1
|
Mandal P, Pradhan SM, Mathew AA, Benny S, Kumar S, Unni AR, S K K. Exploring the effects of vasoactive constituents in large cardamom: implications for the anti-hypertensive effect via eNOS coupling pathway - an in-vitro study in rat endothelial cells. Nat Prod Res 2024:1-7. [PMID: 38742417 DOI: 10.1080/14786419.2024.2351534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Endothelial dysfunction, linked to reduced eNOS expression and nitric oxide (NO) availability, contributes to cardiovascular diseases (CVDs). Large cardamom exhibits antihypertensive effects by augmenting NO levels and antioxidant activity. To decipher its mechanisms, selected constituents were docked with eNOS-associated target genes such as GTP cyclohydrolase I (GTPCH-1) and (dihydrofolate reductase [DHFR]). Endothelial damage induced by L-NAME and fructose was countered by assessing nitric oxide metabolites (NOx), tetrahydrobipterin (BH4 levels), GCH-I expression and super oxide dismutase (SOD) activity after constituent incubation. Cyanidin-3-O-glucoside and petunidin-3-O-glucoside notably restored impaired vascular markers in both models. These phytoconstituents are likely to activate GCH-BH4-eNOS pathways, upregulating SOD and NO expression, maintaining endothelial integrity. Large cardamom's antihypertensive effects may stem from these components, synergistically enhancing endothelial NO release via the eNOS pathway.
Collapse
Affiliation(s)
- Pronay Mandal
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, India
| | | | | | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Kochi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Kochi, India
| | - Ashok R Unni
- Central Lab Animal Facility, Amrita Institute of Medical Sciences, Kochi, India
| | - Kanthlal S K
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, India
| |
Collapse
|
2
|
Li G, Zhu L, Guo M, Wang D, Meng M, Zhong Y, Zhang Z, Lin Y, Liu C, Wang J, Zhang Y, Gao Y, Cao Y, Xia Z, Qiu J, Li Y, Liu S, Chen H, Liu W, Han Y, Zheng M, Ma X, Xu L. Characterisation of forkhead box protein A3 as a key transcription factor for hepatocyte regeneration. JHEP Rep 2023; 5:100906. [PMID: 38023606 PMCID: PMC10679869 DOI: 10.1016/j.jhepr.2023.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background & Aims Liver regeneration is vital for the recovery of liver function after injury, yet the underlying mechanism remains to be elucidated. Forkhead box protein A3 (FOXA3), a member of the forkhead box family, plays important roles in endoplasmic reticulum stress sensing, and lipid and glucose homoeostasis, yet its functions in liver regeneration are unknown. Methods Here, we explored whether Foxa3 regulates liver regeneration via acute and chronic liver injury mice models. We further characterised the molecular mechanism by chromatin immunoprecipitation sequencing and rescue experiments in vivo and in vitro. Then, we assessed the impact of Foxa3 pharmacological activation on progression and termination of liver regeneration. Finally, we confirmed the Foxa3-Cebpb axis in human liver samples. Results Foxa3 is dominantly expressed in hepatocytes and cholangiocytes and is induced upon partial hepatectomy (PH) or carbon tetrachloride (CCl4) administration. Foxa3 deficiency in mice decreased cyclin gene levels and delayed liver regeneration after PH, or acute or chronic i.p. CCl4 injection. Conversely, hepatocyte-specific Foxa3 overexpression accelerated hepatocytes proliferation and attenuated liver damage in an CCl4-induced acute model. Mechanistically, Foxa3 directly regulates Cebpb transcription, which is involved in hepatocyte division and apoptosis both in vivo and in vitro. Of note, Cebpb overexpression in livers of Foxa3-deficient mice rescued their defects in cell proliferation and regeneration upon CCl4 treatment. In addition, pharmacological induction of Foxa3 via cardamonin speeded up hepatocyte proliferation after PH, without interfering with liver regeneration termination. Finally, Cebpb and Ki67 levels had a positive correlation with Foxa3 expression in human chronic disease livers. Conclusions These data characterise Foxa3 as a vital regulator of liver regeneration, which may represent an essential factor to maintain liver mass after liver injury by governing Cebpb transcription. Impact and Implications Liver regeneration is vital for the recovery of liver function after chemical insults or hepatectomy, yet the underlying mechanism remains to be elucidated. Herein, via in vitro and in vivo models and analysis, we demonstrated that Forkhead box protein A3 (FOXA3), a Forkhead box family member, maintained normal liver regeneration progression by governing Cebpb transcription and proposed cardamonin as a lead compound to induce Foxa3 and accelerate liver repair, which signified that FOXA3 may be a potential therapeutic target for further preclinical study on treating liver injury.
Collapse
Affiliation(s)
- Guoqiang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lijun Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yinzhao Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhijian Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Yi Lin
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Caizhi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawen Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yahui Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China
| | - Yining Gao
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxiang Cao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhirui Xia
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuang Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenyue Liu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Han
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
3
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Active Opioid Antinociceptive Principles for Medicinal Chemistry and Drug Design. Molecules 2023; 28:7089. [PMID: 37894567 PMCID: PMC10609244 DOI: 10.3390/molecules28207089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pain continues to be an enormous global health challenge, with millions of new untreated or inadequately treated patients reported annually. With respect to current clinical applications, opioids remain the mainstay for the treatment of pain, although they are often associated with serious side effects. To optimize their tolerability profiles, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery, and they hold potential for pain management. Traditional medicine has had a long history in clinical practice due to the fact that nature provides a rich source of active principles. For instance, opium had been used for pain management until the 19th century when its individual components, such as morphine, were purified and identified. In this review article, we conducted a literature survey aimed at identifying natural products interacting either directly with opioid receptors or indirectly through other mechanisms controlling opioid receptor signaling, whose structures could be interesting from a drug design perspective.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology, Toxicology University of Catania, Via Santa Sofia n. 97, 95100 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Carmela Parenti
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
4
|
An in silico and in vitro integrated analysis method to reveal the curative mechanisms and pharmacodynamic substances of Bufei granule on chronic obstructive pulmonary disease. Mol Divers 2023; 27:103-123. [PMID: 35266101 DOI: 10.1007/s11030-022-10404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 02/08/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease with high disability and mortality. Clinical studies have shown that the Traditional Chinese Medicine Bufei Granule (BFG) has conspicuous effects on relieving cough and improving lung function in patients with COPD and has a reliable effect on the treatment of COPD, whereas the therapeutic mechanism is vague. In the present study, the latent bronchodilators and mechanism of BFG in the treatment of COPD were discussed through the method of network pharmacology. Then, the molecular docking and molecular dynamics simulation were performed to calculate the binding efficacy of corresponding compounds in BFG to muscarinic receptor. Finally, the effects of BFG on bronchial smooth muscle were validated by in vitro experiments. The network pharmacology results manifested the anti-COPD effect of BFG was mainly realized via restraining airway smooth muscle contraction, activating cAMP pathways and relieving oxidative stress. The results of molecular docking and molecular dynamics simulation showed alpinetin could bind to cholinergic receptor muscarinic 3. The in vitro experiment verified both BFG and alpinetin could inhibit the levels of CHRM3 and acetylcholine and could be potential bronchodilators for treating COPD. This study provides an integrating network pharmacology method for understanding the therapeutic mechanisms of traditional Chinese medicine, as well as a new strategy for developing natural medicines for treating COPD.
Collapse
|
5
|
Kabanda MM, Bahadur I, Singh P. Antioxidant and anticancer properties of plant‐based bioactive flavonoids cardamonin and alpinetin: A theoretical insight from
•
OOH antiradical and Cu (II) chelation mechanisms. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mwadham M. Kabanda
- Department of Chemistry, School of Natural and Mathematical Sciences, Faculty of Science, Engineering and Agriculture University of Venda Thohoyandou South Africa
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North‐West University South Africa
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College University of Delhi New Delhi India
| |
Collapse
|
6
|
Alpinetin Suppresses Effects of TGF-β1 on Stimulating the Production and Organization of Fibrotic Markers in Human Primary Dermal Fibroblasts. Cells 2022; 11:cells11172731. [PMID: 36078140 PMCID: PMC9455016 DOI: 10.3390/cells11172731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Overgrowths of dermal fibroblasts and myofibroblast phenoconversion in response to TGF-β stimulation are the hallmarks of skin fibrosis. Constitutive activation of dermal fibroblasts by TGF-β induces the excessive production of extracellular matrix as well as certain key intracellular proteins which form a complex interaction network. Current therapies include monoclonal anti-bodies against TGF-β and surgery, but these treatments generally elicit a limited effect on certain kinds of skin fibrosis. In the current study, we investigated the effects of alpinetin (AP) on human primary dermal fibroblasts (HPDFs) stimulated with TGF-β1. Results demonstrated that AP exhibited strong inhibitory effects on TGF-β1-induced proliferation and migration of HPDFs. AP also inhibited TGF-β1-induced morphological changes of fibroblasts to myofibroblasts, and these were found to be from its effects on blocking actin stress fiber formation and organization. The expression of major fibrotic molecules including α-SMA and type I collagen upon TGF-β1 stimulation was also inhibited by AP. In addition, AP attenuated TGF-β1-induced production and organization of vimentin, β-catenin, and N-cadherin, important for the pathophysiology of skin fibrosis. In conclusion, we revealed that AP has an ability to reverse the fibrotic effects of TGF-β1 at the cellular level, and this discovery suggests the therapeutic potential of AP for skin fibrosis.
Collapse
|
7
|
Alpinetin: a Dietary Flavonoid with Diverse Anticancer Effects. Appl Biochem Biotechnol 2022; 194:4220-4243. [PMID: 35567708 DOI: 10.1007/s12010-022-03960-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022]
Abstract
Cancer is a global burden and mechanistically complex disease with a plethora of genetic, physiological, metabolic, and environmental alterations. The development of dietary nutraceuticals into cancer chemotherapeutics has emerged as a new paradigm in cancer treatment. Alpinetin (ALPI) is a novel flavonoid component of multiple edible and medicinal plants and possesses a wide range of biological and pharmacological activities including antibacterial, anti-hemostatic, anti-oxidative, anti-hepatotoxic, stomachic, immunosuppressive, and anti-inflammatory. Recently, ALPI has been reported as a bioactive dietary nutraceutical with promising anticancer activity in various human cancers through multiple mechanisms. The purpose of this review is to compile the data on natural sources of ALPI, and its anticancer activity including cellular targets and anticancer mechanism in various human cancers. Moreover, this review will set the stage for further design and conduct pre-clinical and clinical trials to develop ALPI into a lead structure for oncological therapy.
Collapse
|
8
|
Dong D, Zhang Y, He H, Zhu Y, Ou H. Alpinetin inhibits macrophage infiltration and atherosclerosis by improving the thiol redox state: Requirement of GSk3β/Fyn-dependent Nrf2 activation. FASEB J 2022; 36:e22261. [PMID: 35332570 DOI: 10.1096/fj.202101567r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
Abstract
Alpinetin is a plant flavonoid isolated from Alpinia katsumadai Hayata with antioxidant and anti-inflammatory properties. Monocyte infiltration into the intima promotes atherosclerotic development and causes plaque instability at the later stage, which is profoundly influenced by various oxidants. In this study, we investigated whether alpinetin restores the redox state to inhibit monocyte infiltration and ameliorates atherosclerosis. ApoE-deficient (ApoE-/- ) mice were fed a high-fat diet and treated with alpinetin. We found that alpinetin significantly attenuated atherosclerotic lesions and reduced necrotic core size associated with the reduction in infiltrated macrophages within the plaques. Alpinetin inhibited macrophage adhesion and migration, and the expression of chemokines and adhesion molecules, such as MCP-1, VCAM-1, and ICAM-1. Intraplaque MMP2 and MMP9 were reduced, while collagen contents were increased and elastin fiber was prevented from degradation in the alpinetin-treated mice. Data further showed that alpinetin reduced reactive oxygen species generation and promoted thiol-dependent glutathione and thioredoxin antioxidant systems in macrophages. Alpinetin activated Nfr2, an upstream activator of the thiol-dependent redox signaling by increasing the nuclear translocation. The nuclear accumulation of Nrf2 was enhanced by reducing nuclear export, which was achieved through the regulation of the GSk3β/Fyn pathway. Finally, inhibition of Nrf2 in HFD-apoE-/- mice blockaded the effect of alpinetin, which increased aortic macrophage recruitment and aggravated atherosclerosis concurrently with elevating the expression of MCP-1, VCAM-1, and ICAM-1. Altogether, these findings indicated that alpinetin improved Nrf2-mediated redox homeostasis, which consequently inhibited macrophage infiltration and atherosclerosis, suggesting a useful compound for treating atherosclerosis.
Collapse
Affiliation(s)
- Doudou Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, PR China
| | - Yun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, PR China
| | - Hui He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, PR China
| | - Yuan Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, PR China
| | - Hailong Ou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, PR China
| |
Collapse
|
9
|
Zhao G, Tong Y, Luan F, Zhu W, Zhan C, Qin T, An W, Zeng N. Alpinetin: A Review of Its Pharmacology and Pharmacokinetics. Front Pharmacol 2022; 13:814370. [PMID: 35185569 PMCID: PMC8854656 DOI: 10.3389/fphar.2022.814370] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Flavonoids isolated from medicinal herbs have been utilized as valuable health-care agents due to their virous biological applications. Alpinetin is a natural flavonoid that emerges in many widely used medicinal plants, and has been frequently applied in Chinese patent drugs. Accumulated evidence has demonstrated that alpinetin possesses a broad range of pharmacological activities such as antitumor, antiinflammation, hepatoprotective, cardiovascular protective, lung protective, antibacterial, antiviral, neuroprotective, and other properties through regulating multiple signaling pathways with low systemic toxicity. However, pharmacokinetic studies have documented that alpinetin may have poor oral bioavailability correlated to its extensive glucuronidation. Currently, the reported pharmacological properties and pharmacokinetics profiles of alpinetin are rare to be scientifically reviewed. In this article, we aimed to highlight the mechanisms of action of alpinetin in various diseases to strongly support its curative potentials for prospective clinical applications. We also summarized the pharmacokinetics properties and proposed some viable strategies to convey an appreciable reference for future advances of alpinetin in drug development.
Collapse
|
10
|
Cao Y, Xie L, Liu K, Liang Y, Dai X, Wang X, Lu J, Zhang X, Li X. The antihypertensive potential of flavonoids from Chinese Herbal Medicine: A review. Pharmacol Res 2021; 174:105919. [PMID: 34601080 DOI: 10.1016/j.phrs.2021.105919] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
With the coming of the era of the aging population, hypertension has become a global health burden to be dealt with. Although there are multiple drugs and procedures to control the symptoms of hypertension, the management of it is still a long-term process, and the side effects of conventional drugs pose a burden on patients. Flavonoids, common compounds found in fruits and vegetables as secondary metabolites, are active components in Chinese Herbal Medicine. The flavonoids are proved to have cardiovascular benefits based on a plethora of animal experiments over the last decade. Thus, the flavonoids or flavonoid-rich plant extracts endowed with anti-hypertension activities and probable mechanisms were reviewed. It has been found that flavonoids may affect blood pressure in various ways. Moreover, despite the substantial evidence of the potential for flavonoids in the control of hypertension, it is not sufficient to support the clinical application of flavonoids as an adjuvant or core drug. So the synergistic effects of flavonoids with other drugs, pharmacokinetic studies, clinical trials and the safety of flavonoids are also incorporated in the discussion. It is believed that more breakthrough studies are needed. Overall, this review may shed some new light on the explicit recognition of the mechanisms of anti-hypertension actions of flavonoids, pointing out the limitations of relevant research at the current stage and the aspects that should be strengthened in future researches.
Collapse
Affiliation(s)
- Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
11
|
Secondary Metabolites of Plants as Modulators of Endothelium Functions. Int J Mol Sci 2021; 22:ijms22052533. [PMID: 33802468 PMCID: PMC7959468 DOI: 10.3390/ijms22052533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
According to the World Health Organization, cardiovascular diseases are the main cause of death worldwide. They may be caused by various factors or combinations of factors. Frequently, endothelial dysfunction is involved in either development of the disorder or results from it. On the other hand, the endothelium may be disordered for other reasons, e.g., due to infection, such as COVID-19. The understanding of the role and significance of the endothelium in the body has changed significantly over time—from a simple physical barrier to a complex system encompassing local and systemic regulation of numerous processes in the body. Endothelium disorders may arise from impairment of one or more signaling pathways affecting dilator or constrictor activity, including nitric oxide–cyclic guanosine monophosphate activation, prostacyclin–cyclic adenosine monophosphate activation, phosphodiesterase inhibition, and potassium channel activation or intracellular calcium level inhibition. In this review, plants are summarized as sources of biologically active substances affecting the endothelium. This paper compares individual substances and mechanisms that are known to affect the endothelium, and which subsequently may cause the development of cardiovascular disorders.
Collapse
|
12
|
Drishya S, Dhanisha SS, Guruvayoorappan C. Anti-Inflammatory Potential Exhibited by Amomum subulatum Fruits Mitigates Experimentally Induced Acute and Chronic Inflammation in Mice: Evaluation of Antioxidant Parameters, Pro-Inflammatory Mediators and HO-1 Pathway. J Am Coll Nutr 2021; 40:551-561. [PMID: 33399519 DOI: 10.1080/07315724.2020.1806139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Conventional anti-inflammatory drugs are associated with serious adverse effects which bring about an ever-increasing demand to supersede them with natural and safe anti-inflammatory agents. Hence, the prime objective of this study was to evaluate the anti- inflammatory potential of an underutilized culinary spice "Amomum subulatum". METHODS To assess anti-inflammatory activity of MEAS, acute and chronic inflammation studies were carried out in carrageenan and formalin induced mice paw edema models respectively. Paw volume was measured by vernier caliper. Status of antioxidant enzymes and oxidative stress markers were determined in paw tissue homogenates following standard protocols. Histopathology and immunohistochemistry analysis of paw tissue samples were also performed. Levels of proinflammatory cytokines in serum were quantified by ELISA. Effect of MEAS on vascular permeability was evaluated by evans blue dye extravasation assay. Involvement of heme oxygenase (HO)-1 pathway in anti-inflammatory action of MEAS was investigated by pretreating mice with zinc protoporphyrin (ZnPP) IX, a specific inhibitor of HO-1. RESULTS MEAS administration significantly reduced paw edema, as evidenced by paw volume measurement and histopathology analysis. Additionally, pretreatment with MEAS markedly reduced vascular permeability, serum proinflammatory cytokine levels, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Further, the anti-inflammatory mechanism of MEAS showed the involvement of HO-1 pathway when HO-1 was inhibited by ZnPPIX. CONCLUSION Our results manifested strong anti-inflammatory activity of MEAS, suggesting its potential use as a therapeutic alternative for treating inflammatory disorders.
Collapse
Affiliation(s)
- Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram, India (Research Centre, University of Kerala)
| | - Suresh Sulekha Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram, India (Research Centre, University of Kerala)
| | - Chandrashekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram, India (Research Centre, University of Kerala)
| |
Collapse
|
13
|
Daimary UD, Parama D, Rana V, Banik K, Kumar A, Harsha C, Kunnumakkara AB. Emerging roles of cardamonin, a multitargeted nutraceutical in the prevention and treatment of chronic diseases. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2020; 2:100008. [PMID: 34909644 PMCID: PMC8663944 DOI: 10.1016/j.crphar.2020.100008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023] Open
Abstract
Although chronic diseases are often caused by the perturbations in multiple cellular components involved in different biological processes, most of the approved therapeutics target a single gene/protein/pathway which makes them not as efficient as they are anticipated and are also known to cause severe side effects. Therefore, the pursuit of safe, efficacious, and multitargeted agents is imperative for the prevention and treatment of these diseases. Cardamonin is one such agent that has been known to modulate different signaling molecules such as transcription factors (NF-κB and STAT3), cytokines (TNF-α, IL-1β, and IL-6) enzymes (COX-2, MMP-9 and ALDH1), other proteins and genes (Bcl-2, XIAP and cyclin D1), involved in the development and progression of chronic diseases. Multiple lines of evidence emerging from pre-clinical studies advocate the promising potential of this agent against various pathological conditions like cancer, cardiovascular diseases, diabetes, neurological disorders, inflammation, rheumatoid arthritis, etc., despite its poor bioavailability. Therefore, further studies are paramount in establishing its efficacy in clinical settings. Hence, the current review focuses on highlighting the underlying molecular mechanism of action of cardamonin and delineating its potential in the prevention and treatment of different chronic diseases.
Collapse
Affiliation(s)
- Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
14
|
Vasorelaxant Effect of Boesenbergia rotunda and Its Active Ingredients on an Isolated Coronary Artery. PLANTS 2020; 9:plants9121688. [PMID: 33271853 PMCID: PMC7760037 DOI: 10.3390/plants9121688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022]
Abstract
Cardiovascular diseases are a major cause of death in developed countries. The regulation of vascular tone is a major approach to prevent and ameliorate vascular diseases. As part of our ongoing screening for cardioprotective natural compounds, we investigated the vasorelaxant effect of rhizomes from Boesenbergia rotunda (L.) Mansf. [Boesenbergia pandurata (Roxb.) Schltr.] used as a spice and herbal medicine in Asian countries. The methanol extract of B. rotunda rhizomes (BRE) exhibited significant vasorelaxation effects ex vivo at EC50 values of 13.4 ± 6.1 μg/mL and 40.9 ± 7.9 μg/mL, respectively, with and without endothelium in the porcine coronary artery ring. The intrinsic mechanism was evaluated by treating with specific inhibitors or activators that typically affect vascular reactivity. The results suggested that BRE induced relaxation in the coronary artery rings via an endothelium-dependent pathway involving NO-cGMP, and also via an endothelium-independent pathway involving the blockade of Ca2+ channels. Vasorelaxant principles in BRE were identified by subsequent chromatographic methods, which revealed that flavonoids regulate vasorelaxant activity in BRE. One of the flavonoids was a Diels-Alder type adduct, 4-hydroxypanduratin A, which showed the most potent vasorelaxant effect on porcine coronary artery with an EC50 of 17.8 ± 2.5 μM. Our results suggest that rhizomes of B. rotunda might be of interest as herbal medicine against cardiovascular diseases.
Collapse
|
15
|
Possible Participation of Ionotropic Glutamate Receptors and l-Arginine-Nitric Oxide-Cyclic Guanosine Monophosphate-ATP-Sensitive K + Channel Pathway in the Antinociceptive Activity of Cardamonin in Acute Pain Animal Models. Molecules 2020; 25:molecules25225385. [PMID: 33217904 PMCID: PMC7698774 DOI: 10.3390/molecules25225385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/16/2023] Open
Abstract
The perception of pain caused by inflammation serves as a warning sign to avoid further injury. The generation and transmission of pain impulses involves various pathways and receptors. Cardamonin isolated from Boesenbergia rotunda (L.) Mansf. has been reported to exert antinociceptive effects in thermal and mechanical pain models; however, the precise mechanism has yet to be examined. The present study investigated the possible mechanisms involved in the antinociceptive activity of cardamonin on protein kinase C, N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors, l-arginine/cyclic guanosine monophosphate (cGMP) mechanism, as well as the ATP-sensitive potassium (K+) channel. Cardamonin was administered to the animals intra-peritoneally. Present findings showed that cardamonin significantly inhibited pain elicited by intraplantar injection of phorbol 12-myristate 13-acetate (PMA, a protein kinase C activator) with calculated mean ED50 of 2.0 mg/kg (0.9–4.5 mg/kg). The study presented that pre-treatment with MK-801 (NMDA receptor antagonist) and NBQX (non-NMDA receptor antagonist) significantly modulates the antinociceptive activity of cardamonin at 3 mg/kg when tested with glutamate-induced paw licking test. Pre-treatment with l-arginine (a nitric oxide precursor), ODQ (selective inhibitor of soluble guanylyl cyclase) and glibenclamide (ATP-sensitive K+ channel inhibitor) significantly enhanced the antinociception produced by cardamonin. In conclusion, the present findings showed that the antinociceptive activity of cardamonin might involve the modulation of PKC activity, NMDA and non-NMDA glutamate receptors, l-arginine/nitric oxide/cGMP pathway and ATP-sensitive K+ channel.
Collapse
|
16
|
Nawaz J, Rasul A, Shah MA, Hussain G, Riaz A, Sarfraz I, Zafar S, Adnan M, Khan AH, Selamoglu Z. Cardamonin: A new player to fight cancer via multiple cancer signaling pathways. Life Sci 2020; 250:117591. [PMID: 32224026 DOI: 10.1016/j.lfs.2020.117591] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/14/2020] [Accepted: 03/22/2020] [Indexed: 12/13/2022]
Abstract
Nature's pharmacy has undoubtedly served humans as an affordable and safer health-care regime for a long times. Cardamonin, a chalconoid present in several plants has been known for a longtime to have beneficial properties towards human health. In this review, we aimed to highlight the recent advances achieved in discovering the pharmacological properties of cardamonin. Cardamonin is cardamom-derived chalcone, which plays a role in cancer treatment, immune system modulation, inflammation and pathogens killing. Through the modulation of cellular signaling pathways, cardamonin activates cell death signal to induce apoptosis in malignant cells that results in the inhibition of cancer development. Moreover, cardamonin arrests cell cycle by altering the expression of regulatory proteins during malignant cells division. Due to its relatively selective cytotoxic potential against host malignant cells, cardamonin is emerging as a promising novel experimental anticancer agent. The potential of cardamonin to target various signaling molecules, transcriptional factors, cytokines and enzymes, such as mTOR, NF-κB, Akt, STAT3, Wnt/β-catenin and COX-2 enhances the opportunity to explore it as a new multi-target therapeutic agent. The pharmacokinetic and biosafety profile of cardamonin favor it as a potentially safe biomolecule for pharmaceutical drug development.
Collapse
Affiliation(s)
- Javaria Nawaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad 38000, Pakistan.
| | - Ghulam Hussain
- Neurochemical biology and Genetics Laboratory, Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Ammara Riaz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Sarfraz
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Saba Zafar
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Adnan
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Abdul Haleem Khan
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Campus 51240, Turkey
| |
Collapse
|
17
|
Kanthlal SK, Joseph J, Paul B, M V, P UD. Antioxidant and vasorelaxant effects of aqueous extract of large cardamom in L-NAME induced hypertensive rats. Clin Exp Hypertens 2020; 42:581-589. [PMID: 32202168 DOI: 10.1080/10641963.2020.1739699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The present work aimed to study the effect of aqueous extract of large cardamom (AELC) to prevent vascular remodeling and oxidative stress in Nω-Nitro-L-arginine methyl ester (L-NAME)-induced hypertension. METHOD Male Wistar rats were administered with L-NAME 40 mg/kg/day for 28 days by oral gavage. The treatments included captopril (20 mg/kg/day) or AELC (100, 200 and 400 mg/kg/day) along with L-NAME administration. RESULTS L-NAME treated rats showed high systolic, diastolic and mean arterial pressure, decreased nitric oxide level, increased level of malondialdehyde in plasma, heart, aorta and kidney, hypertrophy of the vascular wall and reduced vascular response to acetylcholine in phenylephrine-precontracted aorta. Treatment with AELC markedly reduced the blood pressure, restored the nitric oxide level, reduced the malondialdehyde level, alleviated the hypertrophy in L-NAME-induced hypertensive rats. Additionally, it also improved the vascular response to acetylcholine in phenylephrine pre-contracted aorta. CONCLUSION In conclusion, our results demonstrate the preventive effect of AELC in L-NAME-induced hypertensive model, which is possibly related to antioxidant activities and restoration of nitric oxide level.
Collapse
Affiliation(s)
- S K Kanthlal
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham , Kochi, India
| | - Jipnomon Joseph
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham , Kochi, India
| | - Bindhu Paul
- Amrita Centre for Nano Sciences and Molecular Medicine, Amrita Vishwa Vidyapeetham , Kochi, India
| | - Vijayakumar M
- Department of Cardiology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham , Kochi, India
| | - Uma Devi P
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham , Kochi, India
| |
Collapse
|
18
|
Loh YC, Chan SY, Tew WY, Oo CW, Yam MF. New flavonoid-based compound synthesis strategy for antihypertensive drug development. Life Sci 2020; 249:117512. [PMID: 32145305 DOI: 10.1016/j.lfs.2020.117512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 12/27/2022]
Abstract
Hypertension is one of the leading causes of mortality in relation to the cardiovascular conditions and easily the most overlooked and poorly managed disease in mankind. With well over 200 drugs available in the market globally, there is still an urgency to search for antihypertensive alternatives due to the subpar efficacy and unwarranted side effects of the current choices. Present studies reported over 250 types of plant-derived compounds were being investigated for potential pharmacological effects on the vasculature in the last 3 decades. There were numerous literatures that claimed various compounds exhibiting vasorelaxant properties to a certain extent with low numbers of these compounds being successfully adapted into the current medicinal practice for treatment of hypertension. The issue is the scarcity of reviews that summarizes the discovery of this field and the lack of thorough comparison of these compounds to identify which of these vasodilators should be the next face of hypertension management. Thus, this review is aiming towards identifying the relationship between a major class of plant-derived compounds, flavonoid's activity as a vasodilator with their signalling pathways and their structural characteristics according to their vasorelaxant properties. Interestingly, we found that both nitric oxide and voltage-operated calcium channels pathways, and two of the flavonoid's structural characteristics play crucial roles in eliciting strong vasorelaxant effects. We have faith that the insights of this review will serve as a reference for those researching similar topics in the future and potentially lead to the development of more promising antihypertensive alternative.
Collapse
Affiliation(s)
- Yean Chun Loh
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Sock Ying Chan
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Wan Yin Tew
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chuan Wei Oo
- Department of Organic Chemistry, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Mun Fei Yam
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
19
|
Portincasa P, Calamita G. Phytocompounds modulating Aquaporins: Clinical benefits are anticipated. Food Chem 2018; 274:642-650. [PMID: 30372989 DOI: 10.1016/j.foodchem.2018.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/03/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022]
Abstract
A series of plant-derived bioactive compounds belonging to the class of polyphenols, terpenes and capsaicinoids, interact with important pathophysiological pathways at a molecular, cellular and systemic level. Mechanisms of action include altering cell growth and differentiation, apoptosis, autophagy, inflammation, redox balance and metabolic and energy homeostasis. These effects might also involve the expression and function of Aquaporins (AQPs), a family of membrane channel proteins, involved in several body functions. The ultimate translational beneficial effect of such phytocompounds on AQPs in health and disease is a matter of intensive research. Results might provide novel therapeutic approaches to a number of human diseases. Here, we give an updated overview of this fast growing and promising field, discussing a number of phytocompounds and their action on AQPs and related potential clinical achievements.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Bari, Italy.
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
20
|
Ping CP, Tengku Mohamad TAS, Akhtar MN, Perimal EK, Akira A, Israf Ali DA, Sulaiman MR. Antinociceptive Effects of Cardamonin in Mice: Possible Involvement of TRPV₁, Glutamate, and Opioid Receptors. Molecules 2018; 23:molecules23092237. [PMID: 30177603 PMCID: PMC6225316 DOI: 10.3390/molecules23092237] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 11/23/2022] Open
Abstract
Pain is one of the most common cause for hospital visits. It plays an important role in inflammation and serves as a warning sign to avoid further injury. Analgesics are used to manage pain and provide comfort to patients. However, prolonged usage of pain treatments like opioids and NSAIDs are accompanied with undesirable side effects. Therefore, research to identify novel compounds that produce analgesia with lesser side effects are necessary. The present study investigated the antinociceptive potentials of a natural compound, cardamonin, isolated from Boesenbergia rotunda (L) Mansf. using chemical and thermal models of nociception. Our findings showed that intraperitoneal and oral administration of cardamonin (0.3, 1, 3, and 10 mg/kg) produced significant and dose-dependent inhibition of pain in abdominal writhing responses induced by acetic acid. The present study also demonstrated that cardamonin produced significant analgesia in formalin-, capsaicin-, and glutamate-induced paw licking tests. In the thermal-induced nociception model, cardamonin exhibited significant increase in response latency time of animals subjected to hot-plate thermal stimuli. The rota-rod assessment confirmed that the antinociceptive activities elicited by cardamonin was not related to muscle relaxant or sedative effects of the compound. In conclusion, the present findings showed that cardamonin exerted significant peripheral and central antinociception through chemical- and thermal-induced nociception in mice through the involvement of TRPV1, glutamate, and opioid receptors.
Collapse
Affiliation(s)
- Chung Pui Ping
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Selangor, Serdang 43400, Malaysia.
| | - Tengku Azam Shah Tengku Mohamad
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Selangor, Serdang 43400, Malaysia.
| | - Muhammad Nadeem Akhtar
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Serdang 43400, Malaysia.
| | - Enoch Kumar Perimal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Selangor, Serdang 43400, Malaysia.
| | - Ahmad Akira
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Selangor, Serdang 43400, Malaysia.
| | - Daud Ahmad Israf Ali
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Selangor, Serdang 43400, Malaysia.
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Pahang, Gambang 26300, Malaysia.
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia Selangor, Serdang 43400, Malaysia.
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Pahang, Gambang 26300, Malaysia.
| |
Collapse
|
21
|
Tesse A, Grossini E, Tamma G, Brenner C, Portincasa P, Marinelli RA, Calamita G. Aquaporins as Targets of Dietary Bioactive Phytocompounds. Front Mol Biosci 2018; 5:30. [PMID: 29721498 PMCID: PMC5915544 DOI: 10.3389/fmolb.2018.00030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Plant-derived bioactive compounds have protective role for plants but may also modulate several physiological processes of plant consumers. In the last years, a wide spectrum of phytochemicals have been found to be beneficial to health interacting with molecular signaling pathways underlying critical functions such as cell growth and differentiation, apoptosis, autophagy, inflammation, redox balance, cell volume regulation, metabolic homeostasis, and energy balance. Hence, a large number of biologically active phytocompounds of foods have been isolated, characterized, and eventually modified representing a natural source of novel molecules to prevent, delay or cure several human diseases. Aquaporins (AQPs), a family of membrane channel proteins involved in many body functions, are emerging among the targets of bioactive phytochemicals in imparting their beneficial actions. Here, we provide a comprehensive review of this fast growing topic focusing especially on what it is known on the modulatory effects played by several edible plant and herbal compounds on AQPs, both in health and disease. Phytochemical modulation of AQP expression may provide new medical treatment options to improve the prognosis of several diseases.
Collapse
Affiliation(s)
- Angela Tesse
- Centre National de La Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, l'Institut du Thorax, Universitè de Nantes, Nantes, France
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University East Piedmont, Novara, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotecnhologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Catherine Brenner
- Institut National de la Santé et de la Recherche Médicale UMR-S 1180-LabEx LERMIT, Université Paris-Sud, Université Paris-Saclay, Châtenay Malabry, France
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari "Aldo Moro", Bari, Italy
| | - Raul A Marinelli
- Instituto de Fisiología Experimental, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Giuseppe Calamita
- Department of Biosciences, Biotecnhologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
22
|
Ye W, Lin X, Zhang Y, Xu Y, Sun R, Wen C, Wang X, Bao S, Chen R. Quantification and pharmacokinetics of alpinetin in rat plasma by UHPLC-MS/MS using protein precipitation coupled with dilution approach to eliminate matrix effects. J Pharm Biomed Anal 2017; 152:242-247. [PMID: 29433096 DOI: 10.1016/j.jpba.2017.12.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
Abstract
Alpinetin, a bioactive flavonoid, has attracted great attention due to its diverse therapeutic effects, namely anti-oxidant, anti-tumor and anti-inflammatory effects with low systemic toxicity. Various determination methods have been developed in quality control and plant chemistry areas. However, quantification and pharmacokinetics of alpinetin in biological matrix have not been studied. In the present research, a sensitive, efficient and reliable ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the determination of alpinetin in rat plasma was developed and validated. Plasma samples were processed with protein precipitation (PP) followed by a 5-fold acetonitrile/water (50:50, v/v) dilution to significantly decrease matrix effect which exited in one step PP method. Determination of alpinetin was conducted using positive electrospray ionization tandem mass spectrometry in multiple reaction monitoring mode. Results demonstrated that the method was precise (3.3%-12.3%), accurate (-5.8% to 10.8%) and linear in the range of 1-1000 ng/mL. The new developed method was subsequently applied to a pharmacokinetic research of alpinetin following oral and intravenous dosing to healthy Sprague-Dawley rats. Alpinetin was demonstrated rapid absorption after oral administration with an absolute bioavailability of ∼15.1% and extensive distribution after dosing.
Collapse
Affiliation(s)
- Weijian Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoji Lin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Youting Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Youxiao Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Rui Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Congcong Wen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325027, China
| | - Xianqin Wang
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Shihui Bao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Ruijie Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
23
|
Atef Y, El-Fayoumi HM, Abdel-Mottaleb Y, Mahmoud MF. Effect of cardamonin on hepatic ischemia reperfusion induced in rats: Role of nitric oxide. Eur J Pharmacol 2017; 815:446-453. [PMID: 28966130 DOI: 10.1016/j.ejphar.2017.09.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
Ischemia reperfusion (I/R) injury is a cellular damage in a hypoxic organ following the restoration of oxygen delivery. It may occur during organ transplantation, trauma and hepatectomies. Nitric oxide (NO) effects during hepatic I/R are complicated. The iNOS-derived NO has a deleterious effect, whereas eNOS-derived NO has a protective effect in liver I/R. Cardamonin (CDN) is an anti-inflammatory molecule and a novel iNOS inhibitor, and Nω-Nitro-L-arginine (L-NNA) is a NOS inhibitor. L-Arginine is a precursor of NOS. This study was designed to investigate the possible protective effects of CDN on hepatic I/R and the role of NO. Wistar rats were randomly divided into 5 groups (Sham, I/R, CDN, L-NNA and L-arginine). Liver ischemia was induced for 45min then reperfusion was allowed for 1h. L-Arginine and CDN ameliorated the deleterious effects of I/R through reducing the oxidative stress and hepatocyte degeneration. Both molecules decreased the elevated inflammatory cytokines and increased the antiapoptotic marker, Bcl2. Both agents increased NO and eNOS expression and decreased iNOS expression. In conclusion, increased NO/eNOS and suppression of iNOS expression have protective effects on I/R injury. While inhibition of eNOS and reduction of NO have deleterious effects on I/R injury. For the first time, we demonstrated that cardamonin improved functional and structural abnormalities of the liver following I/R by improving oxidative stress and inflammation and increasing the availability of NO produced by eNOS. Treatment with cardamonin could be a promising strategy in patients with hepatic I/R injury in different clinical situations.
Collapse
Affiliation(s)
- Yara Atef
- Department of Pharmacology & Toxicology & Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Hassan M El-Fayoumi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; Faculty of Pharmacy, Sinai University Qantara, Egypt
| | - Yousra Abdel-Mottaleb
- Department of Pharmacology & Toxicology & Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
24
|
Wang XB, Yang CS, Luo JG, Zhang C, Luo J, Yang MH, Kong LY. Experimental and theoretical calculation studies on the structure elucidation and absolute configuration of calyxins from Alpinia katsumadai. Fitoterapia 2017; 119:121-129. [PMID: 28456555 DOI: 10.1016/j.fitote.2017.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 11/29/2022]
Abstract
Six novel calyxins, named calyxin T-W, ent-calyxin T and ent-calyxin U were isolated from the seeds of Alpinia katsumadai Hayata. Their relative configurations were elucidated by means of detailed UV, IR, NMR and MS spectroscopic data. Their absolute configurations were assigned by collaborative studies on single crystal X-ray diffraction analysis, Mosher's method, electronic circular dichroism (ECD), optical rotation and theoretical calculations. These compounds are Friedel-Cranft alkylation adducts composed of coexisted diarylheptanoids and flavanone from the seeds of Alpinia katsumadai. The antiproliferative activity of the six compounds against NCI-H460, HeLa, SMMC-7721 and HCT-116 cell lines was also reported, and most of them showed moderate to strong activities.
Collapse
Affiliation(s)
- Xiao-Bing Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chang-Shui Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Medical school, Yangzhou University, 11 Huaihai Ave.,Yangzhou 225001, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Ave., Yangzhou 225009, PR China
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Jun Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Ming-Hua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
25
|
Protective effect of cardamonin against acetic acid-induced ulcerative colitis in rats. Pharmacol Rep 2017; 69:268-275. [DOI: 10.1016/j.pharep.2016.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022]
|
26
|
Shrivastava S, Jeengar MK, Thummuri D, Koval A, Katanaev VL, Marepally S, Naidu VGM. Cardamonin, a chalcone, inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/β-catenin signaling cascades and reversal of epithelial-mesenchymal transition. Biofactors 2017; 43:152-169. [PMID: 27580587 DOI: 10.1002/biof.1315] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022]
Abstract
Cardamonin (CD), an active chalconoid, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of CD for the treatment of triple negative breast cancer (TNBC) is unclear. This study aims to examine the cytotoxic effects of CD and investigate the underlying mechanism in human TNBC cells. The results show that CD exhibits cytotoxicity by inducing apoptosis and cell cycle arrest in TNBC cells via modulation of Bcl-2, Bax, cyt-C, cleaved caspase-3, and PARP. We find that CD significantly increases expression of the epithelial marker E-cadherin, while reciprocally decreasing expression of mesenchymal markers such as snail, slug, and vimentin in BT-549 cells. In parallel with epithelial-mesenchymal transition (EMT) reversal, CD down regulates invasion and migration of BT-549 cells. CD markedly reduces stability and nuclear translocation of β-catenin, accompanied with downregulation of β-catenin target genes. Using the TopFlash luciferase reporter assay, we reveal CD as a specific inhibitor of the Wnt3a-induced signaling. These results suggest the involvement of the Wnt/β-catenin signaling in the CD-induced EMT reversion of BT-549 cells. Notably, CD restores the glycogen synthase kinase-3β (GSK3β) activity, required for β-catenin destruction via the proteasome-mediated system, by inhibiting the phosphorylation of GSK3β by Akt. These occurrences ultimately lead to the blockage of EMT and the invasion of TNBC cells. Further antitumor activity of CD was tested in 4T1 (TNBC cells) induced tumor and it was found that CD significantly inhibited the tumor volume at dose of 5 mg/kg-treated mice. © 2016 BioFactors, 43(2):152-169, 2017.
Collapse
Affiliation(s)
- Shweta Shrivastava
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER-Hyderabad), Hyderabad, Telangana, India
| | - Manish Kumar Jeengar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER-Hyderabad), Hyderabad, Telangana, India
| | - Dinesh Thummuri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER-Hyderabad), Hyderabad, Telangana, India
| | - Alexey Koval
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vladimir L Katanaev
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Srujan Marepally
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), NCBS-TIFR, UAS-GKVK, Bengaluru, Karnataka, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER-Hyderabad), Hyderabad, Telangana, India
| |
Collapse
|
27
|
Zhao YF, Lü HT, Xu LB. Rapid Analysis of Alpinetin and Cardamonin in Alpinia katsumadai Hayata Using Short-End Injection Microemulsion Electrokinetic Capillary Chromatography Combined with Microwave-Assisted Extraction. Chromatographia 2016. [DOI: 10.1007/s10337-016-3227-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Sambasevam Y, Omar Farouk AA, Tengku Mohamad TAS, Sulaiman MR, Bharatham BH, Perimal EK. Cardamonin attenuates hyperalgesia and allodynia in a mouse model of chronic constriction injury-induced neuropathic pain: Possible involvement of the opioid system. Eur J Pharmacol 2016; 796:32-38. [PMID: 27988285 DOI: 10.1016/j.ejphar.2016.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 01/04/2023]
Abstract
Neuropathic pain arises from the injury of nervous system. The condition is extremely difficult to be treated due to the ineffectiveness and presence of various adverse effects of the currently available drugs. In the present study, we investigated the antiallodynic and antihyperlagesic properties of cardamonin, a naturally occurring chalcone in chronic constriction injury (CCI)-induced neuropathic pain mice model. Our findings showed that single and repeated dose of intra-peritoneal administration of cardamonin (3, 10, 30mg/kg) significantly inhibited (P<0.001) the chronic constriction injury-induced neuropathic pain using the Hargreaves plantar test, Randall-Selitto analgesiometer test, dynamic plantar anesthesiometer test and the cold plate test in comparison with the positive control drug used (amitriptyline hydrochloride, 20mg/kg, i.p.). Pre-treatment with naloxone hydrochloride (1mg/kg, i.p.) and naloxone methiodide (1mg/kg, s.c) significantly reversed the antiallodynic and antihyperalgesic effects of cardamonin in dynamic plantar anesthesiometer test and Hargreaves plantar test, respectively. In conclusion, the current findings demonstrated novel antiallodynic and antihyperalgesic effects of cardamonin through the activation of the opioidergic system both peripherally and centrally and may prove to be a potent lead compound for the development of neuropathic pain drugs in the future.
Collapse
Affiliation(s)
- Yogesvari Sambasevam
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Ahmad Akira Omar Farouk
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Tengku Azam Shah Tengku Mohamad
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - B Hemabarathy Bharatham
- Biomedical Science Programme, School of Diagnostic and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Enoch Kumar Perimal
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
29
|
Cardamonin Alleviates Pressure Overload-induced Cardiac Remodeling and Dysfunction Through Inhibition of Oxidative Stress. J Cardiovasc Pharmacol 2016; 68:441-451. [DOI: 10.1097/fjc.0000000000000430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Bai RR, Wu XM, Xu JY. Current natural products with antihypertensive activity. Chin J Nat Med 2016; 13:721-9. [PMID: 26481372 DOI: 10.1016/s1875-5364(15)30072-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 10/22/2022]
Abstract
Natural products have been an important source of new drugs, which also played a dominant role in the discovery and research of new drugs for the treatment of hypertension. This review article reviews the recent progress in the research and development of natural lead compounds with antihypertensive activity, including alkaloids, diterpenes, coumarins, flavonoids, and peptides. We summarized their structures, sources, as well as the antihypertensive mechanisms. These information provides instructive reference for the following structural modifications and optimization.
Collapse
Affiliation(s)
- Ren-Ren Bai
- School of Medicine, Emory University, Atlanta 30322, GA, USA; Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Ming Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jin-Yi Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
31
|
Jiang Z, Sang H, Fu X, Liang Y, Li L. Alpinetin enhances cholesterol efflux and inhibits lipid accumulation in oxidized low-density lipoprotein-loaded human macrophages. Biotechnol Appl Biochem 2015; 62:840-7. [PMID: 25496323 DOI: 10.1002/bab.1328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/30/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Zhengming Jiang
- Department of Cardiology; the First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| | - Haiqiang Sang
- Department of Cardiology; the First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| | - Xin Fu
- Department of Cardiology; the First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| | - Ying Liang
- Department of Cardiology; the First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| | - Ling Li
- Department of Cardiology; the First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| |
Collapse
|
32
|
Wang XB, Yang CS, Zhang C, Luo J, Yang MH, Luo JG, Yu WY, Kong LY. Ten new calyxins from Alpinia katsumadai: a systematically studies on the stereochemistry of calyxins. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Polhemus DJ, Lefer DJ. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 2014; 114:730-7. [PMID: 24526678 DOI: 10.1161/circresaha.114.300505] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Long recognized as a malodorous and highly toxic gas, recent experimental studies have revealed that hydrogen sulfide (H2S) is produced enzymatically in all mammalian species including man and exerts several critical actions to promote cardiovascular homeostasis and health. During the past 15 years, scientists have determined that H2S is produced by 3 endogenous enzymes and exerts powerful effects on endothelial cells, smooth muscle cells, inflammatory cells, mitochondria, endoplasmic reticulum, and nuclear transcription factors. These effects have been reported in multiple organ systems, and the majority of data clearly indicate that H2S produced by the endogenous enzymes exerts cytoprotective actions. Recent preclinical studies investigating cardiovascular diseases have demonstrated that the administration of physiological or pharmacological levels of H2S attenuates myocardial injury, protects blood vessels, limits inflammation, and regulates blood pressure. H2S has emerged as a critical cardiovascular signaling molecule similar to nitric oxide and carbon monoxide with a profound effect on the heart and circulation. Our improved understanding of how H2S elicits protective actions, coupled with the rapid development of novel H2S-releasing agents, has resulted in heightened enthusiasm for the clinical translation of this ephemeral gaseous molecule. This review will examine our current state of knowledge about the actions of H2S within the cardiovascular system with an emphasis on the therapeutic potential and molecular cross talk between H2S, nitric oxide, and carbon monoxide.
Collapse
Affiliation(s)
- David J Polhemus
- From the Department of Pharmacology, LSU Health Sciences Center, New Orleans, LA (D.J.P., D.J.L.); and the LSU Cardiovascular Center of Excellence, New Orleans, LA (D.J.P., D.J.L.)
| | | |
Collapse
|
34
|
Shen YJ, Zhu XX, Yang X, Jin B, Lu JJ, Ding B, Ding ZS, Chen SH. Cardamonin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and migration by downregulating p38 MAPK, Akt, and ERK phosphorylation. J Nat Med 2014; 68:623-9. [PMID: 24595849 DOI: 10.1007/s11418-014-0825-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 01/28/2014] [Indexed: 11/27/2022]
Abstract
Cardamonin is a chalconoid isolated from various herbs, such as Alpinia katsumadai and Carya cathayensis Sarg. This study examined the effect of cardamonin on angiotensin II (Ang II)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs) as well as its underlying mechanisms. The results showed that cardamonin significantly inhibited Ang II-induced proliferation and migration in rat VSMCs in a concentration-dependent manner. Moreover, cardamonin suppressed Ang II-induced phosphorylation of p38 MAPK, Akt, and extracellular regulated protein kinase (ERK). These findings indicate that the downregulation of p38 MAPK, Akt, and ERK phosphorylation might be, at least in part, involved in cardamonin-suppressed proliferation and migration induced by Ang II in rat VSMCs. As proliferation and migration of VSMCs play critical roles in the pathogenesis of atherosclerosis, cardamonin might be a potential candidate for atherosclerosis treatment.
Collapse
Affiliation(s)
- Yan-Jing Shen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cardamonin, as shown by the increasing number of publications, has received growing attention from the scientific community due to the expectations toward its benefits to human health. In this study, research on cardamonin is reviewed, including its natural sources, health promoting aspects, and analytical methods for its determination. Therefore, this article hopes to aid current and future researchers on the search for reliable answers concerning cardamonin's value in medicine.
Collapse
Affiliation(s)
- Luís Moreira Gonçalves
- Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Porto, Portugal
| | | | | |
Collapse
|
36
|
Suo C, Sun L, Yang S. Alpinetin activates the δ receptor instead of the κ and μ receptor pathways to protect against rat myocardial cell apoptosis. Exp Ther Med 2013; 7:109-116. [PMID: 24348774 PMCID: PMC3861512 DOI: 10.3892/etm.2013.1359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/07/2013] [Indexed: 01/26/2023] Open
Abstract
Alpinetin is a natural flavonoid that protects cells against fatal injury in ischemia-reperfusion. δ receptor activation protects myocardial cells from trauma; however, the mechanism is unknown. The aim of this study was to explore the function of alpinetin in δ receptor-mediated myocardial apoptosis. The myocardial cells of newly born rats were cultivated and myocardial apoptosis was induced by serum deprivation. The MTT method was used to evaluate cell viability and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining was used to analyze apoptosis. The expression levels of opioid receptor mRNA and protein were tested using reverse transcription-polymerase reaction (RT-PCR) and western blot assays. In addition, an opioid receptor antagonist, as well as protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) inhibitors, were used to determine the inferred signaling pathway. The results showed that that alpinetin reduced the myocardial apoptosis induced by serum deprivation in a concentration-dependent manner. However, the protection conferred to the myocardial cells by alpinetin was blocked by the δ opioid receptor antagonist naltrindole, as well as by PKC and ERK inhibitors (GF109203X and U0126, respectively). In addition, it was shown that alpinetin was able to maintain the stability of the mitochondrial membrane potential, lower the level of intracytoplasmic cytochrome c and reduce Bax displacement from the cytoplasm to the mitochondria. It was concluded that alpinetin was able to activate δ receptors to induce the endogenous protection of myocardial cells via the PKC/ERK signaling pathway.
Collapse
Affiliation(s)
- Chuantao Suo
- Department of Cardiology, Daqing General Hospital Group Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Libo Sun
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuang Yang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
37
|
Vasodilator compounds derived from plants and their mechanisms of action. Molecules 2013; 18:5814-57. [PMID: 23685938 PMCID: PMC6270466 DOI: 10.3390/molecules18055814] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 04/24/2013] [Accepted: 05/07/2013] [Indexed: 12/31/2022] Open
Abstract
The present paper reviews vasodilator compounds isolated from plants that were reported in the past 22 years (1990 to 2012) and the different mechanisms of action involved in their vasodilator effects. The search for reports was conducted in a comprehensive manner, intending to encompass those metabolites with a vasodilator effect whose mechanism of action involved both vascular endothelium and arterial smooth muscle. The results obtained from our bibliographic search showed that over half of the isolated compounds have a mechanism of action involving the endothelium. Most of these bioactive metabolites cause vasodilation either by activating the nitric oxide/cGMP pathway or by blocking voltage-dependent calcium channels. Moreover, it was found that many compounds induced vasodilation by more than one mechanism. This review confirms that secondary metabolites, which include a significant group of compounds with extensive chemical diversity, are a valuable source of new pharmaceuticals useful for the treatment and prevention of cardiovascular diseases.
Collapse
|
38
|
Carvalho AM, Gonçalves LM, Valente IM, Rodrigues JA, Barros AA. Analysis of cardamonin by square wave voltammetry. PHYTOCHEMICAL ANALYSIS : PCA 2012; 23:396-399. [PMID: 22025454 DOI: 10.1002/pca.1370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Several biochemical studies have already shown that cardamonin has health promoting properties, such is in agreement with typical characteristics of chalcones. Although being a very promising compound for the nutraceutical field there is a lack of studies concerning its electroanalytical properties. OBJECTIVE To develop an electroanalytical methodology for the quantification of cardamonin in cardamom. METHODOLOGY Cardamonin was analysed electrochemically by means of a hanging mercury drop electrode (HMDE) using square wave voltammetry (SWV). It was extracted from cardamom spice and quantified thereafter using the standard additions method to overcome matrix effects. RESULTS A limit of detection (LOD) of 0.15 mg/L and good linearity (r² = 0.9998) were obtained. Decoction using ethanol as the extraction solvent appears to be the simplest extraction technique. Spectrophotometric analysis (maximum absorbance peak was found in ethanol at 344 nm with a value of molar extinction coefficient of (2.8 ± 0.1) × 10⁴ L mol⁻¹ cm⁻¹) and mass spectrometry analysis by electrospray in the positive ion mode were also performed. CONCLUSION Cardamonin was detected voltammetrically. The LOD and limit of quantification (LOQ) of the proposed voltammetric methodology are adequate for trace analysis of this compound in several phytochemical matrices.
Collapse
Affiliation(s)
- Ana M Carvalho
- Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre No. 687, 4169-007 Porto, Portugal
| | | | | | | | | |
Collapse
|
39
|
Chow YL, Lee KH, Vidyadaran S, Lajis NH, Akhtar MN, Israf DA, Syahida A. Cardamonin from Alpinia rafflesiana inhibits inflammatory responses in IFN-γ/LPS-stimulated BV2 microglia via NF-κB signalling pathway. Int Immunopharmacol 2012; 12:657-65. [DOI: 10.1016/j.intimp.2012.01.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
|
40
|
Qin Y, Sun CY, Lu FR, Shu XR, Yang D, Chen L, She XM, Gregg NM, Guo T, Hu Y. Cardamonin exerts potent activity against multiple myeloma through blockade of NF-κB pathway in vitro. Leuk Res 2012; 36:514-20. [PMID: 22226224 DOI: 10.1016/j.leukres.2011.11.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 11/08/2011] [Accepted: 11/23/2011] [Indexed: 11/28/2022]
Abstract
NF-κB plays a major role in the pathology of multiple myeloma. Here, we intended to investigate the regulating effect of cardamonin on NF-κB in myeloma cells. We found for the first time that cardamonin suppressed viability and induced apoptosis of myeloma cells. Cardamonin activated caspase-3 and PARP and suppressed the expression of various anti-apoptotic proteins. We discovered that NF-κB was repressed by cardamonin through suppression of IKK expression and IκBα phosphorylation. Furthermore, the expression of NF-κB-regulated gene products ICAM-1, COX-2 and VEGF was down-regulated by cardamonin. These results suggest that cardamonin blocks NF-κB pathway in human multiple myeloma cells.
Collapse
Affiliation(s)
- You Qin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bajgai SP, Prachyawarakorn V, Mahidol C, Ruchirawat S, Kittakoop P. Hybrid flavan-chalcones, aromatase and lipoxygenase inhibitors, from Desmos cochinchinensis. PHYTOCHEMISTRY 2011; 72:2062-2067. [PMID: 21802698 DOI: 10.1016/j.phytochem.2011.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 05/18/2011] [Accepted: 07/05/2011] [Indexed: 05/31/2023]
Abstract
Hybrid flavan-chalcones, desmosflavans A (1) and B (2), together with three known compounds, cardamonin (3), pinocembrin (4) and chrysin (5), were isolated from leaves of Desmos cochinchinensis. Cardamonin (3) and chrysin (5) exhibited potent antioxidant activity with 15.0 and 12.2 ORAC units. Desmosflavans A (1) and B (2), pinocembrin (4), and chrysin (5) were found to be inhibitors of aromatase with respective IC50 values of 1.8, 3.3, 0.9, and 0.8 μM. Desmosflavan A (1) inhibited lipoxygenase with the IC50 value of 4.4 μM. Desmosflavan A (1) exhibited cytotoxic activity with IC50 values of 0.29-3.75 μg/mL, while desmosflavan B (2) showed IC50 values of 1.71-27.0 μg/mL.
Collapse
Affiliation(s)
- Santi Prasad Bajgai
- Chulabhorn Graduate Institute, and the Center for Environmental Health, Toxicology and Management of Chemicals (ETM), Chemical Biology Program, Vibhavadi-Rangsit Road, Bangkok 10210, Thailand.
| | | | | | | | | |
Collapse
|
42
|
Xiao X, Si X, Tong X, Li G. Preparation of flavonoids and diarylheptanoid from Alpinia katsumadai hayata by microwave-assisted extraction and high-speed counter-current chromatography. Sep Purif Technol 2011. [DOI: 10.1016/j.seppur.2011.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Cardamonin suppresses nitric oxide production via blocking the IFN-γ/STAT pathway in endotoxin-challenged peritoneal macrophages of ICR mice. Life Sci 2011; 89:337-42. [DOI: 10.1016/j.lfs.2011.06.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/30/2011] [Accepted: 06/23/2011] [Indexed: 02/05/2023]
|
44
|
Liao Q, Shi DH, Zheng W, Xu XJ, Yu YH. Antiproliferation of cardamonin is involved in mTOR on aortic smooth muscle cells in high fructose-induced insulin resistance rats. Eur J Pharmacol 2010; 641:179-86. [DOI: 10.1016/j.ejphar.2010.05.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 04/17/2010] [Accepted: 05/23/2010] [Indexed: 01/19/2023]
|
45
|
Li YY, Chou GX, Wang ZT. New Diarylheptanoids and Kavalactone fromAlpinia katsumadaiHayata. Helv Chim Acta 2010. [DOI: 10.1002/hlca.200900146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Fusi F, Cavalli M, Mulholland D, Crouch N, Coombes P, Dawson G, Bova S, Sgaragli G, Saponara S. Cardamonin is a bifunctional vasodilator that inhibits Ca(v)1.2 current and stimulates K(Ca)1.1 current in rat tail artery myocytes. J Pharmacol Exp Ther 2010; 332:531-40. [PMID: 19923439 DOI: 10.1124/jpet.109.161265] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An in-depth analysis of the effects of cardamonin, 2',4'-dihydroxy-6'-methoxychalcone, on rat tail artery preparations was performed by means of whole-cell patch-clamp recordings of Ca(v)1.2 Ca(2+) [I(Ca(L))] or Ba(2+) [I(Ba(L))] current as well as K(Ca)1.1 currents in single myocytes and by measuring contractile responses in endothelium-denuded isolated rings. At a holding potential (V(h)) of -80 mV, cardamonin decreased both I(Ba(L)) and I(Ca(L)) in a concentration-dependent manner with similar pIC(50) values. The maximum of the I(Ba(L))-voltage relationship was shifted by 10 mV in the hyperpolarizing direction, but threshold remained unaffected. Cardamonin modified both the activation and the inactivation kinetics of I(Ba(L)) and shifted the voltage dependence of both inactivation and activation curves to more negative potentials by 19 and 7 mV, respectively, thus markedly decreasing the Ba(2+) window current. Block of I(Ba(L)) was frequency-dependent, and rate of recovery from inactivation was slowed. Cardamonin increased K(Ca)1.1 currents in a concentration-dependent manner; this stimulation was iberiotoxin- and BAPTA [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid]-sensitive. On the contrary, iberiotoxin did not modify cardamonin-induced relaxation of rings precontracted either with phenylephrine or with (S)-(-)-methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)pyridine-5-carboxylate [(S)-(-)-Bay K 8644]. The overall effects of cardamonin were incompletely reversed by washout. In conclusion, cardamonin is a naturally occurring, bifunctional vasodilator that, by simultaneously inhibiting I(Ca(L)) and stimulating K(Ca)1.1 current, may represent a scaffold for the design of novel drugs of potential interest for treatment of systemic hypertension.
Collapse
Affiliation(s)
- Fabio Fusi
- Dipartimento di Neuroscienze, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
LI YY, CHOU GX, WANG ZT. Chemical Constituents in n-butanol Extract from the Seeds of Alpinia katsumadai. Chin J Nat Med 2010. [DOI: 10.3724/sp.j.1009.2009.00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Cho M, Ryu M, Jeong Y, Chung YH, Kim DE, Cho HS, Kang S, Han JS, Chang MY, Lee CK, Jin M, Kim HJ, Oh S. Cardamonin suppresses melanogenesis by inhibition of Wnt/beta-catenin signaling. Biochem Biophys Res Commun 2009; 390:500-5. [PMID: 19800318 DOI: 10.1016/j.bbrc.2009.09.124] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 09/27/2009] [Indexed: 11/17/2022]
Abstract
Wnt/beta-catenin signaling plays important roles in many developmental processes, including neural crest-derived melanocyte development. Here we show that cardamonin, a calchone from Aplinia katsumadai Hayata, inhibited pigmentation in melanocytes through suppression of Wnt/beta-catenin signaling pathway. Cardamonin significantly suppressed the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase, which are melanocyte differentiation-associated markers, in human normal melanocytes, thereby decreasing intracellular melanin production. In addition, cardamonin promoted the degradation of intracellular beta-catenin that was accumulated by Wnt3a-conditioned medium (Wnt3a CM) or bromoindirubin-3'-oxime (BIO), a glycogen synthase kinase-3beta (GSK-3beta) inhibitor, in HEK293 reporter cells and human normal melanocytes. Our findings indicate that cardamonin may be a potential whitening agent for use in cosmetics and in the medical treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Munju Cho
- PharmacoGenomics Research Center, Inje University, Busan 614-735, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Characterization of cardamonin metabolism by P450 in different species via HPLC-ESI-ion trap and UPLC-ESI-quadrupole mass spectrometry. Acta Pharmacol Sin 2009; 30:1462-70. [PMID: 19767764 DOI: 10.1038/aps.2009.127] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM To characterize the metabolism of cardamonin by the P450 enzymes in human and animal liver microsomes. METHODS Cardamonin was incubated with both human and animal liver microsomal incubation systems containing P450 reaction factors. High performance liquid chromatography coupled with ion trap mass spectrometry was used to identify the metabolites. Serial cardamonin dilutions were used to perform a kinetic study in human liver microsomes. Selective inhibitors of 7 of the major P450 isozymes were used to inhibit cardamonin hydroxylation to identify the isozymes involved in cardamonin metabolism. The cardamonin hydroxylation metabolic capacities of human and various other animals were investigated using the liver microsomal incubation system. RESULTS Two metabolites generated by the liver microsome system were detected and identified as hydroxylated cardamonin. The Km and Vmax values for cardamonin hydroxylation were calculated as 32 micromol/L and 35 pmol x min(-1) x mg(-1), respectively. Furafylline and clomethiazole significantly inhibited cardamonin hydroxylation. Guinea pigs showed the highest similarity to humans with respect to the metabolism of cardamonin. CONCLUSION CYP 1A2 and 2E1 were identified as the P450 isozymes involved in the metabolism of cardamonin in human liver microsomes. Furthermore, our research suggests that guinea pigs could be used in the advanced pharmacokinetic studies of cardamonin in vivo.
Collapse
|
50
|
Victório CP, Kuster RM, Moura RSD, Lage CLS. Vasodilator activity of extracts of field Alpinia purpurata (Vieill) K: Schum and A. zerumbet (Pers.) Burtt et Smith cultured in vitro. BRAZ J PHARM SCI 2009. [DOI: 10.1590/s1984-82502009000300017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nowadays, the high blood pressure is one of the main causes of death and cardiovascular diseases. Vasodilator drugs are frequently used to treat arterial hypertension. Experiments were undertaken to determine whether hydroalcoholic extracts obtained from leaves of field-grown Alpinia purpurata and A. zerumbet cultured in vitro under different plant growth regulators induce a vasodilator effect on Wistar rat mesenteric vascular bed pre-contracted with norepinephrine. Plant extracts were able to induce a long-lasting endothelium-dependent vasodilation. Efficiency on activity of A. purpurata reached 87% at concentration of 60 μg. The extract of A. zerumbet maintained in medium containing IAA, induced the relaxation (17.4%) at 90 μg, as compared to the control (MS0) that showed a better vasodilator effect (60%). These results are in agreement with the quantification of phenolic compounds in the extracts, which were 50% lower for those plants cultured in IAA. A. purpurata was assayed for the first time in relation to its vasodilator activity. This paper showed a strong probability of correlation between the pharmacological activities of A. purpurata with their content in phenolic compounds.
Collapse
|