1
|
Angiotensin-(1-7)-A Potential Remedy for AKI: Insights Derived from the COVID-19 Pandemic. J Clin Med 2021; 10:jcm10061200. [PMID: 33805760 PMCID: PMC8001321 DOI: 10.3390/jcm10061200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Membrane-bound angiotensin converting enzyme (ACE) 2 serves as a receptor for the Sars-CoV-2 spike protein, permitting viral attachment to target host cells. The COVID-19 pandemic brought into light ACE2, its principal product angiotensin (Ang) 1-7, and the G protein-coupled receptor for the heptapeptide (MasR), which together form a still under-recognized arm of the renin–angiotensin system (RAS). This axis counteracts vasoconstriction, inflammation and fibrosis, generated by the more familiar deleterious arm of RAS, including ACE, Ang II and the ang II type 1 receptor (AT1R). The COVID-19 disease is characterized by the depletion of ACE2 and Ang-(1-7), conceivably playing a central role in the devastating cytokine storm that characterizes this disorder. ACE2 repletion and the administration of Ang-(1-7) constitute the therapeutic options currently tested in the management of severe COVID-19 disease cases. Based on their beneficial effects, both ACE2 and Ang-(1-7) have also been suggested to slow the progression of experimental diabetic and hypertensive chronic kidney disease (CKD). Herein, we report a further step undertaken recently, utilizing this type of intervention in the management of evolving acute kidney injury (AKI), with the expectation of renal vasodilation and the attenuation of oxidative stress, inflammation, renal parenchymal damage and subsequent fibrosis. Most outcomes indicate that triggering the ACE2/Ang-(1-7)/MasR axis may be renoprotective in the setup of AKI. Yet, there is contradicting evidence that under certain conditions it may accelerate renal damage in CKD and AKI. The nature of these conflicting outcomes requires further elucidation.
Collapse
|
2
|
Sgouralis I, Kett MM, Ow CPC, Abdelkader A, Layton AT, Gardiner BS, Smith DW, Lankadeva YR, Evans RG. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies. Am J Physiol Regul Integr Comp Physiol 2016; 311:R532-44. [PMID: 27385734 DOI: 10.1152/ajpregu.00195.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/02/2016] [Indexed: 11/22/2022]
Abstract
Oxygen tension (Po2) of urine in the bladder could be used to monitor risk of acute kidney injury if it varies with medullary Po2 Therefore, we examined this relationship and characterized oxygen diffusion across walls of the ureter and bladder in anesthetized rabbits. A computational model was then developed to predict medullary Po2 from bladder urine Po2 Both intravenous infusion of [Phe(2),Ile(3),Orn(8)]-vasopressin and infusion of N(G)-nitro-l-arginine reduced urinary Po2 and medullary Po2 (8-17%), yet had opposite effects on renal blood flow and urine flow. Changes in bladder urine Po2 during these stimuli correlated strongly with changes in medullary Po2 (within-rabbit r(2) = 0.87-0.90). Differences in the Po2 of saline infused into the ureter close to the kidney could be detected in the bladder, although this was diminished at lesser ureteric flow. Diffusion of oxygen across the wall of the bladder was very slow, so it was not considered in the computational model. The model predicts Po2 in the pelvic ureter (presumed to reflect medullary Po2) from known values of bladder urine Po2, urine flow, and arterial Po2 Simulations suggest that, across a physiological range of urine flow in anesthetized rabbits (0.1-0.5 ml/min for a single kidney), a change in bladder urine Po2 explains 10-50% of the change in pelvic urine/medullary Po2 Thus, it is possible to infer changes in medullary Po2 from changes in urinary Po2, so urinary Po2 may have utility as a real-time biomarker of risk of acute kidney injury.
Collapse
Affiliation(s)
- Ioannis Sgouralis
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee
| | - Michelle M Kett
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Connie P C Ow
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Amany Abdelkader
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina
| | - Bruce S Gardiner
- School of Engineering and Information Technology, Murdoch University, Perth, Western Australia
| | - David W Smith
- School of Computer Science and Software Engineering, The University of Western Australia, Perth, Western Australia; and
| | - Yugeesh R Lankadeva
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia;
| |
Collapse
|
3
|
Rajapakse NW, Nanayakkara S, Kaye DM. Pathogenesis and treatment of the cardiorenal syndrome: Implications of L-arginine-nitric oxide pathway impairment. Pharmacol Ther 2015; 154:1-12. [PMID: 25989232 DOI: 10.1016/j.pharmthera.2015.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 01/11/2023]
Abstract
A highly complex interplay exists between the heart and kidney in the setting of both normal and abnormal physiology. In the context of heart failure, a pathophysiological condition termed the cardiorenal syndrome (CRS) exists whereby dysfunction in the heart or kidney can accelerate pathology in the other organ. The mechanisms that underpin CRS are complex, and include neuro-hormonal activation, oxidative stress and endothelial dysfunction. The endothelium plays a central role in the regulation of both cardiac and renal function, and as such impairments in endothelial function can lead to dysfunction of both these organs. In particular, reduced bioavailability of nitric oxide (NO) is a key pathophysiologic component of endothelial dysfunction. The synthesis of NO by the endothelium is critically dependent on the plasmalemmal transport of its substrate, L-arginine, via the cationic amino acid transporter-1 (CAT1). Impaired L-arginine-NO pathway activity has been demonstrated individually in heart and renal failure. Recent findings suggest abnormalities of the L-arginine-NO pathway also play a role in the pathogenesis of CRS and thus this pathway may represent a potential new target for the treatment of heart and renal failure.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Department of Physiology, Monash University, Melbourne, Australia.
| | | | - David M Kaye
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne Australia; Department of Cardiovascular Medicine, Alfred Hospital, Melbourne, Australia
| |
Collapse
|
4
|
Suzuki M. Physical exercise and renal function. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2015. [DOI: 10.7600/jpfsm.4.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Moss NG, Kopple TE, Arendshorst WJ. Renal vasoconstriction by vasopressin V1a receptors is modulated by nitric oxide, prostanoids, and superoxide but not the ADP ribosyl cyclase CD38. Am J Physiol Renal Physiol 2014; 306:F1143-54. [PMID: 24623148 DOI: 10.1152/ajprenal.00664.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal blood flow (RBF) responses to arginine vasopressin (AVP) were tested in anesthetized wild-type (WT) and CD38(-/-) mice that lack the major calcium-mobilizing second messenger cyclic ADP ribose. AVP (3-25 ng) injected intravenously produced dose-dependent decreases in RBF, reaching a maximum of 25 ± 2% below basal RBF in WT and 27 ± 2% in CD38(-/-) mice with 25 ng of AVP. Renal vascular resistance (RVR) increased 75 ± 6% and 78 ± 6% in WT and CD38(-/-) mice. Inhibition of nitric oxide (NO) synthase with nitro-L-arginine methyl ester (L-NAME) increased the maximum RVR response to AVP to 308 ± 76% in WT and 388 ± 81% in CD38(-/-) (P < 0.001 for both). Cyclooxygenase inhibition with indomethacin increased the maximum RVR response to 125 ± 15% in WT and 120 ± 14% in CD38(-/-) mice (P < 0.001, <0.05). Superoxide suppression with tempol inhibited the maximum RVR response to AVP by 38% in both strains (P < 0.005) but was ineffective when administered after L-NAME. The rate of RBF recovery (relaxation) after AVP was slowed by L-NAME and indomethacin (P < 0.001, <0.005) but was unchanged by tempol. All vascular responses to AVP were abolished by an AVP V1a receptor antagonist. A V2 receptor agonist or antagonist had no effect on AVP-induced renal vasoconstriction. Taken together, the results indicate that renal vasoconstriction by AVP in the mouse is strongly buffered by vasodilatory actions of NO and prostanoids. The vasoconstriction depends on V1a receptor activation without involvement of CD38 or concomitant vasodilatation by V2 receptors. The role of superoxide is to enhance the contractile response to AVP, most likely by reducing the availability of NO rather than directly stimulating intracellular contraction signaling pathways.
Collapse
Affiliation(s)
- Nicholas G Moss
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tayler E Kopple
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Rajapakse NW, Kuruppu S, Hanchapola I, Venardos K, Mattson DL, Smith AI, Kaye DM, Evans RG. Evidence that renal arginine transport is impaired in spontaneously hypertensive rats. Am J Physiol Renal Physiol 2012; 302:F1554-62. [DOI: 10.1152/ajprenal.00084.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low renal nitric oxide (NO) bioavailability contributes to the development and maintenance of chronic hypertension. We investigated whether impaired l-arginine transport contributes to low renal NO bioavailability in hypertension. Responses of renal medullary perfusion and NO concentration to renal arterial infusions of the l-arginine transport inhibitor l-lysine (10 μmol·kg−1·min−1; 30 min) and subsequent superimposition of l-arginine (100 μmol·kg−1·min−1; 30 min), the NO synthase inhibitor NG-nitro-l-arginine (2.4 mg/kg; iv bolus), and the NO donor sodium nitroprusside (0.24 μg·kg−1·min−1) were examined in Sprague-Dawley rats (SD) and spontaneously hypertensive rats (SHR). Renal medullary perfusion and NO concentration were measured by laser-Doppler flowmetry and polarographically, respectively, 5.5 mm below the kidney surface. Renal medullary NO concentration was less in SHR (53 ± 3 nM) compared with SD rats (108 ± 12 nM; P = 0.004). l-Lysine tended to reduce medullary perfusion (−15 ± 7%; P = 0.07) and reduced medullary NO concentration (−9 ± 3%; P = 0.03) while subsequent superimposition of l-arginine reversed these effects of l-lysine in SD rats. In SHR, l-lysine and subsequent superimposition of l-arginine did not significantly alter medullary perfusion or NO concentration. Collectively, these data suggest that renal l-arginine transport is impaired in SHR. Renal l-[3H]arginine transport was less in SHR compared with SD rats ( P = 0.01). Accordingly, we conclude that impaired arginine transport contributes to low renal NO bioavailability observed in the SHR kidney.
Collapse
Affiliation(s)
- N. W. Rajapakse
- Department of Physiology, Monash University,
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and
| | - S. Kuruppu
- Department of Biochemistry and Molecular Biology, Monash University, and
| | - I. Hanchapola
- Department of Biochemistry and Molecular Biology, Monash University, and
| | - K. Venardos
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and
| | - D. L. Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - A. I. Smith
- Department of Biochemistry and Molecular Biology, Monash University, and
| | - D. M. Kaye
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and
| | - R. G. Evans
- Department of Physiology, Monash University,
| |
Collapse
|
7
|
Abstract
Chronic heart failure and chronic renal failure are at epidemic proportions. These patients have significantly altered cardiac, renal, and all-cause outcomes. Much of the current research has focused on treating these individual organs in isolation. Although there are positive data on outcomes with neurohormonal modulation, they, however, remain underused. At present, data lacks for novel treatment options, while evidence continues to point at significantly worsened prognosis. Current diagnostic tools that detect acute changes in renal function or renal injury appear retrospective, which often hinder meaningful diagnostic and therapeutic decisions. This review is aimed at exploring the importance of accurate assessment of renal function for the heart failure patient by providing a synopsis on cardio-renal physiology and establishing the possibility of novel approaches in bridging the divide.
Collapse
|
8
|
Rajapakse NW, Mattson DL. Role of L-arginine uptake mechanisms in renal blood flow responses to angiotensin II in rats. Acta Physiol (Oxf) 2011; 203:391-400. [PMID: 21649863 DOI: 10.1111/j.1748-1716.2011.02330.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIM To examine whether reduced renal arginine transport increases the responsiveness of the renal circulation to angiotensin II in salt sensitivity, renal perfusion responses to angiotensin II were examined in the presence of L-arginine transport inhibitor, L-lysine and subsequent L-arginine in Sprague Dawley (SD) and Dahl salt-sensitive (Dahl S) rats. METHODS Laser Doppler probes and a transonic flow probe were used to measure regional renal perfusion and total renal perfusion respectively. Renal perfusion responses to intravenous (i.v.) angiotensin II were sequentially examined under control conditions and during i.v. infusion of L-lysine, L-arginine or nitric oxide synthase inhibitor, N(G)-nitro-L-arginine. RESULTS Angiotensin II (10 and 100 ng kg(-1) min(-1) , i.v.) reduced total renal (-10 ± 3 and -36 ± 5%) and cortical (-10 ± 2 and -28 ± 4%) but not medullary perfusion in SD rats. In these rats L-lysine enhanced the renal perfusion response (P = 0.003), whereas subsequent L-arginine reversed this effect (P = 0.04). Angiotensin II reduced total renal, cortical and medullary perfusion in Dahl S rats. In Dahl S rats fed high salt, L-lysine did not affect renal perfusion responses to angiotensin II, but subsequent L-arginine blunted the renal blood flow response (P = 0.01) and increased the medullary perfusion during angiotensin II infusion (P = 0.006). CONCLUSION Intact renal L-arginine transport attenuates the vasoconstrictor effects of circulating angiotensin II in the renal cortex in SD rats. L-arginine also plays an important role in protecting the renal medullary circulation from the ischemic effects of angiotensin II in Dahl S rats.
Collapse
Affiliation(s)
- N W Rajapakse
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA.
| | | |
Collapse
|
9
|
Abstract
Since its discovery in 1988 as an endothelial cell-derived peptide that exerts the most potent vasoconstriction of any known endogenous compound, endothelin (ET) has emerged as an important regulator of renal physiology and pathophysiology. This review focuses on how the ET system impacts renal function in health; it is apparent that ET regulates multiple aspects of kidney function. These include modulation of glomerular filtration rate and renal blood flow, control of renin release, and regulation of transport of sodium, water, protons, and bicarbonate. These effects are exerted through ET interactions with almost every cell type in the kidney, including mesangial cells, podocytes, endothelium, vascular smooth muscle, every section of the nephron, and renal nerves. In addition, while not the subject of the current review, ET can also indirectly affect renal function through modulation of extrarenal systems, including the vasculature, nervous system, adrenal gland, circulating hormones, and the heart. As will become apparent, these pleiotropic effects of ET are of fundamental physiologic importance in the control of renal function in health. In addition, to help put these effects into perspective, we will also discuss, albeit to a relatively limited extent, how alterations in the ET system can contribute to hypertension and kidney disease.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
10
|
Yang R, Smolders I, Dupont AG. Blood pressure and renal hemodynamic effects of angiotensin fragments. Hypertens Res 2011; 34:674-83. [PMID: 21412242 DOI: 10.1038/hr.2011.24] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Angiotensin (Ang) II, the main effector peptide of the renin-Ang system, increases arterial blood pressure through Ang II type 1A (AT(1a)) receptor-dependent arterial vasoconstriction and by decreasing renal salt and water excretion through extrarenal and intrarenal mechanisms. AT(2) receptors are assumed to oppose these responses mediated by AT(1) receptors, thereby attenuating the pressor effects of Ang II. Nevertheless, a possible role of AT(2) receptors in the regulation of renal hemodynamics and sodium homeostasis remains to be unclear. Several other Ang fragments such as Ang III, Ang IV, Ang-(1-7) and Ang A have also been shown to display biological activity. In this review, we focus on the effects of these Ang on blood pressure, renal hemodynamics and sodium water handling, and discuss the receptors involved in these actions.
Collapse
Affiliation(s)
- Rui Yang
- Department of Pharmacology, Brussels, Belgium
| | | | | |
Collapse
|
11
|
Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91:1-77. [PMID: 21248162 DOI: 10.1152/physrev.00060.2009] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
12
|
Evans RG, Head GA, Eppel GA, Burke SL, Rajapakse NW. Angiotensin II and neurohumoral control of the renal medullary circulation. Clin Exp Pharmacol Physiol 2010; 37:e58-69. [DOI: 10.1111/j.1440-1681.2009.05233.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Johannes T, Mik EG, Klingel K, Goedhart PT, Zanke C, Nohé B, Dieterich HJ, Unertl KE, Ince C. EFFECTS OF 1400W AND/OR NITROGLYCERIN ON RENAL OXYGENATION AND KIDNEY FUNCTION DURING ENDOTOXAEMIA IN ANAESTHETIZED RATS. Clin Exp Pharmacol Physiol 2009; 36:870-9. [DOI: 10.1111/j.1440-1681.2009.05204.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Liu KL. REGULATION OF RENAL MEDULLARY CIRCULATION BY THE RENIN-ANGIOTENSIN SYSTEM IN GENETICALLY HYPERTENSIVE RATS. Clin Exp Pharmacol Physiol 2009; 36:455-61. [DOI: 10.1111/j.1440-1681.2009.05153.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Aggarwal NT, Pfister SL, Campbell WB. Hypercholesterolemia Enhances 15-Lipoxygenase–Mediated Vasorelaxation and Acetylcholine-Induced Hypotension. Arterioscler Thromb Vasc Biol 2008; 28:2209-15. [DOI: 10.1161/atvbaha.108.177113] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nitin T. Aggarwal
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee
| | - Sandra L. Pfister
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee
| | - William B. Campbell
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
16
|
Edgley AJ, Tare M, Evans RG, Skordilis C, Parkington HC. In vivo regulation of endothelium-dependent vasodilation in the rat renal circulation and the effect of streptozotocin-induced diabetes. Am J Physiol Regul Integr Comp Physiol 2008; 295:R829-39. [DOI: 10.1152/ajpregu.00861.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We assessed the relative contributions of endothelium-derived relaxing factors to renal vasodilation in vivo and determined whether these are altered in established streptozotocin-induced diabetes. In nondiabetic rats, stimulation of the endothelium by locally administered ACh or bradykinin-induced transient renal hyperemia. Neither basal renal blood flow (RBF) nor renal hyperemic responses to ACh or bradykinin were altered by blockade of prostanoid production (indomethacin) or by administration of charybdotoxin (ChTx) plus apamin to block endothelium-derived hyperpolarizing factor (EDHF). In contrast, combined blockade of nitric oxide (NO) synthase, Nω-nitro-l-arginine methyl ester (l-NAME), and prostanoid production reduced basal RBF and the duration of the hyperemic responses to ACh and bradykinin and revealed a delayed ischemic response to ACh. Accordingly, l-NAME and indomethacin markedly reduced integrated (area under the curve) hyperemic responses to ACh and bradykinin. Peak increases in RBF in response to ACh and bradykinin were not reduced by l-NAME and indomethacin but were reduced by subsequent blockade of EDHF. l-NAME plus indomethacin and ChTx plus apamin altered RBF responses to endothelium stimulation in a qualitatively similar fashion in diabetic and nondiabetic rats. The integrated renal hyperemic responses to ACh and bradykinin were blunted in diabetes, due to a diminished contribution of the component abolished by l-NAME plus indomethacin. We conclude that NO dominates integrated hyperemic responses to ACh and bradykinin in the rat kidney in vivo. After prior inhibition of NO synthase, EDHF mediates transient renal vasodilation in vivo. Renal endothelium-dependent vasodilation is diminished in diabetes due to impaired NO function.
Collapse
|
17
|
Aggarwal NT, Gauthier KM, Campbell WB. 15-Lipoxygenase metabolites contribute to age-related reduction in acetylcholine-induced hypotension in rabbits. Am J Physiol Heart Circ Physiol 2008; 295:H89-96. [PMID: 18456739 DOI: 10.1152/ajpheart.00054.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA) metabolites from the 15-lipoxygenase-1 (15-LO-1) pathway, trihydroxyeicosatrienoic acids (THETAs) and hydroxy-epoxyeicosatrienoic acids (HEETAs), are endothelium-derived hyperpolarizing factors (EDHFs) and relax rabbit arteries. Rabbit vascular 15-LO-1 expression, THETA and HEETA synthesis, and nitric oxide and prostaglandin-independent relaxations to acetylcholine (ACh) and AA decreased with age (neonates to 16-wk-old). We characterized age-dependent ACh-hypotensive responses in vivo in 1-, 4-, 8-, and 16-wk-old rabbits and the contribution of THETAs and HEETAs to these responses. In anesthetized rabbits, blood pressure responses to ACh (4-4,000 ng/kg) were determined in the presence of vehicle or various inhibitors. ACh responses decreased with age (P > 0.001). In the absence or presence of N(omega)-nitro-l-arginine methyl ester (l-NAME) and indomethacin (Indo), maximum responses in 1 (-54.7 +/- 7.4 and -37.9 +/- 3.9%)- and 4 (-48.8 +/- 2.4 and -35.5 +/- 7.8%)-wk-old rabbits were higher than 8 (-30.0 +/- 2.8 and -26.6 +/- 4.4%)- and 16 (-36.7 +/- 3.5 and -27.3 +/- 10%)-wk-old rabbits. A lipoxygenase inhibitor, BW755C, reduced THETA and HEETA synthesis in mesenteric arteries. In the presence of Indo and N(omega)-nitro-l-arginine, ACh relaxations were reduced by BW755C to a greater extent in the mesenteric arteries from the younger rabbits. In 4-wk-old rabbits treated with l-NAME and Indo, the maximum ACh hypotension was reduced by the potassium channel inhibitors apamin and charybdotoxin to -6.9 +/- 0.9%, by apamin alone to -19.5 +/- 1.4%, and by BW755C to -18.8 +/- 3.5%. The present study indicates that the age-related decrease in ACh-induced hypotension is mediated by the decreased synthesis of the 15-LO-1 metabolites THETAs and HEETAs.
Collapse
Affiliation(s)
- Nitin T Aggarwal
- Dept. of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
18
|
Effect of Perindopril on Renal Medullary Blood Flow: Comparison With Other Antihypertensive Treatments. J Cardiovasc Pharmacol 2008; 51:280-5. [DOI: 10.1097/fjc.0b013e31816299a5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Aggarwal NT, Chawengsub Y, Gauthier KM, Viita H, Yla-Herttuala S, Campbell WB. Endothelial 15-lipoxygenase-1 overexpression increases acetylcholine-induced hypotension and vasorelaxation in rabbits. Hypertension 2008; 51:246-51. [PMID: 18180398 DOI: 10.1161/hypertensionaha.107.104125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arachidonic acid is metabolized by the 15-lipoxygenase-1 pathway to the vasodilatory eicosanoids hydroxy-epoxyeicosatrienoic acid and trihydroxyeicosatrienoic acid. We determined the in vitro and in vivo effects of the 15-lipoxygenase-1 metabolites in rabbits infected with adenovirus containing cDNA for human 15-lipoxygenase-1 (Ad-15-LO-1). Forty hours after intravenous adenoviral injection, 15-lipoxygenase-1 expression increased in liver and mesenteric arteries 10-fold and 3-fold, respectively. Expression of 15-LO-1 was limited to the endothelium of mesenteric arteries. Overexpression did not occur in tissues from rabbits infected with a beta-galactosidase containing adenovirus. Trihydroxyeicosatrienoic acid and hydroxy-epoxyeicosatrienoic acid synthesis per milligram of tissue increased by 2.1- and 1.5-fold, respectively, in mesenteric arteries from Ad-15-LO-1-infected rabbits compared with normal rabbits. Pretreatment with a 15-lipoxygenase inhibitor BW755C inhibited the synthesis. NO and prostaglandin-independent, maximal relaxations to acetylcholine were greater in mesenteric arteries from Ad-15-LO-1-infected rabbits (98.3+/-1.7%) compared with normal (60.93+/-10.5%) and beta-galactosidase containing adenovirus-infected rabbits (68.3+/-7.7%). Pretreatment with BW755C decreased these relaxations. Mean arterial pressure and heart rate did not differ in Ad-15-LO-1-infected rabbits compared with normal or beta-galactosidase containing adenovirus-infected rabbits. The hypotensive responses to acetylcholine in the presence and absence of inhibition of NO and prostaglandins were greater in Ad-15-LO-1-infected rabbits (-52+/-2% and -47+/-2%) compared with normal (-31+/-3% and -25+/-5%) or beta-galactosidase containing adenovirus-infected rabbits (-38+/-2% and -30+/-3%). Therefore, increased expression of 15-LO-1 increases acetylcholine relaxation in arteries and hypotensive responses in rabbits because of increased hydroxy-epoxyeicosatrienoic acid and trihydroxyeicosatrienoic acid synthesis.
Collapse
Affiliation(s)
- Nitin T Aggarwal
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
20
|
Leong CL, Anderson WP, O'Connor PM, Evans RG. Evidence that renal arterial-venous oxygen shunting contributes to dynamic regulation of renal oxygenation. Am J Physiol Renal Physiol 2007; 292:F1726-33. [PMID: 17327497 DOI: 10.1152/ajprenal.00436.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal blood flow (RBF) can be reduced in rats and rabbits by up to 40% without significant changes in renal tissue Po2. We determined whether this occurs because renal oxygen consumption changes with RBF or due to some other mechanism. The relationships between RBF and renal cortical and medullary tissue Po2 and renal oxygen metabolism were determined in the denervated kidneys of anesthetized rabbits under hypoxic, normoxic, and hyperoxic conditions. During artificial ventilation with 21% oxygen (normoxia), RBF increased 32 ± 8% during renal arterial infusion of acetylcholine and reduced 31 ± 5% during ANG II infusion. Neither infusion significantly altered arterial pressure, tissue Po2 in the renal cortex or medulla, nor renal oxygen consumption. However, fractional oxygen extraction fell as RBF increased and the ratio of oxygen consumption to sodium reabsorption increased during ANG II infusion. Ventilation with 10% oxygen (hypoxia) significantly reduced both cortical and medullary Po2 (60–70%), whereas ventilation with 50% and 100% oxygen (hyperoxia) increased cortical and medullary Po2 (by 62–298 and 30–56%, respectively). However, responses to altered RBF under hypoxic and hyperoxic conditions were similar to those under normoxic conditions. Thus renal tissue Po2 was relatively independent of RBF within a physiological range (±30%). This was not due to RBF-dependent changes in renal oxygen consumption. The observation that fractional extraction of oxygen fell with increased RBF, yet renal parenchymal Po2 remained unchanged, supports the hypothesis that preglomerular diffusional shunting of oxygen from arteries to veins increases with increasing RBF, and so contributes to dynamic regulation of intrarenal oxygenation.
Collapse
Affiliation(s)
- Chai-Ling Leong
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
21
|
Fitzgerald SM, Bashari H, Cox JA, Parkington HC, Evans RG. Contributions of endothelium-derived relaxing factors to control of hindlimb blood flow in the mouse in vivo. Am J Physiol Heart Circ Physiol 2007; 293:H1072-82. [PMID: 17468338 DOI: 10.1152/ajpheart.00072.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined the contributions of various endothelium-derived relaxing factors to control of basal vascular tone and endothelium-dependent vasodilation in the mouse hindlimb in vivo. Under anesthesia, catheters were placed in a carotid artery, jugular vein, and femoral artery (for local hindlimb circulation injections). Hindlimb blood flow (HBF) was measured by transit-time ultrasound flowmetry. N(omega)-nitro-L-arginine methyl ester (L-NAME, 50 mg/kg plus 10 mg x kg(-1) x h(-1)), to block nitric oxide (NO) production, altered basal hemodynamics, increasing mean arterial pressure (30 +/- 3%) and reducing HBF (-30 +/- 12%). Basal hemodynamics were not significantly altered by indomethacin (10 mg x kg(-1) x h(-1)), charybdotoxin (ChTx, 3 x 10(-8) mol/l), apamin (2.5 x 10(-7) mol/l), or ChTx plus apamin (to block endothelium-derived hyperpolarizing factor; EDHF). Hyperemic responses to local injection of acetylcholine (2.4 microg/kg) were reproducible in vehicle-treated mice and were not significantly attenuated by L-NAME alone, indomethacin alone, L-NAME plus indomethacin with or without co-infusion of diethlyamine NONOate to restore resting NO levels, ChTx alone, or apamin alone. Hyperemic responses evoked by acetylcholine were reduced by 29 +/- 11% after combined treatment with apamin plus charybdotoxin, and the remainder was virtually abolished by additional treatment with L-NAME but not indomethacin. None of the treatments altered the hyperemic response to sodium nitroprusside (5 microg/kg). We conclude that endothelium-dependent vasodilation in the mouse hindlimb in vivo is mediated by both NO and EDHF. EDHF can fully compensate for the loss of NO, but this cannot be explained by tonic inhibition of EDHF by NO. Control of basal vasodilator tone in the mouse hindlimb is dominated by NO.
Collapse
Affiliation(s)
- Sharyn M Fitzgerald
- Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
22
|
Boesen EI, Anderson WP, Evans RG, Kett MM. Endogenous endothelins and the response to electrical renal nerve stimulation in anaesthetized rabbits. Auton Neurosci 2007; 132:8-15. [PMID: 16978927 DOI: 10.1016/j.autneu.2006.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 07/25/2006] [Accepted: 08/07/2006] [Indexed: 11/29/2022]
Abstract
The influence of endogenous endothelins on the neural control of renal function is poorly understood. We therefore studied the effects of endothelin blockade (combined ET(A) and ET(B) receptor antagonism using TAK-044) on the acute and prolonged effects of renal nerve stimulation in rabbits, measuring renal blood flow, glomerular filtration rate (GFR), urine flow and sodium excretion. Brief (3 min) stimulation over 0.5-8 Hz produced frequency-dependent reductions in total renal blood flow, cortical blood flow and, less markedly, medullary blood flow. TAK-044 did not significantly alter basal total renal blood flow or cortical blood flow, or their responses to nerve stimulation, but significantly increased basal medullary blood flow (P<0.01) and increased the slope of the stimulation frequency-medullary blood flow relationship (P<0.05). Prolonged (20 min) stimulation at 0, 0.5 and 2 Hz produced frequency-dependent reductions in total renal blood flow, GFR, urine flow and sodium excretion, but not medullary blood flow. Pretreatment with TAK-044 did not significantly alter these responses. Thus, endogenous endothelins do not appear to either augment or lessen the effects of renal nerve activation on total renal blood flow, cortical blood flow, GFR or sodium excretion. The apparent ability of TAK-044 to enhance medullary blood flow responses to renal nerve stimulation may reflect an action of endogenous endothelins to blunt neurally mediated vasoconstriction in the medullary circulation. Alternatively, it may simply be secondary to the effects of endogenous endothelins on basal medullary blood flow.
Collapse
Affiliation(s)
- Erika I Boesen
- Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The balance of angiotensin II and nitric oxide determines the sensitivity of the tubuloglomerular feedback mechanism, renal vascular resistance and filtration rate. Angiotensin II induces nitric oxide release, but the role of angiotensin II receptors here is not fully understood. Further, the angiotensin II-nitric oxide interaction can be modulated by reactive oxygen species. This review focuses on the angiotensin II-nitric oxide interaction and their modulation by reactive oxygen species in the control of renal blood flow. RECENT FINDINGS Ideas about the role of angiotensin II type 1 and angiotensin II type 2 receptors are extended by the observation of angiotensin II type 1-mediated nitric oxide release with direct effects on vascular tone, tubuloglomerular feedback and sympathetic neurotransmission. Angiotensin receptors elicit disparate effects on intrarenal circulation. Angiotensin II-nitric oxide interactions are modulated by reactive oxygen species, as shown by angiotensin II type 1-mediated activation of superoxide and depression of antioxidant enzymes leading to reduced nitric oxide concentration - mechanisms that may be also important in angiotensin II-dependent hypertension. SUMMARY Recent studies show that angiotensin II stimulates the nitric oxide system via angiotensin II type 1 and angiotensin II type 2 receptors, whereas receptors exert different effects on renal and medullary flow. The interaction via angiotensin II type 1 is modulated by reactive oxygen species.
Collapse
Affiliation(s)
- Andreas Patzak
- Johannes-Müller-Institute of Physiology, Humboldt-University of Berlin, University Hospital Charité, Berlin, Germany
| | | |
Collapse
|
24
|
Rajapakse NW, Eppel GA, Widdop RE, Evans RG. ANG II type 2 receptors and neural control of intrarenal blood flow. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1669-76. [PMID: 16857892 DOI: 10.1152/ajpregu.00183.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that activation of angiotensin type 2 (AT(2)) receptors, by both exogenous and endogenous ANG II, modulates neurally mediated vasoconstriction in the renal cortical and medullary circulations. Under control conditions in pentobarbital-anesthetized rabbits, electrical stimulation of the renal nerves (RNS; 0.5-8 Hz) reduced renal blood flow (RBF; -88 +/- 3% at 8 Hz) and cortical perfusion (CBF; -92 +/- 2% at 8 Hz) more than medullary perfusion (MBF; -67 +/- 6% at 8 Hz). Renal arterial infusion of ANG II, at a dose titrated to reduce RBF by approximately 40-50% (5-50 ng.kg(-1).min(-1)) blunted responses of MBF to RNS, without significantly affecting responses of RBF or CBF. Subsequent administration of PD123319 (1 mg/kg plus 1 mg.kg(-1).h(-1)) during continued renal arterial infusion of ANG II did not significantly affect responses of RBF or CBF to RNS but enhanced responses of MBF, so that they were similar to those observed under control conditions. In contrast, administration of PD123319 alone blunted responses of CBF and MBF to RNS. Subsequent renal arterial infusion of ANG II in PD123319-pretreated rabbits restored CBF responses to RNS back to control levels. In contrast, ANG II infusion in PD123319-pretreated rabbits did not alter MBF responses to RNS. These data indicate that exogenous ANG II can blunt neurally mediated vasoconstriction in the medullary circulation through activation of AT(2) receptors. However, AT(2)-receptor activation by endogenous ANG II appears to enhance neurally mediated vasoconstriction in both the cortical and medullary circulations.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Department of Physiology, Monash University, Melbourne 3800, Victoria, Australia
| | | | | | | |
Collapse
|
25
|
O'Connor PM, Kett MM, Anderson WP, Evans RG. Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow. Am J Physiol Renal Physiol 2005; 290:F688-94. [PMID: 16219913 DOI: 10.1152/ajprenal.00275.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the current study was to determine whether renal medullary oxygenation is independent of the level of cortical blood flow by testing responses to stimuli that selectively reduce blood flow in either the cortex or medulla. In anesthetized rabbits, renal arterial infusion of [Phe(2),Ile(3),Orn(8)]-vasopressin selectively reduced medullary perfusion and Po(2) (-54 +/- 24 and -50 +/- 10%, respectively) but did not significantly affect cortical perfusion or tissue oxygenation. In contrast, stimulation of the renal nerves resulted in renal cortical ischemia with reductions in total renal blood flow (-76 +/- 3% at 4 Hz), cortical perfusion (-57 +/- 17%), and cortical Po(2) (-44 +/- 12%). Medullary tissue Po(2) was reduced by -70 +/- 5% at 4 Hz, despite medullary perfusion being unaffected and distal tubular sodium reabsorption being reduced (by -83.3 +/- 1.2% from baseline). In anesthetized rats, in which renal perfusion pressure was maintained with an aortic constrictor, intravenous infusion of ANG II (0.5-5 microg. kg(-1).min(-1)) dose dependently reduced cortical perfusion (up to -65 +/- 3%; P < 0.001) and cortical Po(2) (up to -57 +/- 4%; P < 0.05). However, medullary perfusion was only significantly reduced at the highest dose (5 microg. kg(-1).min(-1); by 29 +/- 6%). Medullary perfusion was not reduced by 1 microg. kg(-1).min(-1) ANG II, but medullary Po(2) was significantly reduced (-12 +/- 4%). Thus, although cortical and medullary blood flow may be independently regulated, medullary oxygenation may be compromised during moderate to severe cortical ischemia even when medullary blood flow is maintained.
Collapse
Affiliation(s)
- Paul M O'Connor
- Dept. of Physiology, Medical College of Wisconsin, 8071 Watertown Plank Road, Milwaukee, WI 53266, USA.
| | | | | | | |
Collapse
|
26
|
Rajapakse NW, Sampson AK, Eppel GA, Evans RG. Angiotensin II and nitric oxide in neural control of intrarenal blood flow. Am J Physiol Regul Integr Comp Physiol 2005; 289:R745-54. [PMID: 15890788 DOI: 10.1152/ajpregu.00477.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the roles of the renin-angiotensin system and the significance of interactions between angiotensin II and nitric oxide, in responses of regional kidney perfusion to electrical renal nerve stimulation (RNS) in pentobarbital sodium-anesthetized rabbits. Under control conditions, RNS (0.5–8 Hz) reduced total renal blood flow (RBF; −89 ± 3% at 8 Hz) and cortical perfusion (CBF; −90 ± 2% at 8 Hz) more than medullary perfusion (MBF; −55 ± 5% at 8 Hz). Angiotensin II type 1 (AT1)-receptor antagonism (candesartan) blunted RNS-induced reductions in RBF ( P = 0.03), CBF ( P = 0.007), and MBF ( P = 0.04), particularly at 4 and 8 Hz. Nitric oxide synthase inhibition with NG-nitro-l-arginine (l-NNA) enhanced RBF ( P = 0.003), CBF ( P = 0.001), and MBF ( P = 0.03) responses to RNS, particularly at frequencies of 2 Hz and less. After candesartan pretreatment, l-NNA significantly enhanced RNS-induced reductions in RBF ( P = 0.04) and CBF ( P = 0.007) but not MBF ( P = 0.66). Renal arterial infusion of angiotensin II (5 ng·kg−1·min−1) selectively enhanced responses of MBF to RNS in l-NNA-pretreated but not in vehicle-pretreated rabbits. In contrast, greater doses of angiotensin II (5–15 ng·kg−1·min−1) blunted responses of MBF to RNS in rabbits with intact nitric oxide synthase. These results suggest that endogenous angiotensin II enhances, whereas nitric oxide blunts, neurally mediated vasoconstriction in the renal cortical and medullary circulations. In the renal medulla, but not the cortex, angiotensin II also appears to be able to blunt neurally mediated vasoconstriction.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Dept. of Physiology, PO Box 13F, Monash University, Melbourne, Victoria 3800, Australia
| | | | | | | |
Collapse
|
27
|
Duke LM, Widdop RE, Kett MM, Evans RG. AT(2) receptors mediate tonic renal medullary vasoconstriction in renovascular hypertension. Br J Pharmacol 2005; 144:486-92. [PMID: 15678096 PMCID: PMC1576025 DOI: 10.1038/sj.bjp.0706036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1. Renal medullary blood flow is relatively insensitive to angiotensin II (Ang II)-induced vasoconstriction, due partly to AT(1)-mediated release of nitric oxide and/or prostaglandins. AT(2)-receptor activation appears to blunt AT(1)-mediated vasodilatation within the medullary circulation. This could affect long-term efficacy of antihypertensive pharmacotherapies targeting the renin/angiotensin system, particularly in Ang II-dependent forms of hypertension. 2. We tested the effects of AT(1)- and AT(2)-receptor blockade on basal cortical and medullary laser Doppler flux (CLDF and MLDF), and on responses to renal arterial infusion of Ang II, in rats with 2 kidney, 1 clip (2K1C) hypertension and sham-operated controls. Studies were carried out in thiobutabarbital (175 mg kg(-1), i.p.) anaesthetised rats, 4 weeks after clipping, or sham surgery (n=6 in each of eight groups). 3. Candesartan (10 microg kg(-1) h(-1), intravenous (i.v.)) reduced mean arterial pressure ( approximately 17%) and increased CLDF ( approximately 24%), similarly in both sham and 2K1C rats, but did not significantly affect MLDF. PD123319 (1 mg kg(-1) h(-1), i.v.) increased basal MLDF (19%) in 2K1C but not sham rats, without significantly affecting other variables. 4. In sham rats, renal arterial infusion of Ang II (1-100 ng kg(-1) min(-1)) dose dependently decreased CLDF (up to 44%), but did not significantly affect MLDF. These effects were markedly blunted in 2K1C rats. After PD123319, Ang II dose dependently increased MLDF (up to 38%) in sham but not 2K1C rats. Candesartan abolished all effects of Ang II, including those seen after PD123319. 5. Our data indicate that AT(1) receptors mediate medullary vasodilatation, which is opposed by AT(2)-receptor activation. In 2K1C hypertension, AT(2)-receptor activation tonically constricts the medullary circulation.
Collapse
Affiliation(s)
- Lisa M Duke
- Department of Physiology, Monash University, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Physiology, Monash University, Victoria 3800, Australia
| | - Michelle M Kett
- Department of Physiology, Monash University, Victoria 3800, Australia
| | - Roger G Evans
- Department of Pharmacology, PO Box 13F, Monash University, Victoria 3800, Australia
- Author for correspondence:
| |
Collapse
|
28
|
Evans RG, Eppel GA, Anderson WP, Denton KM. Mechanisms underlying the differential control of blood flow in the renal medulla and cortex. J Hypertens 2005; 22:1439-51. [PMID: 15257161 DOI: 10.1097/01.hjh.0000133744.85490.9d] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
There is much evidence that the medullary circulation plays a key role in regulating renal salt and water handling and, accordingly, the long-term level of arterial pressure. It has also recently become clear that various regulatory factors can affect medullary blood flow (MBF) differently from cortical blood flow (CBF). It appears likely that the influence of hormonal and neural factors on the control of arterial pressure is mediated partly through their impact on MBF. In this review, we focus on the mechanisms underlying the differential control of MBF and CBF, particularly the relative insensitivity of MBF to vasoconstrictors such as angiotensin II, endothelin-1 and the sympathetic nerves. The vascular architecture of the kidney appears to be arranged in a way that protects the renal medulla from ischaemic insults, with juxtamedullary arterioles, the source of MBF, having larger calibre than their counterparts in other kidney regions. Indeed, recent studies using vascular casting methodology suggest that juxtamedullary glomerular arterioles are not the chief regulators of MBF, which is consistent with the idea that outer medullary descending vasa recta play a key role in MBF control. Release of vasoactive paracrine factors such as nitric oxide and various eicosanoids from the vascular endothelium, and probably also from the tubular epithelium, appear to differentially modulate responses of MBF and CBF to hormonal and neural factors. The prevailing intrarenal hormonal milieu and existing haemodynamic conditions also appear to strongly modulate these responses, indicating that multiple control systems interact to regulate regional kidney blood flow at an integrative level.
Collapse
Affiliation(s)
- Roger G Evans
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
29
|
Denton KM, Shweta A, Finkelstein L, Flower RL, Evans RG. Effect of endothelin-1 on regional kidney blood flow and renal arteriole calibre in rabbits. Clin Exp Pharmacol Physiol 2005; 31:494-501. [PMID: 15298540 DOI: 10.1111/j.1440-1681.2004.04036.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. Medullary blood flow (MBF) is important in the long-term control of arterial pressure. However, it is unclear which vascular elements regulate MBF. 2. Exogenous endothelin (ET)-1 decreases cortical more than medullary blood flow. We hypothesized that ET-1 would therefore constrict afferent (AA) and efferent arterioles (EA) of juxtamedullary glomeruli less than those of cortical glomeruli. 3. Mean arterial pressure, renal blood flow and cortical (CBF) and medullary (MBF) blood flow, via laser-Doppler flowmetry, were measured before and after intrarenal ET-1 (2 ng/kg per min; n = 6) or vehicle (n = 6) in anaesthetized rabbits. Kidneys were perfusion fixed, vascular casts formed, lumen diameters measured via scanning electron microscopy and relative resistance calculated. 4. Mean arterial pressure was not significantly affected by ET-1 infusion. Cortical glomerular arteriole lumen diameters were significantly reduced in the ET-1-infused group (AA approximately 30%, EA approximately 18%; PA < 0.01), compatible with the decrease in CBF (42 +/- 3%; PGT < 0.01). Juxtamedullary arteriole lumen diameters were also significantly reduced in the ET-1-infused group (AA approximately 34%, EA approximately 21%; PA < 0.01); however, MBF did not decrease. 5. In conclusion, our data suggest that juxtamedullary arterioles are not of primary importance in the regulation of MBF because, despite reductions in juxtamedullary arteriole diameters in response to ET-1, MBF was not decreased.
Collapse
Affiliation(s)
- Kate M Denton
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
30
|
Abstract
There is strong evidence that the renal medullary circulation plays a key role in long-term blood pressure control. This, and evidence implicating sympathetic overactivity in development of hypertension, provides the need for understanding how sympathetic nerves affect medullary blood flow (MBF). The precise vascular elements that regulate MBF under physiological conditions are unknown, but likely include the outer medullary portions of descending vasa recta and afferent and efferent arterioles of juxtamedullary glomeruli, all of which receive dense sympathetic innervation. Many early studies of the impact of sympathetic drive on MBF were flawed, both because of the methods used for measuring MBF and because single and often intense neural stimuli were tested. Recent studies have established that MBF is less sensitive than cortical blood flow (CBF) to electrical renal nerve stimulation, particularly at low stimulus intensities. Indeed, MBF appears to be refractory to increases in endogenous renal sympathetic nerve activity within the physiological range in all but the most extreme cases. Multiple mechanisms appear to operate in concert to blunt the impact of sympathetic drive on MBF, including counter-regulatory roles of nitric oxide and perhaps even paradoxical angiotensin II-induced vasodilatation. Regional differences in the geometry of glomerular arterioles are also likely to predispose MBF to be less sensitive than CBF to any given vasoconstrictor stimulus. Failure of these mechanisms would promote reductions in MBF in response to physiological activation of the renal nerves, which could, in turn, lead to salt and water retention and hypertension.
Collapse
Affiliation(s)
- Gabriela A Eppel
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
31
|
Bergström G, Evans RG. Mechanisms underlying the antihypertensive functions of the renal medulla. ACTA ACUST UNITED AC 2004; 181:475-86. [PMID: 15283761 DOI: 10.1111/j.1365-201x.2004.01321.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is good evidence that the renal medulla plays a pivotal role in long-term regulation of blood pressure. 'Renal medullary' blood pressure regulating systems have been postulated to involve both exocrine (pressure natriuresis/diuresis) and endocrine [renal medullary depressor hormone (RMDH)] functions. However, recent studies indicate that pressure diuresis/natriuresis dominates the antihypertensive renal response to increased renal perfusion pressure, suggesting little physiological role for a putative RMDH in compensatory responses to acutely increased blood pressure. The medullary circulation appears to play a key role in mediating pressure diuresis, although the precise mechanisms involved remain controversial. Counter-regulatory vasodilator mechanisms (e.g. nitric oxide), at least partly mediated through cross-talk between the vasculature and the tubular epithelium, protect the medullary circulation from the vasoconstrictor effects of hormonal factors such as angiotensin II. These mechanisms also appear to contribute to compensatory responses to increased salt intake in salt-resistant individuals. Failure of these mechanisms predisposes the organism towards the development of hypertension, appears to underlie the development of some forms of experimental hypertension, and may even contribute to the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- G Bergström
- Department of Clinical Physiology, Cardiovascular Institute, Göteborg University, Göteborg, Sweden
| | | |
Collapse
|
32
|
Rajapakse NW, Flower RL, Eppel GA, Denton KM, Malpas SC, Evans RG. Prostaglandins and nitric oxide in regional kidney blood flow responses to renal nerve stimulation. Pflugers Arch 2004; 449:143-9. [PMID: 15290303 DOI: 10.1007/s00424-004-1320-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 07/05/2004] [Indexed: 11/25/2022]
Abstract
We examined the roles of cyclooxygenase products and of interactions between the cyclooxygenase and nitric oxide systems in the mechanisms underlying the relative insensitivity of medullary perfusion to renal nerve stimulation (RNS) in anaesthetized rabbits. To this end we examined the effects of ibuprofen and N(G)-nitro-L: -arginine (L-NNA), both alone and in combination, on the responses of regional kidney perfusion to RNS. Under control conditions, RNS produced frequency-dependent reductions in total renal blood flow (RBF; -82+/-3% at 6 Hz), cortical laser-Doppler flux (CLDF; -84+/-4% at 6 Hz) and, to a lesser extent, medullary laser-Doppler flux (MLDF; -46+/-7% at 6 Hz). Ibuprofen did not affect these responses significantly, suggesting that cyclooxygenase products have little net role in modulating renal vascular responses to RNS. L-NNA enhanced RBF (P=0.002), CLDF (P=0.03) and MLDF (P=0.03) responses to RNS. As we have shown previously, this effect of L-NNA was particularly prominent for MLDF at RNS frequencies < or = 1.5 Hz. Subsequent administration of ibuprofen, in L-NNA-pretreated rabbits, did not affect responses to RNS significantly. We conclude that counter-regulatory actions of NO, but not of prostaglandins, partly underlie the relative insensitivity of medullary perfusion to renal nerve activation.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Department of Physiology, Monash University, PO Box 13F, VIC 3800, Clayton, Australia
| | | | | | | | | | | |
Collapse
|
33
|
Rajapakse NW, Roman RJ, Falck JR, Oliver JJ, Evans RG. Modulation of V1-receptor-mediated renal vasoconstriction by epoxyeicosatrienoic acids. Am J Physiol Regul Integr Comp Physiol 2004; 287:R181-7. [PMID: 14988086 DOI: 10.1152/ajpregu.00555.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effects of renal arterial infusion of a selective cytochrome P-450 epoxygenase inhibitor, N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH; 2 mg/kg plus 1.5 mg·kg−1·h−1), on renal hemodynamic responses to infusions of [Phe2,Ile3,Orn8]vasopressin and ANG II into the renal artery of anesthetized rabbits. MS-PPOH did not affect basal renal blood flow (RBF) or cortical or medullary blood flow measured by laser-Doppler flowmetry (CLDF/MLDF). In vehicle-treated rabbits, [Phe2,Ile3,Orn8]vasopressin (30 ng·kg−1·min−1) reduced MLDF by 62 ± 7% but CLDF and RBF were unaltered. In MS-PPOH-treated rabbits, RBF and CLDF fell by 51 ± 8 and 59 ± 13%, respectively, when [Phe2,Ile3,Orn8]vasopressin was infused. MS-PPOH had no significant effects on the MLDF response to [Phe2,Ile3,Orn8]vasopressin (43 ± 9% reduction). ANG II (20 ng·kg−1·min−1) reduced RBF by 45 ± 10% and CLDF by 41 ± 14%, but MLDF was not significantly altered. MS-PPOH did not affect blood flow responses to ANG II. Formation of epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DiHETEs) was 49% lower in homogenates prepared from the renal cortex of MS-PPOH-treated rabbits than from vehicle-treated rabbits. MS-PPOH had no effect on the renal formation of 20-hydroxyeicosatetraenoic acid (20-HETE). Incubation of renal cortical homogenates from untreated rabbits with [Phe2,Ile3,Orn8]vasopressin (0.2–20 ng/ml) did not affect formation of EETs, DiHETEs, or 20-HETE. These results do not support a role for de novo EET synthesis in modulating renal hemodynamic responses to ANG II. However, EETs appear to selectively oppose V1-receptor-mediated vasoconstriction in the renal cortex but not in the medullary circulation and contribute to the relative insensitivity of medullary blood flow to V1-receptor activation.
Collapse
Affiliation(s)
- Niwanthi W Rajapakse
- Dept. of Physiology, P.O. Box 13F, Monash Univ., Melbourne, Victoria 3800, Australia.
| | | | | | | | | |
Collapse
|
34
|
Eppel GA, Lee LL, Evans RG. α-Adrenoceptor subtypes mediating regional kidney blood flow responses to renal nerve stimulation. Auton Neurosci 2004; 112:15-24. [PMID: 15233926 DOI: 10.1016/j.autneu.2004.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 02/13/2004] [Accepted: 03/01/2004] [Indexed: 11/25/2022]
Abstract
The mechanisms underlying the relative insensitivity of the renal medullary circulation to renal sympathetic nerve stimulation (RNS) remain unknown. Therefore, we tested the effects of systemic alpha(1)- and alpha(2)-adrenoceptor blockade on responses to electrical RNS in pentobarbitone anaesthetized rabbits. Renal blood flow (RBF), cortical laser Doppler flux (CLDF), and to a lesser extent medullary LDF (MLDF) were reduced by RNS in a frequency-dependent manner. Prazosin decreased responses of RBF and CLDF, but not MLDF, to RNS. For example, during the control period 4 Hz stimulation reduced RBF, CLDF and MLDF by 85+/-3%, 89+/-2%, and 20+/-12%, respectively, but after prazosin, corresponding responses were 39+/-3%, 42+/-5% and 28+/-7%, respectively. Prazosin markedly blunted pressor and renal vasoconstrictor responses to intravenous phenylephrine, without altering pressor responses to intravenous xylazine. Rauwolscine enhanced renal vasoconstrictor responses to RNS, although this was statistically significant for RBF and CLDF but not MLDF. For example, during the control period 2 Hz stimulation reduced RBF, CLDF and MLDF by 63+/-7%, 58+/-7%, and 29+/-17%, respectively, and after rauwolscine, corresponding responses were 83+/-4%, 87+/-1%, and 53+/-12%, respectively. Rauwolscine markedly blunted renal vasoconstrictor responses to renal arterial guanabenz, but not phenylephrine. These data suggest that alpha(1)-adrenoceptors contribute to RNS-induced vasoconstriction in the renal cortex, but contribute less in vascular elements controlling medullary perfusion. Activation of alpha(2)-adrenoceptors appears to blunt RNS-induced renal vasoconstriction, but this mechanism does not underlie the relative insensitivity of medullary perfusion to RNS.
Collapse
Affiliation(s)
- Gabriela A Eppel
- Department of Physiology, Monash University, P.O. Box 13F, Melbourne, Victoria 3800, Australia.
| | | | | |
Collapse
|
35
|
Oliver JJ, Eppel GA, Rajapakse NW, Evans RG. Lipoxygenase and cyclo-oxygenase products in the control of regional kidney blood flow in rabbits. Clin Exp Pharmacol Physiol 2003; 30:812-9. [PMID: 14678242 DOI: 10.1046/j.1440-1681.2003.03916.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The aim of the present study was to examine the roles of cyclo-oxygenase (COX)- and lipoxygenase (LOX)-dependent arachidonate signalling cascades in the control of regional kidney blood flow. 2. In pentobarbitone-anaesthetized rabbits treated with NG-nitro-l-arginine and glyceryl trinitrate to 'clamp' nitric oxide, we determined the effects of ibuprofen (a COX inhibitor) and esculetin (a LOX inhibitor) on resting systemic and renal haemodynamics and responses to renal arterial infusions of vasoconstrictors. 3. Ibuprofen increased mean arterial pressure (14 +/- 5%) and reduced medullary laser Doppler flux (MLDF; 26 +/- 6%) when administered with esculetin. A similar pattern of responses was observed when ibuprofen was given alone, although the reduction in MLDF was not statistically significant. Esculetin tended to increase renal blood flow (RBF; 16 +/- 7%) and MLDF (28 +/- 13%) when given alone, but not when combined with ibuprofen. 4. After vehicle, renal arterial infusions of noradrenaline, angiotensin II and endothelin-1 reduced RBF and cortical laser Doppler flux (CLDF), but not MLDF. In contrast, renal arterial [Phe2,Ile3,Orn8]-vasopressin reduced MLDF but not RBF or CLDF. Ibuprofen alone did not significantly affect these responses. Esculetin, when given alone, but not when combined with ibuprofen, enhanced noradrenaline-induced renal vasoconstriction. In contrast, esculetin did not significantly affect responses to [Phe2,Ile3,Orn8]-vasopressin, angiotensin II or endothelin-1. 5. We conclude that COX products contribute to the maintenance of arterial pressure and renal medullary perfusion under 'nitric oxide clamp' conditions, but not to renal haemodynamic responses to the vasoconstrictors we tested. Lipoxygenase products may blunt noradrenaline-induced vasoconstriction, but our observations may, instead, reflect LOX-independent effects of esculetin.
Collapse
Affiliation(s)
- Jeremy J Oliver
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
36
|
Duke LM, Eppel GA, Widdop RE, Evans RG. Disparate roles of AT2 receptors in the renal cortical and medullary circulations of anesthetized rabbits. Hypertension 2003; 42:200-5. [PMID: 12847115 DOI: 10.1161/01.hyp.0000083341.64034.00] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The contributions of angiotensin II type 1 (AT1) and type 2 (AT2) receptors to the control of regional kidney blood flow were determined in pentobarbital-anesthetized rabbits. Intravenous candesartan (AT1 antagonist; 10 microg/kg plus 10 microg x kg(-1) x h(-1)) reduced mean arterial pressure (12%) and increased total renal blood flow (29%) and cortical laser-Doppler flux (18%) but not medullary laser-Doppler flux. Neither intravenous PD123319 (AT2 antagonist; 1 mg/kg plus 1 mg x kg(-1) x h(-1)) nor saline vehicle significantly affected these variables, and the responses to candesartan plus PD123319 were indistinguishable from those of candesartan alone. In vehicle-treated rabbits, renal-arterial infusions of angiotensin II (1 to 25 ng x kg(-1) x min(-1)) and angiotensin III (5 to 125 ng x kg(-1) x min(-1)) dose-dependently reduced renal blood flow (up to 51%) and cortical laser-Doppler flux (up to 50%) but did not significantly affect medullary laser-Doppler flux or arterial pressure. Angiotensin(1-7) (20 to 500 ng x kg(-1) x min(-1)) had similar effects but of lesser magnitude. CGP42112A (20 to 500 ng x kg(-1) x min(-1)) did not significantly affect these variables. After PD123319 administration, angiotensin II and angiotensin III dose-dependently increased medullary laser-Doppler flux (up to 84%), and reductions in renal blood flow in response to angiotensin II were enhanced. Candesartan abolished renal hemodynamic responses to the angiotensin peptides, even when given in combination with PD123319. We conclude that AT2 receptor activation counteracts AT1-mediated vasoconstriction in the renal cortex but also counteracts AT1-mediated vasodilatation in vascular elements controlling medullary perfusion. These mechanisms might have an important effect on the control of medullary perfusion under conditions of activation of the renin-angiotensin system.
Collapse
Affiliation(s)
- Lisa M Duke
- Department of Physiology, PO Box 13F, Monash University, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
37
|
Sarkis A, Liu KL, Lo M, Benzoni D. Angiotensin II and renal medullary blood flow in Lyon rats. Am J Physiol Renal Physiol 2003; 284:F365-72. [PMID: 12529274 DOI: 10.1152/ajprenal.00248.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study evaluated the acute effects of ANG II (5-480 ng/kg iv) and phenylephrine (PE; 0.2-146 microg/kg iv) on total renal (RBF) and medullary blood flow (MBF) in anesthetized Lyon hypertensive (LH) and low-blood-pressure (LL) rats. ANG II and PE induced dose-dependent decreases in both RBF and MBF, which were greater in LH than in LL rats. Interestingly, after ANG II, but not after PE, the initial medullary vasoconstriction was followed by a long-lasting and dose-dependent vasodilation that was significantly blunted in LH compared with LL rats. The mechanisms of the MBF effects of ANG II were studied in LL rats only. Blockade of AT(1) receptors with losartan (10 mg/kg) abolished all the effects of ANG II, whereas AT(2) receptor blockade with PD-123319 (50 microg x kg(-1) x min(-1) iv) did not change these effects. Indomethacin (5 mg/kg) decreased by approximately 90% the medullary vasodilation induced by the lowest doses of ANG II (from 15 ng/kg). In contrast, N(G)-nitro-l-arginine methyl ester (10 mg/kg and 0.1 mg. kg(-1). min(-1) iv) and the bradykinin B(2)-receptor antagonist HOE-140 (20 microg/kg and 10 microg x kg(-1) x min(-1) iv) markedly lowered the medullary vasodilation at the highest doses of ANG II only. In conclusion, this study shows that LH rats exhibit an altered MBF response to ANG II compared with LL rats and indicates that the AT(1) receptor-mediated medullary vasodilator response to low doses of ANG II is mainly due to the release of PGs, whereas the dilator response to high doses of ANG II has additional nitric oxide- and kinin-dependent components.
Collapse
Affiliation(s)
- Albert Sarkis
- Unité Mixte de Recherche 5014, Centre National de la Recherche Scientifique, Institut Fédératif de Recherche Cardio-vasculaire 39, Faculté de Pharmacie, 69373 Lyon cedex 08, France.
| | | | | | | |
Collapse
|
38
|
Eppel GA, Bergstrom G, Anderson WP, Evans RG. Autoregulation of renal medullary blood flow in rabbits. Am J Physiol Regul Integr Comp Physiol 2003; 284:R233-44. [PMID: 12388459 DOI: 10.1152/ajpregu.00061.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the extent of renal medullary blood flow (MBF) autoregulation in pentobarbital-anesthetized rabbits. Two methods for altering renal arterial pressure (RAP) were compared: the conventional method of graded suprarenal aortic occlusion and an extracorporeal circuit that allows RAP to be increased above systemic arterial pressure. Changes in MBF were estimated by laser-Doppler flowmetry, which appears to predominantly reflect erythrocyte velocity, rather than flow, in the kidney. We compared responses using a dual-fiber needle probe held in place by a micromanipulator, with responses from a single-fiber probe anchored to the renal capsule, to test whether RAP-induced changes in kidney volume confound medullary laser-Doppler flux (MLDF) measurements. MLDF responses were similar for both probe types and both methods for altering RAP. MLDF changed little as RAP was altered from 50 to >or=170 mmHg (24 +/- 22% change). Within the same RAP range, RBF increased by 296 +/- 48%. Urine flow and sodium excretion also increased with increasing RAP. Thus pressure diuresis/natriuresis proceeds in the absence of measurable increases in medullary erythrocyte velocity estimated by laser-Doppler flowmetry. These data do not, however, exclude the possibility that MBF is increased with increasing RAP in this model, because vasa recta recruitment may occur.
Collapse
Affiliation(s)
- Gabriela A Eppel
- Department of Physiology, Monash University, Melbourne, Australia.
| | | | | | | |
Collapse
|
39
|
Guild SJ, Eppel GA, Malpas SC, Rajapakse NW, Stewart A, Evans RG. Regional responsiveness of renal perfusion to activation of the renal nerves. Am J Physiol Regul Integr Comp Physiol 2002; 283:R1177-86. [PMID: 12376411 DOI: 10.1152/ajpregu.00151.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested for regional differences in perfusion responses, within the renal medulla and cortex, to renal nerve stimulation in pentobarbital sodium-anesthetized rabbits. Laser-Doppler flux (LDF) was monitored at various depths below the cortical surface (1-15 mm). Basal cortical LDF (1-3 mm, approximately 200-450 U) was greater than medullary LDF (5-15 mm, approximately 70-160 U), but there were no statistically significant differences in basal LDF within these regions. The background LDF signal during aortic occlusion was similar in the cortex (2 mm, 31 U) and outer medulla (7 mm, 31 U), but slightly greater in the inner medulla (12 mm, 44 U). During electrical stimulation of the renal nerves (0.5-8 Hz), cortical LDF and total renal blood flow were similarly progressively reduced with increasing stimulus frequency. Medullary LDF (measured between 5 and 15 mm) was overall less responsive than cortical LDF. For example, 4-Hz stimulation reduced inner medullary LDF (9 mm) by 19 +/- 6% but reduced cortical LDF (1 mm) by 54 +/- 11%. However, medullary LDF responses to nerve stimulation were similar at all depths measured. Our results indicate that while the vascular elements controlling medullary perfusion are less sensitive to the effects of electrical stimulation of the renal nerves than are those controlling cortical perfusion, sensitivity within these vascular territories appears to be relatively homogeneous.
Collapse
Affiliation(s)
- Sarah-Jane Guild
- Circulatory Control Laboratory, Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
40
|
Oliver JJ, Rajapakse NW, Evans RG. Effects of indomethacin on responses of regional kidney perfusion to vasoactive agents in rabbits. Clin Exp Pharmacol Physiol 2002; 29:873-9. [PMID: 12207565 DOI: 10.1046/j.1440-1681.2002.03742.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. To determine whether differential release of products of arachidonic acid metabolism, via the cyclo-oxygenase pathway, underlies the diversity of responses of regional kidney perfusion to vasoactive agents, we tested the effects of intravenous indomethacin on responses to renal arterial bolus doses of vasoactive agents in pentobarbitone-anaesthetized rabbits. 2. Total renal blood flow (RBF) and regional kidney perfusion were determined by transit time ultrasound flowmetry and laser-Doppler flowmetry, respectively. 3. Responses of regional kidney blood flow to vasoactive agents were diverse: noradrenaline reduced cortical but not medullary perfusion, [Phe 2,Ile 3,Orn 8]-vasopressin reduced medullary perfusion more than cortical perfusion, endothelin-1 and angiotensin II increased medullary perfusion in the face of reduced cortical perfusion, while acetylcholine, bradykinin and the nitric oxide donor methylamine hexamethylene methylamine (MAHMA) NONOate all increased both cortical and medullary perfusion. 4. Indomethacin administration was followed by reductions in total RBF (17 +/- 6%), cortical perfusion (13 +/- 5%) and medullary perfusion (40 +/- 8%). Angiotensin II- and endothelin-1-induced increases in medullary perfusion were abolished by indomethacin, but indomethacin had no significant effects on responses of regional kidney perfusion to acetylcholine, bradykinin, MAHMA NONOate, noradrenaline and [Phe 2,Ile 3,Orn 8]-vasopressin. 5. Our results suggest that vasodilator cyclo-oxygenase products contribute to the maintenance of resting renal vascular tone, particularly in vascular elements controlling medullary perfusion. Cyclo-oxygenase products also appear to mediate endothelin-1- and angiotensin II-induced increases in medullary perfusion. However, regionally specific engagement of cyclo-oxygenase-dependent arachidonic acid metabolism does not appear to contribute to the differential effects of noradrenaline and [Phe 2,Ile 3,Orn 8]-vasopressin on cortical and medullary perfusion.
Collapse
Affiliation(s)
- Jeremy J Oliver
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
41
|
Kalyan A, Eppel GA, Anderson WP, Oliver JJ, Evans RG. Renal medullary interstitial infusion is a flawed technique for examining vasodilator mechanisms in anesthetized rabbits. J Pharmacol Toxicol Methods 2002; 47:153-9. [PMID: 12628306 DOI: 10.1016/s1056-8719(02)00230-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION In rats, medullary interstitial (IMI) infusion is a useful technique for selective delivery of pharmacological agents to the renal medulla, in both acute and chronic experimental settings. We examined the feasibility of using this technique for delivery of vasodilators in rabbits, since this larger species would provide a number of advantages, particularly in long-term studies of circulatory control. METHODS Rabbits were anesthetized with pentobarbitone and artificially ventilated. Catheters were placed in a side branch of the renal artery and/or the renal medullary interstitium. Renal blood flow (RBF) was determined by transit-time ultrasound flowmetry, and blood flow in the cortex and medulla was estimated by laser Doppler flowmetry. RESULTS Pilot studies showed that renal arterial (IRA) infusions of bradykinin (10-300 ng/kg/min) and adenosine (1-10 ng/kg/min) produced only transient renal vasodilatation. IRA infusions of methylamine hexamethylene methylamine (MAHMA) NONOate (100-1000 ng/kg/min) and acetylcholine (10-250 ng/kg/min) produced dose-dependent and sustained increases in RBF and reductions in arterial pressure at the highest doses. However, IMI infusion of the same doses did not consistently increase medullary laser Doppler flux (MLDF). After IRA MAHMA NONOate and IMI acetylcholine, RBF fell to below its resting level. IRA boluses of acetylcholine (10-1250 ng/kg), bradykinin (2-250 ng/kg), and MAHMA NONOate (100-3000 ng/kg) dose-dependently increased RBF and CLDF and MLDF. DISCUSSION We had previously validated the IMI infusion technique for intramedullary delivery of vasoconstrictors in rabbits. Our present results indicate that this technique has limited application for delivery of vasodilator agents, in part because counterregulatory vasoconstrictor mechanisms are activated.
Collapse
Affiliation(s)
- Aparna Kalyan
- Department of Physiology, Monash University, P.O. Box 13F, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|