1
|
Owings KG, Chow CY. A Drosophila screen identifies a role for histone methylation in ER stress preconditioning. G3 (BETHESDA, MD.) 2024; 14:jkad265. [PMID: 38098286 PMCID: PMC11021027 DOI: 10.1093/g3journal/jkad265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/02/2023] [Indexed: 12/26/2023]
Abstract
Stress preconditioning occurs when transient, sublethal stress events impact an organism's ability to counter future stresses. Although preconditioning effects are often noted in the literature, very little is known about the underlying mechanisms. To model preconditioning, we exposed a panel of genetically diverse Drosophila melanogaster to a sublethal heat shock and measured how well the flies survived subsequent exposure to endoplasmic reticulum (ER) stress. The impact of preconditioning varied with genetic background, ranging from dying half as fast to 4 and a half times faster with preconditioning compared to no preconditioning. Subsequent association and transcriptional analyses revealed that histone methylation, and transcriptional regulation are both candidate preconditioning modifier pathways. Strikingly, almost all subunits (7/8) in the Set1/COMPASS complex were identified as candidate modifiers of preconditioning. Functional analysis of Set1 knockdown flies demonstrated that loss of Set1 led to the transcriptional dysregulation of canonical ER stress genes during preconditioning. Based on these analyses, we propose a preconditioning model in which Set1 helps to establish an interim transcriptional "memory" of previous stress events, resulting in a preconditioned response to subsequent stress.
Collapse
Affiliation(s)
- Katie G Owings
- Department of Human Genetics, University of Utah School of Medicine, EIHG 5200, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - Clement Y Chow
- Department of Human Genetics, University of Utah School of Medicine, EIHG 5200, 15 North 2030 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Owings KG, Chow CY. A Drosophila screen identifies a role for histone methylation in ER stress preconditioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532109. [PMID: 36945590 PMCID: PMC10028959 DOI: 10.1101/2023.03.10.532109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Stress preconditioning occurs when transient, sublethal stress events impact an organism's ability to counter future stresses. Although preconditioning effects are often noted in the literature, very little is known about the underlying mechanisms. To model preconditioning, we exposed a panel of genetically diverse Drosophila melanogaster to a sublethal heat shock and measured how well the flies survived subsequent exposure to endoplasmic reticulum (ER) stress. The impact of preconditioning varied with genetic background, ranging from dying half as fast to four and a half times faster with preconditioning compared to no preconditioning. Subsequent association and transcriptional analyses revealed that histone methylation, transcriptional regulation, and immune status are all candidate preconditioning modifier pathways. Strikingly, almost all subunits (7/8) in the Set1/COMPASS complex were identified as candidate modifiers of preconditioning. Functional analysis of Set1 knockdown flies demonstrated that loss of Set1 led to the transcriptional dysregulation of canonical ER stress genes during preconditioning. Based on these analyses, we propose a model of preconditioning in which Set1 helps to establish an interim transcriptional 'memory' of previous stress events, resulting in a preconditioned response to subsequent stress.
Collapse
Affiliation(s)
- Katie G. Owings
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Clement Y. Chow
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
3
|
Singh S, Kishore D, Singh RK. Potential for Further Mismanagement of Fever During COVID-19 Pandemic: Possible Causes and Impacts. Front Med (Lausanne) 2022; 9:751929. [PMID: 35308547 PMCID: PMC8924660 DOI: 10.3389/fmed.2022.751929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Fever remains an integral part of acute infectious diseases management, especially for those without effective therapeutics, but the widespread myths about "fevers" and the presence of confusing guidelines from different agencies, which have heightened during the coronavirus disease 2019 (COVID-19) pandemic and are open to alternate interpretation, could deny whole populations the benefits of fever. Guidelines suggesting antipyresis for 37.8-39°C fever are concerning as 39°C boosts the protective heat-shock and immune response (humoral, cell-mediated, and nutritional) whereas ≥40°C initiates/enhances the antiviral responses and restricts high-temperature adapted pathogens, e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strains of influenza, and measles. Urgent attention is accordingly needed to address the situation because of the potential public health consequences of the existence of conflicting guidelines in the public domain. We have in this article attempted to restate the benefits of fever in disease resolution, dispel myths, and underline the need for alignment of national treatment guidelines with that of the WHO, to promote appropriate practices and reduce the morbidity and mortality from infectious diseases, such as COVID-19.
Collapse
Affiliation(s)
- Samer Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Dhiraj Kishore
- Department of General Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rakesh K. Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Intracellular Signaling. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Neuroprotective Potential of Mild Uncoupling in Mitochondria. Pros and Cons. Brain Sci 2021; 11:brainsci11081050. [PMID: 34439669 PMCID: PMC8392724 DOI: 10.3390/brainsci11081050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
There has been an explosion of interest in the use of uncouplers of oxidative phosphorylation in mitochondria in the treatment of several pathologies, including neurological ones. In this review, we analyzed all the mechanisms associated with mitochondrial uncoupling and the metabolic and signaling cascades triggered by uncouplers. We provide a full set of positive and negative effects that should be taken into account when using uncouplers in experiments and clinical practice.
Collapse
|
6
|
Vinciguerra A, Cuomo O, Cepparulo P, Anzilotti S, Brancaccio P, Sirabella R, Guida N, Annunziato L, Pignataro G. Models and methods for conditioning the ischemic brain. J Neurosci Methods 2018; 310:63-74. [PMID: 30287283 DOI: 10.1016/j.jneumeth.2018.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND In the last decades the need to find new neuroprotective targets has addressed the researchers to investigate the endogenous molecular mechanisms that brain activates when exposed to a conditioning stimulus. Indeed, conditioning is an adaptive biological process activated by those interventions able to confer resistance to a deleterious brain event through the exposure to a sub-threshold insult. Specifically, preconditioning and postconditioning are realized when the conditioning stimulus is applied before or after, respectively, the harmul ischemia. AIMS AND RESULTS The present review will describe the most common methods to induce brain conditioning, with particular regards to surgical, physical exercise, temperature-induced and pharmacological approaches. It has been well recognized that when the subliminal stimulus is delivered after the ischemic insult, the achieved neuroprotection is comparable to that observed in models of ischemic preconditioning. In addition, subjecting the brain to both preconditioning as well as postconditioning did not cause greater protection than each treatment alone. CONCLUSIONS The last decades have provided fascinating insights into the mechanisms and potential application of strategies to induce brain conditioning. Since the identification of intrinsic cell-survival pathways should provide more direct opportunities for translational neuroprotection trials, an accurate examination of the different models of preconditioning and postconditioning is mandatory before starting any new project.
Collapse
Affiliation(s)
- Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Via Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
7
|
Yunoki M, Kanda T, Suzuki K, Uneda A, Hirashita K, Yoshino K. Ischemic Tolerance of the Brain and Spinal Cord: A Review. Neurol Med Chir (Tokyo) 2017; 57:590-600. [PMID: 28954945 PMCID: PMC5709712 DOI: 10.2176/nmc.ra.2017-0062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ischemic tolerance is an endogenous neuroprotective phenomenon induced by sublethal ischemia. Ischemic preconditioning (IPC), the first discovered form of ischemic tolerance, is widely seen in many species and in various organs including the brain and the spinal cord. Ischemic tolerance of the spinal cord is less familiar among neurosurgeons, although it has been reported from the viewpoint of preventing ischemic spinal cord injury during aortic surgery. It is important for neurosurgeons to have opportunities to see patients with spinal cord ischemia, and to understand ischemic tolerance of the spinal cord as well as the brain. IPC has a strong neuroprotective effect in animal models of ischemia; however, clinical application of IPC for ischemic brain and spinal diseases is difficult because they cannot be predicted. In addition, one drawback of preconditioning stimuli is that they are also capable of producing injury with only minor changes to their intensity or duration. Numerous methods to induce ischemic tolerance have been discovered that vary in their timing and the site at which short-term ischemia occurs. These methods include ischemic postconditioning (IPoC), remote ischemic preconditioning (RIPC), remote ischemic perconditioning (RIPerC) and remote ischemic postconditioning (RIPoC), which has had a great impact on clinical approaches to treatment of ischemic brain and spinal cord injury. Especially RIPerC and RIPoC to induce spinal cord tolerance are considered clinically useful, however the evidence supporting these methods is currently insufficient; further experimental or clinical research in this area is thus necessary.
Collapse
Affiliation(s)
| | | | - Kenta Suzuki
- Department of Neurosurgery, Kagawa Rosai Hospital
| | | | | | | |
Collapse
|
8
|
Thompson JW, Dawson VL, Perez-Pinzon MA, Dawson TM. Intracellular Signaling. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ, Gao Y. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol 2014; 114:58-83. [PMID: 24389580 PMCID: PMC3937258 DOI: 10.1016/j.pneurobio.2013.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
Preconditioning is a phenomenon in which brief episodes of a sublethal insult induce robust protection against subsequent lethal injuries. Preconditioning has been observed in multiple organisms and can occur in the brain as well as other tissues. Extensive animal studies suggest that the brain can be preconditioned to resist acute injuries, such as ischemic stroke, neonatal hypoxia/ischemia, surgical brain injury, trauma, and agents that are used in models of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Effective preconditioning stimuli are numerous and diverse, ranging from transient ischemia, hypoxia, hyperbaric oxygen, hypothermia and hyperthermia, to exposure to neurotoxins and pharmacological agents. The phenomenon of "cross-tolerance," in which a sublethal stress protects against a different type of injury, suggests that different preconditioning stimuli may confer protection against a wide range of injuries. Research conducted over the past few decades indicates that brain preconditioning is complex, involving multiple effectors such as metabolic inhibition, activation of extra- and intracellular defense mechanisms, a shift in the neuronal excitatory/inhibitory balance, and reduction in inflammatory sequelae. An improved understanding of brain preconditioning should help us identify innovative therapeutic strategies that prevent or at least reduce neuronal damage in susceptible patients. In this review, we focus on the experimental evidence of preconditioning in the brain and systematically survey the models used to develop paradigms for neuroprotection, and then discuss the clinical potential of brain preconditioning.
Collapse
Affiliation(s)
- R Anne Stetler
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Yu Gan
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Peiying Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Feng Zhang
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoming Hu
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Zheng Jing
- Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Jun Chen
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Michael J Zigmond
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China; Department of Neurology and Center of Cerebrovascular Disease Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
10
|
Török Z, Crul T, Maresca B, Schütz GJ, Viana F, Dindia L, Piotto S, Brameshuber M, Balogh G, Péter M, Porta A, Trapani A, Gombos I, Glatz A, Gungor B, Peksel B, Vigh L, Csoboz B, Horváth I, Vijayan MM, Hooper PL, Harwood JL, Vigh L. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1594-618. [PMID: 24374314 DOI: 10.1016/j.bbamem.2013.12.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/09/2013] [Accepted: 12/18/2013] [Indexed: 12/31/2022]
Abstract
The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Zsolt Török
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Bruno Maresca
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gerhard J Schütz
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Felix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain
| | - Laura Dindia
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Mario Brameshuber
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Alfonso Trapani
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Attila Glatz
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Burcin Gungor
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Begüm Peksel
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Mathilakath M Vijayan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Phillip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Medical School, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary.
| |
Collapse
|
11
|
Abstract
Preconditioning (PC) describes a phenomenon whereby a sub-injury inducing stress can protect against a later injurious stress. Great strides have been made in identifying the mechanisms of PC-induced protection in animal models of brain injury. While these may help elucidate potential therapeutic targets, there are questions over the clinical utility of cerebral PC, primarily because of questions over the need to give the PC stimulus prior to the injury, narrow therapeutic windows and safety. The object of this review is to address the question of whether there may indeed be a clinical use for cerebral PC and to discuss the deficiencies in our knowledge of PC that may hamper such clinical translation.
Collapse
|
12
|
Ballesteros-Yáñez I, Castillo CA, Amo-Salas M, Albasanz JL, Martín M. Differential Effect of Caffeine Consumption on Diverse Brain Areas of Pregnant Rats. JOURNAL OF CAFFEINE RESEARCH 2012; 2:90-98. [PMID: 24761269 DOI: 10.1089/jcr.2012.0011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND It has previously been shown that during gestation, the mother's brain has an increase in glial fibrillary acidic protein (GFAP)-immunoreactivity (-ir) and a decrease in the mRNA level of A1 adenosine receptor. Little is known about the A2A adenosine receptor in the maternal brain, and whether caffeine consumption throughout gestational period modifies GFAP and adenosine receptor density in specific brain areas. This study was undertaken to investigate the protein density of GFAP and adenosine receptors (A1 and A2A subtypes) in different regions of pregnant rat brain and the possible effect of caffeine on these proteins. METHODS For this purpose, we examined the GFAP-, A1- and A2A-ir in the cingulate cortex (Cg2), dentate gyrus (DG), medial preoptic area (mPOA), secondary somatosensory cortex (S2), and striatum (Str) of pregnant Wistar rats (drug-free tap water or water with 1g/L diluted caffeine). RESULTS We show a consistent and highly significant reduction of GFAP-ir in caffeine-treated pregnant rats in most of the areas analyzed. Our data demonstrate that caffeine consumption induces a significant increase of A2A-ir in Str. Concerning A1 receptor, the observed changes are dependent on the region analyzed; this receptor density is increased in Cg2, DG, and mPOA and decreased in the somatosensory cortex and Str. The results were confirmed by Western blotting. CONCLUSIONS Our results suggest that chronic caffeine exposure could modify the physiolological situation of gestation by a reorganization of the neural circuits and the adenosine neuromodulator system.
Collapse
Affiliation(s)
- Inmaculada Ballesteros-Yáñez
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain . ; Department of Inorganic and Organic Chemistry and Biochemistry, Chemistry Faculty, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain
| | - Carlos Alberto Castillo
- Department of Inorganic and Organic Chemistry and Biochemistry, Chemistry Faculty, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain . ; Department of Nursing, Faculty of Nursing, Occupational and Speech Therapies, University of Castilla-La Mancha , Talavera de la Reina, Spain
| | - Mariano Amo-Salas
- Department of Mathematics, Faculty of Medicine, University of Castilla-La Mancha , Ciudad Real, Spain
| | - José Luis Albasanz
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain . ; Department of Inorganic and Organic Chemistry and Biochemistry, Chemistry Faculty, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain
| | - Mairena Martín
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Medicine, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain . ; Department of Inorganic and Organic Chemistry and Biochemistry, Chemistry Faculty, Regional Center of Biomedical Research, University of Castilla-La Mancha , Ciudad Real, Spain
| |
Collapse
|
13
|
Intracellular Signaling: Mediators and Protective Responses. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
A Synergistic Role of Hyperthermic and Pharmacological Preconditioning to Protect Astrocytes Against Ischemia/Reperfusion Injury. Neurochem Res 2010; 36:312-8. [DOI: 10.1007/s11064-010-0327-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2010] [Indexed: 10/18/2022]
|
15
|
Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by up-regulation of HIF-1 alpha expression and binding activity. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1048-53. [DOI: 10.1016/j.bbadis.2010.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/08/2010] [Accepted: 06/18/2010] [Indexed: 12/31/2022]
|
16
|
Singh V, Carman M, Roeper J, Bonci A. Brief ischemia causes long-term depression in midbrain dopamine neurons. Eur J Neurosci 2007; 26:1489-99. [PMID: 17880389 DOI: 10.1111/j.1460-9568.2007.05781.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Degeneration of dopamine neurons in the substantia nigra pars compacta (SNc) plays an important role in the pathophysiology of neurodegenerative diseases like Parkinsonism and vascular dementia. SNc dopamine neurons both in vitro and in vivo show sensitivity to hypoxic/ischemic conditions and undergo degeneration. In acute brain slices, these dopamine neurons undergo hyperpolarization during hypoxia and hypoglycemia, which results in silencing of the neurons. However, the role that SNc excitatory synapses play in this process is poorly understood. Here we examined the effect of oxygen/glucose deprivation (OGD) on glutamatergic synaptic transmission in the SNc in a rat midbrain slice preparation. OGD for 5 min caused pre-synaptic ischemic long-term depression (iLTD) of glutamate transmission, as both alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid- and N-methyl-D-aspartate receptor-mediated synaptic currents in SNc dopamine neurons were depressed to a similar extent. This depression began immediately after exposure to OGD and was not recovered upon washout of OGD. Pharmacological studies revealed that the iLTD was triggered by a rise in post-synaptic intracellular calcium and mediated by activation of pre-synaptic adenosine A(1) receptors, which reduced glutamate-dependent synaptic transmission by activating ATP-dependent potassium channels. Furthermore, we observed that iLTD did not occlude tetanic long-term depression (LTD) at the SNc excitatory synapses, suggesting that these two forms of LTD involve different pathways. Taken together, our results showed that brief exposure to hypoxia and hypoglycemia results in LTD of synaptic activity at glutamatergic synapses onto SNc neurons and this phenomenon could represent a protective mechanism by reducing ischemia-induced excitotoxic injury to dopamine neurons.
Collapse
Affiliation(s)
- Vineeta Singh
- Department of Neurology, University of California, San Francisco, Ernest Gallo Clinic and Research Center, Emeryville, CA 94608, USA
| | | | | | | |
Collapse
|
17
|
Wang L, Traystman RJ, Murphy SJ. Inhalational anesthetics as preconditioning agents in ischemic brain. Curr Opin Pharmacol 2007; 8:104-10. [PMID: 17962069 DOI: 10.1016/j.coph.2007.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
Abstract
While many pharmacological agents have been shown to protect the brain from cerebral ischemia in animal models, none have translated successfully to human patients. One potential clinical neuroprotective strategy in humans may involve increasing the brain's tolerance to ischemia by preischemic conditioning (preconditioning). There are many methods to induce tolerance via preconditioning such as ischemia itself, pharmacological, hypoxia, endotoxin, and others. Inhalational anesthetic agents have also been shown to result in brain preconditioning. Mechanisms responsible for brain preconditioning are many, complex, and unclear and may involve Akt activation, ATP-sensitive potassium channels, and nitric oxide, amongst many others. Anesthetics, however, may play an important and unique role as preconditioning agents, particularly during the perioperative period.
Collapse
Affiliation(s)
- Lan Wang
- Oregon Health and Science University, Department of Anesthesiology and Peri-Operative Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
18
|
Akaiwa K, Akashi H, Harada H, Sakashita H, Hiromatsu S, Kano T, Aoyagi S. Moderate cerebral venous congestion induces rapid cerebral protection via adenosine A1 receptor activation. Brain Res 2006; 1122:47-55. [PMID: 17067559 DOI: 10.1016/j.brainres.2006.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 08/31/2006] [Accepted: 09/03/2006] [Indexed: 11/25/2022]
Abstract
Stroke is a devastating complication in cardiovascular surgery, and neuronal damage is worsened by intracranial pressure elevation caused by cerebral venous circulatory disturbances (CVCD). However, we have previously reported that CVCD before cerebral ischemia decreases the infarct area. In the present study, focal cerebral ischemia was induced in spontaneously hypertensive rats by filament insertion through the carotid artery. Rats were divided into the following four groups: sham-operated, mild or severe venous congestion (VC), and DPCPX. The DPCPX group received the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) prior to mild VC. Behavior, infarct volume, edema and S-100 protein were evaluated among the four groups. The infarct volume rates in mild VC and severe VC groups were significantly less than that in sham-operated and DPCPX groups. However, the mortality of the severe VC group worsened in a time-dependent manner. We observed a significant decrease in edema in the mild VC group compared to the DPCPX group. Behavioral scores also indicated that the mild VC group had fewer neurological deficits than the other three groups, including the DPCPX group. We were able to induce rapid cerebral protection via adenosine A1 receptor activation by administering an appropriate degree of VC prior to cerebral ischemia produced by middle cerebral artery occlusion. Our work suggests possible mechanisms by which such effective VC may lead to cerebral protection and adenosine A1 receptor activation.
Collapse
Affiliation(s)
- Keiichi Akaiwa
- Department of Surgery, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Duveau V, Arthaud S, Serre H, Rougier A, Le Gal La Salle G. Transient hyperthermia protects against subsequent seizures and epilepsy-induced cell damage in the rat. Neurobiol Dis 2005; 19:142-9. [PMID: 15837569 DOI: 10.1016/j.nbd.2004.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 11/17/2004] [Accepted: 11/29/2004] [Indexed: 11/23/2022] Open
Abstract
Many mild preconditioning stress conditions, including physical and metabolic injuries, increase the resistance of neurons to subsequent more severe stresses of the same or different type. This "tolerance phenomenon" lasts one to several weeks, providing a unique opportunity to investigate endogenous neuroprotective mechanisms. The aim of this study was to find a physiological and easily applicable preconditioning stimulus able to confer protection against convulsant-induced neuronal damage and seizures. We found that moderate transient hyperthermic preconditioning markedly reduced kainic-acid-induced neuronal cell loss and attenuated susceptibility to bicuculline-induced seizures. Prevention of cell damage (approximately 50%) was efficient both in vitro in organotypic hippocampal slice cultures and in vivo in adult rats. This protection lasted about 1 week and peaked 3 to 5 days after pretreatment. Unraveling the mechanisms of heat shock preconditioning-induced protection against epilepsy should lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Venceslas Duveau
- Laboratoire d'Epileptologie Expérimentale et Clinique, Université Bordeaux 2, BP 78, 146, rue Léo Saignat, 33076 Bordeaux cedex, France
| | | | | | | | | |
Collapse
|
20
|
Karikó K, Weissman D, Welsh FA. Inhibition of toll-like receptor and cytokine signaling--a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab 2004; 24:1288-304. [PMID: 15545925 DOI: 10.1097/01.wcb.0000145666.68576.71] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebral ischemia triggers acute inflammation, which exacerbates primary brain damage. Activation of the innate immune system is an important component of this inflammatory response. Inflammation occurs through the action of proinflammatory cytokines, such as TNF, IL-1 beta and IL-6, that alter blood flow and increase vascular permeability, thus leading to secondary ischemia and accumulation of immune cells in the brain. Production of these cytokines is initiated by signaling through Toll-like receptors (TLRs) that recognize host-derived molecules released from injured tissues and cells. Recently, great strides have been made in understanding the regulation of the innate immune system, particularly the signaling mechanisms of TLRs. Negative feedback inhibitors of TLRs and inflammatory cytokines have now been identified and characterized. It is also evident that lipid rafts exist in membranes and play a role in receptor-mediated inflammatory signaling events. In the present review, using this newly available large body of knowledge, we take a fresh look at studies of ischemic tolerance. Based on this analysis, we recognize a striking similarity between ischemic tolerance and endotoxin tolerance, an immune suppressive state characterized by hyporesponsiveness to lipopolysaccharide (LPS). In view of this analogy, and considering recent discoveries related to molecular mechanisms of endotoxin tolerance, we postulate that inhibition of TLR and proinflammatory cytokine signaling contributes critically to ischemic tolerance in the brain and other organs. Ischemic tolerance is a protective mechanism induced by a variety of preconditioning stimuli. Tolerance can be established with two temporal profiles: (i) a rapid form in which the trigger induces tolerance to ischemia within minutes and (ii) a delayed form in which development of protection takes several hours or days and requires de-novo protein synthesis. The rapid form of tolerance is achieved by direct interference with membrane fluidity, causing disruption of lipid rafts leading to inhibition of TLR/cytokine signaling pathways. In the delayed form of tolerance, the preconditioning stimulus first triggers the TLR/cytokine inflammatory pathways, leading not only to inflammation but also to simultaneous upregulation of feedback inhibitors of inflammation. These inhibitors, which include signaling inhibitors, decoy receptors, and anti-inflammatory cytokines, reduce the inflammatory response to a subsequent episode of ischemia. This novel interpretation of the molecular mechanism of ischemic tolerance highlights new avenues for future investigation into the prevention and treatment of stroke and related diseases.
Collapse
Affiliation(s)
- Katalin Karikó
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
21
|
Yoshida M, Nakakimura K, Cui YJ, Matsumoto M, Sakabe T. Adenosine A(1) receptor antagonist and mitochondrial ATP-sensitive potassium channel blocker attenuate the tolerance to focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2004; 24:771-9. [PMID: 15241185 DOI: 10.1097/01.wcb.0000122742.72175.1b] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Involvement of adenosine and adenosine triphosphate-sensitive potassium (KATP) channels in the development of ischemic tolerance has been suggested in global ischemia, but has not been studied extensively in focal cerebral ischemia. This study evaluated modulating effects of adenosine A1 receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and mitochondrial KATP channel blocker 5HD (5-hydroxydecanoate) on the development of tolerance to focal cerebral ischemia in rats. Preconditioning with 30-minute middle cerebral artery occlusion (MCAO) reduced cortical and subcortical infarct volume following 120-minute MCAO (test ischemia) given 72 hours later. The neuroprotective effect of preconditioning was attenuated by 0.1 mg/kg DPCPX given before conditioning ischemia (30-minute MCAO), but no influence was provoked when it was administered before test ischemia. DPCPX had no effect on infarct volume after conditioning or test ischemia when given alone. The preconditioning-induced neuroprotection disappeared when 30 mg/kg 5HD was administered before test ischemia. These results suggest a possible involvement of adenosine A1 receptors during conditioning ischemia and of mitochondrial KATP channels during subsequent severe ischemia in the development of tolerance to focal cerebral ischemia.
Collapse
Affiliation(s)
- Mitsuyoshi Yoshida
- Department of Anesthesiology-Resuscitology, Yamaguchi University School of Medicine, Yamaguchi Rosai Hospital, Yamaguchi, Japan
| | | | | | | | | |
Collapse
|
22
|
Dhodda VK, Sailor KA, Bowen KK, Vemuganti R. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem 2004; 89:73-89. [PMID: 15030391 DOI: 10.1111/j.1471-4159.2004.02316.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In brain, a brief ischemic episode induces protection against a subsequent severe ischemic insult. This phenomenon is known as preconditioning-induced neural ischemic tolerance. An understanding of the molecular mechanisms leading to preconditioning helps in identifying potential therapeutic targets for preventing the post-stroke brain damage. The present study conducted the genomic and proteomic analysis of adult rat brain as a function of time following preconditioning induced by a 10-min transient middle cerebral artery (MCA) occlusion. GeneChip analysis showed induction of 40 putative neuroprotective transcripts between 3 to 72 h after preconditioning. These included heat-shock proteins, heme oxygenases, metallothioneins, signal transduction mediators, transcription factors, ion channels and apoptosis/plasticity-related transcripts. Real-time PCR confirmed the GeneChip data for the transcripts up-regulated after preconditioning. Two-dimensional gel electrophoresis combined with MALDI-TOF analysis showed increased expression of HSP70, HSP27, HSP90, guanylyl cyclase, muskelin, platelet activating factor receptor and beta-actin at 24 h after preconditioning. HSP70 protein induction after preconditioning was localized in the cortical pyramidal neurons. The infarct volume induced by focal ischemia (1-h MCA occlusion) was significantly smaller (by 38 +/- 7%, p < 0.05) in rats subjected to preconditioning 3 days before the insult. Preconditioning also prevented several gene expression changes induced by focal ischemia.
Collapse
Affiliation(s)
- Vinay K Dhodda
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA.
| | | | | | | |
Collapse
|