1
|
Lateef OM, Foote C, Power G, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIM kinases in cardiovascular health and disease. Front Physiol 2024; 15:1506356. [PMID: 39744707 PMCID: PMC11688343 DOI: 10.3389/fphys.2024.1506356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/28/2024] [Indexed: 01/14/2025] Open
Abstract
The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health. However, LIMK activity in healthy and pathological states of the cardiovascular system is poorly characterized. This review highlights the cellular and molecular mechanisms involved in LIMK activation and inactivation, examining its roles in the pathophysiology of vascular and cardiac diseases such as hypertension, aneurysm, atrial fibrillation, and valvular heart disease. It addresses the LIMKs' involvement in processes that support cardiovascular health, including vasculogenesis, angiogenesis, and endothelial mechanotransduction. The review also features how LIMK activity participates in endothelial cell, vascular smooth muscle cell, and cardiomyocyte physiology and its implications in pathological states. A few recent preclinical studies demonstrate the therapeutic potential of LIMK inhibition. We conclude by proposing that future research should focus on the potential clinical relevance of LIMK inhibitors as therapeutic agents to reduce the burden of cardiovascular disease and improve patient outcomes.
Collapse
Affiliation(s)
- Olubodun M. Lateef
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
| | - Christopher Foote
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Luis A. Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Chen Z, Fan L, Chen S, Zhao H, Zhang Q, Qu Y, Huang Y, Yu X, Sun D. Artificial Vascular with Pressure-Responsive Property based on Deformable Microfluidic Channels. Adv Healthc Mater 2024; 13:e2304532. [PMID: 38533604 DOI: 10.1002/adhm.202304532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Indexed: 03/28/2024]
Abstract
In vitro blood vessel models are significant for disease modeling, drug assays, and therapeutic development. Microfluidic technologies allow to create physiologically relevant culture models reproducing the features of the in vivo vascular microenvironment. However, current microfluidic technologies are limited by impractical rectangular cross-sections and single or nonsynchronous compound mechanical stimuli. This study proposes a new strategy for creating round-shaped deformable soft microfluidic channels to serve as artificial in vitro vasculature for developing in vitro models with vascular physio-mechanical microenvironments. Endothelial cells seeded into vascular models are used to assess the effects of a remodeled in vivo mechanical environment. Furthermore, a 3D stenosis model is constructed to recapitulate the flow disturbances in atherosclerosis. Soft microchannels can also be integrated into traditional microfluidics to realize multifunctional composite systems. This technology provides new insights into applying microfluidic chips and a prospective approach for constructing in vitro blood vessel models.
Collapse
Affiliation(s)
- Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong, 999077, China
| | - Lei Fan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Centre for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Shuxun Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Han Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yun Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong, 999077, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong, 999077, China
| |
Collapse
|
3
|
Rojas-González DM, Babendreyer A, Ludwig A, Mela P. Analysis of flow-induced transcriptional response and cell alignment of different sources of endothelial cells used in vascular tissue engineering. Sci Rep 2023; 13:14384. [PMID: 37658092 PMCID: PMC10474151 DOI: 10.1038/s41598-023-41247-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Endothelialization of tissue-engineered vascular grafts has proven crucial for implant functionality and thus clinical outcome, however, the choice of endothelial cells (ECs) is often driven by availability rather than by the type of vessel to be replaced. In this work we studied the response to flow of different human ECs with the aim of examining whether their response in vitro is dictated by their original in vivo conditions. Arterial, venous, and microvascular ECs were cultured under shear stress (SS) of 0, 0.3, 3, 1, 10, and 30 dyne/cm2 for 24 h. Regulation of flow-induced marker KLF2 was similar across the different ECs. Upregulation of anti-thrombotic markers, TM and TPA, was mainly seen at higher SS. Cell elongation and alignment was observed for the different ECs at 10 and 30 dyne/cm2 while at lower SS cells maintained a random orientation. Downregulation of pro-inflammatory factors SELE, IL8, and VCAM1 and up-regulation of anti-oxidant markers NQO1 and HO1 was present even at SS for which cell alignment was not observed. Our results evidenced similarities in the response to flow among the different ECs, suggesting that the maintenance of the resting state in vitro is not dictated by the SS typical of the tissue of origin and that absence of flow-induced cell orientation does not necessarily correlate with a pro-inflammatory state of the ECs. These results support the use of ECs from easily accessible sources for in vitro vascular tissue engineering independently from the target vessel.
Collapse
Affiliation(s)
- Diana M Rojas-González
- Department of Biohybrid & Medical Textiles (BioTex) at Center of Biohybrid Medical Systems (CBMS), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, School of Engineering and Design and Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstr 15, 85748, Garching, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Petra Mela
- Department of Biohybrid & Medical Textiles (BioTex) at Center of Biohybrid Medical Systems (CBMS), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, School of Engineering and Design and Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstr 15, 85748, Garching, Germany.
| |
Collapse
|
4
|
Zeng X, Xue CD, Li YJ, Qin KR. A mathematical model for intracellular NO and ROS dynamics in vascular endothelial cells activated by exercise-induced wall shear stress. Math Biosci 2023; 359:109009. [PMID: 37086782 DOI: 10.1016/j.mbs.2023.109009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 04/24/2023]
Abstract
Vascular endothelial cells (ECs) residing in the innermost layer of blood vessels are exposed to dynamic wall shear stress (WSS) induced by blood flow. The intracellular nitric oxide (NO) and reactive oxygen species (ROS) in ECs modulated by the dynamic WSS play important roles in endothelial functions. Mathematical modeling is a popular methodology for biophysical studies. It can not only explain existing cell experiments, but also reveal the underlying mechanism. However, the previous mathematical models of NO dynamics in ECs are limited to the static WSS induced by constant flow, while arterial blood flow is a periodic pulsatile flow with varying amplitude and frequency at different exercise intensities. In this study, a mathematical model of intracellular NO and ROS dynamics activated by dynamic WSS based on the in vitro cell experiments is developed. With the hypothesis of the viscoelastic body, the Kelvin model is adopted to simulate the mechanosensors on EC. Thus, the NO dynamics activated by dynamic shear stresses induced by constant flow, pulsatile flow, and oscillatory flow are analyzed and compared. Moreover, the roles of ROS have been considered for the first time in the modeling of NO dynamics in ECs based on the analysis of cell experiments. The predictions of the proposed model coincide fairly well with the experimental data when ECs are subjected to exercise-induced WSS. The mechanism is elucidated that WSS induced by moderate-intensity exercise is most favorable to NO production in ECs. This study can provide valuable insights for further study of NO and ROS dynamics in ECs and help develop appropriate exercise regimens for improving endothelial functions.
Collapse
Affiliation(s)
- Xiao Zeng
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, Liaoning, PR China.
| | - Chun-Dong Xue
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, Liaoning, PR China.
| | - Yong-Jiang Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, Liaoning, PR China.
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, 116024, Liaoning, PR China.
| |
Collapse
|
5
|
Demos C, Johnson J, Andueza A, Park C, Kim Y, Villa-Roel N, Kang DW, Kumar S, Jo H. Sox13 is a novel flow-sensitive transcription factor that prevents inflammation by repressing chemokine expression in endothelial cells. Front Cardiovasc Med 2022; 9:979745. [PMID: 36247423 PMCID: PMC9561411 DOI: 10.3389/fcvm.2022.979745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and occurs preferentially in arterial regions exposed to disturbed blood flow (d-flow) while the stable flow (s-flow) regions are spared. D-flow induces endothelial inflammation and atherosclerosis by regulating endothelial gene expression partly through the flow-sensitive transcription factors (FSTFs). Most FSTFs, including the well-known Kruppel-like factors KLF2 and KLF4, have been identified from in vitro studies using cultured endothelial cells (ECs). Since many flow-sensitive genes and pathways are lost or dysregulated in ECs during culture, we hypothesized that many important FSTFs in ECs in vivo have not been identified. We tested the hypothesis by analyzing our recent gene array and single-cell RNA sequencing (scRNAseq) and chromatin accessibility sequencing (scATACseq) datasets generated using the mouse partial carotid ligation model. From the analyses, we identified 30 FSTFs, including the expected KLF2/4 and novel FSTFs. They were further validated in mouse arteries in vivo and cultured human aortic ECs (HAECs). These results revealed 8 FSTFs, SOX4, SOX13, SIX2, ZBTB46, CEBPβ, NFIL3, KLF2, and KLF4, that are conserved in mice and humans in vivo and in vitro. We selected SOX13 for further studies because of its robust flow-sensitive regulation, preferential expression in ECs, and unknown flow-dependent function. We found that siRNA-mediated knockdown of SOX13 increased endothelial inflammatory responses even under the unidirectional laminar shear stress (ULS, mimicking s-flow) condition. To understand the underlying mechanisms, we conducted an RNAseq study in HAECs treated with SOX13 siRNA under shear conditions (ULS vs. oscillatory shear mimicking d-flow). We found 94 downregulated and 40 upregulated genes that changed in a shear- and SOX13-dependent manner. Several cytokines, including CXCL10 and CCL5, were the most strongly upregulated genes in HAECs treated with SOX13 siRNA. The robust induction of CXCL10 and CCL5 was further validated by qPCR and ELISA in HAECs. Moreover, the treatment of HAECs with Met-CCL5, a specific CCL5 receptor antagonist, prevented the endothelial inflammation responses induced by siSOX13. In addition, SOX13 overexpression prevented the endothelial inflammation responses. In summary, SOX13 is a novel conserved FSTF, which represses the expression of pro-inflammatory chemokines in ECs under s-flow. Reduction of endothelial SOX13 triggers chemokine expression and inflammatory responses, a major proatherogenic pathway.
Collapse
Affiliation(s)
- Catherine Demos
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Janie Johnson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Aitor Andueza
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases. Pharmacol Ther 2022; 237:108257. [PMID: 35908611 DOI: 10.1016/j.pharmthera.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
|
7
|
Maldonado-Ortega DA, Martínez-Castañón G, Palestino G, Navarro-Tovar G, Gonzalez C. Two Methods of AuNPs Synthesis Induce Differential Vascular Effects. The Role of the Endothelial Glycocalyx. Front Med (Lausanne) 2022; 9:889952. [PMID: 35847820 PMCID: PMC9277019 DOI: 10.3389/fmed.2022.889952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
AuNPs are synthesized through several methods to tune their physicochemical properties. Although AuNPs are considered biocompatible, a change in morphology or properties can modify their biological impact. In this work, AuNPs (~12 to 16 nm) capping with either sodium citrate (CA) or gallic acid (GA) were evaluated in a rat aorta ex vivo model, which endothelial inner layer surface is formed by glycocalyx (hyaluronic acid, HA, as the main component), promoting vascular processes, most of them dependent on nitric oxide (NO) production. Results showed that contractile effects were more evident with AuNPsCA, while dilator effects predominated with AuNPsGA. Furthermore, treatments with AuNPsCA and AuNPsGA in the presence or absence of glycocalyx changed the NO levels, differently. This work contributes to understanding the biological effects of AuNPs with different capping agents, as well as the key role that of HA in the vascular effects induced by AuNPs in potential biomedical applications.
Collapse
Affiliation(s)
| | | | - Gabriela Palestino
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Centro de Investigacion en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
| | - Gabriela Navarro-Tovar
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Centro de Investigacion en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- Consejo Nacional de Ciencia y Tecnología, Benito Juarez, Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
- *Correspondence: Carmen Gonzalez
| |
Collapse
|
8
|
High stretch induces endothelial dysfunction accompanied by oxidative stress and actin remodeling in human saphenous vein endothelial cells. Sci Rep 2021; 11:13493. [PMID: 34188159 PMCID: PMC8242094 DOI: 10.1038/s41598-021-93081-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
The rate of the remodeling of the arterialized saphenous vein conduit limits the outcomes of coronary artery bypass graft surgery (CABG), which may be influenced by endothelial dysfunction. We tested the hypothesis that high stretch (HS) induces human saphenous vein endothelial cell (hSVEC) dysfunction and examined candidate underlying mechanisms. Our results showed that in vitro HS reduces NO bioavailability, increases inflammatory adhesion molecule expression (E-selectin and VCAM1) and THP-1 cell adhesion. HS decreases F-actin in hSVECs, but not in human arterial endothelial cells, and is accompanied by G-actin and cofilin’s nuclear shuttling and increased reactive oxidative species (ROS). Pre-treatment with the broad-acting antioxidant N-acetylcysteine (NAC) supported this observation and diminished stretch-induced actin remodeling and inflammatory adhesive molecule expression. Altogether, we provide evidence that increased oxidative stress and actin cytoskeleton remodeling play a role in HS-induced saphenous vein endothelial cell dysfunction, which may contribute to predisposing saphenous vein graft to failure.
Collapse
|
9
|
Thromboembolic Events in Patients With Left Ventricular Assist Devices Are Related to Microparticle-Induced Coagulation. ASAIO J 2021; 67:59-66. [PMID: 33346991 DOI: 10.1097/mat.0000000000001200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Thromboembolic events (TEs) are a feared complication in patients supported by a continuous-flow left ventricular assist device (LVAD). The aim of the study was to analyze the role of circulating microparticles (MPs) in activating the coagulation system in LVAD patients, which might contribute to the occurrence of TEs. First, we analyzed the effect of LVAD support on endothelial function, on the levels of endothelial MPs (EMPs) and platelet MPs (PMPs), and on the procoagulative activity of circulating MPs (measured as MP-induced thrombin formation) before LVAD implantation, post-implantation, and at a 3 month follow-up (n = 15). Second, these parameters were analyzed in 43 patients with ongoing LVAD support who were followed up for the occurrence of TEs in the following 12 months. In patients undergoing LVAD implantation, the levels of PMPs and MP-induced thrombin formation increased post-LVAD implantation. The flow-mediated vasodilation (FMD) decreased, while the levels of EMPs increased post-LVAD implantation. TEs occurred in eight patients with ongoing LVAD support despite adequate coagulation. The levels of PMPs and MP-induced thrombin formation were higher in LVAD patients with TEs than in LVAD patients without TEs and were independent predictors for the risk of TEs under LVAD support. As conclusion, implantation of LVAD enhanced MP-induced coagulation, which was independently associated with the occurrence of TEs. These parameters may serve in risk stratification for early transplantation and individualized modification of standard LVAD therapy.
Collapse
|
10
|
Lan Y, Dong M, Li Y, Diao Y, Chen Z, Li Y. SIRT1-induced deacetylation of Akt expedites platelet phagocytosis and delays HEMEC aging. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1323-1333. [PMID: 33717652 PMCID: PMC7920857 DOI: 10.1016/j.omtn.2021.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 01/20/2021] [Indexed: 12/25/2022]
Abstract
Maintaining the health of the endothelium is of critical importance to prevention against cell aging. The current study was performed to clarify the role of sirtuin1 (SIRT1) in platelet phagocytosis in cell aging and identified its downstream molecular mechanism. Platelet phagocytosis by human endometrial microvascular endothelial cells (HEMECs) was characterized by transmission electron and fluorescence microscopy. Functional experiments were conducted to examine platelet phagocytosis and cell aging using the overexpression or knockdown plasmids of SIRT1 and G alpha-interacting, vesicle-associated protein (GIRDIN) as well as Akt inhibitor and activator. It was found that SIRT1 facilitated platelet phagocytosis by HEMECs, contributing to inhibition of cell aging. Akt activation facilitated platelet phagocytosis and repressed cell aging. GIRDIN overexpression accelerated platelet phagocytosis by HEMECs, leading to a delay in cell aging. GIRDIN phosphorylation at Ser1417 was induced by Akt activation, while activation of Akt was induced by SIRT1-mediated deacetylation, consequently augmenting platelet phagocytosis and delaying cell aging. Taken together, SIRT1 delayed aging of HEMECs by deacetylating Akt, phosphorylating GIRDIN, and inducing platelet phagocytosis. The study highlights a possible target for the prevention of HEMEC aging.
Collapse
Affiliation(s)
- Yong Lan
- Department of Vascular Surgery, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing 100730, P.R. China
| | - Min Dong
- Department of Cardiology, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing 100730, P.R. China
| | - Yongjun Li
- Department of Vascular Surgery, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing 100730, P.R. China
| | - Yongpeng Diao
- Department of Vascular Surgery, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing 100730, P.R. China
| | - Zuoguang Chen
- Department of Vascular Surgery, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing 100730, P.R. China
| | - Yangfang Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| |
Collapse
|
11
|
Shimizu A, Goh WH, Itai S, Hashimoto M, Miura S, Onoe H. ECM-based microchannel for culturing in vitro vascular tissues with simultaneous perfusion and stretch. LAB ON A CHIP 2020; 20:1917-1927. [PMID: 32307467 DOI: 10.1039/d0lc00254b] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We present an extracellular matrix (ECM)-based stretchable microfluidic system for culturing in vitro three-dimensional (3D) vascular tissues, which mimics in vivo blood vessels. Human umbilical vein endothelial cells (HUVECs) can be cultured under perfusion and stretch simultaneously with real-time imaging by our proposed system. Our ECM (transglutaminase (TG) cross-linked gelatin)-based microchannel was fabricated by dissolving water-soluble sacrificial polyvinyl alcohol (PVA) molds printed with a 3D printer. Flows in the microchannel were analyzed under perfusion and stretch. We demonstrated simultaneous perfusion and stretch of TG gelatin-based microchannels culturing HUVECs. We suggest that our TG gelatin-based stretchable microfluidic system proves to be a useful tool for understanding the mechanisms of vascular tissue formation and mechanotransduction.
Collapse
Affiliation(s)
- Azusa Shimizu
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, 223-8522, Japan.
| | - Wei Huang Goh
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Shun Itai
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, 223-8522, Japan.
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore and Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore
| | - Shigenori Miura
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan
| | - Hiroaki Onoe
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, 223-8522, Japan. and Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, 223-8522, Japan
| |
Collapse
|
12
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
13
|
Liu J, Wada Y, Katsura M, Tozawa H, Erwin N, Kapron CM, Bao G, Liu J. Rho-Associated Coiled-Coil Kinase (ROCK) in Molecular Regulation of Angiogenesis. Am J Cancer Res 2018; 8:6053-6069. [PMID: 30613282 PMCID: PMC6299434 DOI: 10.7150/thno.30305] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Identified as a major downstream effector of the small GTPase RhoA, Rho-associated coiled-coil kinase (ROCK) is a versatile regulator of multiple cellular processes. Angiogenesis, the process of generating new capillaries from the pre-existing ones, is required for the development of various diseases such as cancer, diabetes and rheumatoid arthritis. Recently, ROCK has attracted attention for its crucial role in angiogenesis, making it a promising target for new therapeutic approaches. In this review, we summarize recent advances in understanding the role of ROCK signaling in regulating the permeability, migration, proliferation and tubulogenesis of endothelial cells (ECs), as well as its functions in non-ECs which constitute the pro-angiogenic microenvironment. The therapeutic potential of ROCK inhibitors in angiogenesis-related diseases is also discussed.
Collapse
|
14
|
Schwingshackl A. The role of stretch-activated ion channels in acute respiratory distress syndrome: finally a new target? Am J Physiol Lung Cell Mol Physiol 2016; 311:L639-52. [PMID: 27521425 DOI: 10.1152/ajplung.00458.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Mechanical ventilation (MV) and oxygen therapy (hyperoxia; HO) comprise the cornerstones of life-saving interventions for patients with acute respiratory distress syndrome (ARDS). Unfortunately, the side effects of MV and HO include exacerbation of lung injury by barotrauma, volutrauma, and propagation of lung inflammation. Despite significant improvements in ventilator technologies and a heightened awareness of oxygen toxicity, besides low tidal volume ventilation few if any medical interventions have improved ARDS outcomes over the past two decades. We are lacking a comprehensive understanding of mechanotransduction processes in the healthy lung and know little about the interactions between simultaneously activated stretch-, HO-, and cytokine-induced signaling cascades in ARDS. Nevertheless, as we are unraveling these mechanisms we are gathering increasing evidence for the importance of stretch-activated ion channels (SACs) in the activation of lung-resident and inflammatory cells. In addition to the discovery of new SAC families in the lung, e.g., two-pore domain potassium channels, we are increasingly assigning mechanosensing properties to already known Na(+), Ca(2+), K(+), and Cl(-) channels. Better insights into the mechanotransduction mechanisms of SACs will improve our understanding of the pathways leading to ventilator-induced lung injury and lead to much needed novel therapeutic approaches against ARDS by specifically targeting SACs. This review 1) summarizes the reasons why the time has come to seriously consider SACs as new therapeutic targets against ARDS, 2) critically analyzes the physiological and experimental factors that currently limit our knowledge about SACs, and 3) outlines the most important questions future research studies need to address.
Collapse
|
15
|
Palombo C, Kozakova M. Arterial stiffness, atherosclerosis and cardiovascular risk: Pathophysiologic mechanisms and emerging clinical indications. Vascul Pharmacol 2015; 77:1-7. [PMID: 26643779 DOI: 10.1016/j.vph.2015.11.083] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/25/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022]
Abstract
Arterial stiffness results from a degenerative process affecting mainly the extracellular matrix of elastic arteries under the effect of aging and risk factors. Changes in extracellular matrix proteins and in the mechanical properties of the vessel wall related to arterial stiffening may activate number of mechanisms involved also in the process of atherosclerosis. Several noninvasive methods are now available to estimate large artery stiffness in the clinical setting, including carotid-femoral pulse wave velocity, the reference for aortic stiffness estimate, and local distensibility measures of superficial arteries, namely carotid and femoral. An independent predictive value of arterial stiffness for cardiovascular events has been demonstrated in general as well as in selected populations, and reference values adjusted for age and blood pressure have been established. Thus, arterial stiffness is emerging as an interesting tissue biomarker for cardiovascular risk stratification and estimation of the individual "biological age". This paper overviews the mechanisms accounting for development and progression of arterial stiffness and for associations between arterial stiffness, atherosclerotic burden and incident cardiovascular events, summarizes the evidence and caveat for clinical use of stiffness as surrogate marker of cardiovascular risk, and briefly outlines some emerging methods for large artery stiffness characterization.
Collapse
Affiliation(s)
- Carlo Palombo
- Department of Surgical, Medical and Molecular Pathology and Critical Area Medicine, University of Pisa, Italy.
| | - Michaela Kozakova
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
16
|
Hyperglycemia-Induced Changes in Hyaluronan Contribute to Impaired Skin Wound Healing in Diabetes: Review and Perspective. Int J Cell Biol 2015; 2015:701738. [PMID: 26448756 PMCID: PMC4581551 DOI: 10.1155/2015/701738] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/01/2015] [Indexed: 02/06/2023] Open
Abstract
Ulcers and chronic wounds are a particularly common problem in diabetics and are associated with hyperglycemia. In this targeted review, we summarize evidence suggesting that defective wound healing in diabetics is causally linked, at least in part, to hyperglycemia-induced changes in the status of hyaluronan (HA) that resides in the pericellular coat (glycocalyx) of endothelial cells of small cutaneous blood vessels. Potential mechanisms through which exposure to high glucose levels causes a loss of the glycocalyx on the endothelium and accelerates the recruitment of leukocytes, creating a proinflammatory environment, are discussed in detail. Hyperglycemia also affects other cells in the immediate perivascular area, including pericytes and smooth muscle cells, through exposure to increased cytokine levels and through glucose elevations in the interstitial fluid. Possible roles of newly recognized, cross-linked forms of HA, and interactions of a major HA receptor (CD44) with cytokine/growth factor receptors during hyperglycemia, are also discussed.
Collapse
|
17
|
Liang W, Zhang W, Zhao S, Li Q, Yang Y, Liang H, Ceng R. A study of the ultrasound-targeted microbubble destruction based triplex-forming oligodexinucleotide delivery system to inhibit tissue factor expression. Mol Med Rep 2014; 11:903-9. [PMID: 25355395 PMCID: PMC4262506 DOI: 10.3892/mmr.2014.2822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
The efficiency of cellular uptake of triplex‑forming oligodexinucleotides (TFO), and the inhibition of tissue factor (TF) is low. The aim of the present study was to improve the absorption of TFO, and increase the inhibition of TF induced by shear stress both in vitro and in vivo, by using an ultrasound‑targeted microbubble destruction (UTMD)‑based delivery system. TFO‑conjugated lipid ultrasonic microbubbles (TFO‑M) were first constructed and characterised. The absorption of TFO was observed by a fluorescence‑based method, and the inhibition of TF by immunofluorescence and quantitative polymerase chain reaction. ECV304 human umbilical vein endothelial cells were subjected to fluid shear stress for 6 h after treatment with TFO conjugated lipid ultrasonic microbubbles without sonication (TFO‑M group); TFO alone; TFO conjugated lipid ultrasonic microbubbles, plus immediate sonication (TFO+U group and TFO‑M+U group); or mock treated with 0.9% NaCl only (SSRE group). The in vivo experiments were established in a similar manner to the in vitro experiments, except that TFO or TFO‑M was injected into rats through the tail vein. Six hours after the preparation of a carotid stenosis model, the rats were humanely sacrificed. The transfection efficiency of TFO in the TFO‑M+U group was higher as compared with the TFO‑M and TFO+U group (P<0.01). The protein and mRNA expression of TF in the TFO‑M+U group was significantly decreased both in vitro and in vivo (P<0.01), as compared with the TFO‑M, TFO+U and SSRE groups. The UTMD‑based TFO delivery system promoted the -absorption of TFO and the inhibition of TF, and was therefore considered to be favorable for preventing thrombosis induced by shear stress.
Collapse
Affiliation(s)
- Weihua Liang
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Weiwei Zhang
- Deparment of Neurology, General Hospital of Beijing PLA Military Region, Beijing 100700, P.R. China
| | - Shifu Zhao
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Qianning Li
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Yiming Yang
- Department of Internal Medicine, The Sixteenth Hospital of PLA, Altay, Xinjiang 836500, P.R. China
| | - Hua Liang
- Department of Internal Medicine, 66083 Clinic of Beijing Military Region, Beijing 102488, P.R. China
| | - Rongchuan Ceng
- Department of Neurology, Xinqiao Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
18
|
Deng Q, Huo Y, Luo J. Endothelial mechanosensors: the gatekeepers of vascular homeostasis and adaptation under mechanical stress. SCIENCE CHINA-LIFE SCIENCES 2014; 57:755-62. [PMID: 25104447 DOI: 10.1007/s11427-014-4705-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/05/2014] [Indexed: 01/27/2023]
Abstract
Endothelial cells (ECs) not only serve as a barrier between blood and extravascular space to modulate the exchange of fluid, macromolecules and cells, but also play a critical role in regulation of vascular homeostasis and adaptation under mechanical stimulus via intrinsic mechanotransduction. Recently, with the dissection of microdomains responsible for cellular responsiveness to mechanical stimulus, a lot of mechanosensing molecules (mechanosensors) and pathways have been identified in ECs. In addition, there is growing evidence that endothelial mechanosensors not only serve as key vascular gatekeepers, but also contribute to the pathogenesis of various vascular disorders. This review focuses on recent findings in endothelial mechanosensors in subcellular microdomains and their roles in regulation of physiological and pathological functions under mechanical stress.
Collapse
Affiliation(s)
- QiuPing Deng
- Laboratory of Vascular Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | | | | |
Collapse
|
19
|
A quinazoline-derivative compound with PARP inhibitory effect suppresses hypertension-induced vascular alterations in spontaneously hypertensive rats. Biochim Biophys Acta Mol Basis Dis 2014; 1842:935-44. [PMID: 24657811 DOI: 10.1016/j.bbadis.2014.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/25/2014] [Accepted: 03/11/2014] [Indexed: 02/07/2023]
Abstract
AIMS Oxidative stress and neurohumoral factors play important role in the development of hypertension-induced vascular remodeling, likely by disregulating kinase cascades and transcription factors. Oxidative stress activates poly(ADP-ribose)-polymerase (PARP-1), which promotes inflammation and cell death. We assumed that inhibition of PARP-1 reduces the hypertension-induced adverse vascular changes. This hypothesis was tested in spontaneously hypertensive rats (SHR). METHODS AND RESULTS Ten-week-old male SHRs and wild-type rats received or not 5mg/kg/day L-2286 (a water-soluble PARP-inhibitor) for 32 weeks, then morphological and functional parameters were determined in their aortas. L-2286 did not affect the blood pressure in any of the animal groups measured with tail-cuff method. Arterial stiffness index increased in untreated SHRs compared to untreated Wistar rats, which was attenuated by L-2286 treatment. Electron and light microscopy of aortas showed prominent collagen deposition, elevation of oxidative stress markers and increased PARP activity in SHR, which were attenuated by PARP-inhibition. L-2286 treatment decreased also the hypertension-activated mitochondrial cell death pathway, characterized by the nuclear translocation of AIF. Hypertension activated all three branches of MAP-kinases. L-2286 attenuated these changes by inducing the expression of MAPK phosphatase-1 and by activating the cytoprotective PI-3-kinase/Akt pathway. Hypertension activated nuclear factor-kappaB, which was prevented by PARP-inhibition via activating its nuclear export. CONCLUSION PARP-inhibition has significant vasoprotective effects against hypertension-induced vascular remodeling. Therefore, PARP-1 can be a novel therapeutic drug target for preventing hypertension-induced vascular remodeling in a group of patients, in whom lowering the blood pressure to optimal range is harmful or causes intolerable side effects.
Collapse
|
20
|
Glynos C, Athanasiou C, Kotanidou A, Korovesi I, Kaziani K, Livaditi O, Dimopoulou I, Maniatis NA, Tsangaris I, Roussos C, Armaganidis A, Orfanos SE. Preclinical pulmonary capillary endothelial dysfunction is present in brain dead subjects. Pulm Circ 2013; 3:419-25. [PMID: 24015344 PMCID: PMC3757838 DOI: 10.4103/2045-8932.113189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pulmonary endothelium is a major metabolic organ affecting pulmonary and systemic vascular homeostasis. Brain death (BD)-induced physiologic and metabolic derangements in donors’ lungs, in the absence of overt lung pathology, may cause pulmonary dysfunction and compromise post-transplant graft function. To explore the impact of BD on pulmonary endothelium, we estimated pulmonary capillary endothelium-bound (PCEB)-angiotensin converting enzyme (ACE) activity, a direct and quantifiable index of pulmonary endothelial function, in eight brain-dead patients and ten brain-injured mechanically ventilated controls. No subject suffered from acute lung injury or any other overt lung pathology. Applying indicator-dilution type techniques, we measured single-pass transpulmonary percent metabolism (%M) and hydrolysis (v) of the synthetic, biologically inactive, and highly specific for ACE substrate 3H-benzoyl-Phe-Ala-Pro, under first order reaction conditions, and calculated lung functional capillary surface area (FCSA). Substrate %M (35 ± 6.8%) and v (0.49 ± 0.13) in BD patients were decreased as compared to controls (55.9 ± 4.9, P = 0.033 and 0.9 ± 0.15, P = 0.033, respectively), denoting decreased pulmonary endothelial enzyme activity at the capillary level; FCSA, a reflection of endothelial enzyme activity per vascular bed, was also decreased (BD patients: 1,563 ± 562 mL/min vs 4,235 ± 559 in controls; P = 0.003). We conclude that BD is associated with subtle pulmonary endothelial injury, expressed by decreased PCEB-ACE activity. The applied indicator-dilution type technique provides direct and quantifiable indices of pulmonary endothelial function at the bedside that may reveal the existence of preclinical lung pathology in potential lung donors.
Collapse
Affiliation(s)
- Constantinos Glynos
- First Department of Critical Care and Pulmonary Services, Evangelismos Hospital, University of Athens Medical School, Athens, Greece ; G. P. Livanos and M. Simou Laboratories, Evangelismos Hospital, University of Athens Medical School, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Haase K, Pelling AE. Resiliency of the plasma membrane and actin cortex to large-scale deformation. Cytoskeleton (Hoboken) 2013; 70:494-514. [PMID: 23929821 DOI: 10.1002/cm.21129] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 01/05/2023]
Abstract
The tight coupling between the plasma membrane and actin cortex allows cells to rapidly change shape in response to mechanical cues and during physiological processes. Mechanical properties of the membrane are critical for organizing the actin cortex, which ultimately governs the conversion of mechanical information into signaling. The cortex has been shown to rapidly remodel on timescales of seconds to minutes, facilitating localized deformations and bundling dynamics that arise during the exertion of mechanical forces and cellular deformations. Here, we directly visualized and quantified the time-dependent deformation and recovery of the membrane and actin cortex of HeLa cells in response to externally applied loads both on- and off-nucleus using simultaneous confocal and atomic force microscopy. The local creep-like deformation of the membrane and actin cortex depends on both load magnitude and duration and does not appear to depend on cell confluency. The membrane and actin cortex rapidly recover their initial shape after prolonged loading (up to 10 min) with large forces (up to 20 nN) and high aspect ratio deformations. Cytoplasmic regions surrounding the nucleus are shown to be more resistant to long-term creep than nuclear regions. These dynamics are highly regulated by actomyosin contractility and an intact actin cytoskeleton. Results suggest that in response to local deformations, the nucleus does not appear to provide significant resistance or play a major role in cell shape recovery. The membrane and actin cortex clearly possess remarkable mechanical stability, critical for the transduction of mechanical deformation into long term biochemical signals and cellular remodeling.
Collapse
Affiliation(s)
- Kristina Haase
- Department of Physics, University of Ottawa, MacDonald Hall, 150 Louis Pasteur, Ottawa, Ontario, Canada
| | | |
Collapse
|
22
|
Effects of mechanical and chemical stimuli on differentiation of human adipose-derived stem cells into endothelial cells. Int J Artif Organs 2013; 36:663-73. [PMID: 23918273 DOI: 10.5301/ijao.5000242] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 12/24/2022]
Abstract
It has been hypothesized that application of the micromechanical environment that target cells experience in vivo enhances functionality of differentiated cells. Vascular endothelial cells, functioning at the interface of the blood-vessel wall, are vital to the performance of the cardiovascular system. They are subject to shear and tensile stresses induced by blood flow and pressure, respectively. This study investigated effects of shear/tensile stresses on endothelial differentiation of adipose-derived mesenchymal stem cells (ASCs) utilizing a custom-made bioreactor capable of applying both shear and tensile stresses. The loading values of 10% cyclic stretch, 0-2.5 dyn/cm² cyclic shear stress, and combined loadings were used. To examine the extent of mechanical and chemical stimuli in acquisition of endothelial characteristics by ASCs, the expression of three major endothelial genes were quantified when ASCs were treated by three loading regimes and endothelial growth factor for three different durations (1, 2, and 7 days). In general, cyclic stretch decreased expression of FLK-1 and vWF, while cyclic shear elevated expression levels. The combined loading regime had minor effects on the expression of the two markers. All types of loadings significantly enhanced the expression level of VE-cadherin with the most prominent increase by combined loading. It was concluded that applying different loading regimes assists in adjusting the expression level of endothelial markers to achieve functional endothelial cells for cardiovascular engineering.
Collapse
|
23
|
Soucy KG, Koenig SC, Giridharan GA, Sobieski MA, Slaughter MS. Defining pulsatility during continuous-flow ventricular assist device support. J Heart Lung Transplant 2013; 32:581-7. [DOI: 10.1016/j.healun.2013.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 01/18/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022] Open
|
24
|
Shu W, jing J, Fu LC, Min JT, Bo YX, Ying Z, Dai CY. The relationship between diastolic pressure and coronary collateral circulation in patients with stable angina pectoris and chronic total occlusion. Am J Hypertens 2013; 26:630-5. [PMID: 23391622 DOI: 10.1093/ajh/hps096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The most important biomechanical source of activation of the coronary collateral circulation (CCC) is increased tangential fluid shear stress at the arterial endothelial surface. The coronary circulation is unique in that most coronary blood flow occurs in diastole. Consequently, the diastolic blood pressure (DBP) may influence the tangential fluid shear stress on the arterial endothelial surface in diastole, therebyaffecting development of the CCC. METHODS To investigate this, we conducted a study of 222 patients with stable angina pectoris and chronic total occlusion of coronary arteries. All of the patients had no history of coronary artery interventional therapy, coronary artery bypass surgery, cardiomyopathy, or congenital heart disease. The extent of the collateral vasculature of the area perfused by the artery affected by chronic total occlusion was graded as poor or well-developed according to Rentrop's classification. RESULTS Univariate analysis showed a significant difference between the study subgroup with poorly developed collaterals and that with well-developed collaterals in terms of high diastolic blood pressure (DBP) and mean DBP. Multivariate analysis revealed high DBP as the only independent positive predictor of a well-developed collateral circulation. CONCLUSIONS High DBP is positively related to a well-developed CCC. Differences in development of the CCC may be one of the pathophysiologic mechanisms responsible for the J-curve phenomenon in the relationship between DBP and cardiovascular risk.
Collapse
Affiliation(s)
- Wang Shu
- The Cardiovascular Medical Department of the General Hospital of the Chinese People's Liberation Army, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Sutton JT, Haworth KJ, Pyne-Geithman G, Holland CK. Ultrasound-mediated drug delivery for cardiovascular disease. Expert Opin Drug Deliv 2013; 10:573-92. [PMID: 23448121 DOI: 10.1517/17425247.2013.772578] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Ultrasound (US) has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. These effects can be mediated by mechanical oscillations of circulating microbubbles, or US contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi or direct drugs to optimal locations for delivery. AREAS COVERED The present review summarizes investigations that have provided evidence for US-mediated drug delivery as a potent method to deliver therapeutics to diseased tissue for cardiovascular treatment. In particular, the focus will be on investigations of specific aspects relating to US-mediated drug delivery, such as delivery vehicles, drug transport routes, biochemical mechanisms and molecular targeting strategies. EXPERT OPINION These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery and new US technologies. Successful implementation of US-mediated drug delivery has the potential to change the way many drugs are administered systemically, resulting in more effective and economical therapeutics, and less-invasive treatments.
Collapse
Affiliation(s)
- Jonathan T Sutton
- University of Cincinnati, College of Medicine, Internal Medicine, Division of Cardiovascular Diseases, and Biomedical Engineering Program, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
26
|
Long J, Junkin M, Wong PK, Hoying J, Deymier P. Calcium wave propagation in networks of endothelial cells: model-based theoretical and experimental study. PLoS Comput Biol 2012; 8:e1002847. [PMID: 23300426 PMCID: PMC3531288 DOI: 10.1371/journal.pcbi.1002847] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 11/05/2012] [Indexed: 01/06/2023] Open
Abstract
In this paper, we present a combined theoretical and experimental study of the propagation of calcium signals in multicellular structures composed of human endothelial cells. We consider multicellular structures composed of a single chain of cells as well as a chain of cells with a side branch, namely a “T” structure. In the experiments, we investigate the result of applying mechano-stimulation to induce signaling in the form of calcium waves along the chain and the effect of single and dual stimulation of the multicellular structure. The experimental results provide evidence of an effect of architecture on the propagation of calcium waves. Simulations based on a model of calcium-induced calcium release and cell-to-cell diffusion through gap junctions shows that the propagation of calcium waves is dependent upon the competition between intracellular calcium regulation and architecture-dependent intercellular diffusion. Calcium wave signal has been found in a wide variety of cell types. Over the last years, a large number of calcium experiments have shown that calcium signal is not only an intracellular regulator but is also able to be transmitted to surrounding cells as intercellular signal. This paper focuses on the development of an approach with complementary integration of theoretical and experimental methods for studying the multi-level interactions in multicellular architectures and their effect on collective cell dynamic behavior. We describe new types of higher-order (across structure) behaviors arising from lower-order (within cells) phenomena, and make predictions concerning the mechanisms underlying the dynamics of multicellular biological systems. The theoretical approach describes numerically the dynamics of non-linear behavior of calcium-based signaling in model networks of cells. Microengineered, geometrically constrained networks of human umbilical vein endothelial cells (HUVEC) serve as platforms to arbitrate the theoretical predictions in terms of the effect of network topology on the spatiotemporal characteristics of emerging calcium signals.
Collapse
Affiliation(s)
- Juexuan Long
- Material Science and Engineering, University of Arizona, Tucson, Arizona, United States of America.
| | | | | | | | | |
Collapse
|
27
|
Cui X, Zhang X, Guan X, Li H, Li X, Lu H, Cheng M. Shear stress augments the endothelial cell differentiation marker expression in late EPCs by upregulating integrins. Biochem Biophys Res Commun 2012; 425:419-25. [PMID: 22846566 DOI: 10.1016/j.bbrc.2012.07.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/20/2012] [Indexed: 11/19/2022]
Abstract
Vascular endothelial cell injury has been implicated in the onset of atherosclerosis. A number of previous studies have demonstrated that endothelial progenitor cells (EPCs), in particular late EPCs, play important roles in endothelial maintenance and repair. Recent evidence has revealed shear stress as a key regulator for EPC differentiation. However, the detailed events that contribute to the shear stress-induced EPC differentiation, in particular the mechanisms of mechanotransduction, remain to be identified. The present study was undertaken to further confirm the effects of shear stress on the late EPC differentiation, and to investigate the role of integrins in this procedure. Shear stress was observed to increase the expression of endothelial cell differentiation markers, such as vWF and CD31, in late EPCs isolated from rat bone marrow. Shear stress moreover enhanced the mRNA expression of integrin subunits β(1) and β(3) in a time-dependent manner, and also upregulated specific integrins in late EPCs plated on substrates containing various extracellular matrix (ECM) proteins. In addition, the shear stress-induced vWF and CD31 expression were found to be related to the levels of integrin β(1) and β(3), and were inhibited in late EPCs treated with RGD peptide (Gly-Arg-Gly-Asp-Asn-Pro, GRGDNP) that blocks the binding of integrins to the extracellular matrix. Additionally, this increase was also attenuated by both anti-β(1) integrin and anti-β(3) integrin antibodies. The integrin subunits β(1) and β(3) thus play important roles in regulating the shear stress-induced endothelial cell differentiation marker expression in late EPCs. This may provide novel insights into the mechanisms of mechanotransduction in shear stress-mediated late EPC differentiation.
Collapse
Affiliation(s)
- Xiaodong Cui
- Medicine Research Center, Weifang Medical College, Weifang, Shandong 261053, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Shear stress plays a critical role in the regulation of vascular biology and diseases, such as atherosclerosis, via modulation of signal transduction and redox balance. Atherosclerosis preferentially occurs in a site-specific manner linked to disturbed flow. In this Forum on Vascular Shear Stress, emerging role of redox-dependent molecular mechanisms by which shear stress regulates pro- and antiatherogenic responses in endothelial cells both in vitro and in vivo are reviewed in depth by experts. This Forum also provides comprehensive reviews regarding experimental apparatus and in vivo, ex vivo, and in vitro systems used for shear stress studies.
Collapse
Affiliation(s)
- Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia
- Department of Bioinspired Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|
29
|
Callies C, Fels J, Liashkovich I, Kliche K, Jeggle P, Kusche-Vihrog K, Oberleithner H. Membrane potential depolarization decreases the stiffness of vascular endothelial cells. J Cell Sci 2011; 124:1936-42. [PMID: 21558418 DOI: 10.1242/jcs.084657] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The stiffness of vascular endothelial cells is crucial to mechanically withstand blood flow and, at the same time, to control deformation-dependent nitric oxide release. However, the regulation of mechanical stiffness is not yet understood. There is evidence that a possible regulator is the electrical plasma membrane potential difference. Using a novel technique that combines fluorescence-based membrane potential recordings with atomic force microscopy (AFM)-based stiffness measurements, the present study shows that membrane depolarization is associated with a decrease in the stiffness of endothelial cells. Three different depolarization protocols were applied, all of which led to a similar and significant decrease in cell stiffness, independently of changes in cell volume. Moreover, experiments using the actin-destabilizing agent cytochalasin D indicated that depolarization acts by affecting the cortical actin cytoskeleton. A model is proposed whereby a change of the electrical field across the plasma membrane is directly sensed by the submembranous actin network, regulating the actin polymerization:depolymerization ratio and thus cell stiffness. This depolarization-induced decrease in the stiffness of endothelial cells could play a role in flow-mediated nitric-oxide-dependent vasodilation.
Collapse
Affiliation(s)
- Chiara Callies
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Matsushita E, Asai N, Enomoto A, Kawamoto Y, Kato T, Mii S, Maeda K, Shibata R, Hattori S, Hagikura M, Takahashi K, Sokabe M, Murakumo Y, Murohara T, Takahashi M. Protective role of Gipie, a Girdin family protein, in endoplasmic reticulum stress responses in endothelial cells. Mol Biol Cell 2011; 22:736-47. [PMID: 21289099 PMCID: PMC3057699 DOI: 10.1091/mbc.e10-08-0724] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/12/2011] [Accepted: 01/18/2011] [Indexed: 12/18/2022] Open
Abstract
Continued exposure of endothelial cells to mechanical/shear stress elicits the unfolded protein response (UPR), which enhances intracellular homeostasis and protect cells against the accumulation of improperly folded proteins. Cells commit to apoptosis when subjected to continuous and high endoplasmic reticulum (ER) stress unless homeostasis is maintained. It is unknown how endothelial cells differentially regulate the UPR. Here we show that a novel Girdin family protein, Gipie (78 kDa glucose-regulated protein [GRP78]-interacting protein induced by ER stress), is expressed in endothelial cells, where it interacts with GRP78, a master regulator of the UPR. Gipie stabilizes the interaction between GRP78 and the ER stress sensor inositol-requiring protein 1 (IRE1) at the ER, leading to the attenuation of IRE1-induced c-Jun N-terminal kinase (JNK) activation. Gipie expression is induced upon ER stress and suppresses the IRE1-JNK pathway and ER stress-induced apoptosis. Furthermore we found that Gipie expression is up-regulated in the neointima of carotid arteries after balloon injury in a rat model that is known to result in the induction of the UPR. Thus our data indicate that Gipie/GRP78 interaction controls the IRE1-JNK signaling pathway. That interaction appears to protect endothelial cells against ER stress-induced apoptosis in pathological contexts such as atherosclerosis and vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Etsushi Matsushita
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Naoya Asai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
- Institute for Advanced Research, Nagoya University, Nagoya 464–8601, Japan
| | - Yoshiyuki Kawamoto
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487–8501, Japan
| | - Takuya Kato
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Kengo Maeda
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Shun Hattori
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Minako Hagikura
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Ken Takahashi
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
- International Cooperative Research Project/Solution Oriented Research for Science and Technology, Cell Mechanosensing, Japan Science and Technology Agency, Nagoya 466–8550, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
- International Cooperative Research Project/Solution Oriented Research for Science and Technology, Cell Mechanosensing, Japan Science and Technology Agency, Nagoya 466–8550, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466–8550, Japan
| |
Collapse
|
31
|
Sugimura K, Fukumoto Y, Nawata J, Wang H, Onoue N, Tada T, Shirato K, Shimokawa H. Hypertension promotes phosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 in rats: implication for the pathogenesis of hypertensive vascular disease. TOHOKU J EXP MED 2011; 222:201-10. [PMID: 21068519 DOI: 10.1620/tjem.222.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atherosclerosis is initiated by adhesion and infiltration of inflammatory leukocytes into the intima, where non-receptor protein tyrosine kinases, such as focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2), play important roles as intracellular messengers of mechanical and biochemical signals. In the present study, we examined whether FAK and PYK2 are up-regulated by elevated blood pressure or circulating humoral factors in hypertension. We used a rat model of abdominal aortic banding that allows separate evaluation of elevated blood pressure (upper body) and circulating humoral factors (lower body). We obtained the proximal and distal aortas of the banding site, 6 hours, 3 days, and 1 and 4 weeks after the banding procedure, for evaluation of phosphorylation of FAK and PYK2 by Western blotting. Arterial pressure was significantly elevated only in the upper body throughout the experimental period. The expression of FAK and the FAK phosphorylation were significantly increased at 1 and 4 weeks only in the proximal aorta. This was also the case for the expression of total PYK2 and the PYK2 phosphorylation. In contrast, there was no significant change in FAK or PYK2 phosphorylation in the distal aorta, whereas plasma levels of angiotensin II were systemically elevated. In sham-operated rats, no change in FAK or PYK2 phoshorylation was noted in the proximal and distal aortas. These results indicate that phosphorylation of FAK and PYK2 is upregulated by elevated blood pressure but not by humoral factors in the rat aorta, demonstrating novel aspects of atherogenesis in hypertension.
Collapse
Affiliation(s)
- Koichiro Sugimura
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chan SY, Loscalzo J. Pulmonary vascular disease related to hemodynamic stress in the pulmonary circulation. Compr Physiol 2011; 1:123-39. [PMID: 23737167 PMCID: PMC3730284 DOI: 10.1002/cphy.c090004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hemodynamic stress in the pulmonary vessel is directly linked to the development of vascular remodeling and dysfunction, ultimately leading to pulmonary hypertension. Recently, some advances have been made in our molecular understanding of the exogenous upstream stimuli that initiate hemodynamic pertubations as well as the downstream vasoactive effectors that control these responses. However, much still remains unknown regarding how these complex signaling pathways connect in order to result in these characteristic pathophysiological changes. This chapter will describe our current understanding of and needed areas of research into the clinical, physiological, and molecular changes associated with pressure/volume overload in the pulmonary circulation.
Collapse
Affiliation(s)
- Stephen Y. Chan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Zeng Y, Sun HR, Yu C, Lai Y, Liu XJ, Wu J, Chen HQ, Liu XH. CXCR1 and CXCR2 are novel mechano-sensors mediating laminar shear stress-induced endothelial cell migration. Cytokine 2011; 53:42-51. [DOI: 10.1016/j.cyto.2010.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 07/29/2010] [Accepted: 09/28/2010] [Indexed: 11/16/2022]
|
34
|
Abstract
Biochemical patterning and morphogenetic movements coordinate the design of embryonic development. The molecular processes that pattern and closely control morphogenetic movements are today becoming well understood. Recent experimental evidence demonstrates that mechanical cues generated by morphogenesis activate mechanotransduction pathways, which in turn regulate cytoskeleton remodeling, cell proliferation, tissue differentiation. From Drosophila oocytes and embryos to Xenopus and mouse embryos and Arabidopsis meristem, here we review the developmental processes known to be activated in vivo by the mechanical strains associated to embryonic multicellular tissue morphogenesis. We describe the genetic, mechanical, and magnetic tools that have allowed the testing of mechanical induction in development by a step-by-step uncoupling of genetic inputs from mechanical inputs in embryogenesis. We discuss the known underlying molecular mechanisms involved in such mechanotransduction processes, including the Armadillo/β-catenin activation of Twist and the Fog-dependent stabilization of Myosin-II. These mechanotransduction processes are associated with a variety of physiological functions, such as mid-gut differentiation, mesoderm invagination and skeletal joint differentiation in embryogenesis, cell migration and internal pressure regulation during oogenesis, and meristem morphogenesis. We describe how the conservation of associated mechanosensitive pathways in embryonic and adult tissues opens new perspectives on mechanical involvement, potentially in evolution, and in cancer progression.
Collapse
Affiliation(s)
- Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, Paris, France
| |
Collapse
|
35
|
Abstract
In the body, cells encounter a complex milieu of signals, including topographical cues, in the form of the physical features of their surrounding environment. Imposed topography can affect cells on surfaces by promoting adhesion, spreading, alignment, morphological changes, and changes in gene expression. Neural response to topography is complex, and it depends on the dimensions and shapes of physical features. Looking toward repair of nerve injuries, strategies are being explored to engineer guidance conduits with precise surface topographies. How neurons and other cell types sense and interpret topography remains to be fully elucidated. Studies reviewed here include those of topography on cellular organization and function as well as potential cellular mechanisms of response.
Collapse
Affiliation(s)
- Diane Hoffman-Kim
- Center for Biomedical Engineering and Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
36
|
Cheng Z, Tan FPP, Riga CV, Bicknell CD, Hamady MS, Gibbs RGJ, Wood NB, Xu XY. Analysis of flow patterns in a patient-specific aortic dissection model. J Biomech Eng 2010; 132:051007. [PMID: 20459208 DOI: 10.1115/1.4000964] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aortic dissection is the most common acute catastrophic event affecting the thoracic aorta. The majority of patients presenting with an uncomplicated type B dissection are treated medically, but 25% of these patients develop subsequent aneurysmal dilatation of the thoracic aorta. This study aimed at gaining more detailed knowledge of the flow phenomena associated with this condition. Morphological features and flow patterns in a dissected aortic segment of a presurgery type B dissection patient were analyzed based on computed tomography images acquired from the patient. Computational simulations of blood flow in the patient-specific model were performed by employing a correlation-based transitional version of Menter's hybrid k-epsilon/k-omega shear stress transport turbulence model implemented in ANSYS CFX 11. Our results show that the dissected aorta is dominated by locally highly disturbed, and possibly turbulent, flow with strong recirculation. A significant proportion (about 80%) of the aortic flow enters the false lumen, which may further increase the dilatation of the aorta. High values of wall shear stress have been found around the tear on the true lumen wall, perhaps increasing the likelihood of expanding the tear. Turbulence intensity in the tear region reaches a maximum of 70% at midsystolic deceleration phase. Incorporating the non-Newtonian behavior of blood into the same transitional flow model has yielded a slightly lower peak wall shear stress and higher maximum turbulence intensity without causing discernible changes to the distribution patterns. Comparisons between the laminar and turbulent flow simulations show a qualitatively similar distribution of wall shear stress but a significantly higher magnitude with the transitional turbulence model.
Collapse
Affiliation(s)
- Z Cheng
- Department of Chemical Engineering, Imperial College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Spiguel LRP, Chandiwal A, Vosicky JE, Weichselbaum RR, Skelly CL. Concomitant proliferation and caspase-3 mediated apoptosis in response to low shear stress and balloon injury. J Surg Res 2010; 161:146-55. [PMID: 19482308 PMCID: PMC2906117 DOI: 10.1016/j.jss.2008.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/28/2008] [Accepted: 11/03/2008] [Indexed: 12/28/2022]
Abstract
BACKGROUND Arterial remodeling occurs as a response to hemodynamic change and direct vessel wall injury through the process of neointimal hyperplasia (NH). A concomitant response of vascular smooth muscle cell (VSMC) proliferation and apoptosis exists. The purpose of this study is to assess the cellular response of vessels following exposure to low shear stress (tau) and balloon injury in order to further elucidate the mechanisms underlying vascular injury. Our hypothesis is that the combination of low tau and balloon injury results in NH approximating that seen in clinical arterial restenosis, and that quantitative analysis of VSMC proliferation and apoptosis correlates with the associated increase in arterial remodeling. METHODS AND RESULTS New Zealand White rabbits underwent surgery on the carotid artery creating low tau (n =11), balloon injury (n = 11), combined low tau and balloon injury (n =11), and sham (n = 13) groups. Experiments were terminated at 1, 3, and 28 d. Day 1 and 3 arteries were analyzed with immunohistochemistry for apoptotic markers, terminal transferase dUTP nick end labeling (TUNEL), and activated caspase-3, and a cellular proliferation marker, accumulated proliferating cell nuclear antigen (PCNA), as well as immunoblot analysis for activated caspase-3 and PCNA at day 3. There was significantly greater apoptosis in the combined group as compared with the other groups assessed by quantitative TUNEL and activated caspase-3 levels at both days 1 and 3. Similarly, an increase in cellular proliferation assessed by PCNA expression, was significantly greater in the combined group as compared with the other groups. At 28 d there was no difference in NH observed in the low tau (26 +/- 3 microm) and balloon injury (51 +/- 17 microm) groups. However, significantly more NH was observed in the combined group (151 +/- 35 microm) as compared with the other groups. CONCLUSIONS An increase in VSMC apoptosis via a caspase-3 dependent pathway is up-regulated by 24 h in the face of combined low shear stress and balloon-induced vessel wall injury. Paradoxically, this increase in VSMC apoptosis is associated with a significant increase in neointimal thickening at 28 d. The concomitant increase of both apoptosis and proliferation are indicative of a robust arterial remodeling response.
Collapse
Affiliation(s)
- Lisa R P Spiguel
- Section of Vascular Surgery, Department of Surgery, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
38
|
Mechanisms for osteogenic differentiation of human mesenchymal stem cells induced by fluid shear stress. Biomech Model Mechanobiol 2010; 9:659-70. [DOI: 10.1007/s10237-010-0206-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 03/02/2010] [Indexed: 12/19/2022]
|
39
|
Mechanotransduction by TRP Channels: General Concepts and Specific Role in the Vasculature. Cell Biochem Biophys 2009; 56:1-18. [DOI: 10.1007/s12013-009-9067-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Kumagai R, Lu X, Kassab GS. Role of glycocalyx in flow-induced production of nitric oxide and reactive oxygen species. Free Radic Biol Med 2009; 47:600-7. [PMID: 19500664 PMCID: PMC2744202 DOI: 10.1016/j.freeradbiomed.2009.05.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 05/02/2009] [Accepted: 05/30/2009] [Indexed: 10/20/2022]
Abstract
Although the glycocalyx has been implicated in wall shear stress (WSS) mechanotransduction, the role of glycocalyx components in nitric oxide (NO) and reactive oxygen species (ROS) production remains unclear. Here, we tested the hypothesis that glycocalyx is implicated in both endothelial NO and O(2)(-) production. Specifically, we evaluated the role of hyaluronic acid (HA), heparan sulfate (HS), and sialic acid (SA) in NO and O(2)(-) mechanotransduction. Twenty-seven ex vivo porcine superficial femoral arteries were incubated with heparinase III, hyaluronidase, or neuraminidase, to remove HS, HA, or SA, respectively, from glycocalyx. The arteries were then subjected to steady-state flow and the effluent solution was measured for nitrites and the vessel diameter was tracked to quantify the degree of vasodilation. Our results show that removal of HA decreased both nitrites and vasodilation, and tempol treatment had no reversing effect. Degradation of HS proteoglycans decreased NO bioavailability through an increase in O(2)(-) production as indicated by fluorescent signals of dihydroethidium (DHE) and its area fraction (209+/-24% increase) and also removed extracellular O(2)(-) dismutase (ecSOD) (67+/-9% decrease). The removal of SA also increased O(2)(-) production as indicated by DHE fluorescent signals (86+/-17% increase) and the addition of tempol, a mimic O(2)(-) scavenger, restored both NO availability and vasodilation in both heparinase- and neuraminidase-treated vessels. This implies that HS and SA are not directly involved in WSS-mediated NO production. This study implicates HA in WSS-mediated NO mechanotransduction and underscores the role of HS and SA in ROS regulation in vessel walls in response to WSS stimulation.
Collapse
Affiliation(s)
- Robert Kumagai
- Department of Biomedical Engineering, Surgery and Cellular and Integrative Physiology, IUPUI, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
41
|
Popescu DP, Sowa MG. Characteristics of time-domain optical coherence tomography profiles generated from blood–saline mixtures. Phys Med Biol 2009; 54:4759-75. [DOI: 10.1088/0031-9155/54/15/008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Abstract
Blood vessels respond to changes in mechanical load from circulating blood in the form of shear stress and mechanical strain as the result of heart propulsions by changes in intracellular signaling leading to changes in vascular tone, production of vasoactive molecules, and changes in vascular permeability, gene regulation, and vascular remodeling. In addition to hemodynamic forces, microvasculature in the lung is also exposed to stretch resulting from respiratory cycles during autonomous breathing or mechanical ventilation. Among various cell signaling pathways induced by mechanical forces and reported to date, a role of reactive oxygen species (ROS) produced by vascular cells receives increasing attention. ROS play an essential role in signal transduction and physiologic regulation of vascular function. However, in the settings of chronic hypertension, inflammation, or acute injury, ROS may trigger signaling events that further exacerbate smooth muscle hypercontractility and vascular remodeling associated with hypertension and endothelial barrier dysfunction associated with acute lung injury and pulmonary edema. These conditions are also characterized by altered patterns of mechanical stimulation experienced by vasculature. This review will discuss signaling pathways regulated by ROS and mechanical stretch in the pulmonary and systemic vasculature and will summarize functional interactions between cyclic stretch- and ROS-induced signaling in mechanochemical regulation of vascular structure and function.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
43
|
Matlung HL, Bakker ENTP, VanBavel E. Shear stress, reactive oxygen species, and arterial structure and function. Antioxid Redox Signal 2009; 11:1699-709. [PMID: 19186981 DOI: 10.1089/ars.2008.2408] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Shear stress is well known to be a key factor in the regulation of small-artery tone and structure. Although nitric oxide is a major endothelium-derived factor involved in short- and long-term regulation of vascular caliber, it is clear that other mechanisms also can be involved. This review discusses the evidence for endothelium-derived reactive oxygen species (ROS) as mediators for shear-dependent arterial tone and remodeling. The work focuses on resistance vessels, because their caliber determines local perfusion. However, work on large vessels is included where needed. Attention is given to the shear-stress levels and profiles that exist in the arterial system and the differential effects of steady and oscillating shear on NO and ROS production. We furthermore address the relation between microvascular tone and remodeling and the effect of ROS and inflammation on the activity of remodeling enzymes such as matrix metalloproteinases and transglutaminases. We conclude that future work should address the role of H(2)O(2) as an endothelium-derived factor mediating tone and influencing structure of small arteries over the long term.
Collapse
Affiliation(s)
- Hanke L Matlung
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
44
|
Abstract
To reach sites of inflammation, neutrophils execute a series of adhesion and migration events that include transmigration through the vascular endothelium and chemotaxis through the vicinal extracellular matrix until contact is made with the point of injury or infection. These in vivo microenvironments differ in their mechanical properties. Using polyacrylamide gels of physiologically relevant elasticity in the range of 5 to 100 kPa and coated with fibronectin, we tested how neutrophil adhesion, spreading, and migration were affected by substrate stiffness. Neutrophils on the softest gels showed only small changes in spread area, whereas on the stiffest gels they showed a 3-fold increase. During adhesion and migration, the magnitudes of the distortions induced in the gel substrate were independent of substrate stiffness, corresponding to the generation of significantly larger traction stresses on the stiffer gels. Cells migrated more slowly but more persistently on stiffer substrates, which resulted in neutrophils moving greater distances over time despite their slower speeds. The largest tractions were localized to the posterior of migrating neutrophils and were independent of substrate stiffness. Finally, the phosphatidylinositol 3-kinase inhibitor LY294002 obviated the ability to sense substrate stiffness, suggesting that phosphatidylinositol 3-kinase plays a mechanistic role in neutrophil mechanosensing.
Collapse
|
45
|
Shear stress-induced transcriptional regulation via hybrid promoters as a potential tool for promoting angiogenesis. Angiogenesis 2009; 12:231-42. [PMID: 19322670 DOI: 10.1007/s10456-009-9143-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 03/13/2009] [Indexed: 10/21/2022]
Abstract
Among the key effects of fluid shear stress on vascular endothelial cells is modulation of gene expression. Promoter sequences termed shear stress response elements (SSREs) mediate the responsiveness of endothelial genes to shear stress. While previous studies showed that shear stress responsiveness is mediated by a single SSRE, these endogenous promoters often encode for multiple SSREs. Moreover, hybrid promoters encoding a single SSRE rarely respond to shear stress at the same magnitude as the endogenous promoter. Thus, to better understand the interplay between the various SSREs, and between SSREs and endothelial-specific sequences (ESS), we generated a series of constructs regulated by SSREs cassettes alone, or in combination with ESS, and tested their response to shear stress and endothelial specific expression. Among these constructs, the most responsive promoter (NR1/2) encoded a combination of two GAGACC/SSREs, the Sp1/Egr1 sequence, as well as a TPA response element (TRE). This construct was four- to five-fold more responsive to shear stress than a promoter encoding a single SSRE. The expression of constructs containing other SSRE combinations was unaffected or suppressed by shear stress. Addition of ESS derived from the Tie2 promoter, either 5' or 3' to NR1/2 resulted in shear stress transcriptional suppression, yet retained endothelial specific expression. Thus, the combination and localization order of the various SSREs in a single promoter is crucial in determining the pattern and degree of shear stress responsiveness. These shear stress responsive cassettes may prove beneficial in our attempt to time the expression of an endothelial transgene in the vasculature.
Collapse
|
46
|
Coronary Artery WSS Profiling Using a Geometry Reconstruction Based on Biplane Angiography. Ann Biomed Eng 2009; 37:682-91. [DOI: 10.1007/s10439-009-9656-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 02/10/2009] [Indexed: 11/25/2022]
|
47
|
Vascular control in humans: focus on the coronary microcirculation. Basic Res Cardiol 2009; 104:211-27. [PMID: 19190954 DOI: 10.1007/s00395-009-0775-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/15/2008] [Indexed: 12/27/2022]
Abstract
Myocardial perfusion is regulated by a variety of factors that influence arteriolar vasomotor tone. An understanding of the physiological and pathophysiological factors that modulate coronary blood flow provides the basis for the judicious use of medications for the treatment of patients with coronary artery disease. Vasomotor properties of the coronary circulation vary among species. This review highlights the results of recent studies that examine the mechanisms by which the human coronary microcirculation is regulated in normal and disease states, focusing on diabetes. Multiple pathways responsible for myogenic constriction and flow-mediated dilation in human coronary arterioles are addressed. The important role of endothelium-derived hyperpolarizing factors, their interactions in mediating dilation, as well as speculation regarding the clinical significance are emphasized. Unique properties of coronary arterioles in human vs. other species are discussed.
Collapse
|
48
|
Abstract
Proteins play essential roles in all aspects of cellular processes, such as biosynthesis, division, growth, motility, metabolism, signaling, and transmission of genetic information. Proteins, however, could deform under mechanical forces, thus altering their biological functions. Here we present protein deformation as a possible molecular basis for mechanosensing and mechanotransduction, elucidate the important features of protein mechanics including protein deformation mode and dynamics, illustrate how protein deformation could alter biological function, and describe the important roles of protein deformation in force-sensing, force transducing and mechanochemical coupling in cells. The experimental and modeling challenges in protein mechanics are discussed.
Collapse
Affiliation(s)
- G Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA, e-mail:
| |
Collapse
|
49
|
Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, Higashida R, Smith WS, Young WL, Saloner D. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 2008; 39:2997-3002. [PMID: 18688012 DOI: 10.1161/strokeaha.108.521617] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Evolution of intracranial aneurysmal disease is known to be related to hemodynamic forces acting on the vessel wall. Low wall shear stress (WSS) has been reported to have a negative effect on endothelial cells normal physiology and may be an important contributor to local remodeling of the arterial wall and to aneurysm growth and rupture. METHODS Seven patient-specific models of intracranial aneurysms were constructed using MR angiography data acquired at two different time points (mean 16.4+/-7.4 months between the two time points). Numeric simulations of the flow in the baseline geometries were performed to compute WSS distributions. The lumenal geometries constructed from the two time points were manually coregistered, and the radial displacement of the wall was calculated on a pixel-by-pixel basis. This displacement, corresponding to the local growth of the aneurysm, was compared to the time-averaged wall shear stress (WSS TA) through the cardiac cycle at that location. For statistical analysis, radial displacement was considered to be significant if it was larger than half of the MR pixel resolution (0.3 mm). RESULTS Mean WSS TA values obtained for the areas with a displacement smaller and greater than 0.3 mm were 2.55+/-3.6 and 0.76+/-1.5 Pa, respectively (P<0.001). A linear correlation analysis demonstrated a significant relationship between WSS TA and surface displacement (P<0.001). CONCLUSIONS These results indicate that aneurysm growth is likely to occur in regions where the endothelial layer lining the vessel wall is exposed to abnormally low wall shear stress.
Collapse
Affiliation(s)
- Loic Boussel
- Department of Radiology, VA Medical Center, San Francisco, USA 94121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Living cells and tissues experience mechanical forces in their physiological environments that are known to affect many cellular processes. Also of importance are the mechanical properties of cells, as well as the microforces generated by cellular processes themselves in their microenvironments. The difficulty associated with studying these phenomena in vivo has led to alternatives such as using in vitro models. The need for experimental techniques for investigating cellular biomechanics and mechanobiology in vitro has fueled an evolution in the technology used in these studies. Particularly noteworthy are some of the new biomicroelectromechanical systems (Bio-MEMS) devices and techniques that have been introduced to the field. We describe some of the cellular micromechanical techniques and methods that have been developed for in vitro studies, and provide summaries of the ranges of measured values of various biomechanical quantities. We also briefly address some of our experiences in using these methods and include modifications we have introduced in order to improve them.
Collapse
Affiliation(s)
- Kweku A Addae-Mensah
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37232 USA
| | - John P Wikswo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232 USA
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37232 USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232 USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| |
Collapse
|