1
|
Ozkarafakili MA, Kara ZMY, Musluman AM, Bek TT. The Association of Plasma Asymmetric Dimethylarginine Concentrations and Inflammation Markers in Non-small Cell Lung Cancer. SISLI ETFAL HASTANESI TIP BULTENI 2024; 58:460-467. [PMID: 39816429 PMCID: PMC11729830 DOI: 10.14744/semb.2024.29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 01/18/2025]
Abstract
Objectives Nonsmall cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. Asymmetric dimethylarginine (ADMA) is an emerging molecule that is highlighted in carcinogenesis and tumor progression in lung cancer. Since elevated concentrations of ADMA are observed in lung cancer patients, we aimed to explore its associations with inflammation markers and established prognostic indices. Methods 78 newly diagnosed non-small cell lung cancer patients who were presented with brain metastases at the initial admission and 41 Stage 1 patients with NSCLC were included in the study. ADMA concentrations among the groups were correlated. Further, the relationship between ADMA levels and the other inflammatory markers was analyzed. Results ADMA levels were significantly higher in the group of NSCLC patients with brain metastases than in the Stage 1 patients control group (p<0.001). A significant negative correlation was found between ADMA levels and BMI, albumin and hemoglobin (p<0.001), whereas it was positively correlated with platelet, WBC, neutrophil-to-lymphocyte ratio, RDW, RDW/albumin ratio, LDH, CRP, fibrinogen, platelet, and CRP/albumin ratio (p<0.001). Conclusion Increased circulating concentrations of ADMA were significantly correlated with higher NLR, CRP and LDH; which were accepted as indicators of poor prognosis in NSCLC patients. ADMA might contribute to tumor growth and dissemination via systemic inflammatory pathways.
Collapse
Affiliation(s)
- Mufide Arzu Ozkarafakili
- Department of Chest Diseases, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Zeynep Mine Yalcinkaya Kara
- Department of Biochemistry, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Ahmet Murat Musluman
- Department of Neurosurgery, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Tuba Tulin Bek
- Department of Radiation Oncology, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| |
Collapse
|
2
|
Berber NK, Kurt O, Altıntop Geçkil A, Erdem M, Kıran TR, Otlu Ö, Ecin SM, İn E. Evaluation of Oxidative Stress and Endothelial Dysfunction in COVID-19 Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1041. [PMID: 39064471 PMCID: PMC11279166 DOI: 10.3390/medicina60071041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Heat shock proteins (HSPs) are stress proteins. The endogenous nitric oxide (NO) synthase inhibitor asymmetric dimethyl arginine (ADMA) is a mediator of endothelial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus causes endothelial dysfunction and coagulopathy through severe inflammation and oxidative stress. Using these markers, we analyzed the prognostic value of serum ADMA and HSP-90 levels for early prediction of severe coronavirus disease (COVID-19) patients. Materials and Methods: A total of 76 COVID-19 patients and 35 healthy control subjects were included in this case-control study. COVID-19 patients were divided into two groups: mild and severe. Results: Serum ADMA and HSP-90 levels were significantly higher in the COVID-19 patients compared to the control subjects (p < 0.001). Additionally, serum ADMA and HSP-90 levels were determined to be higher in a statistically significant way in severe COVID-19 compared to mild COVID-19 (p < 0.001). Univariable logistic regression analysis revealed that ADMA and HSP-90, respectively, were independent predictors of severe disease in COVID-19 patients (ADMA (OR = 1.099, 95% CI = 1.048-1.152, p < 0.001) and HSP-90 (OR = 5.296, 95% CI = 1.719-16.316, p = 0.004)). When the cut-off value for ADMA was determined as 208.94 for the prediction of the severity of COVID-19 patients, the sensitivity was 72.9% and the specificity was 100% (AUC = 0.938, 95%CI = 0.858-0.981, p < 0.001). When the cut-off value for HSP-90 was determined as 12.68 for the prediction of the severity of COVID-19 patients, the sensitivity was 88.1% and the specificity was 100% (AUC = 0.975, 95% CI= 0.910-0.997, p < 0.001). Conclusions: Increased levels of Heat shock proteins-90 (HSP-90) and ADMA were positively correlated with increased endothelial damage in COVID-19 patients, suggesting that treatments focused on preventing and improving endothelial dysfunction could significantly improve the outcomes and reduce the mortality rate of COVID-19. ADMA and HSP-90 might be simple, useful, and prognostic biomarkers that can be utilized to predict patients who are at high risk of severe disease due to COVID-19.
Collapse
Affiliation(s)
- Nurcan Kırıcı Berber
- Department of Chest Diseases, Malatya Turgut Özal University, Malatya 44210, Turkey;
| | - Osman Kurt
- Department of Public Health, Faculty of Medicine, Inonu University, Malatya 44210, Turkey;
| | | | - Mehmet Erdem
- Department of Medical Biochemistry, Malatya Turgut Özal University, Malatya 44210, Turkey; (M.E.); (T.R.K.); (Ö.O.)
| | - Tuğba Raika Kıran
- Department of Medical Biochemistry, Malatya Turgut Özal University, Malatya 44210, Turkey; (M.E.); (T.R.K.); (Ö.O.)
| | - Önder Otlu
- Department of Medical Biochemistry, Malatya Turgut Özal University, Malatya 44210, Turkey; (M.E.); (T.R.K.); (Ö.O.)
| | - Seval Müzeyyen Ecin
- Department of Occupational Medicine and Internal Medicine Clinic, Mersin City Training and Research Hospital, Mersin 33240, Turkey;
| | - Erdal İn
- Department of Pulmonary Diseases, Faculty of Medicine, İzmir University of Economics, İzmir 35330, Turkey;
| |
Collapse
|
3
|
Shafran I, Probst V, Panzenböck A, Sadushi-Kolici R, Gerges C, Wolzt M, Segel MJ, Celermajer DS, Lang IM, Skoro-Sajer N. Asymmetric Dimethylarginine and NT-proBNP Levels Provide Synergistic Information in Pulmonary Arterial Hypertension. JACC. HEART FAILURE 2024; 12:1089-1097. [PMID: 38573264 DOI: 10.1016/j.jchf.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Plasma asymmetric dimethylarginine (ADMA) is elevated in pulmonary arterial hypertension (PAH) and is associated with unfavorable outcomes. OBJECTIVES The aim of this study was to assess changes in ADMA plasma levels for monitoring disease progression and outcomes during PAH-specific therapy. METHODS ADMA was measured at baseline and after at least 6 months of follow-up using enzyme-linked immunosorbent assay and high-performance liquid chromatography. Changes in ADMA were analyzed in relation to changes in established PAH markers, including hemodynamic status, N-terminal pro-brain natriuretic peptide (NT-proBNP) and risk assessment scores. Impact on survival was assessed using Kaplan-Meier curves and Cox proportional hazards models. RESULTS Between 2008 and 2019, ADMA samples were collected prospectively from 215 patients with PAH. Change in ADMA plasma level was a predictor of disease progression and survival. ΔADMA (median -0.03 μmol/L; 95% CI: -0.145 to 0.0135) was correlated with change in mean pulmonary arterial pressure (P < 0.005; rS = 0.287) but was not significantly correlated with ΔNT-proBNP (P = 0.056; rS = 0.135). Patients with decreased ADMA plasma levels at follow-up had better 3-year and 5-year survival rates (88% and 80%, respectively, vs 72% and 53% in those without decreases in ADMA) (P < 0.005; pulmonary hypertension-related mortality or lung transplantation). Patients with decreases in both ADMA and NT-proBNP had better survival rates compared with patients in whom only 1 parameter improved (P < 0.005). ΔADMA was a significant predictor of survival in Cox regression analysis and also when corrected for ΔNT-proBNP (HRs: 1.27 and 1.35, respectively; P < 0.005). CONCLUSIONS ADMA and NT-proBNP provide synergistic prognostic information for patients with PAH. ADMA could be used as an objective and distinct biomarker for monitoring treatment response in PAH.
Collapse
Affiliation(s)
- Inbal Shafran
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, Vienna, Austria; Pulmonary Institute, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Victoria Probst
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Adelheid Panzenböck
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Roela Sadushi-Kolici
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Christian Gerges
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Michael Wolzt
- Department of Clinical Pharmacology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Michael J Segel
- Pulmonary Institute, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Irene Marthe Lang
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Nika Skoro-Sajer
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Rubić I, Weidt S, Burchmore R, Kovačević A, Kuleš J, Eckersall PD, Torti M, Jović I, Kovačić M, Gotić J, Barić Rafaj R, Novak P, Samardžija M, Mrljak V. Metabolome Profiling in the Plasma of Dogs with Idiopathic Dilated Cardiomyopathy: A Multiplatform Mass-Spectrometry-Based Approach. Int J Mol Sci 2023; 24:15182. [PMID: 37894863 PMCID: PMC10607069 DOI: 10.3390/ijms242015182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Dilated cardiomyopathy is one of the important diseases in dogs and humans. The second most common cause of heart failure in dogs is idiopathic dilated cardiomyopathy (iDCM), which results in heart failure or sudden cardiac death due to arrhythmia. This study aimed to determine changes in the plasma metabolome of dogs with iDCM compared to healthy dogs. For that purpose, a multiplatform mass-spectrometry-based approach was used. In this study, we included two groups of dogs: 12 dogs with iDCM and 8 healthy dogs. A total of 272 metabolites were detected in the plasma samples of dogs by combining three approaches but four MS-based platforms (GC-MS, LC-MS (untargeted), LC-MS (targeted), and FIA-MS (targeted) methods). Our findings demonstrated changes in the canine plasma metabolome involved in the development of iDCM, including the different concentrations of amino acids, biogenic amines, acylcarnitines, triglycerides and diglycerides, sphingomyelins, and organic acids. The results of this study will enable the detection and monitoring of pathophysiological mechanisms involved in the development of iDCM in the future.
Collapse
Affiliation(s)
- Ivana Rubić
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Stefan Weidt
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow G61 1QH, UK; (S.W.); (R.B.)
| | - Richard Burchmore
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow G61 1QH, UK; (S.W.); (R.B.)
| | - Alan Kovačević
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (R.B.R.)
| | - Peter David Eckersall
- Institute of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, University of Murcia, 30100 Murcia, Spain
| | - Marin Torti
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.J.); (J.G.)
| | - Ines Jović
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.J.); (J.G.)
| | - Mislav Kovačić
- Department of Biology, University of Osijek, 31000 Osijek, Croatia;
| | - Jelena Gotić
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.J.); (J.G.)
| | - Renata Barić Rafaj
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (J.K.); (R.B.R.)
| | - Predrag Novak
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marko Samardžija
- Reproduction and Obstetrics, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Vladimir Mrljak
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (M.T.); (I.J.); (J.G.)
| |
Collapse
|
5
|
Dimitry MO, Soliman YMA, ElKorashy RI, Raslan HM, Kamel SA, Hassan EM, Ahmed FE, Yousef RN, Awadallah EA. Role of micro-RNAs 21, 124 and other novel biomarkers in distinguishing between group 1 WHO pulmonary hypertension and group 2, 3 WHO pulmonary hypertension. Egypt Heart J 2023; 75:76. [PMID: 37646902 PMCID: PMC10468479 DOI: 10.1186/s43044-023-00395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/29/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Pulmonary hypertension "PH" is considered a serious cardiovascular disease. World Health Organization divided PH into groups depending on many factors like pathological, hemodynamic, and clinical pictures. Lately, various micro-RNAs "miRNAs" and other novel biomarkers like endoglin and asymmetric dimethylarginine "ADMA" might have a role in diagnosis of PH and may differentiate between pulmonary arterial hypertension "PAH" and non-PAH. The purpose of the study is to show the role of miR-21, miR-124, endoglin and ADMA in the diagnosis of PH and distinguishing between WHO group 1 PH and WHO group 2 and 3 PH and to identify patients who might benefit from non-invasive and inexpensive tools to diagnose PAH. RESULTS miR-21 was upregulated in group 1 PH, and there was significant difference between group 1 PH as compared with group 2 PH, group 3 PH and control; miR-124 was down-regulated in group 1 PH with highly significant difference between group 1 and group 2 PH and control but no significant difference with group 3 PH, endoglin was elevated in group 1 PH with a significant difference as compared to group 2 PH, group 3 PH and control. ADMA was elevated in group 1 PH as compared to control; however, there was no significant difference between it and group 2, 3 PH. CONCLUSIONS miR-21, miR-124, endoglin and ADMA are good biomarkers to diagnose PH; however, only miR-21 and endoglin could distinguish group 1 PH from group 2 and 3 PH.
Collapse
Affiliation(s)
- Mark O Dimitry
- Cardiology Unit, Department of Internal Medicine, National Research Center, Cairo, Egypt.
| | - Youssef M A Soliman
- Pulmonary Vascular Disease Unit, Department of Pulmonology, Cairo University, Cairo, Egypt
| | - Reem I ElKorashy
- Pulmonary Vascular Disease Unit, Department of Pulmonology, Cairo University, Cairo, Egypt
| | - Hala M Raslan
- Cardiology Unit, Department of Internal Medicine, National Research Center, Cairo, Egypt
| | - Solaf A Kamel
- Department of Clinical and Chemical Pathology, National Research Center, Cairo, Egypt
| | - Eman M Hassan
- Department of Clinical and Chemical Pathology, National Research Center, Cairo, Egypt
| | - Fatma Elzahraa Ahmed
- Pulmonary Vascular Disease Unit, Department of Pulmonology, Cairo University, Cairo, Egypt
| | - Rasha N Yousef
- Department of Clinical and Chemical Pathology, National Research Center, Cairo, Egypt
| | - Eman A Awadallah
- Department of Clinical and Chemical Pathology, National Research Center, Cairo, Egypt
| |
Collapse
|
6
|
Selamet Tierney ES, Palaniappan L, Leonard M, Long J, Myers J, Dávila T, Lui MC, Kogan F, Olson I, Punn R, Desai M, Schneider LM, Wang CH, Cooke JP, Bernstein D. Design and rationale of re-energize fontan: Randomized exercise intervention designed to maximize fitness in fontan patients. Am Heart J 2023; 259:68-78. [PMID: 36796574 PMCID: PMC10085861 DOI: 10.1016/j.ahj.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/22/2023] [Accepted: 02/05/2023] [Indexed: 05/11/2023]
Abstract
In this manuscript, we describe the design and rationale of a randomized controlled trial in pediatric Fontan patients to test the hypothesis that a live-video-supervised exercise (aerobic+resistance) intervention will improve cardiac and physical capacity; muscle mass, strength, and function; and endothelial function. Survival of children with single ventricles beyond the neonatal period has increased dramatically with the staged Fontan palliation. Yet, long-term morbidity remains high. By age 40, 50% of Fontan patients will have died or undergone heart transplantation. Factors that contribute to onset and progression of heart failure in Fontan patients remain incompletely understood. However, it is established that Fontan patients have poor exercise capacity which is associated with a greater risk of morbidity and mortality. Furthermore, decreased muscle mass, abnormal muscle function, and endothelial dysfunction in this patient population is known to contribute to disease progression. In adult patients with 2 ventricles and heart failure, reduced exercise capacity, muscle mass, and muscle strength are powerful predictors of poor outcomes, and exercise interventions can not only improve exercise capacity and muscle mass, but also reverse endothelial dysfunction. Despite these known benefits of exercise, pediatric Fontan patients do not exercise routinely due to their chronic condition, perceived restrictions to exercise, and parental overprotection. Limited exercise interventions in children with congenital heart disease have demonstrated that exercise is safe and effective; however, these studies have been conducted in small, heterogeneous groups, and most had few Fontan patients. Critically, adherence is a major limitation in pediatric exercise interventions delivered on-site, with adherence rates as low as 10%, due to distance from site, transportation difficulties, and missed school or workdays. To overcome these challenges, we utilize live-video conferencing to deliver the supervised exercise sessions. Our multidisciplinary team of experts will assess the effectiveness of a live-video-supervised exercise intervention, rigorously designed to maximize adherence, and improve key and novel measures of health in pediatric Fontan patients associated with poor long-term outcomes. Our ultimate goal is the translation of this model to clinical application as an "exercise prescription" to intervene early in pediatric Fontan patients and decrease long-term morbidity and mortality.
Collapse
Affiliation(s)
- Elif Seda Selamet Tierney
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University, School of Medicine, Palo Alto, CA, USA.
| | - Latha Palaniappan
- Department of Medicine, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Mary Leonard
- Department of Pediatrics, Division of Pediatric Nephrology, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Jin Long
- Department of Pediatrics, Division of Pediatric Nephrology, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Jonathan Myers
- Department of Medicine, Health Research Science, Palo Alto VA Health Care System, Palo Alto, CA, USA
| | - Tania Dávila
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Mavis C Lui
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Feliks Kogan
- Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Inger Olson
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Rajesh Punn
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Manisha Desai
- Department of Biomedical Data Science, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - Lauren M Schneider
- Psychiatry and Behavioral Sciences - Child & Adolescent Psychiatry and Child Development, Palo Alto, CA, USA
| | - Chih-Hung Wang
- Department of Pediatrics, Health Policy, Stanford University, School of Medicine, Palo Alto, CA, USA
| | - John P Cooke
- Houston Methodist Research Institute Houston Methodist Hospital & Research Institute, Houston, Texas, USA
| | - Daniel Bernstein
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University, School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
7
|
Ratchford SM, Bunsawat K, Alpenglow JK, Zhao J, Wright JB, Ryan JJ, Wray DW. Improved vascular function and functional capacity following l-citrulline administration in patients with heart failure with preserved ejection fraction: a single-arm, open-label, prospective pilot study. J Appl Physiol (1985) 2023; 134:328-338. [PMID: 36476159 PMCID: PMC9886346 DOI: 10.1152/japplphysiol.00445.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
There is accumulating evidence for both peripheral vascular dysfunction and impaired functional capacity in patients with heart failure with a preserved ejection fraction (HFpEF). Although derangements in the l-arginine-nitric oxide (l-Arg-NO) pathway are likely to contribute to these aspects of HFpEF pathophysiology, the impact of increased NO substrate on vascular health and physical capacity has not been evaluated in this patient population. Thus, using a single-arm study design, we evaluated the impact of enteral l-citrulline (l-Cit, 6 g/day for 7 days), a precursor for l-Arg biosynthesis, on vascular function [flow-mediated dilation (FMD), reactive hyperemia (RH), and passive limb movement (PLM)], functional capacity [6-min walk test (6MWT)], and biomarkers of l-Arg-NO signaling in 14 patients with HFpEF (n = 14, 4 M/10 F, 70 ± 10 yr, EF: 66 ± 7%). Compared with baseline (0d), 7 days of l-Cit administration improved FMD (0d: 2.5 ± 1.6%, 7d: 4.5 ± 2.9%), RH (0d: 468 ± 167 mL, 7d: 577 ± 199 mL), PLM blood flow area-under-the-curve (0d: 139 ± 130 mL, 7d: 198 ± 115 mL), and 6MWT distance (0d: 377 ± 27 m, 7d: 397 ± 27 m) (P < 0.05). An increase in plasma l-Cit (0d: 42 ± 11 µM/L, 7d: 369 ± 201 µM/L), l-Arg (0d: 65 ± 8 µM/L, 7d: 257 ± 25 µM/L), and the ratio of l-Arg to asymmetric dimethylarginine (ADMA) (0d: 136 ± 13 AU, 7d: 481 ± 49 AU) (P < 0.05) was also observed. Though preliminary in nature, these functional and biomarker assessments demonstrate a potential benefit of l-Cit administration in patients with HFpEF, findings that provide new insight into the mechanisms that govern vascular and physical dysfunction in this patient group.NEW & NOTEWORTHY The current investigation has demonstrated that l-Cit administration may improve brachial artery endothelium-dependent vasodilation, upper and lower limb microvascular function, and physical capacity in patients with HFpEF, highlighting the potential therapeutic potential of interventions targeting the l-Arg-NO signaling cascade to improve outcomes in this patient group.
Collapse
Affiliation(s)
- Stephen M Ratchford
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Kanokwan Bunsawat
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Jia Zhao
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Josephine B Wright
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - D Walter Wray
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
8
|
Santos-Gomes J, Gandra I, Adão R, Perros F, Brás-Silva C. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Front Cardiovasc Med 2022; 9:924873. [PMID: 35911521 PMCID: PMC9333554 DOI: 10.3389/fcvm.2022.924873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), also known as Group 1 Pulmonary Hypertension (PH), is a PH subset characterized by pulmonary vascular remodeling and pulmonary arterial obstruction. PAH has an estimated incidence of 15-50 people per million in the United States and Europe, and is associated with high mortality and morbidity, with patients' survival time after diagnosis being only 2.8 years. According to current guidelines, right heart catheterization is the gold standard for diagnostic and prognostic evaluation of PAH patients. However, this technique is highly invasive, so it is not used in routine clinical practice or patient follow-up. Thereby, it is essential to find new non-invasive strategies for evaluating disease progression. Biomarkers can be an effective solution for determining PAH patient prognosis and response to therapy, and aiding in diagnostic efforts, so long as their detection is non-invasive, easy, and objective. This review aims to clarify and describe some of the potential new candidates as circulating biomarkers of PAH.
Collapse
Affiliation(s)
- Joana Santos-Gomes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Gandra
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
- Université Paris–Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Türer Cabbar A, Değertekin MM, Şimşek MA, Özveren O, Güleç S, Yanartaş M, Gezer Taş S, Olgun Yıldızeli Ş, Mutlu B, İşbir T, Yıldızeli B. Evaluation of Asymmetric Dimethylarginine Levels in Patients With Chronic Thromboembolic Pulmonary Hypertension Undergoing Pulmonary Endarterectomy. Heart Lung Circ 2021; 31:110-118. [PMID: 34130918 DOI: 10.1016/j.hlc.2021.05.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Chronic thromboembolic pulmonary hypertension (CTEPH) is a form of pulmonary embolism, and pulmonary endarterectomy (PEA) is the surgical treatment. Asymmetric dimethylarginine (ADMA) levels are increased in pulmonary hypertension. This study aimed to investigate serum ADMA levels in patients with CTEPH, the effect of PEA on ADMA, and its prognostic value in long-term mortality. METHOD Eighty (80) patients with CTEPH and 32 healthy controls were included. Preoperative serum ADMA levels, determined using an enzyme-linked immunosorbent assay, were compared between patients with CTEPH and controls. Of 80 patients, 64 had PEA. Pre- and 6-month postoperative serum ADMA levels, 6-minute walk distance (6MWD), and haemodynamic parameters were collected from patients undergoing PEA. Patients were followed-up for survival analysis. RESULTS Mean ± standard deviation serum ADMA levels were significantly higher in patients with CTEPH compared with controls (0.79±0.32 μmol/L vs 0.52±0.12 μmol/L; p=0.0001). Statistically significant differences were observed between preoperative and postoperative serum ADMA levels (0.78±0.30 μmol/L vs 0.62±0.22 μmol/L; p=0.0001), 6MWD (p=0.0001), and pulmonary vascular resistance (p=0.0001) in 60 patients who underwent and survived PEA. The decrease in serum ADMA levels and increase in 6MWD were significantly correlated (r=-0.286, p=0.027). No other correlation was found. Perioperative mortality was 6.3%, and the survival rate with a mean follow-up of 34.57±8.20 months was 93.3%. Patients with serum ADMA levels >0.8 μmol/L had a significantly lower survival rate (logrank: 5.86; p=0.015). CONCLUSIONS Levels of circulating ADMA might add diagnostic and prognostic information in CTEPH. Pulmonary endarterectomy is associated with an improvement in serum ADMA levels. Preoperative serum ADMA levels may be useful for estimating the outcome of PEA.
Collapse
Affiliation(s)
- Ayça Türer Cabbar
- Department of Cardiology, Yeditepe University School of Medicine, Istanbul, Turkey.
| | | | - Mustafa A Şimşek
- Department of Cardiology, Yeditepe University School of Medicine, Istanbul, Turkey
| | - Olcay Özveren
- Department of Cardiology, Yeditepe University School of Medicine, Istanbul, Turkey
| | - Seda Güleç
- Department of Medical Biology, Yeditepe University School of Medicine, Istanbul, Turkey
| | - Mehmed Yanartaş
- Department of Cardiovascular Surgery, Kartal Koşuyolu High Specialty Educational and Research Hospital, Istanbul, Turkey
| | - Serpil Gezer Taş
- Department of Cardiovascular Surgery, Kartal Koşuyolu High Specialty Educational and Research Hospital, Istanbul, Turkey
| | - Şehnaz Olgun Yıldızeli
- Department of Pulmonary and Intensive Care, Marmara University Istanbul Pendik Educational and Research Hospital, Istanbul, Turkey
| | - Bülent Mutlu
- Department of Cardiology, Marmara University Istanbul Pendik Educational and Research Hospital, Istanbul, Turkey
| | - Turgay İşbir
- Department of Medical Biology, Yeditepe University School of Medicine, Istanbul, Turkey
| | - Bedrettin Yıldızeli
- Department of Thoracic Surgery, Marmara University Istanbul Pendik Educational and Research Hospital, Istanbul, Turkey
| |
Collapse
|
10
|
Hsu CN, Tain YL. Preventing Developmental Origins of Cardiovascular Disease: Hydrogen Sulfide as a Potential Target? Antioxidants (Basel) 2021; 10:antiox10020247. [PMID: 33562763 PMCID: PMC7914659 DOI: 10.3390/antiox10020247] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
The cardiovascular system can be programmed by a diversity of early-life insults, leading to cardiovascular disease (CVD) in adulthood. This notion is now termed developmental origins of health and disease (DOHaD). Emerging evidence indicates hydrogen sulfide (H2S), a crucial regulator of cardiovascular homeostasis, plays a pathogenetic role in CVD of developmental origins. Conversely, early H2S-based interventions have proved beneficial in preventing adult-onset CVD in animal studies via reversing programming processes by so-called reprogramming. The focus of this review will first summarize the current knowledge on H2S implicated in cardiovascular programming. This will be followed by supporting evidence for the links between H2S signaling and underlying mechanisms of cardiovascular programming, such as oxidative stress, nitric oxide deficiency, dysregulated nutrient-sensing signals, activation of the renin–angiotensin system, and gut microbiota dysbiosis. It will also provide an overview from animal models regarding how H2S-based reprogramming interventions, such as precursors of H2S and H2S donors, may prevent CVD of developmental origins. A better understanding of cardiovascular programming and recent advances in H2S-based interventions might provide the answers to bring down the global burden of CVD.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-975-056-995; Fax: +886-7733-8009
| |
Collapse
|
11
|
LC-MS/MS quantification of asymmetric dimethyl arginine and symmetric dimethyl arginine in plasma using surrogate matrix and derivatization with fluorescamine. Bioanalysis 2020; 12:1607-1619. [PMID: 33151745 DOI: 10.4155/bio-2020-0223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: A novel LC-MS/MS method using a surrogate matrix and derivatization with fluorescamine was developed and validated for simultaneous quantification of asymmetric dimethyl arginine and symmetric dimethyl arginine. Methods & results: Asymmetric dimethyl arginine, symmetric dimethyl arginine and corresponding internal standards were extracted using protein precipitation and derivatization with fluorescamine followed by SPE. Derivatives were analyzed by turbo ion spray LC-MS/MS in the positive ion mode. Methodology was successfully transferred across multiple preclinical species and utilized in the support of several investigative studies. Conclusion: A new LC-MS/MS analytical methodology that utilizes a surrogate matrix and derivatization with fluorescamine was successfully developed and validated.
Collapse
|
12
|
López V, Uribe E, Moraga FA. Activation of arginase II by asymmetric dimethylarginine and homocysteine in hypertensive rats induced by hypoxia: a new model of nitric oxide synthesis regulation in hypertensive processes? Hypertens Res 2020; 44:263-275. [PMID: 33149269 DOI: 10.1038/s41440-020-00574-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 11/09/2022]
Abstract
In recent years, the increase in blood pressure at high altitudes has become an interesting topic among high-altitude researchers. In our animal studies using Wistar rats, we observed the existence of two rat populations that exhibit differential physiological responses during hypoxic exposure. These rats were classified as hypoxia-induced hypertensive rats and nonhypertensive rats. A decrease in nitric oxide levels was reported in different hypertension models associated with increased concentrations of asymmetric dimethylarginine (ADMA) and homocysteine, and we recently described an increase in arginase type II expression under hypoxia. ADMA and homocysteine decrease nitric oxide (NO) bioavailability; however, whether ADMA and homocysteine have a regulatory effect on arginase activity and therefore regulate another NO synthesis pathway is unknown. Therefore, the aim of this study was to measure basal ADMA and homocysteine levels in hypoxia-induced hypertensive rats and evaluate their effect on arginase II activity. Our results indicate that hypoxia-induced hypertensive rats presented lower nitric oxide concentrations than nonhypertensive rats, associated with higher concentrations of homocysteine and ADMA. Hypoxia-induced hypertensive rats also presented lower dimethylarginine dimethylaminohydrolase-2 and cystathionine β-synthase levels, which could explain the high ADMA and homocysteine levels. In addition, we observed that both homocysteine and ADMA had a significant effect on arginase II activation in the hypertensive rats. Therefore, we suggest that ADMA and homocysteine have dual regulatory effects on NO synthesis. The former has an inhibitory effect on eNOS, and the latter has a secondary activating effect on arginase II. We propose that arginase II is activated by AMDA and homocysteine in hypoxia-induced hypertensive rats.
Collapse
Affiliation(s)
- Vasthi López
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Elena Uribe
- Departamento de Bioquímica, Facultad de Ciencias Biológicas, Universidad de Concepción. Barrio Universitario s/n, Concepción, Chile
| | - Fernando A Moraga
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.
| |
Collapse
|
13
|
Ramjug S, Weatherald J, Sahay S, Khoury J, Foris V, Chandran N, Bokan A, Godinas L, Delcroix M. ERS International Congress, Madrid, 2019: highlights from the Pulmonary Vascular Diseases Assembly. ERJ Open Res 2020; 6:00304-2020. [PMID: 33083438 PMCID: PMC7553109 DOI: 10.1183/23120541.00304-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
The 2019 European Respiratory Society (ERS) International Congress, held in Madrid, Spain, had exciting sessions regarding the field of pulmonary vascular disease. The symposia related to the new ERS/European Society of Cardiology (ESC) Guidelines for the diagnosis and management of acute pulmonary embolism were well received, as were sessions on pulmonary hypertension related to lung disease, demonstrating the concept of pulmonary hypertension not being the rarity that it was previously thought to be. The use of risk stratification in relation to pulmonary arterial hypertension (PAH) was heavily featured and the scientific sessions informing the respiratory community of potential biomarkers and targets for future therapies were thought-provoking. This article discusses highlights of the 2019 pulmonary vascular disease sessions as a summary of current knowledge and practice. We have summarised the key points from the sessions pertaining to the new ERS/ESC Guidelines for the management of acute pulmonary embolism. We have also focused on prognostic factors and potential therapies in pulmonary hypertension related to interstitial lung disease. Relating to PAH, we have reviewed the symposia on risk stratification, along with the use of noninvasive measures and the sessions relating to biomarkers in PAH.
Collapse
Affiliation(s)
- Sheila Ramjug
- Dept of Respiratory Medicine, Manchester University NHS Foundation Trust, Wythenshawe, UK
| | - Jason Weatherald
- Dept of Medicine, Division of Respirology, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Sandeep Sahay
- Houston Methodist Lung Center, Division of Pulmonary Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Johad Khoury
- Pulmonary Division, Lady Davis-Carmel Medical Center, Haifa, Israel
| | - Vasile Foris
- Medical University of Graz, Dept of Internal Medicine, Division of Pulmonology, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Nagaraj Chandran
- Medical University of Graz, Dept of Internal Medicine, Division of Pulmonology, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Aleksandar Bokan
- Dept for Emergency Pulmonology, Institute for Pulmonary Diseases of Vojvodina, Faculty of Medicine Novi Sad, Novi Sad, Serbia
| | | | | |
Collapse
|
14
|
Plausible diagnostic value of urinary isomeric dimethylarginine ratio for diabetic nephropathy. Sci Rep 2020; 10:2970. [PMID: 32076062 PMCID: PMC7031402 DOI: 10.1038/s41598-020-59897-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/23/2020] [Indexed: 01/12/2023] Open
Abstract
Altered circulatory asymmetric and symmetric dimethylarginines have been independently reported in patients with end-stage renal failure suggesting their potential role as mediators and early biomarkers of nephropathy. These alterations can also be reflected in urine. Herein, we aimed to evaluate urinary asymmetric to symmetric dimethylarginine ratio (ASR) for early prediction of diabetic nephropathy (DN). In this cross-sectional study, individuals with impaired glucose tolerance (IGT), newly diagnosed diabetes (NDD), diabetic microalbuminuria (MIC), macroalbuminuria (MAC), and normal glucose tolerance (NGT) were recruited from Dr. Mohans’ Diabetes Specialties centre, India. Urinary ASR was measured using a validated high-throughput MALDI-MS/MS method. Significantly lower ASR was observed in MIC (0.909) and MAC (0.741) in comparison to the NGT and NDD groups. On regression models, ASR was associated with MIC [OR: 0.256; 95% CI: 0.158–0.491] and MAC [OR 0.146; 95% CI: 0.071–0.292] controlled for all the available confounding factors. ROC analysis revealed ASR cut-point of 0.95 had C-statistic of 0.691 (95% CI: 0.627-0.755) to discriminate MIC from NDD with 72% sensitivity. Whereas, an ASR cut-point of 0.82 had C-statistic of 0.846 (95% CI: 0.800 - 0.893) had 91% sensitivity for identifying MAC. Our results suggest ASR as a potential early diagnostic biomarker for DN among the Asian Indians.
Collapse
|
15
|
Hewes JL, Lee JY, Fagan KA, Bauer NN. The changing face of pulmonary hypertension diagnosis: a historical perspective on the influence of diagnostics and biomarkers. Pulm Circ 2020; 10:2045894019892801. [PMID: 32110383 PMCID: PMC7000867 DOI: 10.1177/2045894019892801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension is a complex, multifactorial disease that results in right heart failure and premature death. Since the initial reports of pulmonary hypertension in the late 1800s, the diagnosis of pulmonary hypertension has evolved with respect to its definition, screening tools, and diagnostic techniques. This historical perspective traces the earliest roots of pulmonary hypertension detection and diagnosis through to the current recommendations for classification. We highlight the diagnostic tools used in the past and present, and end with a focus on the future directions of early detection. Early detection of pulmonary hypertension and pulmonary arterial hypertension and the proper determination of etiology are vital for the early therapeutic intervention that can prolong life expectancy and improve quality of life. The search for a non-invasive screening tool for the identification and classification of pulmonary hypertension is ongoing, and we discuss the role of animal models of the disease in this search.
Collapse
Affiliation(s)
- Jenny L. Hewes
- Department of Pharmacology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
| | - Ji Young Lee
- Center for Lung Biology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
- Division of Pulmonary and Critical Care
Medicine, University Hospital,
University
of South Alabama, Mobile, AL, USA
- Department of Physiology and Cell
Biology, College of Medicine,
University
of South Alabama, Mobile, AL, USA
| | - Karen A. Fagan
- Department of Pharmacology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
- Division of Pulmonary and Critical Care
Medicine, University Hospital,
University
of South Alabama, Mobile, AL, USA
| | - Natalie N. Bauer
- Department of Pharmacology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
- Center for Lung Biology, College of
Medicine,
University
of South Alabama, Mobile, AL, USA
| |
Collapse
|
16
|
Janes F, Cifù A, Pessa ME, Domenis R, Gigli GL, Sanvilli N, Nilo A, Garbo R, Curcio F, Giacomello R, Fabris M, Valente M. ADMA as a possible marker of endothelial damage. A study in young asymptomatic patients with cerebral small vessel disease. Sci Rep 2019; 9:14207. [PMID: 31578412 PMCID: PMC6775279 DOI: 10.1038/s41598-019-50778-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023] Open
Abstract
Sporadic small vessel disease (SVD) has high prevalence in aging population and stroke patients, but also in younger asymptomatic subjects. In this last group it can represents a prelude to stroke and cognitive impairment. Still nowadays, its pathogenesis is unclear. 35 consecutive patients with SVD at brain MRI and 35 age- and sex-matched controls, between January 2016 and February 2018, underwent an extended screening for thrombophilia, autoimmunity and evaluated levels of blood markers of inflammation and endothelial activation. Asymmetric DiMethyl Arginine (ADMA) levels proved higher in patients (70.44 ± 36.25 ng/ml vs. 46.58 ± 30.67 ng/ml; p = 0.004), also after controlling for confounding factors. ADMA levels showed positive correlation with Fazekas score (r = 0.304; p = 0.01). ROC curve analysis showed a moderate accuracy in discriminating patients and controls (AUC = 0.70; CI 0.57–0.82; p = 0.004): a cut-off of 46 ng/ml is associated with 80% sensitivity, but limited (54%) specificity. Higher ADMA levels characterize selected subjects with sporadic SVD, asymptomatic for vascular diseases and without latent inflammatory conditions or coagulopathy. This reinforces the hypothesis of the key role of endothelial dysfunction in SVD. Further studies should explore the cause-effect relationship between ADMA pathway and SVD.
Collapse
Affiliation(s)
- Francesco Janes
- Department of Neuroscience, S. Maria della Misericordia University Hospital, Udine, Italy.
| | - Adriana Cifù
- Department of Laboratory Medicine, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Maria Elena Pessa
- Department of Neuroscience, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Rossana Domenis
- Department of Laboratory Medicine, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Gian Luigi Gigli
- Department of Neuroscience, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Nova Sanvilli
- Department of Medical Area (DAME), University of Udine, Udine, Italy
| | - Annacarmen Nilo
- Department of Neuroscience, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Riccardo Garbo
- Department of Neuroscience, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Francesco Curcio
- Department of Laboratory Medicine, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Roberta Giacomello
- Department of Laboratory Medicine, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Martina Fabris
- Department of Laboratory Medicine, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Mariarosaria Valente
- Department of Neuroscience, S. Maria della Misericordia University Hospital, Udine, Italy
| |
Collapse
|
17
|
Farag M, El Amrousy D, El-Serogy H, Zoair A. Role of plasma asymmetric dimethyl-L-arginine levels in detection of pulmonary hypertension in children with CHD. Cardiol Young 2018; 28:1163-1168. [PMID: 29950194 DOI: 10.1017/s1047951118001026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The objectives of this study were to evaluate the plasma levels of asymmetric dimethyl-L-arginine in children with pulmonary hypertension due to CHD before and after treatment with sildenafil and to evaluate its diagnostic and prognostic value as a biomarker in such children. METHODS A total of 60 children with CHD and 30 healthy control children matched for age and sex were recruited. Children with CHD were divided into two equal groups: the normal pulmonary pressure group (n=30) and the pulmonary hypertension group (n=30). Children with pulmonary hypertension were treated with sildenafil and were followed up for 6 months. Clinical data, haemodynamic parameters, echocardiographic examination, and asymmetric dimethyl-L-arginine levels were evaluated before and after treatment. RESULTS Asymmetric dimethyl-L-arginine levels were significantly higher in patients with pulmonary hypertension than in those with CHD-only or the control group, and this increase was positively correlated with increased severity of pulmonary hypertension. Asymmetric dimethyl-L-arginine levels, mean pulmonary artery pressure, and pulmonary vascular resistance were significantly decreased after treatment with sildenafil. Moreover, asymmetric dimethyl-L-arginine level was significantly lower in patients who responded to sildenafil treatment compared with those who did not. At a cut-off point of more than 0.85 nmol/ml, asymmetric dimethyl-L-arginine has a sensitivity of 83% and a specificity of 80% to diagnose pulmonary hypertension-CHD. Asymmetric dimethyl-L-arginine has a sensitivity of 100% and a specificity of 94% to predict poor prognosis in pulmonary hypertension-CHD children at a cut-off point of 1.3 nmol/ml. CONCLUSION Asymmetric dimethyl-L-arginine level has a good diagnostic and prognostic value as a biomarker in children with pulmonary hypertension-CHD and can be used for following up patients with pulmonary hypertension and predicting response to treatment.
Collapse
Affiliation(s)
- Marwa Farag
- 1Pediatric Department, Faculty of Medicine,Tanta University,Tanta,Egypt
| | - Doaa El Amrousy
- 1Pediatric Department, Faculty of Medicine,Tanta University,Tanta,Egypt
| | - Hesham El-Serogy
- 2Clinical Pathology Department, Faculty of Medicine,Tanta University,Tanta,Egypt
| | - Amr Zoair
- 1Pediatric Department, Faculty of Medicine,Tanta University,Tanta,Egypt
| |
Collapse
|
18
|
Marra AM, Bossone E, Salzano A, D’Assante R, Monaco F, Ferrara F, Arcopinto M, Vriz O, Suzuki T, Cittadini A. Biomarkers in Pulmonary Hypertension. Heart Fail Clin 2018; 14:393-402. [DOI: 10.1016/j.hfc.2018.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Parmaksız ET, Inal A, Salepci B, Comert S, Fidan A, Kiral N, Doǧan C, Caglayan B. Relationship of asymmetric dimethylarginine levels with disease severity and pulmonary hypertension in chronic obstructive pulmonary disease. Lung India 2018; 35:199-203. [PMID: 29697075 PMCID: PMC5946551 DOI: 10.4103/lungindia.lungindia_11_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Asymmetric dimethylarginine (ADMA) has emerged as a risk marker for many conditions related to pulmonary hypertension (PH); however, little is known about ADMA and symmetric dimethylarginine (SDMA) plasma concentrations in chronic obstructive pulmonary disease (COPD). Our interest centers on the role of ADMA in regulation of endothelial function in COPD and secondary PH. The aim of the present study was to evaluate the serum ADMA, SDMA, and L-arginine concentrations in COPD and its association with PH. Methods: Patients with diagnosis of COPD underwent pulmonary function tests, echocardiography, and laboratory investigations including ADMA, SDMA, and L-arginine. Results: Serum concentrations of ADMA, SDMA, and L-arginine tend to increase as COPD progresses. Patients with PH had higher concentrations of ADMA, SDMA, and L-arginine compared to cases with normal pulmonary arterial pressure (PAP); the difference was not statistically significant. Conclusions: Our results show that increased ADMA, SDMA, and L-arginine concentrations are associated with increased PAP measurements in patients with COPD, however, the relationship is not statistically significant.
Collapse
Affiliation(s)
- Elif Torun Parmaksız
- Department of Pulmonology, Dr. Lutfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| | - Ali Inal
- Department of Clinical Immunology, Baskent University, Istanbul Hospital, Istanbul, Turkey
| | - Banu Salepci
- Department of Pulmonology, Dr. Lutfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| | - Sevda Comert
- Department of Pulmonology, Dr. Lutfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| | - Ali Fidan
- Department of Pulmonology, Dr. Lutfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| | - Nesrin Kiral
- Department of Pulmonology, Dr. Lutfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| | - Coşkun Doǧan
- Department of Pulmonology, Dr. Lutfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| | - Benan Caglayan
- Department of Pulmonology, Koç University, Istanbul, Turkey
| |
Collapse
|
20
|
Sandqvist A, Schneede J, Kylhammar D, Henrohn D, Lundgren J, Hedeland M, Bondesson U, Rådegran G, Wikström G. Plasma L-arginine levels distinguish pulmonary arterial hypertension from left ventricular systolic dysfunction. Heart Vessels 2017; 33:255-263. [PMID: 28975394 PMCID: PMC5847178 DOI: 10.1007/s00380-017-1055-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/22/2017] [Indexed: 12/19/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening condition, characterized by an imbalance of vasoactive substances and remodeling of pulmonary vasculature. Nitric oxide, formed from L-arginine, is essential for homeostasis and smooth muscle cell relaxation in PAH. Our aim was to compare plasma concentrations of L-arginine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) in PAH compared to left ventricular systolic dysfunction (LVSD) and healthy subjects. This was an observational, multicenter study comparing 21 patients with PAH to 14 patients with LVSD and 27 healthy subjects. Physical examinations were obtained and blood samples were collected. Plasma levels of ADMA, SDMA, L-arginine, L-ornithine, and L-citrulline were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Plasma levels of ADMA and SDMA were higher, whereas L-arginine and L-arginine/ADMA ratio were lower in PAH patients compared to healthy subjects (p < 0.001). Patients with PAH also had lower levels of L-arginine than patients with LVSD (p < 0.05). L-Arginine correlated to 6 min walking distance (6MWD) (r s = 0.58, p = 0.006) and L-arginine/ADMA correlated to WHO functional class (r s = -0.46, p = 0.043) in PAH. In conclusion, L-arginine levels were significantly lower in treatment naïve PAH patients compared to patients with LVSD. Furthermore, L-arginine correlated with 6MWD in PAH. L-arginine may provide useful information in differentiating PAH from LVSD.
Collapse
Affiliation(s)
- Anna Sandqvist
- Department of Pharmacology and Clinical Neuroscience, Clinical Pharmacology, Umeå University, 901 87, Umeå, Sweden.
| | - Jörn Schneede
- Department of Pharmacology and Clinical Neuroscience, Clinical Pharmacology, Umeå University, 901 87, Umeå, Sweden
| | - David Kylhammar
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden.,The Section for Heart Failure and Valvular Disease, Skåne University Hospital, Lund, Sweden
| | - Dan Henrohn
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
| | - Jakob Lundgren
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden.,The Section for Heart Failure and Valvular Disease, Skåne University Hospital, Lund, Sweden
| | - Mikael Hedeland
- Department of Chemistry, National Veterinary Institute (SVA), Uppsala, Sweden.,Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Ulf Bondesson
- Department of Chemistry, National Veterinary Institute (SVA), Uppsala, Sweden.,Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, Uppsala, Sweden
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, Lund University, Lund, Sweden.,The Section for Heart Failure and Valvular Disease, Skåne University Hospital, Lund, Sweden
| | - Gerhard Wikström
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Lai Y, Li J, Li X, Zou C. Lipopolysaccharide modulates p300 and Sirt1 to promote PRMT1 stability via an SCF Fbxl17-recognized acetyldegron. J Cell Sci 2017; 130:3578-3587. [PMID: 28883095 DOI: 10.1242/jcs.206904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/25/2017] [Indexed: 12/19/2022] Open
Abstract
E3 ubiquitin ligase recognizes its protein substrates via specific molecular signatures for ubiquitin proteasomal degradation. However, the role of acetylation/deacetylation in the process of E3 ubiquitin ligase recognizing its protein substrates is not fully studied. Here, we report that a tandem IK motif in protein arginine methyltransferase 1 (PRMT1) forms an acetyldegron to recruit the F-box/LRR-repeat protein 17 (FBXL17), a component of the SKP1-CUL1-F-box protein (SCF)-type E3 ubiquitin ligase complex. PRMT1 is polyubiquitylated for proteasome degradation with a half-life of approximately 4 h in lung epithelial cells. SCFFbxl17 mediates PRMT1 polyubiquitylation at K117. SCFFbxl17 specifically binds PRMT1 via a unique motif IKxxxIK. Strikingly, the acetylation/deacetylation status of the lysine residues within the motif determines Fbxl17 binding. Deacetylation on both K200 and K205 by Sirtuin 1 (Sirt1) and acetylation of p300 (EP300) on K205 collaboratively prepare the motif for SCFFbxl17 binding thereby triggering PRMT1 protein degradation. Pathogen-derived lipopolysaccharide (LPS) downregulates Sirt1 and p300 to protect PRMT1 from degradation. This study demonstrates that LPS promotes PRMT1 stability by blockade of PRMT1 and SCFFbxl17 binding via an acetylation/deacetylation-modified acetyldegron; and LPS-elevated levels of PRMT1 lead to bronchial epithelial cell overgrowth in pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Yandong Lai
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jin Li
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Xiuying Li
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Chunbin Zou
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Li XY, Zheng Y, Long Y, Zhang X, Zhang L, Tian D, Zhou D, Lv QZ. Effect of iloprost on biomarkers in patients with congenital heart disease-pulmonary arterial hypertension. Clin Exp Pharmacol Physiol 2017; 44:914-923. [PMID: 28608969 PMCID: PMC5601287 DOI: 10.1111/1440-1681.12796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 11/27/2022]
Abstract
Some biomarkers play important roles in the endothelial dysfunction of patients with pulmonary arterial hypertension (PAH), including nitric oxide (NO), endothelin‐1 (ET‐1), asymmetric dimethylarginine (ADMA), galectin‐3 (Gal‐3), B‐type natriuretic peptide (BNP), and uric acid (UA). However, studies on these biomarkers in pulmonary artery blood in congenital heart disease‐PAH (CHD‐PAH) and the effect of iloprost on the regulation of biomarkers are lacking. This study investigated potential CHD‐PAH biomarkers and their association with the severity of disease. The effect of iloprost on the regulation of these biomarkers was also studied. A total of 31 patients with CHD‐PAH were enrolled. Seven with positive effects of iloprost (the average reduction in mPAP 11.13±1.73 mm Hg) and 19 with negative effects of iloprost (the average reduction in mPAP 4.21±4.87 mm Hg; iloprost positive group [IPG] vs iloprost negative group [ING], P<.01) and five age‐matched controls were studied. The pulmonary artery blood sample was collected before and after inhaling iloprost, and the plasma concentrations of Gal‐3, ADMA, ET‐1, and NO were measured. A significant positive linear relationship was observed between mPAP and plasma ET‐1, BNP, ADMA, and UA levels in all patients with CHD‐PAH. ET‐1, ADMA, BNP, and UA levels had a significant linear relationship with mean pulmonary arterial pressure, which could be used to predict the severity of CHD‐PAH. ET‐1 might be a potential biomarker to pre‐evaluate the effect of iloprost on CHD‐PAH. Iloprost could affect the expression of Gal‐3 and, therefore, the process of fibrosis could be influenced by iloprost.
Collapse
Affiliation(s)
- Xiao-Ye Li
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zheng
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuliang Long
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Tian
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daxin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qian-Zhou Lv
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Plasma l-citrulline concentrations in l-arginine-supplemented healthy dogs. J Vet Cardiol 2017; 19:376-383. [PMID: 28684243 DOI: 10.1016/j.jvc.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022]
Abstract
INTRODUCTION To determine whether oral l-arginine increases plasma [l-citrulline] in dogs. ANIMALS Eleven healthy staff-owned dogs were used in this study. MATERIALS AND METHODS Dogs (n = 3) were given l-arginine (50mg/kg PO q8h) for 7 days, and plasma [l-arginine] and [l-citrulline] were analyzed by high performance liquid chromatography at baseline (BL), steady state trough, and 0.5, 1, 1.5, 2, 4, 6, and 8 h after final dosing on day 7. Eleven dogs were then treated with 100mg/kg l-arginine PO q8h for 7 days, and [l-arginine] and [l-citrulline] were measured at BL, steady state trough, and at peak 4 hrs after dosing (T4 hrs). RESULTS - Plasma [l-arginine] and [l-citrulline] peaked at T4 hrs on the 50mg/kg dosage. Target outcome, modeled after human study results, of a doubling of [l-arginine] and a 25-30% increase in [l-citrulline] from BL were not reached. After the 100mg/kg dosage, plasma [l-arginine] increased from a BL median of 160.1 μM (range, 100.2-231.4 μM) to a peak of 417.4 μM (206.5-807.3 μM) at T4 hrs, and plasma [l-citrulline] increased from a BL median of 87.8 μM (59.1-117.1 μM) to peak of 102.2 μM (47.4-192.6 μM) at T4 hrs. Ten of eleven dogs showed a doubling of plasma [l-arginine] and 4/11 dogs achieved 25-30% or greater increases in plasma [l-citrulline]. No adverse effects on heart rate or blood pressure were noted. CONCLUSIONS - Oral l-arginine dosage of 100mg/kg q8h doubles plasma [l-arginine] in healthy dogs, but conversion to l-citrulline is quite variable. Further evaluation of this dosage regimen in dogs with pulmonary hypertension is warranted.
Collapse
|
24
|
Toxic Dimethylarginines: Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA). Toxins (Basel) 2017; 9:toxins9030092. [PMID: 28272322 PMCID: PMC5371847 DOI: 10.3390/toxins9030092] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/04/2017] [Indexed: 02/07/2023] Open
Abstract
Asymmetric and symmetric dimethylarginine (ADMA and SDMA, respectively) are toxic, non-proteinogenic amino acids formed by post-translational modification and are uremic toxins that inhibit nitric oxide (NO) production and play multifunctional roles in many human diseases. Both ADMA and SDMA have emerged as strong predictors of cardiovascular events and death in a range of illnesses. Major progress has been made in research on ADMA-lowering therapies in animal studies; however, further studies are required to fill the translational gap between animal models and clinical trials in order to treat human diseases related to elevated ADMA/SDMA levels. Here, we review the reported impacts of ADMA and SDMA on human health and disease, focusing on the synthesis and metabolism of ADMA and SDMA; the pathophysiological roles of these dimethylarginines; clinical conditions and animal models associated with elevated ADMA and SDMA levels; and potential therapies against ADMA and SDMA. There is currently no specific pharmacological therapy for lowering the levels and counteracting the deleterious effects of ADMA and SDMA. A better understanding of the mechanisms underlying the impact of ADMA and SDMA on a wide range of human diseases is essential to the development of specific therapies against diseases related to ADMA and SDMA.
Collapse
|
25
|
Comprehensive analysis of the L-arginine/L-homoarginine/nitric oxide pathway in preterm neonates: potential roles for homoarginine and asymmetric dimethylarginine in foetal growth. Amino Acids 2017; 49:783-794. [PMID: 28161799 DOI: 10.1007/s00726-017-2382-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 01/21/2023]
Abstract
L-Arginine (Arg) and L-homoarginine (hArg) are precursors of nitric oxide (NO), a signalling molecule with multiple important roles in human organism. In the circulation of adults, high concentrations of asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) and low concentrations of hArg emerged as cardiovascular risk factors. Yet, the importance of the Arg/hArg/NO pathway, especially of hArg and ADMA, in preterm neonates is little understood. We comprehensively investigated the Arg/hArg/NO pathway in 106 healthy preterm infants (51 boys, 55 girls) aged between 23 + 6 and 36 + 1 gestational weeks. Babies were divided into two groups: group I consisted of 31 babies with a gestational age of 23 + 6 - 29 + 6 weeks; group II comprised 75 children with a gestational age of 30 + 0 - 36 + 1 weeks. Plasma and urine concentrations of ADMA, SDMA, hArg, Arg, dimethylamine (DMA) which is the major urinary ADMA metabolite, as well as of nitrite and nitrate, the major NO metabolites, were determined by GC-MS and GC-MS/MS methods. ADMA and hArg plasma levels, but not the hArg/ADMA molar ratio, were significantly higher in group II than in group I: 895 ± 166 nM vs. 774 ± 164 nM (P = 0.001) for ADMA and 0.56 ± 0.04 µM vs. 0.48 ± 0.08 µM (P = 0.010) for hArg. There was no statistical difference between the groups with regard to urinary ADMA (12.2 ± 4.6 vs 12.8 ± 3.6 µmol/mmol creatinine; P = 0.61) and urinary SDMA. Urinary hArg, ADMA, SDMA correlated tightly with each other. Urinary excretion of DMA was slightly higher in group I compared to group II: 282 ± 44 vs. 247 ± 35 µmol/mmol creatinine (P = 0.004). The DMA/ADMA molar ratio in urine was tendentiously higher in neonates of group I compared to group II: 27 ± 13 vs. 20 ± 5 (P = 0.065). There were no differences between the groups with respect to Arg in plasma and to nitrite and nitrate in plasma and urine. In preterm neonates, ADMA and hArg biosynthesis increases with gestational age without remarkable changes in the hArg/ADMA ratio or NO biosynthesis. Our study suggests that ADMA and hArg are involved in foetal growth.
Collapse
|
26
|
Abstract
Numerous reports have indicated that the plasma concentration of endogenously produced inhibitors of nitric oxide synthase are elevated in human disease states. In this review we discuss recent advances in our understanding of the enzymes responsible for the synthesis of these inhibitors.
Collapse
Affiliation(s)
- Shelagh Anthony
- Centre for Clinical Pharmacology, The British Heart
Foundation Laboratories, University College London, UK
| | - James Leiper
- Centre for Clinical Pharmacology, The British Heart
Foundation Laboratories, University College London, UK
| | - Patrick Vallance
- Centre for Clinical Pharmacology, The British Heart
Foundation Laboratories, University College London, UK
| |
Collapse
|
27
|
Böger RH. Asymmetric dimethylarginine (ADMA) and cardiovascular disease: insights from prospective clinical trials. Vasc Med 2016. [DOI: 10.1191/1358863x05vm602oa] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Evidence has accumulated that asymmetric dimethylarginine (ADMA) is an endogenous competitive inhibitor of nitric oxide (NO) synthase. ADMA inhibits vascular NO production at concentrations found in pathophysiological conditions; it also causes local vasoconstriction when infused intra-arterially. ADMA is increased in the plasma of humans with hypercholesterolemia, atherosclerosis, hypertension, chronic renal failure, chronic heart failure, and other clinical conditions. Increased ADMA levels are associated with reduced NO synthesis as assessed by impaired endothelium-dependent vasodilation or reduced NO metabolite levels. In several prospective and cross-sectional studies, ADMA has evolved as a marker of cardiovascular risk. Moreover, prospective clinical studies have suggested that it may play a role as a novel cardiovascular risk factor. Zoccali and coworkers were the first to show that elevated ADMA is associated with a three-fold increased risk of future severe cardiovascular events and mortality in patients undergoing hemodialysis. Valkonen and coworkers demonstrated in a nested case-control study that elevated ADMA was associated with a four-fold increased risk for acute coronary events in clinically healthy, nonsmoking men. In patients with stable angina pectoris, preinterventional ADMA indicates the risk of developing restenosis or severe clinical events after coronary intervention. Furthermore, in humans with no underlying cardiovascular disease who are undergoing intensive care unit treatment, ADMA is a marker of the mortality risk. A number of additional prospective clinical trials are currently under way in diverse patient populations, among them individuals with congestive heart failure, cardiac transplantation patients, and patients with pulmonary hypertension.In summary, an increasing number of prospective clinical trials have shown that the association between elevated ADMA levels and major cardiovascular events and total mortality is robust and extends to diverse patient populations. However, we need to define more clearly in the future who will profit from ADMA determination, in order to use this novel risk marker as a more specific diagnostic tool.
Collapse
Affiliation(s)
- Rainer H Böger
- Clinical Pharmacology Unit, University Hospital Hamburg-Eppendorf, Germany,
| |
Collapse
|
28
|
Oka RK, Szuba A, Giacomini JC, Cooke JP. A pilot study of l-arginine supplementation on functional capacity in peripheral arterial disease. Vasc Med 2016; 10:265-74. [PMID: 16444855 DOI: 10.1191/1358863x05vm637oa] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peripheral arterial disease (PAD) impairs walking capacity and is often associated with a profound endothelial vasodilator dysfunction, characterized by reduced bioactivity and/or synthesis of endothelium-derived nitric oxide (NO). Previous studies have suggested that dietary supplementation of L-arginine, the precursor of NO, improves endothelium-dependent vasodilation, limb blood flow and walking distance. However, these studies have been small, and have used large intravenous doses of L-arginine. The optimal dose of L-arginine has not been determined. Accordingly, this pilot study was conducted to establish the lowest effective oral dose of L-arginine to improve walking distance in preparation for the definitive study. Patients with PAD and intermittent claudication ( n = 80) participated in this study. Eligibility criteria included: (1) ankle-brachial index (ABI) at rest ≤0.90; (2) post-exercise reduction in ABI ≥25%; and (3) difference in absolute claudication distance of ≤25% between two consecutive treadmill tests. Treadmill testing was performed using the Skinner-Gardner protocol and community-based walking was assessed using the walking impairment questionnaire. Patients were randomly assigned to oral doses of 0, 3, 6 or 9 g of L-arginine daily in three divided doses for 12 weeks. Treadmill testing was performed prior to administration of the study drug and again after 12 weeks of treatment. The study drug was well tolerated, with no significant adverse effects of L-arginine therapy. The safety laboratory studies were unremarkable, except for a statistically significant reduction in hematocrit in the L-arginine-treated groups. There was no significant difference observed in absolute claudication distance between the groups. However, a trend was observed for a greater increase in walking distance in the group treated with 3 g L-arginine daily, and there was a trend for an improvement in walking speed in patients treated with L-arginine. This pilot study provided data for safety, for power calculation and for dosing for the larger definitive trial that is now underway.
Collapse
Affiliation(s)
- Roberta K Oka
- University of California San Francisco, Department of Community Health Systems, School of Nursing 2 Koret Way, Box 0608, San Francisco, CA 94143-0608, USA.
| | | | | | | |
Collapse
|
29
|
Hansen T, Galougahi KK, Celermajer D, Rasko N, Tang O, Bubb KJ, Figtree G. Oxidative and nitrosative signalling in pulmonary arterial hypertension — Implications for development of novel therapies. Pharmacol Ther 2016; 165:50-62. [DOI: 10.1016/j.pharmthera.2016.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Dunn WB, Allwood JW, Van Mieghem T, Morris RK, Mackie FL, Fox CE, Kilby MD. Carbohydrate and fatty acid perturbations in the amniotic fluid of the recipient twin of pregnancies complicated by twin-twin transfusion syndrome in relation to treatment and fetal cardiovascular risk. Placenta 2016; 44:6-12. [DOI: 10.1016/j.placenta.2016.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
|
31
|
Isik DU, Bas AY, Demirel N, Kavurt S, Aydemir O, Kavurt AV, Cetin I. Increased asymmetric dimethylarginine levels in severe transient tachypnea of the newborn. J Perinatol 2016; 36:459-62. [PMID: 26866680 DOI: 10.1038/jp.2016.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/23/2015] [Accepted: 01/15/2016] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Nitric oxide (NO) is synthesized by NO synthase (NOS), and asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NOS. We aimed to investigate l-arginine and ADMA levels in transient tachypnea of the newborn (TTN) and their relationship with systolic pulmonary artery pressure (PAP) and disease severity. STUDY DESIGN Infants born at ⩾35 weeks gestational age with clinical signs and chest X-ray findings consistent with TTN were enrolled; controls were recruited at the same time. l-arginine and ADMA levels were measured at 12 to 24 h (first samples) and at 48 to 72 h (second samples). Systolic PAP was evaluated on the second day. Patients were divided according to the duration of tachypnea and designated as group A (duration ⩽72 h) and group B (duration >72 h). RESULTS In the first samples, the ADMA levels were significantly higher in patients with TTN compared with controls (P<0.001). In the second samples, the ADMA levels were significantly higher in group B compared with that in group A (P=0.019). In group A patients, the second ADMA levels were significantly lower compared with that in the first samples (P<0.001), whereas the second ADMA levels remained unchanged compared with the first samples in group B. Systolic PAP values were significantly higher in group B compared with that in group A patients (P=0.033). CONCLUSION Increased ADMA concentration may reduce NO synthesis, leading to increased PAP and thus longer duration of tachypnea.
Collapse
Affiliation(s)
- D U Isik
- Neonatal Intensive Care Unit, Department of Neonatology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - A Y Bas
- Neonatal Intensive Care Unit, Department of Neonatology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - N Demirel
- Neonatal Intensive Care Unit, Department of Neonatology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - S Kavurt
- Neonatal Intensive Care Unit, Department of Neonatology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - O Aydemir
- Neonatal Intensive Care Unit, Department of Neonatology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - A V Kavurt
- Department of Pediatric Cardiology, Türkiye Yüksek İhtisas Education and Research Hospital, Ankara, Turkey
| | - I Cetin
- Department of Pediatric Cardiology, Ankara Children's Hematology Oncology Research and Training Hospital, Ankara, Turkey
| |
Collapse
|
32
|
Assessment of heat shock proteins and endothelial dysfunction in acute pulmonary embolism. Blood Coagul Fibrinolysis 2016; 27:378-83. [DOI: 10.1097/mbc.0000000000000456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Morris CR. New strategies for the treatment of pulmonary hypertension in sickle cell disease : the rationale for arginine therapy. ACTA ACUST UNITED AC 2016; 5:31-45. [PMID: 16409014 DOI: 10.2165/00151829-200605010-00003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is inactivated in sickle cell disease (SCD), while bioavailability of arginine, the substrate for NO synthesis, is diminished. Impaired NO bioavailability represents the central feature of endothelial dysfunction, and is a key factor in the pathophysiology of SCD. Inactivation of NO correlates with the hemolytic rate and is associated with erythrocyte release of cell-free hemoglobin and arginase during hemolysis. Accelerated consumption of NO is enhanced further by the inflammatory environment of oxidative stress that exists in SCD. Based upon its critical role in mediating vasodilation and cell growth, decreased NO bioavailability has also been implicated in the pathogenesis of pulmonary arterial hypertension (PHT). Secondary PHT is a common life-threatening complication of SCD that also occurs in most hereditary and chronic hemolytic disorders. Aberrant arginine metabolism contributes to endothelial dysfunction and PHT in SCD, and is strongly associated with prospective patient mortality. The central mechanism responsible for this metabolic disorder is enhanced arginine turnover, occurring secondary to enhanced plasma arginase activity. This is consistent with a growing appreciation of the role of excessive arginase activity in human diseases, including asthma and PHT. Decompartmentalization of hemoglobin into plasma consumes endothelial NO and thus drives a metabolic requirement for arginine, whose bioavailability is further limited by arginase activity. New treatments aimed at maximizing both arginine and NO bioavailability through arginase inhibition, suppression of hemolytic rate, or oral arginine supplementation may represent novel therapeutic strategies.
Collapse
Affiliation(s)
- Claudia R Morris
- Department of Emergency Medicine, Children’s Hospital and Research Center at Oakland, Oakland, California, USA
| |
Collapse
|
34
|
Aydin M, Altintas N, Cem Mutlu L, Bilir B, Oran M, Tülübaş F, Topçu B, Tayfur İ, Küçükyalçin V, Kaplan G, Gürel A. Asymmetric dimethylarginine contributes to airway nitric oxide deficiency in patients with COPD. CLINICAL RESPIRATORY JOURNAL 2015; 11:318-327. [PMID: 26076870 DOI: 10.1111/crj.12337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/17/2015] [Accepted: 06/12/2015] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Asymmetric dimethylarginine (ADMA) and nitric oxide (NO) show their mechanism of action reciprocally, the balance between these molecules contributes to the tight regulation of airways tone and function. OBJECTIVES The aim of this study to determine the serum levels of ADMA and NO in patients with chronic obstructive pulmonary disease (COPD) and establish whether their level vary in relation to forced expiratory volume in 1s (FEV1 ), to assess their role in pathophysiology of COPD. MATERIALS AND METHODS This study consisted of 58 patients with COPD and 30 healthy subjects. Serum ADMA and NO levels were measured using enzyme-linked immunosorbent assay and the colorimetric method, respectively. RESULTS Serum ADMA levels were significantly higher, however, NO levels were lower in patients with COPD compared with controls. ADMA levels were inversely correlated with NO levels. Serum ADMA and NO were significantly correlated with FEV1 . Multivariable logistic regression analysis revealed that serum ADMA and NO were independently and significantly associated with the presence of COPD. Multiple linear regression analysis showed that COPD was positively associated with ADMA, additionally COPD and ADMA were independently and inversely associated with NO. NO levels were decreased, ADMA levels were increased compliant with progression of COPD stages. CONCLUSION While circulating ADMA is higher, NO is lower in COPD and both show a strong correlation to the degree of airflow limitation. ADMA seems to be a possible new marker of prognosis of COPD and can be a novel therapeutic target for the treatment of COPD.
Collapse
Affiliation(s)
- Murat Aydin
- Department of Biochemistry, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Nejat Altintas
- Department of Pulmonary and Sleep Medicine, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Levent Cem Mutlu
- Department of Pulmonary and Sleep Medicine, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Bulent Bilir
- Department of Internal Medicine, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Mustafa Oran
- Department of Internal Medicine, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Feti Tülübaş
- Department of Biochemistry, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Birol Topçu
- Department of Biostatistics, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - İsmail Tayfur
- Department of Biochemistry, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Volkan Küçükyalçin
- Department of Biochemistry, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Gizem Kaplan
- Department of Pulmonary and Sleep Medicine, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Ahmet Gürel
- Department of Biochemistry, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| |
Collapse
|
35
|
Poręba R, Gać P, Poręba M, Derkacz A, Chachaj A, Mazur G, Szuba A. Left ventricular diastolic dysfunction and plasma asymmetric dimethylarginine concentration in persons with essential hypertension. Arch Med Sci 2015; 11:521-9. [PMID: 26170844 PMCID: PMC4495148 DOI: 10.5114/aoms.2015.52354] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/25/2013] [Accepted: 07/15/2013] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The study aimed to evaluate the relationship between plasma asymmetric dimethylarginine (ADMA) concentration and development of left ventricular diastolic dysfunction (LVDD) in patients with essential hypertension (EH). Moreover, an attempt was made to define independent risk factors of LVDD in patients with EH. MATERIAL AND METHODS A group of 106 individuals with EH was obtained (mean age: 47.18 ±11.76 years). Two groups of patients were distinguished: group I - individuals with EH with LVDD (n = 57); group II - persons with EH without LVDD (n = 49). Echocardiographic examination was conducted by the transthoracic technique. High-performance liquid chromatography was used to measure dimethylarginine concentrations. RESULTS In the group suffering from EH with LVDD, mean ADMA concentration was significantly higher and the ratio of arginine to ADMA was significantly lower than in patients with EH without LVDD. No significant differences were detected between mean concentrations of plasma symmetric dimethylarginine concentration (SDMA) and arginine or in arginine/SDMA ratios in the studied groups. Independent factors of LVDD risk in the study group included higher plasma ADMA concentration, higher serum low-density lipoprotein (LDL) concentration, higher values of body mass index (BMI), higher values of left ventricular mass index (LVMI) and higher values of mean blood pressure (mBP) (ORADMA = 1.731; ORLDL = 1.188; ORBMI = 1.056; ORLVMI = 1.062; ORmBP = 1.014; p < 0.05). CONCLUSIONS The results of this study showed that ADMA concentration may be of prognostic value in relation to manifestation of LVDD in patients with EH.
Collapse
Affiliation(s)
- Rafał Poręba
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Paweł Gać
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Małgorzata Poręba
- Department of Pathophysiology, Wroclaw Medical University, Wroclaw, Poland
| | - Arkadiusz Derkacz
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Angelika Chachaj
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Szuba
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
36
|
Fang ZF, Huang YY, Tang L, Hu XQ, Shen XQ, Tang JJ, Zhou SH. Asymmetric Dimethyl-L-Arginine is a Biomarker for Disease Stage and Follow-Up of Pulmonary Hypertension Associated with Congenital Heart Disease. Pediatr Cardiol 2015; 36:1062-9. [PMID: 25737007 DOI: 10.1007/s00246-015-1127-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/20/2015] [Indexed: 01/07/2023]
Abstract
This study investigated the clinical value of plasma asymmetrical dimethyl-L-arginine (ADMA) level in the diagnosis, staging, and treatment response in congenital heart disease (CHD) patients with pulmonary arterial hypertension (PAH). This was a single-center prospective observational study in 80 CHD patients. Plasma ADMA levels were measured by enzyme-linked immunosorbent assay. Plasma ADMA levels were significantly increased in CHD patients with PAH compared with CHD patients without PAH (P < 0.01) and healthy controls (P < 0.001). In CHD patients with severe PAH, plasma ADMA levels were significantly higher in patients with Eisenmenger's syndrome (ES) than in patients exhibiting low pulmonary vascular resistance (P < 0.001). The plasma ADMA levels significantly correlated with pulmonary arterial pressure (P < 0.001) and pulmonary vascular resistance (P < 0.001) in patients with CHD. Severe PAH was identified by plasma ADMA with a cutoff value of 0.485 μmol/L (P < 0.001) with a specificity of 82.8 % and a sensitivity of 90 %. ES was identified by plasma ADMA with a cutoff value of 0.85 μmol/L (P < 0.05) with a specificity of 85.2 % and a sensitivity of 64.3 %. ADMA levels were significantly decreased after sildenafil therapy for 6 months compared with before therapy levels (0.91 ± 0.22 vs. 0.57 ± 0.30, P < 0.01). Our study suggests that plasma ADMA level may be used as a biomarker for identifying PAH in patients with CHD, assessing pulmonary vascular remodeling, and evaluating the treatment response of CHD patients with PAH to sildenafil.
Collapse
Affiliation(s)
- Zhen-fei Fang
- Department of Cardiology, Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Circulating biomarkers in pulmonary arterial hypertension: Update and future direction. J Heart Lung Transplant 2015; 34:282-305. [DOI: 10.1016/j.healun.2014.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022] Open
|
38
|
Ahmetaj-Shala B, Kirkby NS, Knowles R, Al'Yamani M, Mazi S, Wang Z, Tucker AT, Mackenzie L, Armstrong PCJ, Nüsing RM, Tomlinson JAP, Warner TD, Leiper J, Mitchell JA. Evidence that links loss of cyclooxygenase-2 with increased asymmetric dimethylarginine: novel explanation of cardiovascular side effects associated with anti-inflammatory drugs. Circulation 2014; 131:633-42. [PMID: 25492024 PMCID: PMC4768634 DOI: 10.1161/circulationaha.114.011591] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Supplemental Digital Content is available in the text. Background— Cardiovascular side effects associated with cyclooxygenase-2 inhibitor drugs dominate clinical concern. Cyclooxygenase-2 is expressed in the renal medulla where inhibition causes fluid retention and increased blood pressure. However, the mechanisms linking cyclooxygenase-2 inhibition and cardiovascular events are unknown and no biomarkers have been identified. Methods and Results— Transcriptome analysis of wild-type and cyclooxygenase-2−/− mouse tissues revealed 1 gene altered in the heart and aorta, but >1000 genes altered in the renal medulla, including those regulating the endogenous nitric oxide synthase inhibitors asymmetrical dimethylarginine (ADMA) and monomethyl-l-arginine. Cyclo-oxygenase-2−/− mice had increased plasma levels of ADMA and monomethyl-l-arginine and reduced endothelial nitric oxide responses. These genes and methylarginines were not similarly altered in mice lacking prostacyclin receptors. Wild-type mice or human volunteers taking cyclooxygenase-2 inhibitors also showed increased plasma ADMA. Endothelial nitric oxide is cardio-protective, reducing thrombosis and atherosclerosis. Consequently, increased ADMA is associated with cardiovascular disease. Thus, our study identifies ADMA as a biomarker and mechanistic bridge between renal cyclooxygenase-2 inhibition and systemic vascular dysfunction with nonsteroidal anti-inflammatory drug usage. Conclusions— We identify the endogenous endothelial nitric oxide synthase inhibitor ADMA as a biomarker and mechanistic bridge between renal cyclooxygenase-2 inhibition and systemic vascular dysfunction.
Collapse
Affiliation(s)
- Blerina Ahmetaj-Shala
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Nicholas S Kirkby
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Rebecca Knowles
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Malak Al'Yamani
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Sarah Mazi
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Zhen Wang
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Arthur T Tucker
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Louise Mackenzie
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Paul C J Armstrong
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Rolf M Nüsing
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - James A P Tomlinson
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Timothy D Warner
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - James Leiper
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Jane A Mitchell
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.).
| |
Collapse
|
39
|
Morris CR. Alterations of the arginine metabolome in sickle cell disease: a growing rationale for arginine therapy. Hematol Oncol Clin North Am 2014; 28:301-21. [PMID: 24589268 DOI: 10.1016/j.hoc.2013.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Low global arginine bioavailability (GAB) is associated with numerous complications of SCD including early mortality. Mechanisms of arginine dysregulation involve a complex paradigm of excess activity of the arginine-consuming enzyme arginase, elevated levels of asymmetric dimethylarginine, altered intracellular arginine transport, and nitric oxide synthase dysfunction. Restoration of GAB through exogenous supplementation is therefore, a promising therapeutic target. Studies of arginine therapy demonstrate efficacy in treating patients with leg ulcers, pulmonary hypertension risk, and pain. Co-administration with hydroxyurea increases levels of nitrite and fetal hemoglobin. Addressing the alterations in the arginine metabolome may result in new strategies for treatment of SCD.
Collapse
Affiliation(s)
- Claudia R Morris
- Division of Emergency Medicine, Department of Pediatrics, Emory-Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, 1645 Tullie Circle Northeast, Atlanta, GA 30329, USA.
| |
Collapse
|
40
|
Blood biomarkers and their potential role in pulmonary arterial hypertension associated with congenital heart disease. A systematic review. Int J Cardiol 2014; 174:618-23. [DOI: 10.1016/j.ijcard.2014.04.156] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/13/2014] [Indexed: 11/19/2022]
|
41
|
Increased levels of asymmetric dimethylarginine are associated with pulmonary arterial hypertension in HIV infection. AIDS 2014; 28:511-9. [PMID: 24469026 DOI: 10.1097/qad.0000000000000124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine the relationship between asymmetric dimethylarginine (ADMA) and HIV-associated pulmonary arterial hypertension (PAH). DESIGN HIV infection is an independent risk factor for PAH, but the underlying pathogenesis remains unclear. Chronic inflammation resulting in nitric oxide-mediated endothelial dysfunction is a key mechanism underlying other types of PAH. ADMA is an endogenous inhibitor of endothelial nitric oxide synthase. Among uninfected individuals, ADMA is associated with PAH and predicts disease-related mortality. METHODS We measured ADMA, high sensitivity C-reactive protein, interleukin-6 (IL-6), D-dimer, and pulmonary artery systolic pressure (PASP) using echocardiography in HIV-infected individuals. Right heart catheterization (RHC) was performed in individuals with a PASP at least 30 mmHg. We performed multivariable analysis to identify factors associated with high PASP by echocardiogram and PAH by RHC. RESULTS Among 214 HIV-infected individuals, the median age was 50 years, 82% were men, 71% were on antiretroviral therapy, and 4.2% carried a prior diagnosis of PAH. ADMA and IL-6 were associated with increased values of PASP following multivariable adjustment (7.2% per 0.1 μmol/l, P = 0.0049 and 3.9% per doubling, P = 0.027, respectively). In adjusted analysis among the 85 participants who underwent RHC, ADMA and IL-6 were associated with higher values of mean PAP (14.2% per 0.1 μmol/l, P = 0.0014 and 5.8% per doubling, P = 0.038, respectively). However, only ADMA was associated with PAH (prevalence ratio = 1.74, P = 0.029). CONCLUSION Elevated levels of ADMA are independently associated with PAH among HIV-infected individuals. Our findings suggest that chronic HIV-associated inflammation leading to an accumulation of ADMA and subsequent nitric oxide-mediated endothelial dysfunction may represent a novel mechanism for HIV-associated PAH.
Collapse
|
42
|
Hagan G, Pepke-Zaba J. Pulmonary hypertension, nitric oxide and nitric oxide-releasing compounds. Expert Rev Respir Med 2014; 5:163-71. [DOI: 10.1586/ers.11.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Dubois M, Delannoy E, Duluc L, Closs E, Li H, Toussaint C, Gadeau AP, Gödecke A, Freund-Michel V, Courtois A, Marthan R, Savineau JP, Muller B. Biopterin metabolism and eNOS expression during hypoxic pulmonary hypertension in mice. PLoS One 2013; 8:e82594. [PMID: 24312428 PMCID: PMC3842263 DOI: 10.1371/journal.pone.0082594] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
Tetrahydrobiopterin (BH4), which fosters the formation of and stabilizes endothelial NO synthase (eNOS) as an active dimer, tightly regulates eNOS coupling / uncoupling. Moreover, studies conducted in genetically-modified models demonstrate that BH4 pulmonary deficiency is a key determinant in the pathogenesis of pulmonary hypertension. The present study thus investigates biopterin metabolism and eNOS expression, as well as the effect of sepiapterin (a precursor of BH4) and eNOS gene deletion, in a mice model of hypoxic pulmonary hypertension. In lungs, chronic hypoxia increased BH4 levels and eNOS expression, without modifying dihydrobiopterin (BH2, the oxidation product of BH4) levels, GTP cyclohydrolase-1 or dihydrofolate reductase expression (two key enzymes regulating BH4 availability). In intrapulmonary arteries, chronic hypoxia also increased expression of eNOS, but did not induce destabilisation of eNOS dimers into monomers. In hypoxic mice, sepiapterin prevented increase in right ventricular systolic pressure and right ventricular hypertrophy, whereas it modified neither remodelling nor alteration in vasomotor responses (hyper-responsiveness to phenylephrine, decrease in endothelium-dependent relaxation to acetylcholine) in intrapulmonary arteries. Finally, deletion of eNOS gene partially prevented hypoxia-induced increase in right ventricular systolic pressure, right ventricular hypertrophy and remodelling of intrapulmonary arteries. Collectively, these data demonstrate the absence of BH4/BH2 changes and eNOS dimer destabilisation, which may induce eNOS uncoupling during hypoxia-induced pulmonary hypertension. Thus, even though eNOS gene deletion and sepiapterin treatment exert protective effects on hypoxia-induced pulmonary vascular remodelling, increase on right ventricular pressure and / or right ventricular hypertrophy, these effects appear unrelated to biopterin-dependent eNOS uncoupling within pulmonary vasculature of hypoxic wild-type mice.
Collapse
Affiliation(s)
- Mathilde Dubois
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Estelle Delannoy
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de, Bordeaux, Bordeaux, France
| | - Lucie Duluc
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Ellen Closs
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | | | | | - Axel Gödecke
- Institute of Cardiovascular Physiology, Heinrich-Heine University, Düsseldorf, Germany
| | - Véronique Freund-Michel
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Arnaud Courtois
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Roger Marthan
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de, Bordeaux, Bordeaux, France
| | - Jean-Pierre Savineau
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Bernard Muller
- University Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| |
Collapse
|
44
|
Bakr A, Pak O, Taye A, Hamada F, Hemeida R, Janssen W, Gierhardt M, Ghofrani HA, Seeger W, Grimminger F, Schermuly RT, Witzenrath M, Brandes RP, Huang N, Cooke JP, Weissmann N, Sommer N. Effects of dimethylarginine dimethylaminohydrolase-1 overexpression on the response of the pulmonary vasculature to hypoxia. Am J Respir Cell Mol Biol 2013; 49:491-500. [PMID: 23642043 DOI: 10.1165/rcmb.2012-0330oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Acute and sustained hypoxic pulmonary vasoconstriction (HPV), as well as chronic pulmonary hypertension (PH), is modulated by nitric oxide (NO). NO synthesis can be decreased by asymmetric dimethylarginine (ADMA), which is degraded by dimethylarginine dimethylaminohydrolase-1 (DDAH1). We investigated the effects of DDAH1 overexpression (DDAH1(tg)) on HPV and chronic hypoxia-induced PH. HPV was measured during acute (10 min) and sustained (3 h) hypoxia in isolated mouse lungs. Chronic PH was induced by the exposure of mice to 4 weeks of hypoxia. ADMA and cyclic 3',5'-guanosine monophosphate (cGMP) were determined by ELISA, and NO generation was determined by chemiluminescence. DDAH1 overexpression exerted no effects on acute HPV. However, DDAH1(tg) mice showed decreased sustained HPV compared with wild-type (WT) mice. Concomitantly, ADMA was decreased, and concentrations of NO and cGMP were significantly increased in DDAH1(tg). The administration of either Nω-nitro-l-arginine or 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one potentiated sustained HPV and partly abolished the differences in sustained HPV between WT and DDAH1(tg) mice. The overexpression of DDAH1 exerted no effect on the development of chronic hypoxia-induced PH. DDAH1 overexpression selectively decreased the sustained phase of HPV, partly via activation of the NO-cGMP pathway. Thus, increased ADMA concentrations modulate sustained HPV, but not acute HPV or chronic hypoxia-induced PH.
Collapse
Affiliation(s)
- Adel Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kurtoglu E, Balta S, Sincer I, Altas Y, Atas H, Yılmaz M, Korkmaz H, Erdem K, Akturk E, Demirkol S, Can C. Comparision of Effects of Rosuvastatin Versus Atorvastatin Treatment on Plasma Levels of Asymmetric Dimethylarginine in Patients With Hyperlipidemia Having Coronary Artery Disease. Angiology 2013; 65:788-93. [DOI: 10.1177/0003319713507333] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Elevated plasma levels of asymmetric dimethylarginine (ADMA) are prevalent in patients with hypercholesterolemia and coronary artery disease. A total of 83 patients with hypercholesterolemia and angiographically documented mild coronary artery stenosis were randomized to rosuvastatin treatment (20 mg) or atorvastatin treatment (40 mg) once daily for 6 weeks after a 4-week dietary lead-in phase. Both statins decreased total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglyceride levels effectively. Only rosuvastatin increased high-density lipoprotein cholesterol (HDL-C) levels. Both rosuvastatin and atorvastatin decreased plasma ADMA levels; rosuvastatin had a significantly greater effect. The reduction in ADMA levels were correlated with the reduction in TC and LDL-C levels as well as LDL-C–HDL-C ratio. Treatment with rosuvastatin or atorvastatin in patients with hyperlipidemia with mild coronary artery stenosis may lead to a decrease in ADMA levels, which may contribute to improved endothelial function.
Collapse
Affiliation(s)
- Ertugrul Kurtoglu
- Department of Cardiology, Elazıg Training and Research Hospital, Elazığ, Turkey
| | - Sevket Balta
- Department of Cardiology, Gulhane Medical Faculty, Ankara, Turkey
| | - Isa Sincer
- Department of Cardiology, Gaziantep State Hospital, Gaziantep, Turkey
| | - Yakup Altas
- Department of Cardiology, Elazıg Training and Research Hospital, Elazığ, Turkey
| | - Halil Atas
- Department of Cardiology, Marmara University Medical School, Istanbul, Turkey
| | - Mucahid Yılmaz
- Department of Cardiology, Elazıg Training and Research Hospital, Elazığ, Turkey
| | - Hasan Korkmaz
- Department of Cardiology, Firat University Medical School, Elazığ, Turkey
| | - Kenan Erdem
- Department of Cardiology, Elazıg Training and Research Hospital, Elazığ, Turkey
| | - Erdal Akturk
- Department of Cardiology, Adiyaman University Medical School, Adiyaman, Turkey
| | - Sait Demirkol
- Department of Cardiology, Gulhane Medical Faculty, Ankara, Turkey
| | - Cagdas Can
- Department of Emergency Medicine, Elazıg Training and Research Hospital, Elazığ, Turkey
| |
Collapse
|
46
|
Andersen CU, Mellemkjær S, Nielsen-Kudsk JE, Bendstrup E, Hilberg O, Simonsen U. Pulmonary hypertension in chronic obstructive and interstitial lung diseases. Int J Cardiol 2013; 168:1795-804. [PMID: 23849967 DOI: 10.1016/j.ijcard.2013.06.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/25/2013] [Accepted: 06/20/2013] [Indexed: 12/27/2022]
Abstract
The purpose of the present review is to summarize the current knowledge on PH in relation to COPD and ILD from a clinical perspective with emphasis on diagnosis, biomarkers, prevalence, impact, treatment, and practical implications. PH in COPD and ILD is associated with a poor prognosis, and is considered one of the most frequent types of PH. However, the prevalence of PH among patients with COPD and ILD is not clear. The diagnosis of PH in chronic lung disease is often established by echocardiographic screening, but definitive diagnosis requires right heart catheterization, which is not systematically performed in clinical practice. Given the large number of patients with chronic lung disease, biomarkers to preclude or increase suspicion of PH are needed. NT-proBNP may be used as a rule-out test, but biomarkers with a high specificity for PH are still required. It is not known whether specific treatment with existent drugs effective in pulmonary arterial hypertension (PAH) is beneficial in lung disease related PH. Studies investigating existing PAH drugs in animal models of lung disease related PH have indicated a positive effect, and so have case reports and open label studies. However, treatment with systemically administered pulmonary vasodilators implies the risk of worsening the ventilation-perfusion mismatch in patients with lung disease. Inhaled vasodilators may be better suited for PH in lung disease, but new treatment modalities are also required.
Collapse
|
47
|
Swärd K, Sadegh MK, Mori M, Erjefält JS, Rippe C. Elevated pulmonary arterial pressure and altered expression of Ddah1 and Arg1 in mice lacking cavin-1/PTRF. Physiol Rep 2013; 1:e00008. [PMID: 24303100 PMCID: PMC3831936 DOI: 10.1002/phy2.8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/15/2022] Open
Abstract
Caveolae are invaginations in the plasma membrane that depend on caveolins and cavins for maturation. Here, we investigated the pulmonary phenotype in mice lacking cavin-1. Bright field and electron-microscopy showed that the cavin-1-deficient mice lacked caveolae in the lung, had an increased lung tissue density, and exhibited hypertrophic remodeling of pulmonary arteries. The right ventricle of the heart moreover had an increased mass and the right ventricular pressure was elevated. A microarray analysis revealed upregulation of Arg1 and downregulation of Ddah1, molecules whose altered expression has previously been associated with pulmonary arterial hypertension. Taken together, this work demonstrates vascular remodeling and increased pulmonary blood pressure in cavin-1 deficient mice and associates this phenotype with altered expression of Arg1 and Ddah1.
Collapse
Affiliation(s)
- Karl Swärd
- Department of Experimental Medical Science, Biomedical Centre, Lund University BMC D12, SE-221 84, Lund, Sweden
| | | | | | | | | |
Collapse
|
48
|
Determination of the diagnostic values of asymmetric dimethylarginine as an indicator for evaluation of the endothelial dysfunction in patients with rheumatoid arthritis. ARTHRITIS 2013; 2013:818037. [PMID: 23762554 PMCID: PMC3671235 DOI: 10.1155/2013/818037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 11/17/2022]
Abstract
Introduction. To compare the diagnostic values of laboratory variables, to present evaluations of the diagnostic test for asymmetric dimethyl arginine (ADMA), rheumatoid factor (RF), C-reactive protein (CRP), and DAS28 index, and to define the effect of untreated rheumatoid arthritis on endothelial function. In order to determine whether ADMA changes depending on the disease evolution, ADMA was used as an indicator for endothelial dysfunction. Methods. Using an ELISA technology of DLD-Diagnostika-GMBH for the detection of ADMA, the samples of serum and urine have been examined in 70 participants (35 RA who were not treated, 35 healthy controls). RF was defined with the test for agglutination (Latex RF test) in the same participants. Results. Out of 35 examined patients with RA, RF appeared in 17 patients (sensitivity of the test, 51.42%). In 20 of the 35 examined patients with RA, we found the presence of ADMA (sensitivity of the test, 57.14%). Anti-CCP antibody was present in 24 examined patients with RA (sensitivity of the test, 68.57%). Conclusion. ADMA has equal or very similar sensitivity and specificity to RF in untreated RA (sensitivity of 57.14% versus 48.57%, specificity of 88.57% versus 91.42%) in the detection of asymptomatic endothelial dysfunction in untreated RA.
Collapse
|
49
|
AVE3085 protects coronary endothelium from the impairment of asymmetric dimethylarginine by activation and recoupling of eNOS. Cardiovasc Drugs Ther 2013; 26:383-92. [PMID: 22890813 DOI: 10.1007/s10557-012-6404-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of eNOS and it is recognized as a risk factor for endothelial dysfunction in cardiovascular diseases. We investigated the effect of AVE3085, a newly developed transcription enhancer of eNOS, on ADMA-induced endothelial dysfunction in coronary arteries with underlying mechanisms explored. METHODS Porcine coronary small arteries (diameter 600-800 μm) were studied in a myograph for endothelium-dependent relaxation to bradykinin and endothelium-independent relaxation to sodium nitroprusside. Protein expressions of eNOS and phosphorylated-eNOS (p-eNOS(Ser1177) and p-eNOS(Thr495)), and nitrotyrosine formation were determined by Western blot. NO release was directly measured with a NO microsensor. Productions of O(2) (.-) and peroxynitrite (ONOO(-)) were determined by lucigenin- and luminol- enhanced chemiluminescence respectively. RESULTS Exposure to ADMA significantly decreased the bradykinin-induced vasorelaxation and reduced the protein expression of p-eNOS(Ser1177) whereas increased the expression of p-eNOS(Thr495) and nitrotyrosine. Pre-incubation with AVE3085 restored the bradykinin-induced relaxation, reversed the decrease of p-eNOS(Ser1177), and lowered the level of p-eNOS(Thr495) and nitrotyrosine. NO release in response to bradykinin was significantly reduced by ADMA and such reduction was restored by AVE3085. AVE3085 also prevented the elevation of O (2) (.-) and ONOO(-) levels in coronary arteries exposed to ADMA. CONCLUSIONS AVE3085 prevents ADMA-induced endothelial dysfunction in coronary arteries. The protective effect of AVE3085 may be attributed to increased NO production resulting from enhanced eNOS activation, and decreased oxidative stress that involves inhibition of O (2) (.-) generation by eNOS recoupling. The present study suggested the therapeutic potential of AVE3085 in endothelial dysfunction in cardiovascular disorders.
Collapse
|
50
|
Abstract
Physicians look to biomarkers to inform the management of pulmonary hypertension (PH) at all stages, from assessing susceptibility through screening, diagnosis, and risk stratification to drug selection and monitoring. PH is a heterogeneous disorder and currently there are no accepted blood biomarkers specific to any manifestation of the condition. Brain natriuretic peptide and its N-terminal peptide have been most widely studied. Other candidate prognostic biomarkers in patients with pulmonary arterial hypertension (PAH) include growth and differentiation factor-15, red cell distribution width, uric acid, creatinine, inflammatory markers such as interleukin-6, angiopoietins, and microRNAs. Combining the measurement of biomarkers reflecting different components of the pathology with other modalities may enable better molecular characterisation of PH subtypes and permit improved targeting of therapeutic strategies and disease monitoring.
Collapse
|