrophysiological studies of specific context functions in schizophrenia. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03470027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPhillips & Silverstein offer an exciting synthesis of ongoing efforts to link the clinical and cognitive manifestations of schizophrenia with cellular accounts of its pathophysiology. We applaud their efforts but wonder whether the highly inclusive notion of “context” adequately captures some important details regarding schizophrenia and NMDA/glutamate function that are suggested by work on language processing and cognitive electrophysiology.
Collapse
|
45
|
Abstract
AbstractMechanisms that contribute to perceptual processing dysfunction in schizophrenia were examined by Phillips & Silverstein, and formulated as involving disruptions in both local and higher-level coordination of signals. We agree that dysfunction in the coordination of cognitive functions (disconnection) is also indicated for many of the linguistic processing deficits documented for schizophrenia. We suggest, however, that it may be necessary to add a timing mechanism to the theoretical account.
Collapse
|
46
|
Abstract
AbstractSchizophrenics exhibit a deficit in theory of mind (ToM), but an intact theory of biology (ToB). One explanation is that ToM relies on an independent module that is selectively damaged. Phillips & Silverstein's analyses suggest an alternative: ToM requires the type of coordination that is impaired in schizophrenia, whereas ToB is spared because this type of coordination is not involved.
Collapse
|
47
|
Abstract
AbstractThe additional arguments and evidence supplied by the commentaries strengthen the hypothesis that underactivity of NMDA receptors produces impaired cognitive coordination in schizophrenia. This encourages the hope that though the distance from molecules to mind is great, it can nevertheless be traversed. We therefore predict that in this decade or the next molecular psychology will be seen to be as fundamental to our understanding of mind as molecular biology is to our understanding of life.
Collapse
|
48
|
Abstract
AbstractIt is proposed that cortical activity is normally coordinated across synaptically connected areas and that this coordination supports cognitive coherence relations. This view is consistent with the NMDA- hypoactivity hypothesis of the target article in regarding disorganization symptoms in schizophrenia as arising from disruption of normal interareal coordination. This disruption may produce abnormal contextual effects in the cortex that lead to anomalous cognitive coherence relations.
Collapse
|
49
|
Abstract
AbstractThis commentary compares clinical aspects of ketamine with the amphetamine model of schizophrenia. Hallucinations and loss of insight, associated with amphetamine, seem more schizophrenia-like. Flat affect encountered with ketamine is closer to the clinical presentation in schizophrenia. We argue that flat affect is not a sign of schizophrenia, but rather, arisk factorfor chronic schizophrenia.
Collapse
|
50
|
Cortical connectivity in high-frequency beta-rhythm in schizophrenics with positive and negative symptoms. Behav Brain Sci 2003. [DOI: 10.1017/s0140525x03440028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractIn chronic schizophrenic patients with both positive and negative symptoms (see Table 1), interhemispheric connections at the high frequency beta2-rhythm are absent during cognitive tasks, in contrast to normal controls, who have many interhemispheric connections at this frequency in the same situation. Connectivity is a fundamental brain feature, evidently greatly promoted by the NMDA system. It is a more reliable measure of brain function than the spectral power of this rhythm.
Collapse
|