1
|
Yi F, Wang J, Lin M, Li B, Han S, Wang S, Jin Y, Hu N, Chen Y, Shang X. Correspondence between white matter hyperintensities and regional grey matter volumes in Alzheimer's disease. Front Aging Neurosci 2024; 16:1429098. [PMID: 39351014 PMCID: PMC11439820 DOI: 10.3389/fnagi.2024.1429098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Objective White matter hyperintensities (WMH) are the most common neuroimaging manifestation of cerebral small vessel disease, and is frequently observed in Alzheimer's disease (AD). This study aimed to investigate the relationship between WMH and cognition and to verify the mediation of grey matter atrophy in this relationship. Methods The diffusion tensor imaging (DTI) technique analyses white matter fiber tract to assess white matter integrity. Voxel-based morphometry was applied to measure the grey matter volume (GMV). A linear regression model was applied to examine the associations between WMH and GMV, and mediation analyses was performed to determine the mediating role of regional GMV in the effect of WMH on cognitive function. Results Compared to the HC group, AD group have 8 fiber tract fractional anisotropy (FA) decreased and 16 fiber tract mean diffusivity (MD) increased. Compared to AD without WMH, AD with high WMH had 9 fiber tracts FA decreased and 13 fiber tracts MD increased. High WMH volume was negatively correlated with GMV in the frontal-parietal region. Low WMH volume was also negatively correlated with GMV except for the three regions (right angular gyrus, right superior frontal gyrus and right middle/inferior parietal gyrus), where GMV was positively correlated. Mediation analysis showed that the association between WMH and executive function or episodic memory were mediated by GMV in the frontal-parietal region. Conclusion Damage to white matter integrity was more severe in AD with WMH. Differential changes in DTI metrics may be caused by progressive myelin and axonal damage. There was a negative correlation between WMH and grey matter atrophy in frontal-parietal regions in a volume-dependent manner. This study indicates the correspondence between WMH volume and GMV in cognition, and GMV being a key modulator between WMH and cognition in AD. This result will contribute to understanding the progression of the disease process and applying targeted therapeutic intervention in the earlier stage to delay neurodegenerative changes in frontal-parietal regions to achieve better treatment outcomes and affordability.
Collapse
Affiliation(s)
- Fangyuan Yi
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Neurology, Jin Qiu Hospital of Liaoning Province (Geriatric Hospital of Liaoning Province), Shenyang, China
| | - Jirui Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Meiqing Lin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Baizhu Li
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shiyu Han
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shan Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingbin Jin
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ning Hu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yutong Chen
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Kohler K, Macheda T, Hobbs MM, Maisel MT, Rodriguez A, Farris L, Wessel CR, Infantino C, Niedowicz DM, Helman AM, Beckett TL, Unrine JM, Murphy MP. Exposure to Lead in Drinking Water Causes Cognitive Impairment via an Alzheimer's Disease Gene-Dependent Mechanism in Adult Mice. J Alzheimers Dis 2024; 100:S291-S304. [PMID: 39121129 DOI: 10.3233/jad-240640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background Exposure to lead (Pb) is a major public health problem that could occur through contaminated soil, air, food, or water, either during the course of everyday life, or while working in hazardous occupations. Although Pb has long been known as a neurodevelopmental toxicant in children, a recent and growing body of epidemiological research indicates that cumulative, low-level Pb exposure likely drives age-related neurologic dysfunction in adults. Environmental Pb exposure in adulthood has been linked to risk of late-onset Alzheimer's disease (AD) and dementia. Objective Although the biological mechanism underlying this link is unknown, it has been proposed that Pb exposure may increase the risk of AD via altering the expression of AD-related genes and, possibly, by activating the molecular pathways underlying AD-related pathology. Methods We investigated Pb exposure using a line of genetically modified mice with AD-causing knock-in mutations in the amyloid precursor protein and presenilin 1 (APPΔNL/ΔNL x PS1P264L/P264L) that had been crossed with Leprdb/db mice to impart vulnerability to vascular pathology. Results Our data show that although Pb exposure in adult mice impairs cognitive function, this effect is not related to either an increase in amyloid pathology or to changes in the expression of common AD-related genes. Pb exposure also caused a significant increase in blood pressure, a well known effect of Pb. Interestingly, although the increase in blood pressure was unrelated to genotype, only mice that carried AD-related mutations developed cognitive dysfunction, in spite of showing no significant change in cerebrovascular pathology. Conclusions These results raise the possibility that the increased risk of dementia associated with Pb exposure in adults may be tied to its subsequent interaction with either pre-existing or developing AD-related neuropathology.
Collapse
Affiliation(s)
- Katharina Kohler
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Teresa Macheda
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Misty M Hobbs
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - M Tyler Maisel
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Antonela Rodriguez
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Lindsey Farris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Caitlin R Wessel
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - Dana M Niedowicz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Alex M Helman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Tina L Beckett
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky Martin-Gatton College of Agriculture, Food, and Environment, Lexington, KY, USA
- Kentucky Water Research Institute, University of Kentucky, Lexington, KY, USA
| | - M Paul Murphy
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Kentucky Water Research Institute, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
3
|
Cai J, Xie D, Kong F, Zhai Z, Zhu Z, Zhao Y, Xu Y, Sun T. Effect and Mechanism of Rapamycin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. J Alzheimers Dis 2024; 99:53-84. [PMID: 38640155 DOI: 10.3233/jad-231249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Alzheimer's disease (AD), the most common form of dementia, remains long-term and challenging to diagnose. Furthermore, there is currently no medication to completely cure AD patients. Rapamycin has been clinically demonstrated to postpone the aging process in mice and improve learning and memory abilities in animal models of AD. Therefore, rapamycin has the potential to be significant in the discovery and development of drugs for AD patients. Objective The main objective of this systematic review and meta-analysis was to investigate the effects and mechanisms of rapamycin on animal models of AD by examining behavioral indicators and pathological features. Methods Six databases were searched and 4,277 articles were retrieved. In conclusion, 13 studies were included according to predefined criteria. Three authors independently judged the selected literature and methodological quality. Use of subgroup analyses to explore potential mechanistic effects of rapamycin interventions: animal models of AD, specific types of transgenic animal models, dosage, and periodicity of administration. Results The results of Morris Water Maze (MWM) behavioral test showed that escape latency was shortened by 15.60 seconds with rapamycin therapy, indicating that learning ability was enhanced in AD mice; and the number of traversed platforms was increased by 1.53 times, indicating that the improved memory ability significantly corrected the memory deficits. CONCLUSIONS Rapamycin therapy reduced age-related plaque deposition by decreasing AβPP production and down-regulating β-secretase and γ-secretase activities, furthermore increased amyloid-β clearance by promoting autophagy, as well as reduced tau hyperphosphorylation by up-regulating insulin-degrading enzyme levels.
Collapse
Affiliation(s)
- Jie Cai
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanjing Kong
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhenwei Zhai
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhishan Zhu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yanru Zhao
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Sun
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Banerjee S, Banerjee S. Amyloid Beta-Mediated Neurovascular Toxicity in Alzheimer's Disease. Methods Mol Biol 2024; 2761:355-372. [PMID: 38427250 DOI: 10.1007/978-1-0716-3662-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The brain vascular system receives one-fifth of the total oxygen from the cardiac output, and this transport system is highly dependent on blood-brain barrier (BBB) integrity. The cerebral blood flow is controlled by neurovascular coupling through neurovascular units (NVUs). The NVU includes different types of cells, such as mural cells, astrocytes, pericytes, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs). The cellular composition of NVU varies throughout the vascular tree. Amyloid β (Aβ) is abundantly present in the central nervous system, but the pathological accumulation of misfolded Aβ protein causes vascular damage, resulting in neurovascular dysfunction. Aβ aggregation can activate the astrocytes and endothelial cells. It is followed by pericyte degeneration which results in dysregulation of cerebral blood flow (CBF), neurovascular uncoupling, and BBB breakdown. Thus, understanding the cellular and molecular mechanisms of Aβ-induced neurovascular toxicity is crucial for determining normal and diseased brain function. This chapter discusses the components of NVU, neurovascular uncoupling, Aβ-induced cerebrovascular reactivity, and cerebral blood flow reduction in neurodegenerative disorders, with special emphasis on Alzheimer's disease.
Collapse
Affiliation(s)
- Sayani Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
5
|
Lin J, Ou R, Li C, Hou Y, Zhang L, Wei Q, Liu K, Jiang Q, Yang T, Xiao Y, Pang D, Zhao B, Chen X, Yang J, Shang H. Evolution and Predictive Role of Plasma Alzheimer's Disease-related Pathological Biomarkers in Parkinson's Disease. J Gerontol A Biol Sci Med Sci 2023; 78:2203-2213. [PMID: 37560912 DOI: 10.1093/gerona/glad189] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 08/11/2023] Open
Abstract
Plasma Alzheimer's disease-related pathological biomarkers' role in Parkinson's disease (PD) remains unknown. We aimed to determine whether plasma Alzheimer's disease-related biomarkers can predict PD progression. A total of 184 PD patients and 86 healthy controls were included and followed up for 5 years. Plasma phosphorylated tau181 (p-tau181), Aβ40, and Aβ42 were measured at baseline and the 1- and 2-year follow-ups using the Quanterix-single-molecule array. Global cognitive function and motor symptoms were assessed using the Montreal Cognitive Assessment and Unified Parkinson's Disease Rating Scale part III. Genetic analyses were conducted to identify APOE and MAPT genotypes. Plasma p-tau181 levels were higher in PD than healthy controls. APOE-ε4 carriers had lower plasma Aβ42 levels and Aβ42/Aβ40 ratio. The linear mixed-effects models showed that Montreal Cognitive Assessment scores were associated with plasma p-tau181/Aβ42 ratio (β -1.719 [-3.398 to -0.040], p = .045). Higher baseline plasma p-tau181 correlated with faster cognitive decline and motor symptoms deterioration in total patients (β -0.170 [-0.322 to -0.018], p = .029; β 0.329 [0.032 to 0.626], p = .030) and APOE-ε4 carriers (β -0.318 [-0.602 to -0.034], p = .030; β 0.632 [0.017 to 1.246], p = .046), but not in the noncarriers. Higher baseline plasma Aβ40 correlated with faster cognitive decline in total patients (β -0.007 [-0.015 to -0.0001], p = .047) and faster motor symptoms deterioration in total patients (β 0.026 [0.010 to 0.041], p = .001) and APOE-ε4 carriers (β 0.044 [-0.026 to 0.049], p = .020), but not in the noncarriers. The plasma p-tau181/Aβ2 ratio monitors the cognitive status of PD. Higher baseline plasma p-tau181 and Aβ40 predict faster cognitive decline and motor symptoms deterioration in PD, especially in APOE-ε4 carriers.
Collapse
Affiliation(s)
- Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Jeong H, Pan Y, Akhter F, Volkow ND, Zhu D, Du C. Impairment of cerebral vascular reactivity and resting blood flow in early-staged transgenic AD mice: in vivo optical imaging studies. RESEARCH SQUARE 2023:rs.3.rs-3579916. [PMID: 37987006 PMCID: PMC10659553 DOI: 10.21203/rs.3.rs-3579916/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder with progressive cognitive decline in aging individuals that poses a significant challenge to patients due to an incomplete understanding of its etiology and lack of effective interventions. While "the Amyloid Cascade Hypothesis," the abnormal accumulation of amyloid-β in the brain, has been the most prevalent theory for AD, mounting evidence from clinical and epidemiological studies suggest that defects in cerebral vessels and hypoperfusion appear prior to other pathological manifestations and might contribute to AD, leading to "the Vascular Hypothesis." However, assessment of structural and functional integrity of the cerebral vasculature in vivo in the brain from AD rodent models has been challenging owing to the limited spatiotemporal resolution of conventional imaging technologies. Methods We employed two in vivo imaging technologies, i.e., Dual-Wavelength Imaging (DWI) and Optical Coherence Tomography (OCT), to evaluate cerebrovascular reactivity (CVR; responsiveness of blood vessels to vasoconstriction as triggered by cocaine) in a relatively large field of view of the cortex in vivo, and 3D quantitative cerebrovascular blood flow (CBF) imaging in living transgenic AD mice at single vessel resolution. Results Our results showed significantly impaired CVR and reduced CBF in basal state in transgenic AD mice compared to non-transgenic littermates in an early stage of AD progression. Changes in total hemoglobin (Δ[HbT]) in response to vasoconstriction were significantly attenuated in AD mice, especially in arteries and tissue, and the recovery time of Δ[HbT] after vasoconstriction was shorter for AD than WT in all types of vessels and cortical tissue, thereby indicating hypoperfusion and reduced vascular flexibility. Additionally, our 3D OCT images revealed that CBF velocities in arteries were slower and that the microvascular network was severely disrupted in the brain of AD mice. Conclusions These results suggest significant vascular impairment in basal CBF and dynamic CVR in the neurovascular network in a rodent model of AD at an early stage of the disease. These cutting-edge in vivo optical imaging tools offer an innovative venue for detecting early neurovascular dysfunction in relation to AD pathology and pave the way for clinical translation of early diagnosis and elucidation of AD pathogenesis in the future.
Collapse
Affiliation(s)
- Hyomin Jeong
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20857, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
7
|
Carballo Á, López-Dequidt I, Custodia A, Botelho J, Aramburu-Núñez M, Machado V, Pías-Peleteiro JM, Ouro A, Romaus-Sanjurjo D, Vázquez-Vázquez L, Jiménez-Martín I, Aguiar P, Rodríguez-Yáñez M, Aldrey JM, Blanco J, Castillo J, Sobrino T, Leira Y. Association of periodontitis with cognitive decline and its progression: Contribution of blood-based biomarkers of Alzheimer's disease to this relationship. J Clin Periodontol 2023; 50:1444-1454. [PMID: 37584311 DOI: 10.1111/jcpe.13861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
AIM To assess whether periodontitis is associated with cognitive decline and its progression as well as with certain blood-based markers of Alzheimer's disease. MATERIALS AND METHODS Data from a 2-year follow-up prospective cohort study (n = 101) was analysed. Participants with a previous history of hypertension and aged ≥60 years were included in the analysis. All of them received a full-mouth periodontal examination and cognitive function assessments (Addenbrooke's Cognitive Examination (ACE) and Mini-Mental State Examination [MMSE]). Plasma levels of amyloid beta (Aβ)1-40 , Aβ1-42 , phosphorylated and total Tau (p-Tau and t-Tau) were determined at baseline, 12 and 24 months. RESULTS Periodontitis was associated with poor cognitive performance (MMSE: β = -1.5 [0.6]) and progression of cognitive impairment (hazard ratio [HR] = 1.8; 95% confidence interval: 1.0-3.1). Subjects with periodontitis showed greater baseline levels of p-Tau (1.6 [0.7] vs. 1.2 [0.2] pg/mL, p < .001) and Aβ1-40 (242.1 [77.3] vs. 208.2 [73.8] pg/mL, p = .036) compared with those without periodontitis. Concentrations of the latter protein also increased over time only in the periodontitis group (p = .005). CONCLUSIONS Periodontitis is associated with cognitive decline and its progression in elderly patients with a previous history of hypertension. Overexpression of p-Tau and Aβ1-40 may play a role in this association.
Collapse
Affiliation(s)
- Álvaro Carballo
- Periodontology Unit, Faculty of Odontology and Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Stroke Unit, Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Antía Custodia
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - João Botelho
- Periodontology Department and Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz - Cooperativa de Ensino Superior, Caparica, Portugal
| | - Marta Aramburu-Núñez
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Vanessa Machado
- Periodontology Department and Evidence-Based Hub, Clinical Research Unit, Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz - Cooperativa de Ensino Superior, Caparica, Portugal
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
- Dementia Unit, Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Laura Vázquez-Vázquez
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Isabel Jiménez-Martín
- Dementia Unit, Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Pablo Aguiar
- Molecular Imaging Group, Department of Radiology, Faculty of Medicine and Center for Research In Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Nuclear Medicine Department and Molecular Imaging Group, University Clinical Hospital, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - José Manuel Aldrey
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
- Dementia Unit, Neurology Department, University Clinical Hospital, Santiago de Compostela, Spain
| | - Juan Blanco
- Periodontology Unit, Faculty of Odontology and Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL) Group, Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Yago Leira
- Periodontology Unit, Faculty of Odontology and Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINC), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital, Santiago de Compostela, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Jaime Garcia D, Chagnot A, Wardlaw JM, Montagne A. A Scoping Review on Biomarkers of Endothelial Dysfunction in Small Vessel Disease: Molecular Insights from Human Studies. Int J Mol Sci 2023; 24:13114. [PMID: 37685924 PMCID: PMC10488088 DOI: 10.3390/ijms241713114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Small vessel disease (SVD) is a highly prevalent disorder of the brain's microvessels and a common cause of dementia as well as ischaemic and haemorrhagic strokes. Though much about the underlying pathophysiology of SVD remains poorly understood, a wealth of recently published evidence strongly suggests a key role of microvessel endothelial dysfunction and a compromised blood-brain barrier (BBB) in the development and progression of the disease. Understanding the causes and downstream consequences associated with endothelial dysfunction in this pathological context could aid in the development of effective diagnostic and prognostic tools and provide promising avenues for potential therapeutic interventions. In this scoping review, we aim to summarise the findings from clinical studies examining the role of the molecular mechanisms underlying endothelial dysfunction in SVD, focussing on biochemical markers of endothelial dysfunction detectable in biofluids, including cell adhesion molecules, BBB transporters, cytokines/chemokines, inflammatory markers, coagulation factors, growth factors, and markers involved in the nitric oxide cascade.
Collapse
Affiliation(s)
- Daniela Jaime Garcia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (D.J.G.); (J.M.W.)
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Audrey Chagnot
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (D.J.G.); (J.M.W.)
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Axel Montagne
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; (D.J.G.); (J.M.W.)
- UK Dementia Research Institute, University of Edinburgh, Edinburgh EH16 4SB, UK;
| |
Collapse
|
9
|
Wang N, Yang X, Zhao Z, Liu D, Wang X, Tang H, Zhong C, Chen X, Chen W, Meng Q. Cooperation between neurovascular dysfunction and Aβ in Alzheimer's disease. Front Mol Neurosci 2023; 16:1227493. [PMID: 37654789 PMCID: PMC10466809 DOI: 10.3389/fnmol.2023.1227493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
The amyloid-β (Aβ) hypothesis was once believed to represent the pathogenic process of Alzheimer's disease (AD). However, with the failure of clinical drug development and the increasing understanding of the disease, the Aβ hypothesis has been challenged. Numerous recent investigations have demonstrated that the vascular system plays a significant role in the course of AD, with vascular damage occurring prior to the deposition of Aβ and neurofibrillary tangles (NFTs). The question of how Aβ relates to neurovascular function and which is the trigger for AD has recently come into sharp focus. In this review, we outline the various vascular dysfunctions associated with AD, including changes in vascular hemodynamics, vascular cell function, vascular coverage, and blood-brain barrier (BBB) permeability. We reviewed the most recent findings about the complicated Aβ-neurovascular unit (NVU) interaction and highlighted its vital importance to understanding disease pathophysiology. Vascular defects may lead to Aβ deposition, neurotoxicity, glial cell activation, and metabolic dysfunction; In contrast, Aβ and oxidative stress can aggravate vascular damage, forming a vicious cycle loop.
Collapse
Affiliation(s)
- Niya Wang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiang Yang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong Zhao
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Da Liu
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xiaoyan Wang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hao Tang
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Chuyu Zhong
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xinzhang Chen
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wenli Chen
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qiang Meng
- Department of Neurology, The First People’s Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
10
|
Walek KW, Stefan S, Lee JH, Puttigampala P, Kim AH, Park SW, Marchand PJ, Lesage F, Liu T, Huang YWA, Boas DA, Moore C, Lee J. Near-lifespan longitudinal tracking of brain microvascular morphology, topology, and flow in male mice. Nat Commun 2023; 14:2982. [PMID: 37221202 DOI: 10.1038/s41467-023-38609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
In age-related neurodegenerative diseases, pathology often develops slowly across the lifespan. As one example, in diseases such as Alzheimer's, vascular decline is believed to onset decades ahead of symptomology. However, challenges inherent in current microscopic methods make longitudinal tracking of such vascular decline difficult. Here, we describe a suite of methods for measuring brain vascular dynamics and anatomy in mice for over seven months in the same field of view. This approach is enabled by advances in optical coherence tomography (OCT) and image processing algorithms including deep learning. These integrated methods enabled us to simultaneously monitor distinct vascular properties spanning morphology, topology, and function of the microvasculature across all scales: large pial vessels, penetrating cortical vessels, and capillaries. We have demonstrated this technical capability in wild-type and 3xTg male mice. The capability will allow comprehensive and longitudinal study of a broad range of progressive vascular diseases, and normal aging, in key model systems.
Collapse
Affiliation(s)
- Konrad W Walek
- Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
| | - Sabina Stefan
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Jang-Hoon Lee
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | | | - Anna H Kim
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Seong Wook Park
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Paul J Marchand
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Frederic Lesage
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Tao Liu
- Department of Biostatistics, Brown University School of Public Health, Providence, RI, 02912, USA
| | - Yu-Wen Alvin Huang
- Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - David A Boas
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Christopher Moore
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA
| | - Jonghwan Lee
- School of Engineering, Brown University, Providence, RI, 02912, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
11
|
Brain region-specific myelinogenesis is not directly linked to amyloid-β in APP/PS1 transgenic mice. Exp Neurol 2023; 362:114344. [PMID: 36736651 DOI: 10.1016/j.expneurol.2023.114344] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is characterized by aggregating amyloid beta-protein (Aβ). Recent evidence has shown that insufficient myelinogenesis contributes to AD-related functional deficits. However, it remains unclear whether Aβ, in either plaque or soluble form, could alter myelinogenesis in AD brains. By cell-lineage tracing and labeling, we found both myelinogenesis and Aβ deposits displayed a region-specific pattern in the 13-month-old APP/PS1 transgenic mouse brains. Aβ plaques cause focal demyelination, but only about 15% Aβ plaques are closely associated with newly formed myelin in the APP/PS1 brains. Further, the Aβ plaque total area and the amount of new myelin are not linearly correlated across different cortical regions, suggesting that Aβ plaques induce demyelination but may not exclusively trigger remyelination. To understand the role of soluble Aβ in regulating myelinogenesis, we chose to observe the visual system, wherein soluble Aβ is detectable but without the presence of Aβ plaques in the APP/PS1 retina, optic nerve, and optic tract. Interestingly, newly-formed myelin density was not significantly altered in the APP/PS1 optic nerves and optic tracts as compared to the wildtype controls, suggesting soluble Aβ probably does not change myelinogenesis. Further, treatment of purified oligodendrocyte precursor cells (OPCs) with soluble Aβ (oligomers) for 48 h did not change the cell densities of MBP positive cells and PDGFRα positive OPCs in vitro. Consistently, injection of soluble Aβ into the lateral ventricles did not alter myelinogenesis in the corpus callosum of NG2-CreErt; Tau-mGFP mice significantly. Together, these findings indicate that the region-dependent myelinogenesis in AD brains is not directly linked to Aβ, but rather probably a synergic result in adapting to AD pathology.
Collapse
|
12
|
Briyal S, Ranjan AK, Gulati A. Oxidative stress: A target to treat Alzheimer's disease and stroke. Neurochem Int 2023; 165:105509. [PMID: 36907516 DOI: 10.1016/j.neuint.2023.105509] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Oxidative stress has been established as a well-known pathological condition in several neurovascular diseases. It starts with increased production of highly oxidizing free-radicals (e.g. reactive oxygen species; ROS and reactive nitrogen species; RNS) and becomes too high for the endogenous antioxidant system to neutralize them, which results in a significantly disturbed balance between free-radicals and antioxidants levels and causes cellular damage. A number of studies have evidently shown that oxidative stress plays a critical role in activating multiple cell signaling pathways implicated in both progression as well as initiation of neurological diseases. Therefore, oxidative stress continues to remain a key therapeutic target for neurological diseases. This review discusses the mechanisms involved in reactive oxygen species (ROS) generation in the brain, oxidative stress, and pathogenesis of neurological disorders such as stroke and Alzheimer's disease (AD) and the scope of antioxidant therapies for these disorders.
Collapse
Affiliation(s)
- Seema Briyal
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Amaresh K Ranjan
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA
| | - Anil Gulati
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA; Pharmazz Inc. Research and Development, Willowbrook, IL, USA
| |
Collapse
|
13
|
Tayler HM, MacLachlan R, Güzel Ö, Miners JS, Love S. Elevated late-life blood pressure may maintain brain oxygenation and slow amyloid-β accumulation at the expense of cerebral vascular damage. Brain Commun 2023; 5:fcad112. [PMID: 37113314 PMCID: PMC10128877 DOI: 10.1093/braincomms/fcad112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Hypertension in midlife contributes to cognitive decline and is a modifiable risk factor for dementia. The relationship between late-life hypertension and dementia is less clear. We have investigated the relationship of blood pressure and hypertensive status during late life (after 65 years) to post-mortem markers of Alzheimer's disease (amyloid-β and tau loads); arteriolosclerosis and cerebral amyloid angiopathy; and to biochemical measures of ante-mortem cerebral oxygenation (the myelin-associated glycoprotein:proteolipid protein-1 ratio, which is reduced in chronically hypoperfused brain tissue, and the level of vascular endothelial growth factor-A, which is upregulated by tissue hypoxia); blood-brain barrier damage (indicated by an increase in parenchymal fibrinogen); and pericyte content (platelet-derived growth factor receptor β, which declines with pericyte loss), in Alzheimer's disease (n = 75), vascular (n = 20) and mixed dementia (n = 31) cohorts. Systolic and diastolic blood pressure measurements were obtained retrospectively from clinical records. Non-amyloid small vessel disease and cerebral amyloid angiopathy were scored semiquantitatively. Amyloid-β and tau loads were assessed by field fraction measurement in immunolabelled sections of frontal and parietal lobes. Homogenates of frozen tissue from the contralateral frontal and parietal lobes (cortex and white matter) were used to measure markers of vascular function by enzyme-linked immunosorbent assay. Diastolic (but not systolic) blood pressure was associated with the preservation of cerebral oxygenation, correlating positively with the ratio of myelin-associated glycoprotein to proteolipid protein-1 and negatively with vascular endothelial growth factor-A in both the frontal and parietal cortices. Diastolic blood pressure correlated negatively with parenchymal amyloid-β in the parietal cortex. In dementia cases, elevated late-life diastolic blood pressure was associated with more severe arteriolosclerosis and cerebral amyloid angiopathy, and diastolic blood pressure correlated positively with parenchymal fibrinogen, indicating blood-brain barrier breakdown in both regions of the cortex. Systolic blood pressure was related to lower platelet-derived growth factor receptor β in controls in the frontal cortex and in dementia cases in the superficial white matter. We found no association between blood pressure and tau. Our findings demonstrate a complex relationship between late-life blood pressure, disease pathology and vascular function in dementia. We suggest that hypertension helps to reduce cerebral ischaemia (and may slow amyloid-β accumulation) in the face of increasing cerebral vascular resistance, but exacerbates vascular pathology.
Collapse
Affiliation(s)
- Hannah M Tayler
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, BS10 5NB, UK
| | - Robert MacLachlan
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, BS10 5NB, UK
| | - Özge Güzel
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, BS10 5NB, UK
| | - J Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, Bristol Medical School, University of Bristol, Bristol, BS10 5NB, UK
| | - Seth Love
- Correspondence to: Seth Love South West Dementia Brain Bank, University of Bristol Learning & Research Level 1, Southmead Hospital, Bristol, BS10 5NB, UK E-mail:
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Amyloid beta (Aβ) plaque accumulation is a hallmark pathology contributing to Alzheimer's disease (AD) and is widely hypothesized to lead to cognitive decline. Decades of research into anti-Aβ immunotherapies provide evidence for increased Aβ clearance from the brain; however, this is frequently accompanied by complicated vascular deficits. This article reviews the history of anti-Aβ immunotherapies and clinical findings and provides recommendations moving forward. RECENT FINDINGS In 20 years of both animal and human studies, anti-Aβ immunotherapies have been a prevalent avenue of reducing hallmark Aβ plaques. In both models and with different anti-Aβ antibody designs, amyloid-related imaging abnormalities (ARIA) indicating severe cerebrovascular compromise have been common and concerning occurrence. ARIA caused by anti-Aβ immunotherapy has been noted since the early 2000s, and the mechanisms driving it are still unknown. Recent approval of aducanumab comes with renewed urgency to consider vascular deficits caused by anti-Aβ immunotherapy.
Collapse
Affiliation(s)
- Kate E Foley
- Sanders-Brown Center On Aging, Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Sanders-Brown Center On Aging, Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
15
|
Taylor HA, Przemylska L, Clavane EM, Meakin PJ. BACE1: More than just a β-secretase. Obes Rev 2022; 23:e13430. [PMID: 35119166 PMCID: PMC9286785 DOI: 10.1111/obr.13430] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023]
Abstract
β-site amyloid precursor protein cleaving enzyme-1 (BACE1) research has historically focused on its actions as the β-secretase responsible for the production of β-amyloid beta, observed in Alzheimer's disease. Although the greatest expression of BACE1 is found in the brain, BACE1 mRNA and protein is also found in many cell types including pancreatic β-cells, adipocytes, hepatocytes, and vascular cells. Pathologically elevated BACE1 expression in these cells has been implicated in the development of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease. In this review, we examine key questions surrounding the BACE1 literature, including how is BACE1 regulated and how dysregulation may occur in disease, and understand how BACE1 regulates metabolism via cleavage of a myriad of substrates. The phenotype of the BACE1 knockout mice models, including reduced weight gain, increased energy expenditure, and enhanced leptin signaling, proposes a physiological role of BACE1 in regulating energy metabolism and homeostasis. Taken together with the weight loss observed with BACE1 inhibitors in clinical trials, these data highlight a novel role for BACE1 in regulation of metabolic physiology. Finally, this review aims to examine the possibility that BACE1 inhibitors could provide a innovative treatment for obesity and its comorbidities.
Collapse
Affiliation(s)
- Hannah A Taylor
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lena Przemylska
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Eva M Clavane
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Paul J Meakin
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
16
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
17
|
Wong FCC, Saffari SE, Yatawara C, Ng KP, Kandiah N. Influence of White Matter Hyperintensities on Baseline and Longitudinal Amyloid-β in Cognitively Normal Individuals. J Alzheimers Dis 2021; 84:91-101. [PMID: 34511497 DOI: 10.3233/jad-210333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The associations between small vessel disease (SVD) and cerebrospinal amyloid-β1-42 (Aβ1-42) pathology have not been well-elucidated. OBJECTIVE Baseline (BL) white matter hyperintensities (WMH) were examined for associations with month-24 (M24) and longitudinal Aβ1-42 change in cognitively normal (CN) subjects. The interaction of WMH and Aβ1-42 on memory and executive function were also examined. METHODS This study included 72 subjects from the Alzheimer's Disease Neuroimaging Initiative. Multivariable linear regression models evaluated associations between baseline WMH/intracranial volume ratio, M24 and change in Aβ1-42 over two years. Linear mixed effects models evaluated interactions between BL WMH/ICV and Aβ1-42 on memory and executive function. RESULTS Mean age of the subjects (Nmales = 36) = 73.80 years, SD = 6.73; mean education years = 17.1, SD = 2.4. BL WMH was significantly associated with M24 Aβ1-42 (p = 0.008) and two-year change in Aβ1-42 (p = 0.006). Interaction between higher WMH and lower Aβ1-42 at baseline was significantly associated with worse memory at baseline and M24 (p = 0.003). CONCLUSION BL WMH was associated with M24 and longitudinal Aβ1-42 change in CN. The interaction between higher WMH and lower Aβ1-42 was associated with poorer memory. Since SVD is associated with longitudinal Aβ1-42 pathology, and the interaction of both factors is linked to poorer cognitive outcomes, the mitigation of SVD may be correlated with reduced amyloid pathology and milder cognitive deterioration in Alzheimer's disease.
Collapse
Affiliation(s)
| | - Seyed Ehsan Saffari
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Centre for Quantitative Medicine, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Chathuri Yatawara
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | |
Collapse
|
18
|
Li S, Wang C, Wang Z, Tan J. Involvement of cerebrovascular abnormalities in the pathogenesis and progression of Alzheimer's disease: an adrenergic approach. Aging (Albany NY) 2021; 13:21791-21806. [PMID: 34479211 PMCID: PMC8457611 DOI: 10.18632/aging.203482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD), as the most common neurodegenerative disease in elder population, is pathologically characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles composed of highly-phosphorylated tau protein and consequently progressive neurodegeneration. However, both Aβ and tau fails to cover the whole pathological process of AD, and most of the Aβ- or tau-based therapeutic strategies are all failed. Increasing lines of evidence from both clinical and preclinical studies have indicated that age-related cerebrovascular dysfunctions, including the changes in cerebrovascular microstructure, blood-brain barrier integrity, cerebrovascular reactivity and cerebral blood flow, accompany or even precede the development of AD-like pathologies. These findings may raise the possibility that cerebrovascular changes are likely pathogenic contributors to the onset and progression of AD. In this review, we provide an appraisal of the cerebrovascular alterations in AD and the relationship to cognitive impairment and AD pathologies. Moreover, the adrenergic mechanisms leading to cerebrovascular and AD pathologies were further discussed. The contributions of early cerebrovascular factors, especially through adrenergic mechanisms, should be considered and treasured in the diagnostic, preventative, and therapeutic approaches to address AD.
Collapse
Affiliation(s)
- Song Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116021, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Che Wang
- Department of Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Zhen Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
19
|
Baranowski BJ, Allen MD, Nyarko JN, Rector RS, Padilla J, Mousseau DD, Rau CD, Wang Y, Laughlin MH, Emter CA, MacPherson RE, Olver TD. Cerebrovascular insufficiency and amyloidogenic signaling in Ossabaw swine with cardiometabolic heart failure. JCI Insight 2021; 6:143141. [PMID: 34027891 PMCID: PMC8262360 DOI: 10.1172/jci.insight.143141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Individuals with heart failure (HF) frequently present with comorbidities, including obesity, insulin resistance, hypertension, and dyslipidemia. Many patients with HF experience cardiogenic dementia, yet the pathophysiology of this disease remains poorly understood. Using a swine model of cardiometabolic HF (Western diet+aortic banding; WD-AB), we tested the hypothesis that WD-AB would promote a multidementia phenotype involving cerebrovascular dysfunction alongside evidence of Alzheimer’s disease (AD) pathology. The results provide evidence of cerebrovascular insufficiency coupled with neuroinflammation and amyloidosis in swine with experimental cardiometabolic HF. Although cardiac ejection fraction was normal, indices of arterial compliance and cerebral blood flow were reduced, and cerebrovascular regulation was impaired in the WD-AB group. Cerebrovascular dysfunction occurred concomitantly with increased MAPK signaling and amyloidogenic processing (i.e., increased APP, BACE1, CTF, and Aβ40 in the prefrontal cortex and hippocampus) in the WD-AB group. Transcriptomic profiles of the stellate ganglia revealed the WD-AB group displayed an enrichment of gene networks associated with MAPK/ERK signaling, AD, frontotemporal dementia, and a number of behavioral phenotypes implicated in cognitive impairment. These provide potentially novel evidence from a swine model that cerebrovascular and neuronal pathologies likely both contribute to the dementia profile in a setting of cardiometabolic HF.
Collapse
Affiliation(s)
- Bradley J Baranowski
- Department of Health Sciences and.,Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jennifer Nk Nyarko
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Darrell D Mousseau
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christoph D Rau
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yibin Wang
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Rebecca Ek MacPherson
- Department of Health Sciences and.,Centre for Neuroscience, Brock University, St. Catharines, Ontario, Canada
| | - T Dylan Olver
- Department of Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
20
|
Palmer JC, Tayler HM, Dyer L, Kehoe PG, Paton JFR, Love S. Zibotentan, an Endothelin A Receptor Antagonist, Prevents Amyloid-β-Induced Hypertension and Maintains Cerebral Perfusion. J Alzheimers Dis 2021; 73:1185-1199. [PMID: 31903990 PMCID: PMC7081103 DOI: 10.3233/jad-190630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cerebral blood flow is reduced in Alzheimer’s disease (AD), which is associated with mid-life hypertension. In people with increased cerebral vascular resistance due to vertebral artery or posterior communicating artery hypoplasia, there is evidence that hypertension develops as a protective mechanism to maintain cerebral perfusion. In AD, amyloid-β (Aβ) accumulation may similarly raise cerebral vascular resistance by upregulation of the cerebral endothelin system. The level of endothelin-1 in brain tissue correlates positively with Aβ load and negatively with markers of cerebral hypoperfusion such as increased vascular endothelial growth factor. We previously showed that cerebroventricular infusion of Aβ40 exacerbated pre-existing hypertension in Dahl rats. We have investigated the effects of 28-day cerebral infusion of Aβ40 on blood pressure and heart rate and their variability; carotid flow; endothelin-1; and markers of cerebral oxygenation, in the (normotensive) Wistar rat, and the modulatory influence of the endothelin A receptor antagonist Zibotentan (ZD4054). Cerebral infusion of Aβ caused progressive rise in blood pressure (p < 0.0001) (paired t-test: increase of 3 (0.1–5.6) mmHg (p = 0.040)), with evidence of reduced baroreflex responsiveness, and accumulation of Aβ and elevated endothelin-1 in the vicinity of the infusion. Oral Zibotentan (3 mg/kg/d, administered for 31 d) abrogated the effects of Aβ40 infusion on baroreflex responsiveness and blood pressure, which declined, although without reduction in carotid blood flow, and Zibotentan caused uncoupling of the positive linear relationship between endothelin-1 and vascular endothelial growth factor, which as a sensor of tissue oxygenation would be expected to increase if there were hypoperfusion.
Collapse
Affiliation(s)
- Jennifer C Palmer
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hannah M Tayler
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Laurence Dyer
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Patrick G Kehoe
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Julian F R Paton
- Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, New Zealand
| | - Seth Love
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
21
|
Amyloid related cerebral microbleed and plasma Aβ40 are associated with cognitive decline in Parkinson's disease. Sci Rep 2021; 11:7115. [PMID: 33782518 PMCID: PMC8007804 DOI: 10.1038/s41598-021-86617-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
Cerebral microbleeds (MBs) have been found in patients with cognitive decline. We aimed to examine whether MBs are associated with motor or cognitive decline in patients with Parkinson’s disease (PD). We enrolled 135 PD patients and 34 healthy controls. All participants underwent brain MRI and plasma biomarker assays, including tau, Aβ42, Aβ40, and α-synuclein. PD with dementia (PDD) was operationally defined as Mini-Mental State Examination (MMSE) score < 26 and advanced motor stage was defined as Hoehn-Yahr stage ≥ 3 during “on” status. The association between MBs and disease severity was examined using multivariate logistic regression models. More lobar MBs were observed in PD patients than controls (20.7% vs. 3.3%, p = 0.031). PDD patients had more lobar MBs (33.3% vs. 15.6%, p = 0.034), more white matter hyperintensity (p = 0.021) and reduced hippocampal volume (p = 0.001) than PD with normal cognition. The presence of lobar MB (odds ratio = 2.83 [95% confidence interval 1.04–7.70], p = 0.042) and severe white matter hyperintensity (3.29 [1.21–8.96], p = 0.020) was independently associated with PDD after adjusting for vascular risk factors and other confounders. Furthermore, plasma Aβ40 levels were associated the MMSE score (p = 0.004) after adjusting for age and sex. Our findings demonstrated that lobar MBs, reduced hippocampal volume, and elevated plasma Aβ40 levels are associated with PDD.
Collapse
|
22
|
Mughal A, Harraz OF, Gonzales AL, Hill-Eubanks D, Nelson MT. PIP 2 Improves Cerebral Blood Flow in a Mouse Model of Alzheimer's Disease. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab010. [PMID: 33763649 PMCID: PMC7955025 DOI: 10.1093/function/zqab010] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia and a substantial healthcare burden. Despite this, few treatment options are available for controlling AD symptoms. Notably, neuronal activity-dependent increases in cortical cerebral blood flow (CBF; functional hyperemia) are attenuated in AD patients, but the associated pathological mechanisms are not fully understood at the molecular level. A fundamental mechanism underlying functional hyperemia is activation of capillary endothelial inward-rectifying K+ (Kir2.1) channels by neuronally derived potassium (K+), which evokes a retrograde capillary-to-arteriole electrical signal that dilates upstream arterioles, increasing blood delivery to downstream active regions. Here, using a mouse model of familial AD (5xFAD), we tested whether this impairment in functional hyperemia is attributable to reduced activity of capillary Kir2.1 channels. In vivo CBF measurements revealed significant reductions in whisker stimulation (WS)-induced and K+-induced hyperemic responses in 5xFAD mice compared with age-matched controls. Notably, measurements of whole-cell currents in freshly isolated 5xFAD capillary endothelial cells showed that Kir2.1 current density was profoundly reduced, suggesting a defect in Kir2.1 function. Because Kir2.1 activity absolutely depends on binding of phosphatidylinositol 4,5-bisphosphate (PIP2) to the channel, we hypothesized that capillary Kir2.1 channel impairment could be corrected by exogenously supplying PIP2. As predicted, a PIP2 analog restored Kir2.1 current density to control levels. More importantly, systemic administration of PIP2 restored K+-induced CBF increases and WS-induced functional hyperemic responses in 5xFAD mice. Collectively, these data provide evidence that PIP2-mediated restoration of capillary endothelial Kir2.1 function improves neurovascular coupling and CBF in the setting of AD.
Collapse
Affiliation(s)
- Amreen Mughal
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA,Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Albert L Gonzales
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA,Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, NV, USA
| | - David Hill-Eubanks
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Mark T Nelson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA,Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA,Division of Cardiovascular Sciences, University of Manchester, Manchester, UK,Address correspondence to M.T.N. (e-mail: )
| |
Collapse
|
23
|
Steinman J, Sun HS, Feng ZP. Microvascular Alterations in Alzheimer's Disease. Front Cell Neurosci 2021; 14:618986. [PMID: 33536876 PMCID: PMC7849053 DOI: 10.3389/fncel.2020.618986] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with continual decline in cognition and ability to perform routine functions such as remembering familiar places or understanding speech. For decades, amyloid beta (Aβ) was viewed as the driver of AD, triggering neurodegenerative processes such as inflammation and formation of neurofibrillary tangles (NFTs). This approach has not yielded therapeutics that cure the disease or significant improvements in long-term cognition through removal of plaques and Aβ oligomers. Some researchers propose alternate mechanisms that drive AD or act in conjunction with amyloid to promote neurodegeneration. This review summarizes the status of AD research and examines research directions including and beyond Aβ, such as tau, inflammation, and protein clearance mechanisms. The effect of aging on microvasculature is highlighted, including its contribution to reduced blood flow that impairs cognition. Microvascular alterations observed in AD are outlined, emphasizing imaging studies of capillary malfunction. The review concludes with a discussion of two therapies to protect tissue without directly targeting Aβ for removal: (1) administration of growth factors to promote vascular recovery in AD; (2) inhibiting activity of a calcium-permeable ion channels to reduce microglial activation and restore cerebral vascular function.
Collapse
Affiliation(s)
- Joe Steinman
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Wang X, Zhao M, Lin L, Han Y. Plasma β-Amyloid Levels Associated With Structural Integrity Based on Diffusion Tensor Imaging in Subjective Cognitive Decline: The SILCODE Study. Front Aging Neurosci 2021; 12:592024. [PMID: 33510631 PMCID: PMC7835390 DOI: 10.3389/fnagi.2020.592024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Accumulating evidence has demonstrated that plasma β-amyloid (Aβ) levels are useful biomarkers to reflect brain amyloidosis and gray matter structure, but little is known about their correlation with subclinical white matter (WM) integrity in individuals at risk of Alzheimer's disease (AD). Here, we investigated the microstructural changes in WM between subjects with low and high plasma Aβ levels among individuals with subjective cognitive decline (SCD). Methods: This study included 142 cognitively normal individuals with SCD who underwent a battery of neuropsychological tests, plasma Aβ measurements, and diffusion tensor imaging (DTI) based on the Sino Longitudinal Study on Cognitive Decline (SILCODE). Using tract-based spatial statistics (TBSS), we compared fractional anisotropy (FA), and mean diffusivity (MD) in WM between subjects with low (N = 71) and high (N = 71) plasma Aβ levels (cut-off: 761.45 pg/ml for Aβ40 and 10.74 pg/ml for Aβ42). Results: We observed significantly decreased FA and increased MD in the high Aβ40 group compared to the low Aβ40 group in various regions, including the body, the genu, and the splenium of the corpus callosum; the superior longitudinal fasciculus; the corona radiata; the thalamic radiation; the external and internal capsules; the inferior fronto-occipital fasciculus; and the sagittal stratum [p < 0.05, familywise error (FWE) corrected]. Average FA values were associated with poor performance on executive and memory assessments. No significant differences were found in either MD or FA between the low and high Aβ42 groups. Conclusion: Our results suggest that a correlation exists between WM integrity and plasma Aβ40 levels in individuals with SCD.
Collapse
Affiliation(s)
- Xiaoni Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Mingyan Zhao
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Li Lin
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
25
|
Sharda N, Ahlschwede KM, Curran GL, Lowe VJ, Kandimalla KK. Distinct Uptake Kinetics of Alzheimer Disease Amyloid- β 40 and 42 at the Blood-Brain Barrier Endothelium. J Pharmacol Exp Ther 2020; 376:482-490. [PMID: 33303699 DOI: 10.1124/jpet.120.000086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022] Open
Abstract
Blood-brain barrier (BBB) endothelial cells lining the cerebral microvasculature maintain dynamic equilibrium between soluble amyloid-β (Aβ) levels in the brain and plasma. The BBB dysfunction prevalent in Alzheimer disease contributes to the dysregulation of plasma and brain Aβ and leads to the perturbation of the ratio between Aβ42 and Aβ40, the two most prevalent Aβ isoforms in patients with Alzheimer disease. We hypothesize that BBB endothelium distinguishes between Aβ40 and Aβ42, distinctly modulates their trafficking kinetics between plasma and brain, and thereby contributes to the maintenance of healthy Aβ42/Aβ40 ratios. To test this hypothesis, we investigated Aβ40 and Aβ42 trafficking kinetics in hCMEC/D3 monolayers (human BBB cell culture model) in vitro as well as in mice in vivo. Although the rates of uptake of fluorescein-labeled Aβ40 and Aβ42 (F-Aβ40 and F-Aβ42) were not significantly different on the abluminal side, the luminal uptake rate of F-Aβ42 was substantially higher than F-Aβ40. Since higher plasma Aβ levels were shown to aggravate BBB dysfunction and trigger cerebrovascular disease, we systematically investigated the dynamic interactions of luminal [125I]Aβ peptides and their trafficking kinetics at BBB using single-photon emission computed tomography/computed tomography imaging in mice. Quantitative modeling of the dynamic imaging data thus obtained showed that the rate of uptake of toxic [125I]Aβ42 and its subsequent BBB transcytosis is significantly higher than [125I]Aβ40. It is likely that the molecular mechanisms underlying these kinetic differences are differentially affected in Alzheimer and cerebrovascular diseases, impact plasma and brain levels of Aβ40 and Aβ42, engender shifts in the Aβ42/Aβ40 ratio, and unleash downstream toxic effects. SIGNIFICANCE STATEMENT: Dissecting the binding and uptake kinetics of Aβ40 and Aβ42 at the BBB endothelium will facilitate the estimation of Aβ40 versus Aβ42 exposure to the BBB endothelium and allow assessment of the risk of BBB dysfunction by monitoring Aβ42 and Aβ40 levels in plasma. This knowledge, in turn, will aid in elucidating the role of these predominant Aβ isoforms in aggravating BBB dysfunction and cerebrovascular disease.
Collapse
Affiliation(s)
- Nidhi Sharda
- Department of Pharmaceutics and the Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (N.S., K.K.K.); Department of Pharmaceutical Sciences, Rosalind Franklin University of Medicine and Science, College of Pharmacy, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C., K.K.K.), Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kristen M Ahlschwede
- Department of Pharmaceutics and the Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (N.S., K.K.K.); Department of Pharmaceutical Sciences, Rosalind Franklin University of Medicine and Science, College of Pharmacy, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C., K.K.K.), Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Geoffry L Curran
- Department of Pharmaceutics and the Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (N.S., K.K.K.); Department of Pharmaceutical Sciences, Rosalind Franklin University of Medicine and Science, College of Pharmacy, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C., K.K.K.), Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Val J Lowe
- Department of Pharmaceutics and the Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (N.S., K.K.K.); Department of Pharmaceutical Sciences, Rosalind Franklin University of Medicine and Science, College of Pharmacy, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C., K.K.K.), Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Karunya K Kandimalla
- Department of Pharmaceutics and the Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (N.S., K.K.K.); Department of Pharmaceutical Sciences, Rosalind Franklin University of Medicine and Science, College of Pharmacy, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C., K.K.K.), Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
26
|
Alzheimer's Disease and Vascular Aging: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:942-951. [PMID: 32130930 PMCID: PMC8046164 DOI: 10.1016/j.jacc.2019.10.062] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 01/23/2023]
Abstract
Alzheimer’s disease, the leading cause of dementia in the elderly, is a neurodegenerative condition characterized by accumulation of amyloid plaques and neurofibrillary tangles in the brain. However, age-related vascular changes accompany or even precede the development of Alzheimer’s pathology, raising the possibility that they may have a pathogenic role. This review provides an appraisal of the alterations in cerebral and systemic vasculature, the heart, and hemostasis that occur in Alzheimer’s disease and their relationships to cognitive impairment. Although the molecular pathogenesis of these alterations remains to be defined, amyloid-β is a likely contributor in the brain as in the heart. Collectively, the evidence suggests that vascular pathology is a likely pathogenic contributor to age-related dementia, including Alzheimer’s disease, inextricably linked to disease onset and progression. Consequently, the contribution of vascular factors should be considered in preventive, diagnostic, and therapeutic approaches to address one of the major health challenges of our time.
Collapse
|
27
|
tPA Deficiency Underlies Neurovascular Coupling Dysfunction by Amyloid-β. J Neurosci 2020; 40:8160-8173. [PMID: 32928888 DOI: 10.1523/jneurosci.1140-20.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/29/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
The amyloid-β (Aβ) peptide, a key pathogenic factor in Alzheimer's disease, attenuates the increase in cerebral blood flow (CBF) evoked by neural activity (functional hyperemia), a vital homeostatic response in which NMDA receptors (NMDARs) play a role through nitric oxide, and the CBF increase produced by endothelial factors. Tissue plasminogen activator (tPA), which is reduced in Alzheimer's disease and in mouse models of Aβ accumulation, is required for the full expression of the NMDAR-dependent component of functional hyperemia. Therefore, we investigated whether tPA is involved in the neurovascular dysfunction of Aβ. tPA activity was reduced, and the tPA inhibitor plasminogen inhibitor-1 (PAI-1) was increased in male mice expressing the Swedish mutation of the amyloid precursor protein (tg2576). Counteracting the tPA reduction with exogenous tPA or with pharmacological inhibition or genetic deletion of PAI-1 completely reversed the attenuation of the CBF increase evoked by whisker stimulation but did not ameliorate the response to the endothelium-dependent vasodilator acetylcholine. The tPA deficit attenuated functional hyperemia by suppressing NMDAR-dependent nitric oxide production during neural activity. Pharmacological inhibition of PAI-1 increased tPA activity, prevented neurovascular uncoupling, and ameliorated cognition in 11- to 12-month-old tg2576 mice, effects associated with a reduction of cerebral amyloid angiopathy but not amyloid plaques. The data unveil a selective role of the tPA in the suppression of functional hyperemia induced by Aβ and in the mechanisms of cerebral amyloid angiopathy, and support the possibility that modulation of the PAI-1-tPA pathway may be beneficial in diseases associated with amyloid accumulation.SIGNIFICANCE STATEMENT Amyloid-β (Aβ) peptides have profound neurovascular effects that may contribute to cognitive impairment in Alzheimer's disease. We found that Aβ attenuates the increases in blood flow evoked by neural activation through a reduction in tissue plasminogen activator (tPA) caused by upregulation of its endogenous inhibitor plasminogen inhibitor-1 (PAI-1). tPA deficiency prevents NMDA receptors from triggering nitric oxide production, thereby attenuating the flow increase evoked by neural activity. PAI-1 inhibition restores tPA activity, rescues neurovascular coupling, reduces amyloid deposition around blood vessels, and improves cognition in a mouse model of Aβ accumulation. The findings demonstrate a previously unappreciated role of tPA in Aβ-related neurovascular dysfunction and in vascular amyloid deposition. Restoration of tPA activity could be of therapeutic value in diseases associated with amyloid accumulation.
Collapse
|
28
|
Yu X, Ji C, Shao A. Neurovascular Unit Dysfunction and Neurodegenerative Disorders. Front Neurosci 2020; 14:334. [PMID: 32410936 PMCID: PMC7201055 DOI: 10.3389/fnins.2020.00334] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
The neurovascular unit (NVU), composed of vascular cells, glial cells, and neurons, is the minimal functional unit of the brain. The NVU maintains integrity of the blood–brain barrier (BBB) and regulates supply of the cerebral blood flow (CBF), both of which are keys to maintaining normal brain function. BBB dysfunction and a decreased CBF are early pathophysiological changes in neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). In this review, we primarily focus on the NVU in AD as much research has been performed on the connection between NVU dysfunction and AD. We also discuss the role of NVU dysfunction in the pathophysiological mechanisms of PD and ALS. As most neurodegenerative diseases are difficult to treat, we discuss several potential drug targets that focus on the NVU that may inform novel vascular-targeted therapies for AD, PD, and ALS.
Collapse
Affiliation(s)
- Xing Yu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caihong Ji
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Potential Therapeutic Approaches for Cerebral Amyloid Angiopathy and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21061992. [PMID: 32183348 PMCID: PMC7139812 DOI: 10.3390/ijms21061992] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease directly implicated in Alzheimer’s disease (AD) pathogenesis through amyloid-β (Aβ) deposition, which may cause the development and progression of dementia. Despite extensive studies to explore drugs targeting Aβ, clinical benefits have not been reported in large clinical trials in AD patients or presymptomatic individuals at a risk for AD. However, recent studies on CAA and AD have provided novel insights regarding CAA- and AD-related pathogenesis. This work has revealed potential therapeutic targets, including Aβ drainage pathways, Aβ aggregation, oxidative stress, and neuroinflammation. The functional significance and therapeutic potential of bioactive molecules such as cilostazol and taxifolin have also become increasingly evident. Furthermore, recent epidemiological studies have demonstrated that serum levels of a soluble form of triggering receptor expressed on myeloid cells 2 (TREM2) may have clinical significance as a potential novel predictive biomarker for dementia incidence. This review summarizes recent advances in CAA and AD research with a focus on discussing future research directions regarding novel therapeutic approaches and predictive biomarkers for CAA and AD.
Collapse
|
30
|
Leira Y, Carballo Á, Orlandi M, Aldrey JM, Pías‐Peleteiro JM, Moreno F, Vázquez‐Vázquez L, Campos F, D’Aiuto F, Castillo J, Sobrino T, Blanco J. Periodontitis and systemic markers of neurodegeneration: A case–control study. J Clin Periodontol 2020; 47:561-571. [DOI: 10.1111/jcpe.13267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/28/2019] [Accepted: 02/03/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Yago Leira
- Periodontology Unit UCL Eastman Dental Institute and NIHR UCLH Biomedical Research Centre University College London London UK
- Periodontology Unit Faculty of Medicine and Odontology University of Santiago de Compostela Santiago de Compostela Spain
- Medical‐Surgical Dentistry (OMEQUI) Research Group Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Álvaro Carballo
- Periodontology Unit Faculty of Medicine and Odontology University of Santiago de Compostela Santiago de Compostela Spain
| | - Marco Orlandi
- Periodontology Unit UCL Eastman Dental Institute and NIHR UCLH Biomedical Research Centre University College London London UK
| | - José Manuel Aldrey
- Dementia Unit Department of Neurology Clinical University Hospital Santiago de Compostela Spain
- Clinical Neurosciences Research Laboratory Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Juan Manuel Pías‐Peleteiro
- Dementia Unit Department of Neurology Clinical University Hospital Santiago de Compostela Spain
- Clinical Neurosciences Research Laboratory Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Federico Moreno
- Periodontology Unit UCL Eastman Dental Institute and NIHR UCLH Biomedical Research Centre University College London London UK
| | - Laura Vázquez‐Vázquez
- Dementia Unit Department of Neurology Clinical University Hospital Santiago de Compostela Spain
- Clinical Neurosciences Research Laboratory Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Francesco D’Aiuto
- Periodontology Unit UCL Eastman Dental Institute and NIHR UCLH Biomedical Research Centre University College London London UK
| | - José Castillo
- Clinical Neurosciences Research Laboratory Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Juan Blanco
- Periodontology Unit Faculty of Medicine and Odontology University of Santiago de Compostela Santiago de Compostela Spain
- Medical‐Surgical Dentistry (OMEQUI) Research Group Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| |
Collapse
|
31
|
Austin SA, Katusic ZS. Partial loss of endothelial nitric oxide leads to increased cerebrovascular beta amyloid. J Cereb Blood Flow Metab 2020; 40:392-403. [PMID: 30614363 PMCID: PMC7370614 DOI: 10.1177/0271678x18822474] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is present in over half of the elderly population and in 80-90% of Alzheimer's disease (AD) patients. CAA is defined by the deposition of beta amyloid (Aβ) in small cerebral arteries and capillaries. Cardiovascular risk factors are associated with an increased incidence of CAA. We utilized 18-month-old endothelial nitric oxide synthase (eNOS) heterozygous knockout (+/-) mice, a clinically relevant model of endothelial dysfunction, to examine the role of endothelial nitric oxide (NO) in vascular Aβ accumulation. eNOS+/- mice had significantly higher vascular levels of Aβ40 (P < 0.05). Aβ42 was not detected. There was no difference in Aβ in brain tissue. Amyloid precursor protein and β-site APP cleavage enzyme 1 protein levels were unaltered, while levels of the α-secretase enzyme, a disintegrin and metalloproteinase 10, were significantly lower in eNOS + /- microvascular tissue (P < 0.05). Insulin degrading enzyme and low-density lipoprotein receptor-related protein 1 were significantly increased in eNOS+/- microvascular tissue, most likely an adaptive response to locally higher Aβ concentrations. Lastly, catalase and CuZn superoxide dismutase were significantly elevated in eNOS+/- microvascular tissue (P < 0.05). These data demonstrate decreased availability of endothelial NO leads to increased cerebrovascular concentration of Aβ along with compensatory mechanisms to protect the vasculature.
Collapse
Affiliation(s)
- Susan A Austin
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
32
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
33
|
Novel Therapeutic Potentials of Taxifolin for Amyloid-β-associated Neurodegenerative Diseases and Other Diseases: Recent Advances and Future Perspectives. Int J Mol Sci 2019; 20:ijms20092139. [PMID: 31052203 PMCID: PMC6539020 DOI: 10.3390/ijms20092139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/17/2019] [Accepted: 04/27/2019] [Indexed: 12/21/2022] Open
Abstract
Amyloid-β (Aβ) has been closely implicated in the pathogenesis of cerebral amyloid angiopathy (CAA) and Alzheimer’s disease (AD), the major causes of dementia. Thus, Aβ could be a target for the treatment of these diseases, for which, currently, there are no established effective treatments. Taxifolin is a bioactive catechol-type flavonoid present in various plants, such as herbs, and it exhibits pleiotropic effects including anti-oxidant and anti-glycation activities. Recently, we have demonstrated that taxifolin inhibits Aβ fibril formation in vitro and have further shown that it improves cerebral blood flow, facilitating Aβ clearance in the brain and suppressing cognitive decline in a mouse model of CAA. These findings suggest the novel therapeutic potentials of taxifolin for CAA. Furthermore, recent extensive studies have reported several novel aspects of taxifolin supporting its potential as a therapeutic drug for AD and metabolic diseases with a high risk for dementia as well as for CAA. In this review, we have summarized the recent advances in taxifolin research based on in vitro, in vivo, and in silico approaches. Furthermore, we have discussed future research directions on the potential of taxifolin for use in novel therapeutic strategies for CAA, AD, and metabolic diseases with an increased risk for dementia.
Collapse
|
34
|
Abstract
OBJECTIVE Increased pulse pressure (PP) has been implicated in the development and progression of Alzheimer's disease in middle-aged and elderly adults. Considering the close relationship between peripheral amyloid-β clearance and brain amyloid-β deposition, we investigated the potential association between PP and plasma amyloid-β transport function. METHODS In this cross-sectional study, a total of 1118 participants underwent a health assessment and quantification of plasma amyloid-β and amyloid-β transporter expression. Relationships between plasma levels of amyloid-β1-40, amyloid-β1-42, soluble low-density lipoprotein receptor-related protein-1 (sLRP1), soluble receptor for advanced glycation end products (sRAGE), and PP were determined using multiple linear regressions. RESULTS PP was a significant determinant of amyloid-β1-40 level (β = 0.059, P = 0.036) and log-transformed sRAGE (β = -0.002, P = 0.029) independent of age, sex, body mass index, pulse rate, mean arterial pressure, blood glucose, blood lipids, lifestyle, and medical history. Additionally, log-transformed soluble low-density lipoprotein receptor-related protein-1 and log-transformed sRAGE were positively associated with plasma amyloid-β1-40 level (β = 3.610, P < 0.001; β = 2.573, P = 0.001). Similar associations were observed between log-transformed sRAGE and plasma amyloid-β1-42 level (β = 1.350, P = 0.022). CONCLUSION An elevation in PP is associated with increased plasma amyloid-β1-40 and decreased log-transformed sRAGE among individuals not taking antihypertensive medication. The underlying mechanism of this effect may be relevant to peripheral amyloid-β clearance.
Collapse
|
35
|
Marston KJ, Brown BM, Rainey-Smith SR, Peiffer JJ. Resistance Exercise-Induced Responses in Physiological Factors Linked with Cognitive Health. J Alzheimers Dis 2019; 68:39-64. [DOI: 10.3233/jad-181079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kieran J. Marston
- Department of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
- Ageing, Cognition and Exercise (ACE) Research Group, Murdoch University, Perth, Western Australia, Australia
| | - Belinda M. Brown
- Department of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
- Ageing, Cognition and Exercise (ACE) Research Group, Murdoch University, Perth, Western Australia, Australia
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Australian Alzheimer’s Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Stephanie R. Rainey-Smith
- Ageing, Cognition and Exercise (ACE) Research Group, Murdoch University, Perth, Western Australia, Australia
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Australian Alzheimer’s Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Jeremiah J. Peiffer
- Department of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
- Ageing, Cognition and Exercise (ACE) Research Group, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
36
|
Govaerts K, Lechat B, Struys T, Kremer A, Borghgraef P, Van Leuven F, Himmelreich U, Dresselaers T. Longitudinal assessment of cerebral perfusion and vascular response to hypoventilation in a bigenic mouse model of Alzheimer's disease with amyloid and tau pathology. NMR IN BIOMEDICINE 2019; 32:e4037. [PMID: 30489666 DOI: 10.1002/nbm.4037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease is the most common neurodegenerative disease, and many patients also present with vascular dysfunction. In this study, we aimed to assess cerebral blood flow (CBF) and cerebrovascular response (CVR) as early, pre-symptomatic (3 months of age), imaging markers in a bigenic model of Alzheimer's disease (APP.V717IxTau.P301L, biAT) and in the monogenic parental strains. We further developed our previously published combination of pulsed arterial spin labeling perfusion MRI and hypo-ventilation paradigm, which allows weaning of the mice from the ventilator. Furthermore, the commonly used isoflurane anesthesia induces vasodilation and is thereby inherently a vascular challenge. We therefore assessed perfusion differences in the mouse models under free-breathing isoflurane conditions. We report (i) that we can determine CBF and hypoventilation-based CVR under ketamine/midazolam anesthesia and wean mice from the ventilator, making it a valuable tool for assessment of CBF and CVR in mice, (ii) that biAT mice exhibit lower cortical CBF than wild-type mice at age 3 months, (iii) that CVR was increased in both biAT and APP.V717I mice but not in Tau.P301L mice, identifying the APP genotype as a strong influencer of brain CVR and (iv) that perfusion differences at baseline are masked by the widely used isoflurane anesthesia.
Collapse
Affiliation(s)
- Kristof Govaerts
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Benoit Lechat
- LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Tom Struys
- Morphology Research Group, Biomedical Research Institute, Universiteit Hasselt, Hasselt, Belgium
| | - Anna Kremer
- LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Peter Borghgraef
- LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Fred Van Leuven
- LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Tom Dresselaers
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Leira Y, Iglesias-Rey R, Gómez-Lado N, Aguiar P, Campos F, D'Aiuto F, Castillo J, Blanco J, Sobrino T. Porphyromonas gingivalis lipopolysaccharide-induced periodontitis and serum amyloid-beta peptides. Arch Oral Biol 2019; 99:120-125. [PMID: 30665148 DOI: 10.1016/j.archoralbio.2019.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/03/2019] [Accepted: 01/15/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this investigation was to determine the circulating levels of amyloid beta (Aβ) peptides using the Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS) model to induce periodontitis. METHODS Experimental periodontitis was induced in 6 male Sprague-Dawley rats. Alveolar bone loss was measure by micro computed tomography. Serum concentrations of Aβ1-40 and Aβ1-42 prior to periodontal induction, at 24 h, 7, 14, and 21 days the last injection of Pg-LPS. RESULTS The distance between the cemento-enamel junction and the bone crest (i.e., alveolar bone loss) was significantly higher at the end of periodontal induction compared to baseline (2.92 ± 0.29 mm vs. 3.8 ± 0.28 mm, P < 0.001). Periodontitis evoked a slight acute elevation of Aβ1-40 serum levels that were maintained during the whole experiment. Aβ1-42 peptide levels peak at the end of the study. A positive strong correlation was observed between alveolar bone loss and Aβ1-40 serum levels at 7 days (r = 0.695, P = 0.012) and as well as with serum Aβ1-42 concentrations at 21 days (r = 0.968, P = 0.002). CONCLUSIONS Periodontitis induced Pg-LPS produced increased serum levels of Aβ peptides. Further studies are needed to confirm our results and to investigate the mechanisms by which periodontitis could be associated with an overexpression of Aβ.
Collapse
Affiliation(s)
- Yago Leira
- Periodontology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, Medical-Surgical Dentistry (OMEQUI) Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Periodontology Unit, UCL Eastman Dental Institute and Hospital, University College London, London, UK.
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Noemí Gómez-Lado
- Molecular Imaging Group, Clinical University Hospital, Faculty of Medicine, University of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Aguiar
- Molecular Imaging Group, Clinical University Hospital, Faculty of Medicine, University of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francesco D'Aiuto
- Periodontology Unit, UCL Eastman Dental Institute and Hospital, University College London, London, UK
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan Blanco
- Periodontology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, Medical-Surgical Dentistry (OMEQUI) Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Clinical University Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
38
|
Leira Y, Rodríguez‐Yáñez M, Arias S, López‐Dequidt I, Campos F, Sobrino T, D'Aiuto F, Castillo J, Blanco J. Periodontitis is associated with systemic inflammation and vascular endothelial dysfunction in patients with lacunar infarct. J Periodontol 2018; 90:465-474. [DOI: 10.1002/jper.18-0560] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Yago Leira
- Periodontology UnitFaculty of Medicine and OdontologyUniversity of Santiago de CompostelaMedical‐Surgical Dentistry (OMEQUI) Research GroupHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
- Periodontology UnitUCL Eastman Dental Institute and HospitalUniversity College London London UK
| | - Manuel Rodríguez‐Yáñez
- Clinical Neurosciences Research LaboratoryDepartment of NeurologyClinical University HospitalHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Susana Arias
- Clinical Neurosciences Research LaboratoryDepartment of NeurologyClinical University HospitalHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Iria López‐Dequidt
- Clinical Neurosciences Research LaboratoryDepartment of NeurologyClinical University HospitalHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Francisco Campos
- Clinical Neurosciences Research LaboratoryDepartment of NeurologyClinical University HospitalHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research LaboratoryDepartment of NeurologyClinical University HospitalHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Francesco D'Aiuto
- Periodontology UnitUCL Eastman Dental Institute and HospitalUniversity College London London UK
| | - José Castillo
- Clinical Neurosciences Research LaboratoryDepartment of NeurologyClinical University HospitalHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Juan Blanco
- Periodontology UnitFaculty of Medicine and OdontologyUniversity of Santiago de CompostelaMedical‐Surgical Dentistry (OMEQUI) Research GroupHealth Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| |
Collapse
|
39
|
Tayler HM, Palmer JC, Thomas TL, Kehoe PG, Paton JF, Love S. Cerebral Aβ 40 and systemic hypertension. J Cereb Blood Flow Metab 2018; 38:1993-2005. [PMID: 28782443 PMCID: PMC6259324 DOI: 10.1177/0271678x17724930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mid-life hypertension and cerebral hypoperfusion may be preclinical abnormalities in people who later develop Alzheimer's disease. Although accumulation of amyloid-beta (Aβ) is characteristic of Alzheimer's disease and is associated with upregulation of the vasoconstrictor peptide endothelin-1 within the brain, it is unclear how this affects systemic arterial pressure. We have investigated whether infusion of Aβ40 into ventricular cerebrospinal fluid modulates blood pressure in the Dahl salt-sensitive rat. The Dahl salt-sensitive rat develops hypertension if given a high-salt diet. Intracerebroventricular infusion of Aβ induced a progressive rise in blood pressure in rats with pre-existing hypertension produced by a high-salt diet ( p < 0.0001), but no change in blood pressure in normotensive rats. The elevation in arterial pressure in high-salt rats was associated with an increase in low frequency spectral density in systolic blood pressure, suggesting autonomic imbalance, and reduced cardiac baroreflex gain. Our results demonstrate the potential for intracerebral Aβ to exacerbate hypertension, through modulation of autonomic activity. Present findings raise the possibility that mid-life hypertension in people who subsequently develop Alzheimer's disease may in some cases be a physiological response to reduced cerebral perfusion complicating the accumulation of Aβ within the brain.
Collapse
Affiliation(s)
- Hannah M Tayler
- 1 School of Clinical Sciences, University of Bristol, Bristol, UK
| | | | - Taya L Thomas
- 1 School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Patrick G Kehoe
- 1 School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Julian Fr Paton
- 2 School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK
| | - Seth Love
- 1 School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
40
|
Hecht M, Krämer LM, von Arnim CAF, Otto M, Thal DR. Capillary cerebral amyloid angiopathy in Alzheimer's disease: association with allocortical/hippocampal microinfarcts and cognitive decline. Acta Neuropathol 2018; 135:681-694. [PMID: 29574591 DOI: 10.1007/s00401-018-1834-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 01/03/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is caused by the deposition of the amyloid β-protein (Aβ) in the wall of cerebral and leptomeningeal blood vessels and is related to Alzheimer's disease (AD). Capillary Aβ deposition is observed in a subset of CAA cases and represents a distinct type of CAA named capillary CAA or CAA type 1. This type of CAA is strongly associated with the presence of the apolipoprotein E ε4 allele. CAA type 1-associated AD cases often exhibit a more severe Aβ plaque pathology but less widespread neurofibrillary tangle (NFT) pathology. The objective of this study was to analyze whether capillary CAA and its effects on cerebral blood flow have an impact on dementia. To address this objective, we performed neuropathological evaluation of 284 autopsy cases of demented and non-demented individuals. We assessed the presence of CAA and its subtypes as well as for that of hemorrhages and infarcts. Capillary CAA and CAA severity were associated with allocortical microinfarcts, comprising the CA1 region of the hippocampus. Allocortical microinfarcts, capillary CAA and CAA severity were, thereby, associated with cognitive decline. In conclusion, allocortical microinfarcts, CAA severity, and the capillary type of CAA were associated with one another and with the development of cognitive decline. Thus, AD cases with CAA type 1 (capillary CAA) appear to develop dementia symptoms not only due to AD-related Aβ plaque and NFT pathology but also due to hippocampal microinfarcts that are associated with CAA type 1 and CAA severity, and that damage a brain region important for memory function.
Collapse
Affiliation(s)
- Moritz Hecht
- Laboratory of Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany
| | - Lara Maria Krämer
- Laboratory of Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Clinic for Neurogeriatrics and neurological Rehabilitation, University- und Rehabilitation Hospital Ulm (RKU), Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology, Institute of Pathology, University of Ulm, Ulm, Germany.
- Departement Neurowetenschappen, Katholieke Universiteit Leuven, Herestraat 49, Leuven, Belgium.
- Departement Pathologische Ontleedkunde, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
41
|
Merkulova-Rainon T, Mantsounga CS, Broquères-You D, Pinto C, Vilar J, Cifuentes D, Bonnin P, Kubis N, Henrion D, Silvestre JS, Lévy BI. Peripheral post-ischemic vascular repair is impaired in a murine model of Alzheimer’s disease. Angiogenesis 2018. [DOI: 10.1007/s10456-018-9608-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Akoudad S, Gurol ME, Fotiadis P, Koudstaal PJ, Hofman A, Ikram MA, Greenberg SM, Vernooij MW. Cerebral Microbleeds and Cerebrovascular Reactivity in the General Population: The EDAN Study. J Alzheimers Dis 2018; 53:497-503. [PMID: 27163807 DOI: 10.3233/jad-151130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND In patients with symptomatic cerebral amyloid angiopathy (CAA), cerebrovascular reactivity to visual stimuli is reduced. Lobar microbleeds are a diagnostic hallmark of CAA, but are also highly prevalent in asymptomatic individuals. Recent data suggest that the latter group might have CAA. OBJECTIVE We investigated whether cerebrovascular reactivity is impaired in asymptomatic individuals with lobar microbleeds. METHODS From the population-based Rotterdam Study, we invited 35 participants with lobar microbleeds and 15 age-matched controls (all≥55 years) for functional MRI (fMRI) as part of the Early Detection of Angiopathy Network (EDAN) Study. Cerebrovascular reactivity parameters (i.e., amplitude and time to peak responses) were assessed in response to visual stimulation using fMRI. Student's t-test and linear regression were used to compare fMRI parameters in participants with and without microbleeds. RESULTS Amplitude and time to peak responses did not differ between participants with and without microbleeds (respectively, p = 0.179 and p = 0.555). Participants with microbleeds had slightly higher amplitude responses compared to participants without microbleeds. After excluding individuals with mixed microbleeds (i.e., lobar and non-lobar microbleeds), we found no significant difference in cerebrovascular reactivity for persons with a single microbleed or multiple microbleeds compared to persons without microbleeds. CONCLUSIONS In the general population, lobar microbleeds may not relate to impaired cerebrovascular reactivity. In asymptomatic individuals, lobar microbleeds may either reflect less advanced CAA pathology insufficient to cause functional vascular impairment, or reflect vascular pathology other than CAA.
Collapse
Affiliation(s)
- Saloua Akoudad
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, the Netherlands.,Department of Radiology, Erasmus MC University Medical Center Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center Rotterdam, the Netherlands
| | - M Edip Gurol
- Department of Neurology, Hemorrhagic Stroke Research Group, Massachusetts General Hospital, Boston, MA, USA
| | - Panagiotis Fotiadis
- Department of Neurology, Hemorrhagic Stroke Research Group, Massachusetts General Hospital, Boston, MA, USA
| | - Peter J Koudstaal
- Department of Neurology, Erasmus MC University Medical Center Rotterdam, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, the Netherlands.,Department of Radiology, Erasmus MC University Medical Center Rotterdam, the Netherlands.,Department of Neurology, Erasmus MC University Medical Center Rotterdam, the Netherlands
| | - Steven M Greenberg
- Department of Neurology, Hemorrhagic Stroke Research Group, Massachusetts General Hospital, Boston, MA, USA
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, the Netherlands.,Department of Radiology, Erasmus MC University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
43
|
d'Uscio LV, He T, Katusic ZS. Expression and Processing of Amyloid Precursor Protein in Vascular Endothelium. Physiology (Bethesda) 2017; 32:20-32. [PMID: 27927802 DOI: 10.1152/physiol.00021.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid precursor protein (APP) is evolutionary conserved protein expressed in endothelial cells of cerebral and peripheral arteries. In this review, we discuss mechanisms responsible for expression and proteolytic cleavage of APP in endothelial cells. We focus on physiological and pathological implications of APP expression in vascular endothelium.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tongrong He
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
44
|
Lourenço CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radic Biol Med 2017; 108:668-682. [PMID: 28435052 DOI: 10.1016/j.freeradbiomed.2017.04.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide (•NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which •NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of •NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which •NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in aging, traumatic brain injury, epilepsy and age-associated neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, suggesting that a shift in cellular redox balance may contribute to divert •NO bioactivity from regulation to dysfunction.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
45
|
Tohidpour A, Morgun AV, Boitsova EB, Malinovskaya NA, Martynova GP, Khilazheva ED, Kopylevich NV, Gertsog GE, Salmina AB. Neuroinflammation and Infection: Molecular Mechanisms Associated with Dysfunction of Neurovascular Unit. Front Cell Infect Microbiol 2017; 7:276. [PMID: 28676848 PMCID: PMC5476750 DOI: 10.3389/fcimb.2017.00276] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is a complex inflammatory process in the central nervous system, which is sought to play an important defensive role against various pathogens, toxins or factors that induce neurodegeneration. The onset of neurodegenerative diseases and various microbial infections are counted as stimuli that can challenge the host immune system and trigger the development of neuroinflammation. The homeostatic nature of neuroinflammation is essential to maintain the neuroplasticity. Neuroinflammation is regulated by the activity of neuronal, glial, and endothelial cells within the neurovascular unit, which serves as a “platform” for the coordinated action of pro- and anti-inflammatory mechanisms. Production of inflammatory mediators (cytokines, chemokines, reactive oxygen species) by brain resident cells or cells migrating from the peripheral blood, results in the impairment of blood-brain barrier integrity, thereby further affecting the course of local inflammation. In this review, we analyzed the most recent data on the central nervous system inflammation and focused on major mechanisms of neurovascular unit dysfunction caused by neuroinflammation and infections.
Collapse
Affiliation(s)
- Abolghasem Tohidpour
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Andrey V Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Department of Paediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Elizaveta B Boitsova
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia.,Department of Children Infectious Diseases, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Galina P Martynova
- Department of Children Infectious Diseases, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Natalia V Kopylevich
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Galina E Gertsog
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| | - Alla B Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| |
Collapse
|
46
|
Saito S, Yamamoto Y, Maki T, Hattori Y, Ito H, Mizuno K, Harada-Shiba M, Kalaria RN, Fukushima M, Takahashi R, Ihara M. Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy. Acta Neuropathol Commun 2017; 5:26. [PMID: 28376923 PMCID: PMC5379578 DOI: 10.1186/s40478-017-0429-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/22/2017] [Indexed: 01/31/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) induces various forms of cerebral infarcts and hemorrhages from vascular amyloid-β accumulation, resulting in acceleration of cognitive impairment, which is currently untreatable. Soluble amyloid-β protein likely impairs cerebrovascular integrity as well as cognitive function in early stage Alzheimer’s disease. Taxifolin, a flavonol with strong anti-oxidative and anti-glycation activities, has been reported to disassemble amyloid-β in vitro but the in vivo relevance remains unknown. Here, we investigated whether taxifolin has therapeutic potential in attenuating CAA, hypothesizing that inhibiting amyloid-β assembly may facilitate its clearance through several elimination pathways. Vehicle- or taxifolin-treated Tg-SwDI mice (commonly used to model CAA) were used in this investigation. Cognitive and cerebrovascular function, as well as the solubility and oligomerization of brain amyloid-β proteins, were investigated. Spatial reference memory was assessed by water maze test. Cerebral blood flow was measured with laser speckle flowmetry and cerebrovascular reactivity evaluated by monitoring cerebral blood flow changes in response to hypercapnia. Significantly reduced cerebrovascular pan-amyloid-β and amyloid-β1-40 accumulation was found in taxifolin-treated Tg-SwDI mice compared to vehicle-treated counterparts (n = 5). Spatial reference memory was severely impaired in vehicle-treated Tg-SwDI mice but normalized after taxifolin treatment, with scoring similar to wild type mice (n = 10–17). Furthermore, taxifolin completely restored decreased cerebral blood flow and cerebrovascular reactivity in Tg-SwDI mice (n = 4–6). An in vitro thioflavin-T assay showed taxifolin treatment resulted in efficient inhibition of amyloid-β1-40 assembly. In addition, a filter trap assay and ELISA showed Tg-SwDI mouse brain homogenates exhibited significantly reduced levels of amyloid-β oligomers in vivo after taxifolin treatment (n = 4–5), suggesting the effects of taxifolin on CAA are attributable to the inhibition of amyloid-β oligomer formation. In conclusion, taxifolin prevents amyloid-β oligomer assembly and fully sustains cognitive and cerebrovascular function in a CAA model mice. Taxifolin thus appears a promising therapeutic approach for CAA.
Collapse
|
47
|
Lourenço CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular uncoupling in the triple transgenic model of Alzheimer's disease: Impaired cerebral blood flow response to neuronal-derived nitric oxide signaling. Exp Neurol 2017; 291:36-43. [PMID: 28161255 DOI: 10.1016/j.expneurol.2017.01.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/05/2017] [Accepted: 01/27/2017] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO)-dependent pathways and cerebrovascular dysfunction have been shown to contribute to the cognitive decline and neurodegeneration observed in Alzheimer's disease (AD) but whether they represent initial factors or later changes of the disease is still a matter of debate. In this work, we aimed at investigating whether and to what extent neuronal-derived NO signaling and related neurovascular coupling are impaired along aging in the hippocampus of the triple transgenic mouse model of Alzheimer's Disease (3xTg-AD). We performed a longitudinal study combining behavior studies, in vivo simultaneous measurements of NO concentration gradients and cerebral blood flow (CBF), along with detection of NO synthase (NOS) and markers of nitroxidative stress. Our results revealed an impairment in the neurovascular coupling along aging in the 3xTg-AD mice which preceded obvious cognitive decline. This impairment was characterized by diminished CBF changes in response to normal or even increased NO signals and associated with markers of nitroxidative stress. The results suggest that impairment in neurovascular coupling is primarily due to cerebrovascular dysfunction, rather than due to dysfunctional NO signaling from neurons to blood vessels. Overall, this work supports cerebrovascular dysfunction as a fundamental underlying process in AD pathology.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
48
|
Kalheim LF, Bjørnerud A, Fladby T, Vegge K, Selnes P. White matter hyperintensity microstructure in amyloid dysmetabolism. J Cereb Blood Flow Metab 2017; 37:356-365. [PMID: 26792028 PMCID: PMC5363752 DOI: 10.1177/0271678x15627465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 01/27/2023]
Abstract
Accumulating evidence suggests associations between cerebrovascular disease (CVD) and Alzheimer's disease (AD). White matter hyperintensities of presumed vascular origin (WMHs) are increased in subjects with mild cognitive impairment (MCI) and AD, but the exact pathomechanistic link is unknown. The current study investigated effects of amyloid dysmetabolism on the microstructure of WMHs in subjects with MCI or subjective cognitive decline (N = 51), dichotomized according to pathological or normal levels of amyloid-β peptide (Aβ42) in cerebrospinal fluid (CSF). Thirty-one subjects with low CSF Aβ42 (Aβ+) and 20 subjects with normal CSF Aβ42 (Aβ-) were assessed with magnetic resonance diffusion tensor imaging (DTI), and fractional anisotropy (FA), radial diffusivity (DR), axial diffusivity (DA), and mean diffusivity (MD) were determined. There were no significant differences in WMH volume or distribution between the groups, and neither age nor WMH volume had significant impact on the DTI indices. Nevertheless, there were significantly higher DA, DR, and MD in WMHs in Aβ+ relative to Aβ-; however, no differences in FA were found. The present results suggest that amyloid accumulation is associated with impaired structural integrity (e.g. relating to more extensive demyelination and loss of axons) in WMHs putatively adding to effects of ischemia.
Collapse
Affiliation(s)
- Lisa F Kalheim
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Atle Bjørnerud
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Kjetil Vegge
- Department of Radiology, Akershus University Hospital, Lørenskog, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
49
|
De Silva TM, Faraci FM. Reactive Oxygen Species and the Regulation of Cerebral Vascular Tone. STUDIES ON ATHEROSCLEROSIS 2017. [DOI: 10.1007/978-1-4899-7693-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Love S, Miners J. Cerebral Hypoperfusion and the Energy Deficit in Alzheimer's Disease. Brain Pathol 2016; 26:607-17. [PMID: 27327656 PMCID: PMC8028913 DOI: 10.1111/bpa.12401] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/21/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022] Open
Abstract
There is a perfusion deficit in Alzheimer's disease (AD), commencing in the precuneus and spreading to other parts of the cerebral cortex. The deficit anticipates the development of dementia, contributes to brain damage, and is caused by both functional and structural abnormalities of the cerebral vasculature. Most of the abnormalities are probably secondary to the accumulation of Aβ but the consequent hypoperfusion may, in turn, increase Aβ production. In the early stages of disease, abnormalities that cause vasoconstriction predominate. These include cholinergic vascular denervation, inhibition of endothelial nitric oxide synthase, increased production of endothelin-1 production and possibly also of angiotensin II. Patients with AD also have an increased prevalence of structural disease of cerebral microvessels, particularly CAA and capillary damage, and particularly in the later stages of disease these are likely to make an important contribution to the cerebral hypoperfusion. The metabolic abnormalities that cause early vascular dysfunction offer several targets for therapeutic intervention. However, for intervention to be effective it probably needs to be early. Prolonged cerebral hypoperfusion may induce compensatory circulatory changes that are themselves damaging, including hypertension and small vessel disease. This has implications for the use of antihypertensive drugs once there is accumulation of Aβ within the brain.
Collapse
Affiliation(s)
- Seth Love
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical SciencesUniversity of BristolBristolUnited Kingom
| | - J.Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical SciencesUniversity of BristolBristolUnited Kingom
| |
Collapse
|