1
|
Vaidyanathan A, Taylor HE, Hope TJ, D'Aquila RT, Bartom ET, Hultquist JF, Peter ME. Analysis of the Contribution of 6-mer Seed Toxicity to HIV-1-Induced Cytopathicity. J Virol 2023; 97:e0065223. [PMID: 37310263 PMCID: PMC10373551 DOI: 10.1128/jvi.00652-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
HIV-1 (HIV) infects CD4+ T cells, the gradual depletion of which can lead to AIDS in the absence of antiretroviral therapy (ART). Some cells, however, survive HIV infection and persist as part of the latently infected reservoir that causes recurrent viremia after ART cessation. Improved understanding of the mechanisms of HIV-mediated cell death could lead to a way to clear the latent reservoir. Death induced by survival gene elimination (DISE), an RNA interference (RNAi)-based mechanism, kills cells through short RNAs (sRNAs) with toxic 6-mer seeds (positions 2 to 7 of sRNA). These toxic seeds target the 3' untranslated region (UTR) of mRNAs, decreasing the expression of hundreds of genes critical for cell survival. In most cells under normal conditions, highly expressed cell-encoded nontoxic microRNAs (miRNAs) block access of toxic sRNAs to the RNA-induced silencing complex (RISC) that mediates RNAi, promoting cell survival. HIV has been shown to inhibit the biogenesis of host miRNAs in multiple ways. We now report that HIV infection of cells deficient in miRNA expression or function results in enhanced RISC loading of an HIV-encoded miRNA HIV-miR-TAR-3p, which can kill cells by DISE through a noncanonical (positions 3 to 8) 6-mer seed. In addition, cellular RISC-bound sRNAs shift to lower seed viability. This also occurs after latent HIV provirus reactivation in J-Lat cells, suggesting independence of permissiveness of cells to viral infection. More precise targeting of the balance between protective and cytotoxic sRNAs could provide new avenues to explore novel cell death mechanisms that could be used to kill latent HIV. IMPORTANCE Several mechanisms by which initial HIV infection is cytotoxic to infected cells have been reported and involve various forms of cell death. Characterizing the mechanisms underlying the long-term survival of certain T cells that become persistent provirus reservoirs is critical to developing a cure. We recently discovered death induced by survival gene elimination (DISE), an RNAi-based mechanism of cell death whereby toxic short RNAs (sRNAs) containing 6-mer seed sequences (exerting 6-mer seed toxicity) targeting essential survival genes are loaded into RNA-induced silencing complex (RISC) complexes, resulting in inescapable cell death. We now report that HIV infection in cells with low miRNA expression causes a shift of mostly cellular RISC-bound sRNAs to more toxic seeds. This could prime cells to DISE and is further enhanced by the viral microRNA (miRNA) HIV-miR-TAR-3p, which carries a toxic noncanonical 6-mer seed. Our data provide multiple new avenues to explore novel cell death mechanisms that could be used to kill latent HIV.
Collapse
Affiliation(s)
- Aparajitha Vaidyanathan
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Harry E. Taylor
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University, Chicago, Illinois, USA
| | - Thomas J. Hope
- Department of Cell & Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard T. D'Aquila
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University, Chicago, Illinois, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Marcus E. Peter
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Chen Q, Zhao Y, Zhang Y, Zhang J, Lu W, Chang CH, Jiang S. HIV associated cell death: Peptide-induced apoptosis restricts viral transmission. Front Immunol 2023; 14:1096759. [PMID: 36911666 PMCID: PMC9992636 DOI: 10.3389/fimmu.2023.1096759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
The human immunodeficiency virus (HIV) is still a global pandemic and despite the successful use of anti-retroviral therapy, a well-established cure remains to be identified. Viral modulation of cell death has a significant role in HIV pathogenesis. Here we sought to understand the major mechanisms of HIV-induced death of lymphocytes and the effects on viral transmission. Flow cytometry analysis of lymphocytes from five latent HIV-infected patients, and HIV IIIB-infected MT2 cells demonstrated both necrosis and apoptosis to be the major mechanisms of cell death in CD4+ and CD4-/CD8- lymphocytes. Significantly, pro-apoptotic tumor necrosis factor (TNF) peptide (P13) was found to inhibit HIV-related cell death and reduced viral transmission. Whereas pro-necrotic TNF peptide (P16) had little effect on HIV-related cell death and viral transmission. Understanding mechanisms by which cell death can be manipulated may provide additional drug targets to reduce the loss of CD4+ cells and the formation of a viral reservoir in HIV infection.
Collapse
Affiliation(s)
- Qiongyu Chen
- Department of Oncology, University of Oxford, Oxford, United Kingdom.,The Jackson Laboratory, Bar Harbor, ME, United States
| | | | | | - Jianbo Zhang
- The Dermatology & STD Department, The No. 2 People's Hospital of Dali City, Yunnan, China
| | - Wenshu Lu
- Department of Oncology, University of Oxford, Oxford, United Kingdom.,R&D Department, Oxford Vacmedix (Changzhou) Ltd, Changzhou, Jiangsu, China
| | | | - Shisong Jiang
- Department of Oncology, University of Oxford, Oxford, United Kingdom.,R&D Department, Oxford Vacmedix (Changzhou) Ltd, Changzhou, Jiangsu, China
| |
Collapse
|
3
|
New-Aaron M, Ganesan M, Dagur RS, Kharbanda KK, Poluektova LY, Osna NA. Pancreatogenic Diabetes: Triggering Effects of Alcohol and HIV. BIOLOGY 2021; 10:108. [PMID: 33546230 PMCID: PMC7913335 DOI: 10.3390/biology10020108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Multiorgan failure may not be completely resolved among people living with HIV despite HAART use. Although the chances of organ dysfunction may be relatively low, alcohol may potentiate HIV-induced toxic effects in the organs of alcohol-abusing, HIV-infected individuals. The pancreas is one of the most implicated organs, which is manifested as diabetes mellitus or pancreatic cancer. Both alcohol and HIV may trigger pancreatitis, but the combined effects have not been explored. The aim of this review is to explore the literature for understanding the mechanisms of HIV and alcohol-induced pancreatotoxicity. We found that while premature alcohol-inducing zymogen activation is a known trigger of alcoholic pancreatitis, HIV entry through C-C chemokine receptor type 5(CCR5)into pancreatic acinar cells may also contribute to pancreatitis in people living with HIV (PLWH). HIV proteins induce oxidative and ER stresses, causing necrosis. Furthermore, infiltrative immune cells induce necrosis on HIV-containing acinar cells. When necrotic products interact with pancreatic stellate cells, they become activated, leading to the release of both inflammatory and profibrotic cytokines and resulting in pancreatitis. Effective therapeutic strategies should block CCR5 and ameliorate alcohol's effects on acinar cells.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
| | - Murali Ganesan
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Raghubendra Singh Dagur
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Natalia A. Osna
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
4
|
Hegedus A, Kavanagh Williamson M, Huthoff H. HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4+ T cells. Retrovirology 2014; 11:98. [PMID: 25421745 PMCID: PMC4252996 DOI: 10.1186/s12977-014-0098-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/24/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HIV-1, like all viruses, is entirely dependent on the host cell for providing the metabolic resources for completion of the viral replication cycle and the production of virions. It is well established that HIV-1 replicates efficiently in activated CD4+ T cells, whereas resting CD4+ T cells are refractory to infection with HIV-1. A hallmark of T cell activation is the upregulation of glycolysis to meet the biosynthetic and bioenergetic needs of cell proliferation and the execution of effector functions by the secretion of cytokines. To date, it has remained unknown if HIV-1 requires the high glycolytic activity of activated T cells to support its replication. RESULTS We report that in primary CD4+ T cells, the flux through the glycolytic pathway is increased upon infection with HIV-1. This increase in glycolytic activity does not occur in T cell lines when infected with HIV-1. By providing cells with galactose instead of glucose, the former being a poor substrate for glycolysis, we monitored the effect of preventing glycolysis in CD4+ T cells on virus replication cycle and cell fate. We observed that HIV-1 infected primary CD4+ T cells cultured in galactose have a survival advantage over those cultured in glucose and this coincides with reduced caspase 3 activation and apoptosis in cultures with galactose. T cell lines do not recapitulate this difference in cell death. Finally, we demonstrate that virion production is dependent on glycolysis as cultures containing galactose yield reduced amounts of HIV-1 virions compared with cultures containing glucose. CONCLUSIONS The replication of HIV-1 in primary CD4+ T cells causes an increase in glycolytic flux of the cell. Glycolysis is particularly required for virion production and additionally increases the sensitivity of the infected cell to virus-induced cell death.
Collapse
Affiliation(s)
- Andrea Hegedus
- Department of Infectious Diseases, King's College London, 2nd Floor Borough Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Maia Kavanagh Williamson
- Department of Infectious Diseases, King's College London, 2nd Floor Borough Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| | - Hendrik Huthoff
- Department of Infectious Diseases, King's College London, 2nd Floor Borough Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
5
|
Xu C, Ye B, Han Z, Huang M, Zhu Y. Comparison of transcriptional profiles between CD4+ and CD8+ T cells in HIV type 1-infected patients. AIDS Res Hum Retroviruses 2014; 30:134-41. [PMID: 23931628 DOI: 10.1089/aid.2013.0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The CD4+/CD8+ T cell ratio is altered when HIV-1 infects the human immune system. However, the exact mechanisms of how CD4+ and CD8+T cells participate in HIV infection are still unknown. This study used bioinformatics methods to compare the transcriptional profiles between CD4+ and CD8+ T cells in HIV-1-infected patients in order to explore the potential molecular mechanisms of CD4+ and CD8+ T cells in HIV-1 infection. We found that expression patterns of differentially expressed genes (DEG) in CD4+T cells were dramatically different from those in CD8+ T cells. We also constructed protein-protein interaction (PPI) networks to extract functional modules at each stage, and found that some of the important genes such as BRCA1 were central hubs of the modules. Finally, we applied functional annotation to the modules and found that CD4+/CD8+ T cells played critical roles in regulating the cell cycle and other cellular pathways. Thus, this study would greatly further our understanding of the roles of T cells in HIV infection, and provide potential clues for developing AIDS vaccines in the future.
Collapse
Affiliation(s)
- Chaoyu Xu
- Department of Infectious Disease, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China
| | - Baochun Ye
- Department of Nosocomial Infection Control, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Zongping Han
- Department of Geriatrics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Mingxing Huang
- Department of Infectious Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong China
| | - Yujia Zhu
- Department of Infectious Disease, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China
| |
Collapse
|
6
|
Evolutionary game theoretic strategy for optimal drug delivery to influence selection pressure in treatment of HIV-1. J Math Biol 2011; 64:495-512. [PMID: 21503727 DOI: 10.1007/s00285-011-0422-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 03/06/2011] [Indexed: 01/22/2023]
Abstract
Cytotoxic T-lymphocyte (CTL) escape mutation is associated with long-term behaviors of human immunodeficiency virus type 1 (HIV-1). Recent studies indicate heterogeneous behaviors of reversible and conservative mutants while the selection pressure changes. The purpose of this study is to optimize the selection pressure to minimize the long-term virus load. The results can be used to assist in delivery of highly loaded cognate peptide-pulsed dendritic cells (DC) into lymph nodes that could change the selection pressure. This mechanism may be employed for controlled drug delivery. A mathematical model is proposed in this paper to describe the evolutionary dynamics involving viruses and T cells. We formulate the optimization problem into the framework of evolutionary game theory, and solve for the optimal control of the selection pressure as a neighborhood invader strategy. The strategy dynamics can be obtained to evolve the immune system to the best controlled state. The study may shed light on optimal design of HIV-1 therapy based on optimization of adaptive CTL immune response.
Collapse
|
7
|
Induction of cytopathic effects and apoptosis in Spodoptera frugiperda cells by the HIV-1 Env glycoprotein signal peptide. Virus Genes 2010; 41:341-50. [PMID: 20852925 DOI: 10.1007/s11262-010-0527-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 08/28/2010] [Indexed: 01/18/2023]
Abstract
The loss of CD4(+) T-cells in human immunodeficiency virus-infected individuals has been attributed not only to dysregulation of immune cell function but also direct and indirect killing mechanisms of both infected and bystander cells. This process proceeds through both necrotic and programmed cell death pathways. Several human immunodeficiency virus type 1 (HIV-1) gene products have been linked to the induction of cell death and apoptosis associated with virus infection. These include the Nef, Tat, Vpr, and Vpu proteins as well as the viral envelope glycoprotein. Our results now indicate that the signal peptide of HIV-1 is also involved in the induction of cytopathic effects leading to cell death. We have shown here that expression of HIV-1 gp120 or vesicular stomatitis virus G glycoprotein with the HIV-1 Env signal peptide resulted in a rapid induction of cytopathicity and cell death in S. frugiperda cells, whereas removal or replacement of the signal peptide ameliorated those effects. Further, our results show that cell death is induced, at least in part, through apoptotic pathways as characterized by evidence of nuclear condensation and DNA fragmentation, as well as by the activation of host-cell caspase activity. Our results indicate that the signal peptide of HIV-1 Env itself thus has a direct role in cellular cytotoxicity and the triggering of cell death pathways.
Collapse
|
8
|
Barqasho B, Nowak P, Abdurahman S, Walther-Jallow L, Sönnerborg A. Implications of the release of high-mobility group box 1 protein from dying cells during human immunodeficiency virus type 1 infection in vitro. J Gen Virol 2010; 91:1800-9. [PMID: 20200191 DOI: 10.1099/vir.0.016915-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasma levels of high-mobility group box 1 protein (HMGB1) are elevated during the course of human immunodeficiency virus type 1 (HIV-1) infection and the molecule has an impact on virus replication. This study investigated the mode of cell death and release of HMGB1 during HIV-1 infection in vitro. MT4 cells and primary CD4(+) T cells were infected with HIV-1 isolates, and HMGB1 release was monitored in relation to cytopathic effects (CPE) and apoptosis. HMGB1 release from cells was analysed by Western blotting. For MT4 cells, an enzyme-linked immunosorbent spot (ELISPOT) assay was adapted to measure the release during necrosis. Lactate dehydrogenase (LDH) activity was quantified using a commercial assay. Flow cytometry was used to determine the level of infection and apoptosis. MT4 cells were > or =90 % infected at 48 h post-infection (p.i.). CPE was first observed at 60 h and correlated with release of HMGB1, LDH activity and caspase-3 (C3) activation. HMGB1 spots were clearly detected by ELISPOT assay at 72 h p.i. Annexin V and C3 staining showed that apoptosis was substantially involved in HIV-1-related cell death. Addition of Z-VAD (a caspase inhibitor) in a single dose at 24 or 40 h p.i. decreased both the number of caspase-positive cells and the release of HMGB1. Infection of primary CD4(+) T cells showed a 22 % (median) infection rate at 96 h. Related CPE corresponded to LDH and HMGB1 release. Both necrosis and apoptosis contributed to HMGB1 liberation during HIV-1-induced cell death and the protein could induce tumour necrosis factor-alpha release from peripheral mononuclear blood cells. These data imply that passive HMGB1 release contributes to the excessive immune activation characteristic of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Babilonia Barqasho
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
9
|
Eisenberg T, Carmona-Gutierrez D, Büttner S, Tavernarakis N, Madeo F. Necrosis in yeast. Apoptosis 2010; 15:257-68. [DOI: 10.1007/s10495-009-0453-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) has been intensely investigated since its discovery in 1983 as the cause of acquired immune deficiency syndrome (AIDS). With relatively few proteins made by the virus, it is able to accomplish many tasks, with each protein serving multiple functions. The Envelope glycoprotein, composed of the two noncovalently linked subunits, SU (surface glycoprotein) and TM (transmembrane glycoprotein) is largely responsible for host cell recognition and entry respectively. While the roles of the N-terminal residues of TM is well established as a fusion pore and anchor for Env into cell membranes, the role of the C-terminus of the protein is not well understood and is fiercely debated. This review gathers information on TM in an attempt to shed some light on the functional regions of this protein.
Collapse
Affiliation(s)
- Joshua M Costin
- Biotechnology Research Group, Department of Biology, Florida Gulf Coast University, 10501 FGCU Blvd, S., Fort Myers, Fl 33965, USA.
| |
Collapse
|
11
|
Nowak P, Barqasho B, Sönnerborg A. Elevated plasma levels of high mobility group box protein 1 in patients with HIV-1 infection. AIDS 2007; 21:869-71. [PMID: 17415043 DOI: 10.1097/qad.0b013e3280b079b6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High mobility group box protein 1 (HMGB1) is a potent proinflammatory mediator. It has a dichotomic effect on HIV-1 replication in vitro but its role in vivo is unknown. Here we report the novel finding that plasma HMGB1 levels are elevated in HIV-1-infected patients, with the highest concentrations in patients with clinical complications. HMGB1 is likely to contribute to immunoactivation in HIV-1 infection in vivo.
Collapse
Affiliation(s)
- Piotr Nowak
- Divisions of Clinical Virology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
12
|
Thierry S, Gozlan J, Jaulmes A, Boniface R, Nasreddine N, Strauss F, Maréchal V. High-mobility group box 1 protein induces HIV-1 expression from persistently infected cells. AIDS 2007; 21:283-92. [PMID: 17255735 DOI: 10.1097/qad.0b013e3280115b50] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Necrosis is a frequent condition during AIDS, notably in organs targetted by opportunistic infections. Soluble factors released by necrotic cells are important for signalling cell damage, but little is known concerning their effect on HIV-1 replication. We focused on HMGB1, an abundant component of the chromatin that is released from necrotic cells and can act as a pro-inflammatory mediator. MATERIALS AND METHODS A native form of HMGB1 was obtained from necrotic Hela cells, whereas a purified recombinant HMGB1 was generated in Escherichia coli. ACH-2 and U1 cells were used as models of persistent HIV-1 infection in lymphocytes and monocytes. Reactivation from latency was also investigated ex vivo using peripheral blood mononuclear cells (PBMC) collected from HIV-1-infected patients controlled by HAART. HIV-1 expression was quantified by enzyme-linked immunosorbent assay, real-time reverse transcription-polymerase chain reaction and branched DNA techniques. Flow cytometry and blocking experiments were used to identify the receptor used by HMGB1. Chromatin immunoprecipitation was used to investigate long-terminal repeat activation upon stimulation by HMGB1. RESULTS HMGB1 increased HIV-1 transcription in chronically infected cells, a process that did not require de-novo protein synthesis. HIV-1 induction relied on HMGB1 interaction with the receptor for advanced glycation end-products. The activation pathway involved p38 and extracellular signal-related kinase as well as nuclear factor kappa B binding to the HIV-1 promoter. Finally, HMGB1 reactivated HIV-1 from latently infected PBMC collected in aviraemic HIV-infected patients. CONCLUSION This work establishes for the first time a link between necrosis and HIV-1 replication, which involves HMGB1, a soluble mediator released by damaged cells.
Collapse
|
13
|
Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1371-87. [PMID: 16950166 DOI: 10.1016/j.bbabio.2006.06.014] [Citation(s) in RCA: 474] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 06/15/2006] [Accepted: 06/20/2006] [Indexed: 12/13/2022]
Abstract
Necrosis has long been described as a consequence of physico-chemical stress and thus accidental and uncontrolled. Recently, it is becoming clear that necrotic cell death is as well controlled and programmed as caspase-dependent apoptosis, and that it may be an important cell death mode that is both pathologically and physiologically relevant. Necrotic cell death is not the result of one well-described signalling cascade but is the consequence of extensive crosstalk between several biochemical and molecular events at different cellular levels. Recent data indicate that serine/threonine kinase RIP1, which contains a death domain, may act as a central initiator. Calcium and reactive oxygen species (ROS) are main players during the propagation and execution phases of necrotic cell death, directly or indirectly provoking damage to proteins, lipids and DNA, which culminates in disruption of organelle and cell integrity. Necrotically dying cells initiate pro-inflammatory signalling cascades by actively releasing inflammatory cytokines and by spilling their contents when they lyse. Unravelling the signalling cascades contributing to necrotic cell death will permit us to develop tools to specifically interfere with necrosis at certain levels of signalling. Necrosis occurs in both physiological and pathophysiological processes, and is capable of killing tumour cells that have developed strategies to evade apoptosis. Thus detailed knowledge of necrosis may be exploited in therapeutic strategies.
Collapse
Affiliation(s)
- Nele Festjens
- Molecular Signalling and Cell Death Unit, Department for Molecular Biomedical Research, VIB and Ghent University, Fiers-Schell-Van Montagu Building, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | |
Collapse
|
14
|
Azzam R, Lal L, Goh SL, Kedzierska K, Jaworowski A, Naim E, Cherry CL, Wesselingh SL, Mills J, Crowe SM. Adverse effects of antiretroviral drugs on HIV-1-infected and -uninfected human monocyte-derived macrophages. J Acquir Immune Defic Syndr 2006; 42:19-28. [PMID: 16639337 DOI: 10.1097/01.qai.0000214809.83218.88] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Antiretroviral drugs approved for treatment of HIV-1 infection include nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors (PIs). Use of these drugs in combinations (highly active antiretroviral therapy) has delayed disease progression. However, long-term therapy is associated with potentially serious adverse effects. NRTIs are thought to contribute to these adverse effects via depletion of mtDNA. Inasmuch as macrophages (major targets for HIV-1) are highly metabolically active with large numbers of mitochondria, we investigated the effects of NRTIs (didanosine, stavudine, lamivudine, and zidovudine) on the viability and function of HIV-1-infected and -uninfected human monocyte-derived macrophages (MDMs). We demonstrate that the combinations didanosine/stavudine and lamivudine/zidovudine decrease mtDNA content in MDMs, with HIV-1-infected MDMs displaying a greater reduction than uninfected cells. This decrease correlated with decreased complement-mediated phagocytosis (C'MP) by MDMs, a process dependent on mitochondrial function. Inasmuch as PIs have previously been reported to interact with cellular proteases and given that cellular proteases are involved in the phagocytic process, we investigated the effects of the PI indinavir on C'MP. We demonstrate that indinavir augments C'MP by uninfected MDMs, but not HIV-1-infected MDMs. This study provides additional understanding on the effects of commonly used antiretroviral drugs on cellular immune function.
Collapse
Affiliation(s)
- Rula Azzam
- AIDS Pathogenesis and Clinical Research Program, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Salazar G, Colombo G, Lenna S, Antonioli R, Beretta L, Santaniello A, Scorza R. HLA-B35 influences the apoptosis rate in human peripheral blood mononucleated cells and HLA-transfected cells. Hum Immunol 2006; 68:181-91. [PMID: 17349873 DOI: 10.1016/j.humimm.2005.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 11/04/2005] [Indexed: 12/01/2022]
Abstract
Human leukocyte antigen (HLA) class I antigens can act as signal-transducing molecules that influence individual reactivity to external stimuli and the existence of haplotype-specific cell signal regulation has been suggested. In this article, we provide definite experimental evidence for the existence of a HLA-B35 haplotype-specific regulation of cell apoptosis in different experimental models. First, we demonstrated that HLA-B35, but not other HLA-class I antigens, was associated with an increased cell susceptibility to apoptosis in human peripheral mononuclear cells (PBMCs) exposed in vitro to thapsigargin. Second, we confirmed this association in human ECV 304 cells transfected with HLA-B35 or with HLA-B8, an antigen that did not appear to influence the apoptosis rate in the thapsigargin-treated PBMCs. Third, we confirmed the specific influence of HLA-B35 on cell apoptosis in non human cells (i.e., HLA-B35-transfected NIH3T3 murine fibroblasts). Our data show the existence of HLA-B35 haplotype-specific regulation of cell apoptosis and open new perspectives on the role of HLA class I genes in cell activation and disease susceptibility.
Collapse
Affiliation(s)
- Giulia Salazar
- Unit of Clinical Immunology and Allergology, University of Milano and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
AMENDOLA ALESSANDRA, RODOLFO CARLO, CARO ANTONINO, CICCOSANTI FABIOLA, FALASCA LAURA, PIACENTINI MAURO. “Tissue” Transglutaminase Expression in HIV‐Infected Cells. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2001.tb03906.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- ALESSANDRA AMENDOLA
- Laboratory of Virology, “Lazzaro Spallanzani”—IRCCS, Rome, Italy
- Laboratory of Cell Biology and Electronic Microscopy, “Lazzaro Spallanzani”—IRCCS, Rome, Italy
| | - CARLO RODOLFO
- Department of Biology, University of Rome “Tor Vergata,” Rome, Italy
| | - ANTONINO CARO
- Laboratory of Virology, “Lazzaro Spallanzani”—IRCCS, Rome, Italy
| | - FABIOLA CICCOSANTI
- Laboratory of Cell Biology and Electronic Microscopy, “Lazzaro Spallanzani”—IRCCS, Rome, Italy
| | - LAURA FALASCA
- Laboratory of Cell Biology and Electronic Microscopy, “Lazzaro Spallanzani”—IRCCS, Rome, Italy
| | - MAURO PIACENTINI
- Laboratory of Cell Biology and Electronic Microscopy, “Lazzaro Spallanzani”—IRCCS, Rome, Italy
- Department of Biology, University of Rome “Tor Vergata,” Rome, Italy
| |
Collapse
|
17
|
Cherry CL, Lala L, Wesselingh SL. Mitochondrial toxicity of nucleoside analogues: mechanism, monitoring and management. Sex Health 2006; 2:1-11. [PMID: 16334706 DOI: 10.1071/sh04016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nucleoside analogues (NRTIs) are potent antiretroviral medications and are central to effective highly active antiretroviral therapy (HAART). Their intended action is to inhibit HIV reverse transcriptase. Nucleoside analogues also inhibit replication of mitochondrial DNA, and the pathogenesis of many of the toxicities associated with HAART is thought to be NRTI-induced mitochondrial dysfunction. Individuals with HIV infection may be particularly susceptible to clinically significant mitochondrial toxicity due to possible effects of HIV itself on mitochondria. At present there is no reliable method of detecting subclinical mitochondrial toxicity in patients exposed to NRTIs. Clinical awareness of this problem is therefore important to ensure the early detection of significant side effects and to allow timely consideration of changing therapy in those affected. There is no proven, effective therapy for NRTI-associated mitochondrial toxicity other than ceasing the implicated agent, and even with this strategy, resolution of symptoms may be incomplete. Similarly, there are no established methods for preventing mitochondrial toxicity in those on therapy including NRTIs. Micronutrients may have a role, but further study is needed to clarify optimal prevention as well as monitoring strategies.
Collapse
Affiliation(s)
- Catherine L Cherry
- Burnet Institute for Medical Research and Public Health, GPO Box 2284, Melbourne, Vic. 3001, Australia.
| | | | | |
Collapse
|
18
|
Funk GA, Oxenius A, Fischer M, Opravil M, Joos B, Flepp M, Weber R, Günthard HF, Bonhoeffer S. HIV replication elicits little cytopathic effects in vivo: Analysis of surrogate markers for virus production, cytotoxic T cell response and infected cell death. J Med Virol 2006; 78:1141-6. [PMID: 16847964 DOI: 10.1002/jmv.20674] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several potential mechanisms for viral destruction of HIV-infected cells have been described. The hypothesis was examined that if HIV were cytopathic, a positive relation between the in vivo virus production or CTL activity and infected cell death should be observed. In a regression analysis no significant relation was found between surrogate markers for in vivo virus production or the virus-specific CTL response and death rates of productively infected cells. In a subgroup of patients the hypothesis is rejected that HIV replication elicits a large (R(2) > 0.25) cytopathic effect (P < 0.05, N = 36). It is concluded that HIV replication elicits little cytopathic effect in productively infected cells and that CD4(+) T lymphocytes are eroded by other mechanisms.
Collapse
Affiliation(s)
- Georg A Funk
- Ecology & Evolution, Clausiusstrasse, ETH Zurich Zentrum, Zurich.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Proskuryakov SY, Gabai VL, Konoplyannikov AG, Zamulaeva IA, Kolesnikova AI. Immunology of Apoptosis and Necrosis. BIOCHEMISTRY (MOSCOW) 2005; 70:1310-20. [PMID: 16417452 DOI: 10.1007/s10541-005-0263-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A complex of reactions regulating the number of cells in organs and tissues under normal and pathologic conditions is one of the most important systems of multicellular organisms. In this system, which controls both cell proliferation and clearance, clearance has been given special attention during the last three decades. Some stages of the clearance are known (the choice of "unwanted" cells, their destruction not affecting the surrounding tissue, and, finally, removal of the corpses), and undeniable progress has been achieved in the understanding of the second stage mechanisms, whereas mechanisms of elimination per se of cells or their fragments still continue to be terra incognita. The clearance of such cells is mainly determined by different components of natural and adaptive immunity: phagocytes, complement, opsonins, antigen-presenting cells, etc. Recently specific "danger signals", such as hydrolases, DNA, heat shock proteins, and other potential immunogens released by cells during their elimination have been discovered. Entering the extracellular space, these signals induce inflammation and injury of the surrounding tissues, i.e., autoimmune reactions. Heat shock proteins, in addition to chaperon activity, act as signaling, costimulating, and antigen-carrying molecules in the interactions of dying cells and the immune system.
Collapse
Affiliation(s)
- S Ya Proskuryakov
- Medical Radiological Research Center, Russian Academy of Medical Sciences, Obninsk, 249036, Russia.
| | | | | | | | | |
Collapse
|
20
|
Fermin C, Garry R. Alterations of lymphocyte membranes during HIV-1 infection via multiple and simultaneous entry strategies. Microsc Res Tech 2005; 68:149-67. [PMID: 16276509 DOI: 10.1002/jemt.20228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) must bind to and enter lymphocytes to replicate and cause the acquired immunodeficiency syndrome. The association of viral particles with the lymphocyte plasma membrane may vary according to a multitude of unknown variables, including lymphocyte membrane receptor mobilization, lipid raft aggregation, clathrin, caveolin, endosomes, microendosome-mediated penetration or penetration through a hole in the membrane. The time course of this delivery appears to be short. Fusion of the virion membrane and lymphocyte plasma membrane leads to destabilization of the lymphocyte membrane. Five morphological stages of membrane alteration were observed in the infected lymphocytes: (1) swelling, (2) splitting, (3) fusion, (4) breaking, and (5) thinning of the lipid bilayer. These plasma membrane alterations were not contributed by fixation artifacts, because the dimensions and distance between the subunits of the surface glycoprotein (SU, gp120) and the transmembrane glycoprotein (gp41) of the viral particles adjacent to the infected cells and processed at the same time remained unchanged. Destabilization of lipid raft patches in the lymphocyte plasma membrane by unknown variables may facilitate HIV-1 penetration of lymphocyte, and other cell types. This a combined review of the pertinent literature with our data showing that HIV-1 may take advantage of multiple penetration approaches simultaneously in the same cell type (H9) to overwhelm the infected cells. The ultrastructural details of H9 cultured cells infected in vitro with HIV-1 contribute to our understanding of viral particle association with the plasma membrane of infected cells.
Collapse
Affiliation(s)
- Cesar Fermin
- Ultrastructural Pathology Unit, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| | | |
Collapse
|
21
|
Law PTW, Wong CH, Au TCC, Chuck CP, Kong SK, Chan PKS, To KF, Lo AWI, Chan JYW, Suen YK, Chan HYE, Fung KP, Waye MMY, Sung JJY, Lo YMD, Tsui SKW. The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J Gen Virol 2005; 86:1921-1930. [PMID: 15958670 DOI: 10.1099/vir.0.80813-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An outbreak of severe acute respiratory syndrome (SARS) occurred in China and the first case emerged in mid-November 2002. The aetiological agent of this disease was found to be a previously unknown coronavirus, SARS-associated coronavirus (SARS-CoV). The detailed pathology of SARS-CoV infection and the host response to the viral infection are still not known. The 3a gene encodes a non-structural viral protein, which is predicted to be a transmembrane protein. In this study, it was shown that the 3a protein was expressed in the lungs and intestinal tissues of SARS patients and that the protein localized to the endoplasmic reticulum in 3a-transfected monkey kidney Vero E6 cells. In vitro experiments of chromatin condensation and DNA fragmentation suggested that the 3a protein may trigger apoptosis. These data showed that overexpression of a single SARS-CoV protein can induce apoptosis in vitro.
Collapse
Affiliation(s)
- Patrick T W Law
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Chi-Hang Wong
- Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Thomas C C Au
- Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Chi-Pang Chuck
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Siu-Kai Kong
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Paul K S Chan
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Anthony W I Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Judy Y W Chan
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yick-Keung Suen
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - H Y Edwin Chan
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Kwok-Pui Fung
- The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Mary M Y Waye
- The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Joseph J Y Sung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Y M Dennis Lo
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Stephen K W Tsui
- The Croucher Laboratory for Human Genomics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| |
Collapse
|
22
|
Lawson VA, Silburn KA, Gorry PR, Paukovic G, Purcell DFJ, Greenway AL, McPhee DA. Apoptosis induced in synchronized human immunodeficiency virus type 1-infected primary peripheral blood mononuclear cells is detected after the peak of CD4+ T-lymphocyte loss and is dependent on the tropism of the gp120 envelope glycoprotein. Virology 2004; 327:70-82. [PMID: 15327899 DOI: 10.1016/j.virol.2004.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 04/02/2004] [Accepted: 06/07/2004] [Indexed: 01/08/2023]
Abstract
Disease progression in human immunodeficiency virus type-1 (HIV-1)-infected individuals is frequently accompanied by declining CD4 cell numbers and the acquisition of a T-tropic (X4) or dual tropic (R5X4) phenotype. Understanding the mechanism of CD4 cell loss in HIV-1 infection is essential for the development of effective therapeutic strategies. In this study, donor populations of peripheral blood mononuclear cells (PBMCs) were selected for their ability to support an equivalent acute infection by both R5 and X4 virus phenotypes. This demonstrated that CD4+ T-lymphocyte loss was due to the gp120 region of Env and was replication independent. Furthermore, apoptosis was only detected in cells infected with an X4 virus after the majority of CD4+ T-lymphocyte loss had occurred. These observations indicate that the CD4+ T-lymphocyte loss in an X4 HIV-1 infection is not directly mediated by apoptosis, although apoptosis may be induced in the remaining cell population as a consequence of this CD4+ T-lymphocyte loss.
Collapse
Affiliation(s)
- Victoria A Lawson
- AIDS Cellular Biology Laboratory, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Miró O, López S, Martínez E, Pedrol E, Milinkovic A, Deig E, Garrabou G, Casademont J, Gatell JM, Cardellach F. Mitochondrial effects of HIV infection on the peripheral blood mononuclear cells of HIV-infected patients who were never treated with antiretrovirals. Clin Infect Dis 2004; 39:710-6. [PMID: 15356787 DOI: 10.1086/423176] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 03/27/2004] [Indexed: 11/03/2022] Open
Abstract
To investigate the effects of HIV infection on mitochondrial DNA (mtDNA) content and other mitochondrial parameters, we used peripheral blood mononuclear cells (PBMCs) from 25 asymptomatic antiretroviral-naive human immunodeficiency virus (HIV)-infected patients and from 25 healthy control subjects. HIV-infected patients had significant decreases in mtDNA content (decrease, 23%; P<.05) and in the activities of mitochondrial respiratory chain (MRC) complex II (decrease, 41%; P<.001), MRC complex III (decrease, 38%; P<.001), MRC complex IV (decrease, 19%; P=.001), and glycerol-3-phosphate dehydrogenase (decrease, 22%; P<.001), along with increased lipid peroxidation of PBMC membranes (P=.007). Therefore, HIV infection is associated not only with mtDNA depletion, but also with extensive MRC disturbances and increased oxidative damage.
Collapse
Affiliation(s)
- Oscar Miró
- Mitochondrial Research Laboratory, Muscle Research Unit, Department of Internal Medicine, Hospital Clínic, Villarroel 170, 08036 Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sundstrom JB, Little DM, Villinger F, Ellis JE, Ansari AA. Signaling through Toll-like receptors triggers HIV-1 replication in latently infected mast cells. THE JOURNAL OF IMMUNOLOGY 2004; 172:4391-401. [PMID: 15034054 DOI: 10.4049/jimmunol.172.7.4391] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evidence that human progenitor mast cells are susceptible to infection with CCR5-tropic strains of HIV-1 and that circulating HIV-1-infected FcepsilonRIalpha(+) cells with a similar progenitor phenotype have been isolated from AIDS patients has led to speculation that mast cells may serve as a potential reservoir for infectious HIV-1. In this study, progenitor mast cells, developed in vitro from CD34(+) cord blood stem cells, were experimentally infected with the CCR5-tropic strain HIV-1Bal after 28 days in culture as they reached their HIV-1-susceptible progenitor stage. HIV-1 p24 Ag levels were readily detectable by day 7 postinfection (PI), peaked at 2-3 wk PI as mature (tryptase/chymase-positive) HIV-1 infection-resistant mast cells emerged, and then steadily declined to below detectable limits by 10 wk PI, at which point integrated HIV-1 proviral DNA was confirmed by PCR quantitation in ( approximately 34% of) latently infected mast cells. Stimulation by ligands for Toll-like receptor (TLR) 2, TLR4, or TLR9 significantly enhanced viral replication in a dose- and time-dependent manner in both HIV-1-infected progenitor and latently infected mature mast cells, without promoting degranulation, apoptosis, cellular proliferation, or dysregulation of TLR agonist-induced cytokine production in infected mast cells. Limiting dilution analysis of TLR activated, latently infected mature mast cells indicated that one in four was capable of establishing productive infections in A301 sentinel cells. Taken together, these results indicate that mast cells may serve both as a viral reservoir and as a model for studying mechanisms of postintegration latency in HIV infection.
Collapse
Affiliation(s)
- J Bruce Sundstrom
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
25
|
Chiappini F, Teicher E, Saffroy R, Pham P, Falissard B, Barrier A, Chevalier S, Debuire B, Vittecoq D, Lemoine A. Prospective evaluation of blood concentration of mitochondrial DNA as a marker of toxicity in 157 consecutively recruited untreated or HAART-treated HIV-positive patients. J Transl Med 2004; 84:908-14. [PMID: 15122308 DOI: 10.1038/labinvest.3700113] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) can cause mitochondrial toxicity. The concentration of mitochondrial DNA (mtDNA) in peripheral blood cells has been reported to be a marker of this toxicity. However, these observations are controversial and were drawn from small series. Thus, we analysed the value of blood mtDNA as a marker of mitochondrial toxicity in a large cohort of human immunodeficiency virus (HIV)-infected out-patients during routine clinical evaluations. Real-time quantitative PCR was used to determine the mtDNA to nuclear DNA (nDNA) ratio in peripheral blood mononuclear cells from 157 consecutive HIV-1-infected patients (13 naive, 144 receiving HAART) and 30 HIV-1-uninfected patients. The mtDNA to nDNA ratio was significantly lower in both groups of HIV-infected patients than in the control group. No significant difference was observed between treated and naive HIV-infected patients. Lactataemia was significantly lower in controls than in the group of HIV-treated patients. None of the treated patients had lactataemia >5 mmol/l or bicarbonates <20 mmol/l. Triglyceride levels were significantly higher in the HAART-treated patients than in the nontreated patients. Clinical symptoms of lipodystrophy were observed in 62 HAART-treated patients. These symptoms were not associated with an abnormal mtDNA to nDNA ratio or plasma triglyceride concentration. The mtDNA to nDNA ratio was lower in DDI/D4T-treated patients than in AZT/3TC-treated patients. In conclusion, there are no obvious links between the mtDNA to nDNA ratio in peripheral mononuclear cells and any clinical symptoms or lactate level. Thus, the mtDNA to nDNA ratio in leukocytes does not seem to be an accurate marker of mild and/or long-term mitochondrial toxicity.
Collapse
Affiliation(s)
- Franck Chiappini
- Service de Biochimie et de Biologie Moléculaire-INSERM 602, Hôpital Paul Brousse, 12 avenue Paul Vaillant-Couturier, 94800 Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Petit F, Arnoult D, Viollet L, Estaquier J. Intrinsic and extrinsic pathways signaling during HIV-1 mediated cell death. Biochimie 2003; 85:795-811. [PMID: 14585547 DOI: 10.1016/j.biochi.2003.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Infection with human immunodeficiency virus (HIV) is characterized by the gradual depletion of CD4+ T lymphocytes. The incorporation of the concept of apoptosis as a rationale to explain progressive T cell depletion has led to growing research in this field during the last 10 years. In parallel, the biochemical pathways implicated in programmed cell death have been extensively studied. Thus, the influence of mitochondrial control in the two major apoptotic pathways-the extrinsic and intrinsic pathways-is now well admitted. In this review, we summarized our current knowledge of the different pathways involved in the death of T cells in the course of HIV infection.
Collapse
Affiliation(s)
- Frédéric Petit
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, 28, rue du Dr Roux, 75724 Paris cedex 15, France
| | | | | | | |
Collapse
|
27
|
Abstract
It is now well admitted that HIV infection leading to AIDS is associated with an abnormal susceptibility of T cells to undergo apoptosis. Recent progress in research into programmed cell death has resulted in the identification of the principal pathways involved in this process. Thus the "extrinsic" as well as the "intrinsic" pathways converge to the mitochondria considered as the main sensor of programmed cell death. This review summarizes our knowledge of the influence of mitochondrial control on T cell death during HIV and SIV infections.
Collapse
Affiliation(s)
- Damien Arnoult
- EMI-U 9922 INSERM/Université Paris 7, IFR02, AP-HP, Hôpital Bichat-Claude Bernard, Paris, France
| | | | | | | |
Collapse
|
28
|
Abstract
For a long time necrosis was considered as an alternative to programmed cell death, apoptosis. Indeed, necrosis has distinct morphological features and it is accompanied by rapid permeabilization of plasma membrane. However, recent data indicate that, in contrast to necrosis caused by very extreme conditions, there are many examples when this form of cell death may be a normal physiological and regulated (programmed) event. Various stimuli (e.g., cytokines, ischemia, heat, irradiation, pathogens) can cause both apoptosis and necrosis in the same cell population. Furthermore, signaling pathways, such as death receptors, kinase cascades, and mitochondria, participate in both processes, and by modulating these pathways, it is possible to switch between apoptosis and necrosis. Moreover, antiapoptotic mechanisms (e.g., Bcl-2/Bcl-x proteins, heat shock proteins) are equally effective in protection against apoptosis and necrosis. Therefore, necrosis, along with apoptosis, appears to be a specific form of execution phase of programmed cell death, and there are several examples of necrosis during embryogenesis, a normal tissue renewal, and immune response. However, the consequences of necrotic and apoptotic cell death for a whole organism are quite different. In the case of necrosis, cytosolic constituents that spill into extracellular space through damaged plasma membrane may provoke inflammatory response; during apoptosis these products are safely isolated by membranes and then are consumed by macrophages. The inflammatory response caused by necrosis, however, may have obvious adaptive significance (i.e., emergence of a strong immune response) under some pathological conditions (such as cancer and infection). On the other hand, disturbance of a fine balance between necrosis and apoptosis may be a key element in development of some diseases.
Collapse
|
29
|
Abstract
The human immunodeficiency virus protease (HIV-1 PR) was expressed both in the yeast Saccharomyces cerevisiae and in mammalian cells. Inducible expression of HIV-1 PR arrested yeast growth, which was followed by cell lysis. The lytic phenotype included loss of plasma membrane integrity and cell wall breakage leading to the release of cell content to the medium. Given that neither poliovirus 2A protease nor 2BC protein, both being highly toxic for S. cerevisiae, were able to produce similar effects, it seems that this lytic phenotype is specific of HIV-1 PR. Drastic alterations in membrane permeability preceded the lysis in yeast expressing HIV-1 PR. Cell killing and lysis provoked by HIV-1 PR were also observed in mammalian cells. Thus, COS7 cells expressing the protease showed increased plasma membrane permeability and underwent lysis by necrosis with no signs of apoptosis. Strikingly, the morphological alterations induced by HIV-1 PR in yeast and mammalian cells were similar in many aspects. To our knowledge, this is the first report of a viral protein with such an activity. These findings contribute to the present knowledge on HIV-1-induced cytopathogenesis.
Collapse
Affiliation(s)
- Raquel Blanco
- Centro de Biologia Molecular Severo Ochoa Consejo Superior Investigaciones Cientificas-Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
30
|
Abstract
Apoptosis or programmed cell death (PCD) is an active process of cellular self-destruction, essential for embryonic development and maintenance of homeostasis of multicellular organisms. Programmed cell death induction can serve as a defence mechanism of the host against intracellular microbes. Virus infections trigger host cell apoptosis, which can either limit virus production or contribute directly to viral pathogenesis. Several independent laboratories have identified "tissue" transglutaminase (tTG) as a potentially important player of the cell death program(s). This gene is specifically expressed in cells dying during mammalian development as well as in those undergoing apoptosis in various patho-physiological and experimental settings [Eur. J. Cell Biol. 56 (1991) 170; Piacentini, M., Davies, P.J.A., Fesus, L., 1994. Tissue transglutaminase in cells undergoing apoptosis. In: Tomei, L.D., Cope, F.O. (Eds.), Apoptosis II: The molecular basis of apoptosis in disease. Cold Spring Harbor Lab. Press, pp. 143-165.]. This chapter reviews recent studies concerning the expression and the possible role of "tissue" transglutaminase (tTG) in apoptotic cells; particular emphasis is given to its expression in the cell death pathways associated with HIV infection in the immune system. We propose here that the induction of the tTG gene in cells of the immune system, as well as the detection of the isodipeptide epsilon(gamma-glutamyl)lysine in plasma, are useful markers of apoptosis and might make it possible to monitor disease progression in HIV-infected individuals.
Collapse
|
31
|
Moretti S, Famularo G, Marcellini S, Boschini A, Santini G, Trinchieri V, Lucci L, Alesse E, De Simone C. L-carnitine reduces lymphocyte apoptosis and oxidant stress in HIV-1-infected subjects treated with zidovudine and didanosine. Antioxid Redox Signal 2002; 4:391-403. [PMID: 12215207 DOI: 10.1089/15230860260196191] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Apoptosis is critical to the progression of human immunodeficiency virus-1 (HIV-1) infection. It appears reasonable that antiretroviral therapies may not achieve a full control of the infection in the absence of an impact on apoptosis. We assigned 20 asymptomatic HIV-infected subjects with advanced immunodeficiency to receive either zidovudine (AZT), and didanosine (DDI) or the same regimen plus L-carnitine, a known antiapoptotic drug, for 7 months. Immunologic and virologic parameters were measured at baseline and after 15, 60, 120, and 210 days of treatment. We assessed on each time point the following: (a) the frequency of peripheral blood apoptotic CD4 and CD8 lymphocytes, CD4 and CD8 cells with disrupted mitochondrial membrane potential, and CD4 and CD8 cells undergoing oxidant stress; (b) the expression of the molecular markers of apoptosis Fas and caspase-1; and (c) the expression of p35/cdk-5 regulatory subunit that is involved in regulating cell survival and apoptosis. Absolute CD4 and CD8 counts and plasma viremia were also measured. Apoptotic CD4 and CD8 cells, lymphocytes with disrupted mitochondrial membrane potential, and lymphocytes undergoing oxidant stress were greatly reduced in subjects treated with AZT and DDI plus L-carnitine compared with those who did not receive L-carnitine. Fas and caspase-1 were down-expressed and p35 over-expressed in lymphocytes from patients of the L-carnitine group. No difference was found in CD4 and CD8 counts and viremia between the groups. No toxicity of L-carnitine was recognized. The addition of L-carnitine is safe and allows apoptosis and oxidant stress to be greatly reduced in lymphocytes from subjects treated with AZT and DDI.
Collapse
Affiliation(s)
- Sonia Moretti
- Department of Experimental Medicine, University of L'Aquila, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bolton DL, Hahn BI, Park EA, Lehnhoff LL, Hornung F, Lenardo MJ. Death of CD4(+) T-cell lines caused by human immunodeficiency virus type 1 does not depend on caspases or apoptosis. J Virol 2002; 76:5094-107. [PMID: 11967325 PMCID: PMC136143 DOI: 10.1128/jvi.76.10.5094-5107.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2001] [Accepted: 02/08/2002] [Indexed: 11/20/2022] Open
Abstract
A critical aspect of AIDS pathogenesis that remains unclear is the mechanism by which human immunodeficiency virus type 1 (HIV-1) induces death in CD4(+) T lymphocytes. A better understanding of the death process occurring in infected cells may provide valuable insight into the viral component responsible for cytopathicity. This would aid the design of preventive treatments against the rapid decline of CD4(+) T cells that results in AIDS. Previously, apoptotic cell death has been reported in HIV-1 infections in cultured T cells, and it has been suggested that this could affect both infected and uninfected cells. To evaluate the mechanism of this effect, we have studied HIV-1-induced cell death extensively by infecting several T-cell lines and assessing the level of apoptosis by using various biochemical and flow cytometric assays. Contrary to the prevailing view that apoptosis plays a prominent role in HIV-1-mediated T-cell death, we found that Jurkat and H9 cells dying from HIV-1 infection fail to exhibit the collective hallmarks of apoptosis. Among the parameters investigated, Annexin V display, caspase activity and cleavage of caspase substrates, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) signal, and APO2.7 display were detected at low to negligible levels. Neither peptide caspase inhibitors nor the antiapoptotic proteins Bcl-x(L) or v-FLIP could prevent cell death in HIV-1-infected cultures. Furthermore, Jurkat cell lines deficient in RIP, caspase-8, or FADD were as susceptible as wild-type Jurkat cells to HIV-1 cytopathicity. These results suggest that the primary mode of cytopathicity by laboratory-adapted molecular clones of HIV-1 in cultured cell lines is not via apoptosis. Rather, cell death occurs most likely via a necrotic or lytic form of death independent of caspase activation in directly infected cells.
Collapse
Affiliation(s)
- Diane L Bolton
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA
| | | | | | | | | | | |
Collapse
|
33
|
Lenardo MJ, Angleman SB, Bounkeua V, Dimas J, Duvall MG, Graubard MB, Hornung F, Selkirk MC, Speirs CK, Trageser C, Orenstein JO, Bolton DL. Cytopathic killing of peripheral blood CD4(+) T lymphocytes by human immunodeficiency virus type 1 appears necrotic rather than apoptotic and does not require env. J Virol 2002; 76:5082-93. [PMID: 11967324 PMCID: PMC136142 DOI: 10.1128/jvi.76.10.5082-5093.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An important unresolved issue of AIDS pathogenesis is the mechanism of human immunodeficiency virus (HIV)-induced CD4(+) T-lymphocyte destruction. We show here that HIV type 1 (HIV-1) exerts a profound cytopathic effect upon peripheral blood CD4(+) T lymphocytes that resembles necrosis rather than apoptosis. Necrotic cytopathology was found with both laboratory-adapted strains and primary isolates of HIV-1. We carefully investigated the role of env, which has been previously implicated in HIV cytopathicity. HIV-1 stocks with equivalent infectivity were prepared from constructs with either an intact or mutated env coding region and pseudotyped with the glycoprotein of vesicular stomatitis virus (VSV-G) so that the HIV envelope was not rate-limiting for infection. Infected Jurkat T cells died whether or not env was intact; however, the expression of env accelerated death significantly. The accelerated death was blocked by protease inhibitors, indicating that it was due to reinfection by newly produced virus in env(+) cultures. Accordingly, we found no disparity in kinetics in CD4(lo) Jurkat cells. In highly infected peripheral blood T cells, profound necrosis occurred equivalently with both env(+) and env(-) stocks of HIV-1. We also found that HIV-1 cytopathicity was undiminished by the absence of nef. However, viral stocks made by complementation or packaging of HIV-1 genomes with the natural protein-coding sequences replaced by the green fluorescent protein were highly infectious but not cytopathic. Thus, env can accelerate cell death chiefly as an entry function, but one or more viral functions other than env or nef is essential for necrosis of CD4(+) T cells induced by HIV-1.
Collapse
Affiliation(s)
- Michael J Lenardo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Côté HCF, Brumme ZL, Craib KJP, Alexander CS, Wynhoven B, Ting L, Wong H, Harris M, Harrigan PR, O'Shaughnessy MV, Montaner JSG. Changes in mitochondrial DNA as a marker of nucleoside toxicity in HIV-infected patients. N Engl J Med 2002; 346:811-20. [PMID: 11893792 DOI: 10.1056/nejmoa012035] [Citation(s) in RCA: 420] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Nucleoside analogues can induce toxic effects on mitochondria by inhibiting the human DNA polymerase gamma. The toxic effects can range from increased serum lactate levels to potentially fatal lactic acidosis. We studied changes in mitochondrial DNA relative to nuclear DNA in the peripheral-blood cells of patients with symptomatic, nucleoside-induced hyperlactatemia. METHODS Total DNA was extracted from blood cells. A nuclear gene and a mitochondrial gene were quantified by real-time polymerase chain reaction. Three groups were studied: 24 controls not infected with the human immunodeficiency virus (HIV), 47 HIV-infected asymptomatic patients who had never been treated with antiretroviral drugs, and 8 HIV-infected patients who were receiving antiretroviral drugs and had symptomatic hyperlactatemia. The patients in the last group were studied longitudinally before, during, and after antiretroviral therapy. RESULTS Symptomatic hyperlactatemia was associated with marked reductions in the ratios of mitochondrial to nuclear DNA, which, during therapy, averaged 68 percent lower than those of non-HIV-infected controls and 43 percent lower than those of HIV-infected asymptomatic patients never treated with antiretroviral drugs. After the discontinuation of antiretroviral therapy, there was a statistically significant increase in the ratio of mitochondrial to nuclear DNA (P=0.02). In the patients followed longitudinally, the decline in mitochondrial DNA preceded the increase in venous lactate levels. CONCLUSIONS Mitochondrial DNA levels are significantly decreased in patients with symptomatic, nucleoside-related hyperlactatemia, an effect that resolves on the discontinuation of therapy.
Collapse
Affiliation(s)
- Hélène C F Côté
- British Columbia Centre for Excellence in HIV/AIDS, University of British Columbia, St. Paul's Hospital, Providence Health Care, Vancouver, BC., Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Phenix BN, Badley AD. Influence of mitochondrial control of apoptosis on the pathogenesis, complications and treatment of HIV infection. Biochimie 2002; 84:251-64. [PMID: 12022956 DOI: 10.1016/s0300-9084(02)01378-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
HIV infection is inexorably linked with disordered regulation of apoptosis, and consequent alterations in mitochondrial homeostasis, resulting in CD4 T cell death and enhanced susceptibility to opportunistic infections and malignancies. Effective treatment of HIV reverses the changes in mitochondrial homeostasis and apoptosis, and enhances immunocompetence. This review will summarize current knowledge of: i) the associations of apoptosis with HIV disease progression; ii) mechanisms of enhanced apoptosis in HIV infection; iii) putative role of apoptosis in HIV complications; iv) direct effects of HIV therapies on mitochondria and apoptosis; and finally v) treatment strategies for HIV based upon modifying the apoptotic response.
Collapse
Affiliation(s)
- Barbara N Phenix
- Ottawa Health Research Institute, University of Ottawa, 501 Smyth Road, Ottawa. Ontario, Canada K1H 8L6
| | | |
Collapse
|
36
|
Sung JH, Shin SA, Park HK, Montelaro RC, Chong YH. Protective effect of glutathione in HIV-1 lytic peptide 1-induced cell death in human neuronal cells. J Neurovirol 2001; 7:454-65. [PMID: 11582518 DOI: 10.1080/135502801753170318] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
To elucidate the pathogenic mechanisms involved in neurodegeneration in AIDS patients with cognitive deficits, we have examined the toxic effect of the lentivirus lytic peptide 1 (LLP-1) corresponding to the carboxyl terminus of HIV-1 transmembrane glycoprotein gp41 on human neuronal and glial cell lines. LLP-1 induced a significant lactate dehydrogenase (LDH, a marker of cell death) release from these cells in a concentration- and time-dependent manner, while the noncytolytic LLP-1 analog 2 had little effect. Application of LLP-1 to SH-SY5Y, a well-characterized human neuronal cell line, caused the decline of intracellular glutathione (GSH) content that appeared to occur before a significant LDH release. Furthermore, LLP-1 elicited a significant loss of mitochondrial function as measured by mitochondrial transmembrane potential (MTP). Among the reducing agents and antioxidants tested, GSH and a GSH prodrug N-acetylcysteine (NAC) provided protection against LLP-1-induced neuronal cell death, evidently by restoring the intracellular GSH levels and blocking the disruption of mitochondrial integrity. Thus, gp41-derived LLP-1 may be a potential neurotoxic agent capable of causing the intracellular GSH depletion and disturbing the mitochondrial function, possibly contributing to the neurodegenerative cascade as seen in HIV-1-associated dementia. Our data indicate that restoring both GSH concentration and mitochondrial function may hold promise as possible therapeutic strategies for slowing disease progression of dementia in AIDS patients.
Collapse
Affiliation(s)
- J H Sung
- Department of Microbiology, College of Medicine, Division of Molecular Biology and Neuroscience, Medical Research Center, Ewha Womans University, Yangcheonku, Seoul, Korea
| | | | | | | | | |
Collapse
|
37
|
Blanco J, Barretina J, Cabrera C, Gutiérrez A, Clotet B, Esté JA. CD4(+) and CD8(+) T cell death during human immunodeficiency virus infection in vitro. Virology 2001; 285:356-65. [PMID: 11437669 DOI: 10.1006/viro.2001.0969] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have evaluated the death of CD4(+) and CD8(+) T cells during in vitro human immunodeficiency virus (HIV) infection of peripheral blood mononuclear cells (PBMC) and tonsilar tissue. Acute infections with several X4 and R5 HIV isolates induced a decrease in cell viability that was higher in infections with X4 viruses and correlated with an increased rate of CD4(+) T-cell death. In CD4(+) T cells, the primary X4 isolate AOM induced higher levels of death than the laboratory X4 isolates IIIB and NL4-3 or the R5 isolates BaL and MDM. An effect on CD8(+) T-cell viability was exclusively observed in infections by X4 viruses, including the NL4-3 strain, in both PBMC and tonsilar tissue. This effect was dependent on the env gene of the infecting isolate and required productive HIV replication in CD4(+) but not in CD8(+) T cells. Our results suggest that X4 and R5 HIV isolates depleted CD4(+) T cells to a different extent and that CD8(+) T-cell viability may also be affected by mechanisms other than those acting in CD4(+) T cells.
Collapse
Affiliation(s)
- J Blanco
- Fundació irsiCaixa, Laboratori de Retrovirologia, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Ctra. Canyet s/n, Badalona, Catalonia, 08916, Spain.
| | | | | | | | | | | |
Collapse
|
38
|
Kalkeri G, Khalap N, Garry RF, Fermin CD, Dash S. Hepatitis C virus protein expression induces apoptosis in HepG2 cells. Virology 2001; 282:26-37. [PMID: 11259187 DOI: 10.1006/viro.2000.0835] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mechanisms of hepatocyte death and the events that lead to a high rate of chronic liver disease in patients infected with hepatitis C virus are not known. We established a HCV replication system in HepG2 cell culture and utilized this model to address the effect of HCV proteins on HepG2 cell growth and viability. After transfection of HepG2 cells with full-length RNA, a truncated RNA, or an antisense RNA, cell proliferation and cell viability were analyzed by thymidine uptake and the trypan blue exclusion method, respectively. Full-length RNA transfected HepG2 cells showed a decrease in cell proliferation and viability compared to cells transfected with HCV truncated RNA and antisense RNA control. A subset of cells expressing HCV proteins underwent apoptosis as documented by morphological studies, ultrastructural analysis, cell cycle analysis by flow cytometry, terminal transferase enzyme mediated end labeling of DNA, and DNA laddering. This study suggests that expression of HCV proteins can lead to cell death by apoptosis, which may be an important event in the pathogenesis of chronic hepatitis C virus infection in humans.
Collapse
Affiliation(s)
- G Kalkeri
- Department of Pathology and Laboratory Medicine, Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
39
|
Ferri KF, Jacotot E, Blanco J, Esté JA, Kroemer G. Mitochondrial control of cell death induced by HIV-1-encoded proteins. Ann N Y Acad Sci 2001; 926:149-64. [PMID: 11193032 DOI: 10.1111/j.1749-6632.2000.tb05609.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In most examples of physiological or pathological cell death, mitochondrial membrane permeabilization (MMP) constitutes an early critical event of the lethal process. Signs of MMP that precede nuclear apoptosis include the translocation of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria to an extra-mitochondrial localization, as well as the dissipation of the mitochondrial transmembrane potential. MMP also occurs in HIV-1-induced apoptosis. Different HIV-1 encoded proteins (Env, Vpr, Tat, PR) can directly or indirectly trigger MMP, thereby causing cell death. The gp120/gp41 Env complex constitutes an example for an indirect MMP inducer. Env expressed on the plasma membrane of HIV-1 infected (or Env-transfected) cells mediates cell fusion with CD4/CXCR4-expressing uninfected cells. After a cell type-dependent latency period, syncytia then undergo MMP and apoptosis. Vpr exemplifies a direct MMP inducer. Vpr binds to the adenine nucleotide translocator (ANT), a mitochondrial inner membrane protein which also interacts with apoptosis-regulatory proteins from the Bcl-2/Bax family. Binding of Vpr to ANT favors formation of a non-specific pore leading to MMP. The structural motifs of the Vpr protein involved in MMP are conserved among most pathogenic HIV-1 isolates and determine the cytotoxic effect of Vpr. These data suggest the possibility that viruses employ multiple strategies to regulate host cell apoptosis by targeting mitochondria.
Collapse
Affiliation(s)
- K F Ferri
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, 39 rue Camille-Desmoulins, F-94805 Villejuif, France
| | | | | | | | | |
Collapse
|
40
|
Hashimoto T, Ashida H, Sano T, Furuyashiki T, Shiotani B, Kanazawa K, Danno G. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) induces apoptosis in rat splenocytes and thymocytes by different mechanisms. Mutat Res 2000; 457:57-67. [PMID: 11106798 DOI: 10.1016/s0027-5107(00)00123-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) is a potent carcinogen present in cooked meat. Although the target of this carcinogen is mainly in the liver, Trp-P-1 is distributed in the thymus and spleen as well as in the liver after administration. However, the cytotoxic effect of Trp-P-1 on lymphocytes has not been examined in detail. In the present study, we investigated the cytotoxicity of Trp-P-1 against rat splenocytes and thymocytes. Trp-P-1 reduced viability of both types of cells in the same manner, the LD(50) at 6h in culture was 15 microM, and the time for the 50% decrease in cell viability (t(1/2)) at 20 microM was 3h. In both types of cells, Trp-P-1 caused the activation of caspase-3-like proteases and the cleavage of poly(ADP-ribose) polymerase, both of which are biochemical markers of apoptosis. On the other hand, DNA fragmentation occurred in splenocytes, but not in thymocytes although Trp-P-1 activated 32-34kDa nucleases that may not be able to degrade DNA into nucleosomal units. These results indicated that Trp-P-1 induces apoptosis in both splenocytes and thymocytes by different mechanisms in which distinct apoptotic pathways may exist downstream of the caspase cascade.
Collapse
Affiliation(s)
- T Hashimoto
- Division of Life Science, Graduate School of Science and Technology, Kobe University, Rokkodai-cho 1, Nada-ku, 657-8501, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Ferri KF, Jacotot E, Leduc P, Geuskens M, Ingber DE, Kroemer G. Apoptosis of syncytia induced by the HIV-1-envelope glycoprotein complex: influence of cell shape and size. Exp Cell Res 2000; 261:119-26. [PMID: 11082282 DOI: 10.1006/excr.2000.5062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells stably transfected with a lymphotropic HIV-1 Env gene form syncytia when cocultured with CD4(+)CXCR4(+) cells. Heterokaryons then spontaneously undergo apoptosis, while manifesting signs of mitochondrial membrane pemeabilization as well as nuclear chromatin condensation. Modulation of cellular geometry was achieved by growing syncytia on self-assembled monolayers of terminally substituted alkanethiolates designed to control the adhesive properties of the substrates. Spreading of syncytia, induced by culturing them on small circular adhesive islets (diameter 5 microm), placed at a distance that cells can bridge (10 microm), inhibited spontaneous and staurosporin-induced signs of apoptosis, both at the mitochondrial and at the nuclear levels, and allowed for the generation of larger syncytia. Transient cell spreading conferred a memory of apoptosis inhibition which was conserved upon adoption of a conventional cell shape. Limiting syncytium size by culturing them on square-shaped planar adhesive islands of defined size (400 to 2500 microm(2)), separated by nonadhesive regions, enhanced the rate of apoptotic cell death, as indicated by an accelerated permeabilization of the outer mitochondrial membrane, loss of the mitochondrial inner transmembrane potential, and an increased frequency of nuclear apoptosis. In conclusion, external constraints on syncytial size and shape strongly modulate their propensity to undergo apoptosis.
Collapse
Affiliation(s)
- K F Ferri
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, 39 rue Camille-Desmoulins, Villejuif, F-94805, France
| | | | | | | | | | | |
Collapse
|
42
|
Ferri KF, Jacotot E, Geuskens M, Kroemer G. Apoptosis and karyogamy in syncytia induced by the HIV-1-envelope glycoprotein complex. Cell Death Differ 2000; 7:1137-9. [PMID: 11288697 DOI: 10.1038/sj.cdd.4400748] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
43
|
Ferri KF, Jacotot E, Blanco J, Esté JA, Zamzami N, Susin SA, Xie Z, Brothers G, Reed JC, Penninger JM, Kroemer G. Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex: role of mitochondria and caspases. J Exp Med 2000; 192:1081-92. [PMID: 11034598 PMCID: PMC2195869 DOI: 10.1084/jem.192.8.1081] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2000] [Accepted: 08/28/2000] [Indexed: 11/04/2022] Open
Abstract
Syncytia arising from the fusion of cells expressing a lymphotropic HIV type 1-encoded envelope glycoprotein complex (Env) with cells expressing the CD4/CXC chemokine receptor 4 complex spontaneously undergo cell death. Here we show that this process is accompanied by caspase activation and signs of mitochondrial membrane permeabilization (MMP), including the release of intermembrane proteins such as cytochrome c (Cyt-c) and apoptosis-inducing factor (AIF) from mitochondria. In Env-induced syncytia, caspase inhibition did not suppress AIF- and Cyt-c translocation, yet it prevented all signs of nuclear apoptosis. Translocation of Bax to mitochondria led to MMP, which was inhibited by microinjected Bcl-2 protein or bcl-2 transfection. Bcl-2 also prevented the subsequent nuclear chromatin condensation and DNA fragmentation. The release of AIF occurred before that of Cyt-c and before caspase activation. Microinjection of AIF into syncytia sufficed to trigger rapid, caspase-independent Cyt-c release. Neutralization of endogenous AIF by injection of an antibody prevented all signs of spontaneous apoptosis occurring in syncytia, including the Cyt-c release and nuclear apoptosis. In contrast, Cyt-c neutralization only prevented nuclear apoptosis, and did not affect AIF release. Our results establish that the following molecular sequence governs apoptosis of Env-induced syncytia: Bax-mediated/Bcl-2-inhibited MMP --> AIF release --> Cyt-c release --> caspase activation --> nuclear apoptosis.
Collapse
Affiliation(s)
- K F Ferri
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, F-94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Summerfield A, Knoetig SM, Tschudin R, McCullough KC. Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells. Virology 2000; 272:50-60. [PMID: 10873748 DOI: 10.1006/viro.2000.0361] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Granulocytopenia, a hematological hallmark of classical swine fever, is partially responsible for the suppression of innate immune defenses during classical swine fever. The present report demonstrates that this depletion was apparent as early as 3 days postinfection (p.i.). Both mature peripheral and bone marrow neutrophils were affected, whereas immature neutrophils increased absolutely in the periphery and coincidentally immature myeloid progenitors in the bone marrow. These data suggest that a pathogenic relationship exists between these compartments. The central event was not the arrest of hematopoietic cell proliferation or of the mobilization process, but instead apoptosis and possibly also necrosis were shown to play a role. This increase in apoptotic and dead cells was detected as early as 1-3 days p.i. In contrast, viral RNA in bone marrow hematopoietic cells (BMHC) was first detected 5 days p.i., and significant amounts of infected BMHC were detected only 7 days p.i., with the major target being the myeloid compartment. The increased caspase-3 activity observed supported a role for apoptotic cell death. Furthermore, the elevated caspase-9 activity indicated the involvement of the mitochondrial apoptotic pathway. Taken together, the results demonstrate that granulocytopenia and bone marrow atrophy are mediated by hematopoietic cell death and that indirect virus-host-mediated mechanisms are likely to be responsible.
Collapse
Affiliation(s)
- A Summerfield
- Institute of Virology and Immunoprophylaxis, Mittelhäusern, CH-3147, Switzerland.
| | | | | | | |
Collapse
|
45
|
Plymale DR, Comardelle AM, Fermi CD, Martin DS, Costin JM, Norris CH, Tencza SB, Mietzner TA, Montelaro RC, Garry RF. Concentration-dependent differential induction of necrosis or apoptosis by HIV-1 lytic peptide 1. Peptides 1999; 20:1275-83. [PMID: 10612441 DOI: 10.1016/s0196-9781(99)00132-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanism by which human immunodeficiency virus type 1 induces depletion of CD4+ T-lymphocytes remains controversial, but may involve cytotoxic viral proteins. Synthetic peptides (lentivirus lytic peptide type 1) corresponding to the carboxyl terminus of the human immunodeficiency virus type 1 transmembrane glycoprotein induce cytopathology at concentrations of 100 nM and above. At these concentrations lentivirus lytic peptide type 1 disrupts mitochondrial integrity of CD4+ T-lymphoblastoid cells and induces other changes characteristic of necrosis. In contrast, at concentrations of 20 nM, lentivirus lytic peptide type 1 potently induces apoptosis. Thus, the mechanism by which human immunodeficiency virus type 1 mediates cell death, necrosis or apoptosis, may depend, in part, on the tissue concentration of transmembrane glycoprotein.
Collapse
Affiliation(s)
- D R Plymale
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|