1
|
Sakata N, Yoshimatsu G, Kawakami R, Kodama S. Influence of relatively short-term culture on adult porcine islets for xenotransplantation. Sci Rep 2024; 14:11640. [PMID: 38773268 PMCID: PMC11109127 DOI: 10.1038/s41598-024-62570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/19/2024] [Indexed: 05/23/2024] Open
Abstract
Porcine islet xenotransplantation is a promising therapy for severe diabetes mellitus. Maintenance of the quality and quantity of porcine islets is important for the success of this treatment. Here, we aimed to elucidate the influence of relatively short-term (14 days) culture on adult porcine islets isolated from three micro-minipigs (P111, P112 and P121). Morphological characteristics of islets changed little after 14 days of culture. The viability of cultured islets was also maintained at a high level (> 80%). Furthermore, cultured islets exhibited similar glucose-stimulated insulin secretion and insulin content at Day 14 were preserved comparing with Day 1, while the expressions of Ins, Gcg and Sst were attenuated at Day 14. Xenotransplantation using diabetic nude mice showed no normalization of blood glucose but increased levels of plasma porcine C-peptide after the transplantation of 14 day cultured porcine islets. Histological assessment revealed that relatively short-term cultured porcine islets were successfully engrafted 56 days following transplantation. These data show that relatively short-term culture did not impair the quality of adult porcine islets in regard to function, morphology, and viability. Prevention of impairment of gene correlated with endocrine hormone is warranted for further improvement.
Collapse
Affiliation(s)
- Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Ryo Kawakami
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| |
Collapse
|
2
|
Xu H, He X. Developments in kidney xenotransplantation. Front Immunol 2024; 14:1242478. [PMID: 38274798 PMCID: PMC10808336 DOI: 10.3389/fimmu.2023.1242478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
The search for kidney xenografts that are appropriate for patients with end-stage renal disease has been ongoing since the beginning of the last century. The major cause of xenograft loss is hyperacute and acute rejection, and this has almost been overcome via scientific progress. The success of two pre-clinical trials of α1,3-galactosyltransferase gene-knockout porcine kidneys in brain-dead patients in 2021 triggered research enthusiasm for kidney xenotransplantation. This minireview summarizes key issues from an immunological perspective: the discovery of key xenoantigens, investigations into key co-stimulatory signal inhibition, gene-editing technology, and immune tolerance induction. Further developments in immunology, particularly immunometabolism, might help promote the long-term outcomes of kidney xenografts.
Collapse
Affiliation(s)
| | - Xiaozhou He
- Urology Department, Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
3
|
Garrido-Romero M, Pazos F, Sánchez-Martínez E, Benito C, Gómez-Ruiz JÁ, Borrego-Yaniz G, Bowes C, Broll H, Caminero A, Caro E, Chagoyen M, Chemaly M, Fernández-Dumont A, Gisavi H, Gkrintzali G, Khare S, Margolles A, Márquez A, Martín J, Merten C, Montilla A, Muñoz-Labrador A, Novoa J, Paraskevopoulos K, Payen C, Withers H, Ruas-Madiedo P, Ruiz L, Sanz Y, Jiménez-Saiz R, Moreno FJ. Relevance of gut microbiome research in food safety assessment. Gut Microbes 2024; 16:2410476. [PMID: 39360551 PMCID: PMC11451283 DOI: 10.1080/19490976.2024.2410476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
The gut microbiome is indispensable for the host physiological functioning. Yet, the impact of non-nutritious dietary compounds on the human gut microbiota and the role of the gut microbes in their metabolism and potential adverse biological effects have been overlooked. Identifying potential hazards and benefits would contribute to protecting and harnessing the gut microbiome's role in supporting human health. We discuss the evidence on the potential detrimental impact of certain food additives and microplastics on the gut microbiome and human health, with a focus on underlying mechanisms and causality. We provide recommendations for the incorporation of gut microbiome science in food risk assessment and identify the knowledge and tools needed to fill these gaps. The incorporation of gut microbiome endpoints to safety assessments, together with well-established toxicity and mutagenicity studies, might better inform the risk assessment of certain contaminants in food, and/or food additives.
Collapse
Affiliation(s)
- Manuel Garrido-Romero
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Madrid, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Elisa Sánchez-Martínez
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Carlos Benito
- Instituto de Gestión de la Innovación y del Conocimiento, INGENIO (CSIC and U. Politécnica de Valencia), Valencia, Spain
| | | | | | | | - Hermann Broll
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Alberto Caminero
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster Immunology Research Centre (MIRC), Schroeder Allergy and Immunology Research Institute (SAIRI), McMaster University, Hamilton, ON, Canada
| | | | - Mónica Chagoyen
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, Ploufragan, France
| | | | | | | | - Sangeeta Khare
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Abelardo Margolles
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Instituto de Productos Lácteos (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Ana Márquez
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Caroline Merten
- Administration luxembourgeoise vétérinaire et alimentaire (ALVA), Strassen, Luxembourg
| | - Antonia Montilla
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Madrid, Spain
| | - Ana Muñoz-Labrador
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Madrid, Spain
| | - Jorge Novoa
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | | | - Cyrielle Payen
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, Ploufragan, France
| | - Helen Withers
- Food Safety and Microbiology, Food Standards Australia New Zealand, Wellington, New Zealand
| | - Patricia Ruas-Madiedo
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Instituto de Productos Lácteos (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth), Instituto de Productos Lácteos (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Excellence Centre Severo Ochoa, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Medicine, McMaster Immunology Research Centre (MIRC), Schroeder Allergy and Immunology Research Institute (SAIRI), McMaster University, Hamilton, ON, Canada
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
| | - F. Javier Moreno
- Department of Bioactivity and Food Analysis, Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Madrid, Spain
| |
Collapse
|
4
|
Sakata N, Yoshimatsu G, Kawakami R, Aoyagi C, Kodama S. Optimal temperature for the long-term culture of adult porcine islets for xenotransplantation. Front Immunol 2023; 14:1280668. [PMID: 37901206 PMCID: PMC10611499 DOI: 10.3389/fimmu.2023.1280668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Porcine islet xenotransplantation represents a promising therapy for severe diabetes mellitus. Long-term culture of porcine islets is a crucial challenge to permit the on-demand provision of islets. We aimed to identify the optimal temperature for the long-term culture of adult porcine islets for xenotransplantation. We evaluated the factors potentially influencing successful 28-day culture of islets at 24°C and 37°C, and found that culture at 37°C contributed to the stability of the morphology of the islets, the proliferation of islet cells, and the recovery of endocrine function, indicated by the expression of genes involved in pancreatic development, hormone production, and glucose-stimulated insulin secretion. These advantages may be provided by islet-derived CD146-positive stellate cells. The efficacy of xenotransplantation using islets cultured for a long time at 37°C was similar to that of overnight-cultured islets. In conclusion, 37°C might be a suitable temperature for the long-term culture of porcine islets, but further modifications will be required for successful xenotransplantation in a clinical setting.
Collapse
Affiliation(s)
- Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Ryo Kawakami
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Chikao Aoyagi
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
| |
Collapse
|
5
|
Günay B, Matthews E, Morgan J, Tryfonidou MA, Saldova R, Pandit A. An insight on the N-glycome of notochordal cell-rich porcine nucleus pulposus during maturation. FASEB Bioadv 2023; 5:321-335. [PMID: 37554546 PMCID: PMC10405234 DOI: 10.1096/fba.2023-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 08/10/2023] Open
Abstract
Degeneration of the intervertebral disc is an age-related condition. It also accompanies the disappearance of the notochordal cells, which are remnants of the developmental stages of the nucleus pulposus (NP). Molecular changes such as extracellular matrix catabolism, cellular phenotype, and glycosaminoglycan loss in the NP have been extensively studied. However, as one of the most significant co- and posttranslational modifications, glycosylation has been overlooked in cells in degeneration. Here, we aim to characterize the N-glycome of young and mature NP and identify patterns related to aging. Accordingly, we isolated N-glycans from notochordal cell-rich NP from porcine discs, characterized them using a combined approach of exoglycosidase digestions and analysis with hydrophilic interaction ultra-performance liquid chromatography and mass spectrometry. We have assigned over 300 individual N-glycans for each age group. Moreover, we observed a notable abundance of antennary structures, galactosylation, fucosylation, and sialylation in both age groups. In addition, as indicated from our results, increasing outer arm fucosylation and decreasing α(2,3)-linked sialylation with aging suggest that these traits are age-dependent. Lastly, we have focused on an extensive characterization of the N-glycome of the notochordal cell-rich NP in aging without inferred degeneration, describing glycosylation changes specific for aging only. Our findings in combination with those of other studies, suggest that the degeneration of the NP does not involve identical processes as aging.
Collapse
Affiliation(s)
- Büşra Günay
- CÚRAM SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| | - Elizabeth Matthews
- NIBRT GlycoScience GroupNational Institute for Bioprocessing Research and Training (NIBRT)DublinIreland
| | - Jack Morgan
- NIBRT GlycoScience GroupNational Institute for Bioprocessing Research and Training (NIBRT)DublinIreland
| | - Marianna A. Tryfonidou
- Faculty of Veterinary Medicine, Department of Clinical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Radka Saldova
- NIBRT GlycoScience GroupNational Institute for Bioprocessing Research and Training (NIBRT)DublinIreland
- School of Medicine, College of Health and Agricultural ScienceUniversity College DublinDublinIreland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| |
Collapse
|
6
|
Platt JL. Xenotransplantation in transition. Hum Immunol 2023; 84:1-4. [PMID: 36529614 DOI: 10.1016/j.humimm.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The application of xenotransplantation of porcine organs and tissues for treatment of disease, sought for more than a century, might soon be realized. Until now, the immune response of recipients against xenogeneic organs and tissues posed the main obstacle to clinical application. However, decades of research into this immune response and identification of other molecular barriers together with advances in genetic engineering and cloning of large animals and immune therapeutics coalesced to support prolonged survival and function of porcine organ grafts in nonhuman primates. This experimental progress in turn sparks consideration of clinical trials. The papers in this special section provide authoritative views concerning the immune hurdles that still limit and potentially still preclude clinical application of xenotransplantation. Xenoreactive antibodies elicited in T cell-dependent B cell-responses constitute the most important hurdle and control of these responses impels use of intense regimens of immunosuppression. These antibodies pose a danger to xenografts and potentially compromise subsequent allografts. However, new insights into the specificity of these antibodies, the pathways and kinetics of production and genetic determinants of pathogenicity offer novel opportunities for intervention. Likewise, the rapid ability to propose and test new strategies in nonhuman primate models hastens needed advances. However further progress will depend on development and validation of laboratory methods for identification and assay of pathogenic immune responses and evaluation of the response to therapy.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Departments of Surgery and of Microbiology & Immunology, and the Transplantation Biology Program, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
7
|
Yuan B, Tang YF, Xu Z, Wang JC, Zhou SY, Chen XS. Lyophilized bovine acellular tendon linear fiber material for the reconstruction of attachment structure of paraspinous muscles: an animal in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:79. [PMID: 36462052 PMCID: PMC9719447 DOI: 10.1007/s10856-022-06701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Low back pain is common after lumbar spine surgery and the injury from extensive detachment of paraspinal muscles during the surgery may play a vital role. Previously, we prepared a bovine acellular tendon fiber (ATF) material through lyophilization and proved that it could retain its original fibrillar structure and mechanical properties. The objective of this study is to evaluate the effectiveness of this new fiber material used for attachment structure reconstruction of paraspinal muscle. Defect of spinous process, interspinous and supraspinous ligament was established on lumbar spine in rabbit and rat and ATF linear material was implanted to reconstruct the attachment structure. Ultrasound showed the cross-sectional area of the paraspinal muscle in ATF group was larger than that of control group in rats. MRI showed the irregular shape and high signal changes in control group, but regular shape and uniform signal in the ATF group in rabbit. For Electromyogram, the frequency of evoked potential in control group was lower than ATF group and normal rats. HE and Masson staining showed good tissue healing, and immunohistochemical results showed the immune rejection of ATF is significantly lower than that of suture. Reconstruction of the attachment structure of paraspinous muscles with ATF linear material could maintain the morphology, volume and function of paraspinal muscle. ATF material has the potential to be used to manufacture personalized ligaments and other tissue engineering scaffolds. Graphical abstract.
Collapse
Affiliation(s)
- Bo Yuan
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Yi-Fan Tang
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Zheng Xu
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Jun-Cheng Wang
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Sheng-Yuan Zhou
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
| | - Xiong-Sheng Chen
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
| |
Collapse
|
8
|
Anwar IJ, DeLaura I, Ladowski J, Gao Q, Knechtle SJ, Kwun J. Complement-targeted therapies in kidney transplantation-insights from preclinical studies. Front Immunol 2022; 13:984090. [PMID: 36311730 PMCID: PMC9606228 DOI: 10.3389/fimmu.2022.984090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023] Open
Abstract
Aberrant activation of the complement system contributes to solid-organ graft dysfunction and failure. In kidney transplantation, the complement system is implicated in the pathogenesis of antibody- and cell-mediated rejection, ischemia-reperfusion injury, and vascular injury. This has led to the evaluation of select complement inhibitors (e.g., C1 and C5 inhibitors) in clinical trials with mixed results. However, the complement system is highly complex: it is composed of more than 50 fluid-phase and surface-bound elements, including several complement-activated receptors-all potential therapeutic targets in kidney transplantation. Generation of targeted pharmaceuticals and use of gene editing tools have led to an improved understanding of the intricacies of the complement system in allo- and xeno-transplantation. This review summarizes our current knowledge of the role of the complement system as it relates to rejection in kidney transplantation, specifically reviewing evidence gained from pre-clinical models (rodent and nonhuman primate) that may potentially be translated to clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Stuart J. Knechtle
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
9
|
Wei L, Mu Y, Deng J, Wu Y, Qiao Y, Zhang K, Wang X, Huang W, Shao A, Chen L, Zhang Y, Li Z, Lai L, Qu S, Xu L. α-Gal antigen-deficient rabbits with GGTA1 gene disruption via CRISPR/Cas9. BMC Genom Data 2022; 23:54. [PMID: 35820824 PMCID: PMC9275273 DOI: 10.1186/s12863-022-01068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have identified the carbohydrate epitope Galα1-3Galβ1-4GlcNAc-R (termed the α-galactosyl epitope), known as the α-Gal antigen as the primary xenoantigen recognized by the human immune system. The α-Gal antigen is regulated by galactosyltransferase (GGTA1), and α-Gal antigen-deficient mice have been widely used in xenoimmunological studies, as well as for the immunogenic risk evaluation of animal-derived medical devices. The objective of this study was to develop α-Gal antigen-deficient rabbits by GGTA1 gene editing with the CRISPR/Cas9 system. RESULTS The mutation efficiency of GGTA1 gene-editing in rabbits was as high as 92.3% in F0 pups. Phenotype analysis showed that the α-Gal antigen expression in the major organs of F0 rabbits was decreased by more than 99.96% compared with that in wild-type (WT) rabbits, and the specific anti-Gal IgG and IgM antibody levels in F1 rabbits increased with increasing age, peaking at approximately 5 or 6 months. Further study showed that GGTA1 gene expression in F2-edited rabbits was dramatically reduced compared to that in WT rabbits. CONCLUSIONS α-Gal antigen-deficient rabbits were successfully generated by GGTA1 gene editing via the CRISPR/Cas9 system in this study. The feasibility of using these α-Gal antigen-deficient rabbits for the in situ implantation and residual immunogenic risk evaluation of animal tissue-derived medical devices was also preliminarily confirmed.
Collapse
Affiliation(s)
- Lina Wei
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Yufeng Mu
- National Institutes for Food and Drug Control, Beijing, 102629, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Jichao Deng
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A5H7, Canada
| | - Yong Wu
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Ying Qiao
- Beijing YiSai Biotechnology Co., Ltd, Beijing, 100176, China
| | - Kun Zhang
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Xuewen Wang
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Wenpeng Huang
- Beijing YiSai Biotechnology Co., Ltd, Beijing, 100176, China
| | - Anliang Shao
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Liang Chen
- National Institutes for Food and Drug Control, Beijing, 102629, China
| | - Yang Zhang
- Guangzhou ZhongDa Medical Equipment Co., Ltd., Guangzhou, 511458, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, Chinese Academy of Science, and Guangdong Province Key Laboratory of Stem Cells and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530, China.
| | - Shuxin Qu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Liming Xu
- National Institutes for Food and Drug Control, Beijing, 102629, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
10
|
Zhou SY, Yuan B, Huang WM, Chen XS, Jia LS. Aponeurosis discission, a low-detergent method for tissue-engineered acellular ligament scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:40. [PMID: 35507049 PMCID: PMC9068632 DOI: 10.1007/s10856-022-06661-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Detergent treatment is the most commonly used method for the decellularization of ligaments and tendon grafts. However, it is well recognized that detergent treatment can also adversely affect the extracellular matrix. This study found that discission into the aponeurosis layer of the patellar tendon (PT) before decellularization is conducive to extracting cells from the PT using a low quantity of detergent in a short time period. The acellular aponeurosis discission ligament (AADL) retains its native collagen fibril structure and mechanical properties. Moreover, the PT retained cell and tissue compatibility in vitro and in vivo. After implantation into a defective allogeneic PT, we found that the AADL healed well in the host, and its collagen structure exhibited gradual improvement 12 months after implantation with satisfactory reconstruction. IMPACT: The aponeurosis of tendons/ligaments is the main barrier to achieving complete decellularization, and it thus prevents complete recellularization for applications in tissue engineering. Aponeurosis can obstruct the removal of cell components. We found that excising the aponeurosis before decellularization allows for the removal of cellular components with a reduced amount of detergent, thus improving the biological properties of the acellular ligament. To the best of our knowledge, no similar studies have been performed. Graphical abstract.
Collapse
Affiliation(s)
- Sheng-Yuan Zhou
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Bo Yuan
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Wen-Mao Huang
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| | - Xiong-Sheng Chen
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China.
| | - Lian-Shun Jia
- Spine Center, Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, China
| |
Collapse
|
11
|
Buchwald JE, Martins PN. Designer organs: The future of personalized transplantation. Artif Organs 2022; 46:180-190. [DOI: 10.1111/aor.14151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Julianna E. Buchwald
- Division of Transplantation Department of Surgery University of Massachusetts Chan Medical School Worcester Massachusetts USA
- RNA Therapeutics Institute University of Massachusetts Chan Medical School Worcester Massachusetts USA
| | - Paulo N. Martins
- Division of Transplantation Department of Surgery University of Massachusetts Chan Medical School Worcester Massachusetts USA
| |
Collapse
|
12
|
The characterization, cytotoxicity, macrophage response and tissue regeneration of decellularized cartilage in costal cartilage defects. Acta Biomater 2021; 136:147-158. [PMID: 34563726 DOI: 10.1016/j.actbio.2021.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022]
Abstract
After harvesting multiple costal cartilages, the local defect disrupts the integrity of the chest wall and may lead to obvious thoracic complications, such as local depression and asymmetry of the bilateral thoracic height. Decellularized materials have been used for tissue reconstruction in clinical surgeries. To apply xenogenic decellularized cartilage in costal cartilage defects, porcine-derived auricular and costal cartilage was tested for characterization, cytotoxicity, macrophage response, and tissue regeneration. Most of the DNA and α-Gal were effectively removed, and the collagen was well preserved after the decellularization process. The glycosaminoglycan (GAG) content decreased significantly compared to that in untreated cartilage. The decellularized auricular cartilage had a larger pore size, more pores, and a higher degradation rate than the decellularized costal cartilage. No apparent nuclei or structural damage was observed in the extracellular matrix. The decellularized auricular cartilage had a higher cell proliferation rate and more prominent immunomodulatory effect than the other groups. Two types of decellularized cartilage, particularly decellularized auricular cartilage, promoted the tissue regeneration in the cartilage defect area, combined with noticeable cartilage morphology and increased chondrogenic gene expression. In our research, the functional components and structure of the extracellular matrix were well preserved after the decellularization process. The decellularized cartilage had better biocompatibility and suitable microenvironment for tissue regeneration in the defect area, suggesting its potential application in cartilage repair during the surgery. STATEMENT OF SIGNIFICANCE: Autologous costal cartilage has been widely used in various surgeries, while the cartilage defects after the harvesting of multiple costal cartilages may cause localized chest wall deformities. Decellularized cartilage is an ideal material that could be produced in the factory and applied in surgeries. In this study, both decellularized costal cartilage and auricular cartilage preserved original structure, functional biocompatibility, immunosuppressive effects, and promoted tissue regeneration in the cartilage defect area.
Collapse
|
13
|
Zhou S, Yuan B, Huang W, Tang Y, Chen X. Preparation and biological characteristics of a bovine acellular tendon fiber material. J Biomed Mater Res A 2021; 109:1931-1941. [PMID: 33811434 DOI: 10.1002/jbm.a.37185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 11/07/2022]
Abstract
Acellular tendon matrix is an ideal substitute for constructing tissue engineering ligaments, but using detergents causes damage to collagen and fibrin during the process of decellularization. In this study, fresh tendons were lyophilized and separated into fresh tendon fiber (FTF) bundles, and then the cellular components in FTF were removed to prepare acellular tendon fiber (ATF) without adding chemical detergent. H&E staining and DAPI fluorescence microscopy showed no nucleus and DNA residue. Compared with FTFs, the DNA content of ATFs was significantly lower without the collagen content change before and after decellularization. The microstructure of collagen fibrils in ATFs was intact under scanning electron microscopy (SEM), and the maximum tensile load and elastic modulus between FTFs and ATFs were not statistically different. The ATF bundles were cultured with SD rat tenocytes for 72 hr and cells attachment to fiber surfaces were observed under SEM. ATF bundles were then implanted into paraspinal muscles, and histological analysis showed fibroblast-like cells within the ATFs and was similar to the control group (fresh tendon autograft) in morphology. H&E staining showed that the number of lymphocytes and plasma cells in ATF was less than that in fresh tendon autograft. ATF bundles were twisted into linear fiber materials by hand, of which the maximum breaking strength was similar to silk with same diameter. These findings demonstrated that ATFs retain their original fibril structure and mechanical properties after decellularization by trypsin and pancreatic deoxyribonuclease without detergent. Lyophilized ATFs linear fiber material provides the possibility of preparing personalized ligament and other tissue engineering scaffolds.
Collapse
Affiliation(s)
- Shengyuan Zhou
- Spine Center, Department of Orthopedic Surgery, Chang Zheng Hospital, Naval Medical Univeristy (Second Military Medical University), Shanghai, China
| | - Bo Yuan
- Spine Center, Department of Orthopedic Surgery, Chang Zheng Hospital, Naval Medical Univeristy (Second Military Medical University), Shanghai, China
| | - Wenmao Huang
- Spine Center, Department of Orthopedic Surgery, Chang Zheng Hospital, Naval Medical Univeristy (Second Military Medical University), Shanghai, China
| | - Yifan Tang
- Spine Center, Department of Orthopedic Surgery, Chang Zheng Hospital, Naval Medical Univeristy (Second Military Medical University), Shanghai, China
| | - Xiongsheng Chen
- Spine Center, Department of Orthopedic Surgery, Chang Zheng Hospital, Naval Medical Univeristy (Second Military Medical University), Shanghai, China
| |
Collapse
|
14
|
Ladowski JM, Houp J, Hauptfeld-Dolejsek V, Javed M, Hara H, Cooper DKC. Aspects of histocompatibility testing in xenotransplantation. Transpl Immunol 2021; 67:101409. [PMID: 34015463 PMCID: PMC8197754 DOI: 10.1016/j.trim.2021.101409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022]
Abstract
Xenotransplantation, using genetically-modified pigs for clinical organ transplantation, is a solution to the organ shortage. The biggest barrier to clinical implementation is the antigenicity of pig cells. Humans possess preformed antibody to pig cells that initiate antibody-mediated rejection of pig organs in primates. Advances in genetic engineering have led to the development of a pig lacking the three known glycan xenoantigens (triple-knockout [TKO] pigs). A significant number of human sera demonstrate no antibody binding to TKO pig cells. As a result of the TKO pig's low antigen expression, survival of life-supporting pig organs in immunosuppressed nonhuman primates has significantly increased, and hope has been renewed for clinical trials of xenotransplantation. It is important to understand the context in which xenotransplantation's predecessor, allotransplantation, has been successful, and the steps needed for the success of xenotransplantation. Successful allotransplantation has been based on two main immunological approaches - (i) adequate immunosuppressive therapy, and (ii) careful histocompatibility matching. In vivo studies suggest that the available immunosuppressive regimens are adequate to suppress the human anti-pig cellular response. Methods to evaluate and screen patients for the first clinical xenotransplantation trial are the next challenge. The goal of this review is to summarize the history of histocompatibility testing, and the available tools that can be utilized to determine xenograft histocompatibility.
Collapse
Affiliation(s)
- Joseph M Ladowski
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julie Houp
- Histocompatibility Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mariyam Javed
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Hawkins RB, Wilson JM, Mehaffey JH, Platts-Mills TAE, Ailawadi G. Safety of Intravenous Heparin for Cardiac Surgery in Patients With Alpha-Gal Syndrome. Ann Thorac Surg 2020; 111:1991-1997. [PMID: 33031779 DOI: 10.1016/j.athoracsur.2020.07.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Alpha-gal syndrome is a tick-acquired disease caused by immunoglobulin E (IgE) to the oligosaccharide galactose-alpha-1,3-galactose (alpha-gal), causing allergic reactions to meat and products sourced from nonprimate mammals. As heparin is porcine-derived, we hypothesized that patients with alpha-gal syndrome who received high-dose heparin for cardiac surgery would have increased risk of anaphylaxis. METHODS All cardiac surgery patients at an academic medical center from 2007 to 2019 were cross-referenced with research and clinical databases for the alpha-gal IgE blood test. Clinical data were obtained through the institutional Society of Thoracic Surgeons Adult Cardiac Database and chart review. Patients were stratified by development of an allergic reaction for univariate statistical analysis. RESULTS Of the 8819 patients, 17 (0.19%) had a positive alpha-gal test before cardiac surgery. Of these 17 patients, 4 (24%) had a severe allergic reaction. The median alpha-gal titer was significantly higher in patients with a reaction (75 [interquartile range, 61-96] IU/mL vs 8 [interquartile range, 3-18] IU/mL; P = .006). There were no differences in median heparin loading dose, total dose, or maximum activated clotting time (all P > .05). In a subgroup of 8 patients with recent alpha-gal IgE level, 4 (50%) developed an allergic reaction. CONCLUSIONS Although alpha-gal is rare in patients undergoing cardiac surgery, there is up to a 50% risk of serious allergic reaction to heparin for cardiopulmonary bypass. Higher preoperative alpha-gal titers may confer a higher risk of severe allergic reaction. For patients with a clinical suspicion of alpha-gal syndrome, we recommend prescreening with IgE levels and premedicating before receiving high doses of intravenous heparin.
Collapse
Affiliation(s)
- Robert B Hawkins
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia.
| | - Jeffrey M Wilson
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia
| | - J Hunter Mehaffey
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Thomas A E Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia
| | - Gorav Ailawadi
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
16
|
Chen P, Liu R, Huang M, Zhu J, Wei D, Castellino FJ, Dang G, Xie F, Li G, Cui Z, Liu S, Zhang Y. A unique combination of glycoside hydrolases in Streptococcus suis specifically and sequentially acts on host-derived αGal-epitope glycans. J Biol Chem 2020; 295:10638-10652. [PMID: 32518157 DOI: 10.1074/jbc.ra119.011977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/06/2020] [Indexed: 01/02/2023] Open
Abstract
Infections by many bacterial pathogens rely on their ability to degrade host glycans by producing glycoside hydrolases (GHs). Here, we discovered a conserved multifunctional GH, SsGalNagA, containing a unique combination of two family 32 carbohydrate-binding modules (CBM), a GH16 domain and a GH20 domain, in the zoonotic pathogen Streptococcus suis 05ZYH33. Enzymatic assays revealed that the SsCBM-GH16 domain displays endo-(β1,4)-galactosidase activity specifically toward the host-derived αGal epitope Gal(α1,3)Gal(β1,4)Glc(NAc)-R, whereas the SsGH20 domain has a wide spectrum of exo-β-N-acetylhexosaminidase activities, including exo-(β1,3)-N-acetylglucosaminidase activity, and employs this activity to act in tandem with SsCBM-GH16 on the αGal-epitope glycan. Further, we found that the CBM32 domain adjacent to the SsGH16 domain is indispensable for SsGH16 catalytic activity. Surface plasmon resonance experiments uncovered that both CBM32 domains specifically bind to αGal-epitope glycan, and together they had a KD of 3.5 mm toward a pentasaccharide αGal-epitope glycan. Cell-binding and αGal epitope removal assays revealed that SsGalNagA efficiently binds to both swine erythrocytes and tracheal epithelial cells and removes the αGal epitope from these cells, suggesting that SsGalNagA functions in nutrient acquisition or alters host signaling in S. suis Both binding and removal activities were blocked by an αGal-epitope glycan. SsGalNagA is the first enzyme reported to sequentially act on a glycan containing the αGal epitope. These findings shed detailed light on the evolution of GHs and an important host-pathogen interaction.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ran Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengmeng Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinlu Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dong Wei
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Francis J Castellino
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.,W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gang Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yueling Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
17
|
Saleh FM, Chandra PK, Lin D, Robinson JE, Izadpanah R, Mondal D, Bollensdorff C, Alt EU, Zhu Q, Marasco WA, Braun SE, Abdel-Motal UM. A New Humanized Mouse Model Mimics Humans in Lacking α-Gal Epitopes and Secreting Anti-Gal Antibodies. THE JOURNAL OF IMMUNOLOGY 2020; 204:1998-2005. [PMID: 32144163 DOI: 10.4049/jimmunol.1901385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/14/2020] [Indexed: 11/19/2022]
Abstract
Mice have been used as accepted tools for investigating complex human diseases and new drug therapies because of their shared genetics and anatomical characteristics with humans. However, the tissues in mice are different from humans in that human cells have a natural mutation in the α1,3 galactosyltransferase (α1,3GT) gene and lack α-Gal epitopes on glycosylated proteins, whereas mice and other nonprimate mammals express this epitope. The lack of α-Gal epitopes in humans results in the loss of immune tolerance to this epitope and production of abundant natural anti-Gal Abs. These natural anti-Gal Abs can be used as an adjuvant to enhance processing of vaccine epitopes to APCs. However, wild-type mice and all existing humanized mouse models cannot be used to test the efficacy of vaccines expressing α-Gal epitopes because they express α-Gal epitopes and lack anti-Gal Abs. Therefore, in an effort to bridge the gap between the mouse models and humans, we developed a new humanized mouse model that mimics humans in that it lacks α-Gal epitopes and secretes human anti-Gal Abs. The new humanized mouse model (Hu-NSG/α-Galnull) is designed to be used for preclinical evaluations of viral and tumor vaccines based on α-Gal epitopes, human-specific immune responses, xenotransplantation studies, and in vivo biomaterials evaluation. To our knowledge, our new Hu-NSG/α-Galnull is the first available humanized mouse model with such features.
Collapse
Affiliation(s)
- Fayez M Saleh
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433.,Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Dong Lin
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - James E Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112
| | - Reza Izadpanah
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112.,Department of Microbiology, Lincoln Memorial University-Debusk College of Osteopathic Medicine, Knoxville, TN 37932
| | | | - Eckhard U Alt
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - Quan Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Stephen E Braun
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Ussama M Abdel-Motal
- Precision Medicine, Research Branch, Sidra Medicine, Doha, Qatar; and .,Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
18
|
Bilodeau C, Goltsis O, Rogers IM, Post M. Limitations of recellularized biological scaffolds for human transplantation. J Tissue Eng Regen Med 2019; 14:521-538. [PMID: 31826325 DOI: 10.1002/term.3004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
A shortage of donor organs for transplantation and the dependence of the recipients on immunosuppressive therapy have motivated researchers to consider alternative regenerative approaches. The answer may reside in acellular scaffolds generated from cadaveric human and animal tissues. Acellular scaffolds are expected to preserve the architectural and mechanical properties of the original organ, permitting cell attachment, growth, and differentiation. Although theoretically, the use of acellular scaffolds for transplantation should pose no threat to the recipient's immune system, experimental data have revealed significant immune responses to allogeneic and xenogeneic transplanted scaffolds. Herein, we review the various factors of the scaffold that could trigger an inflammatory and/or immune response, thereby compromising its use for human transplant therapy. In addition, we provide an overview of the major cell types that have been considered for recellularization of the scaffold and their potential contribution to triggering an immune response.
Collapse
Affiliation(s)
- Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld Research Institute, Mount Sinai Health, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Platt JL, Cascalho M, Piedrahita JA. Xenotransplantation: Progress Along Paths Uncertain from Models to Application. ILAR J 2019; 59:286-308. [PMID: 30541147 DOI: 10.1093/ilar/ily015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
For more than a century, transplantation of tissues and organs from animals into man, xenotransplantation, has been viewed as a potential way to treat disease. Ironically, interest in xenotransplantation was fueled especially by successful application of allotransplantation, that is, transplantation of human tissue and organs, as a treatment for a variety of diseases, especially organ failure because scarcity of human tissues limited allotransplantation to a fraction of those who could benefit. In principle, use of animals such as pigs as a source of transplants would allow transplantation to exert a vastly greater impact than allotransplantation on medicine and public health. However, biological barriers to xenotransplantation, including immunity of the recipient, incompatibility of biological systems, and transmission of novel infectious agents, are believed to exceed the barriers to allotransplantation and presently to hinder clinical applications. One way potentially to address the barriers to xenotransplantation is by genetic engineering animal sources. The last 2 decades have brought progressive advances in approaches that can be applied to genetic modification of large animals. Application of these approaches to genetic engineering of pigs has contributed to dramatic improvement in the outcome of experimental xenografts in nonhuman primates and have encouraged the development of a new type of xenograft, a reverse xenograft, in which human stem cells are introduced into pigs under conditions that support differentiation and expansion into functional tissues and potentially organs. These advances make it appropriate to consider the potential limitation of genetic engineering and of current models for advancing the clinical applications of xenotransplantation and reverse xenotransplantation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Marilia Cascalho
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Jorge A Piedrahita
- Translational Medicine and The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
20
|
Wang Q, Zhang X, Wang B, Bai G, Pan D, Yang P, Tao K, Li X, Dou K. Immortalization of porcine hepatocytes with a α-1,3-galactosyltransferase knockout background. Xenotransplantation 2019; 27:e12550. [PMID: 31435990 DOI: 10.1111/xen.12550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND In vivo pig liver xenotransplantation preclinical trials appear to have poor efficiency compared to heart or kidney xenotransplantation because of xenogeneic rejection, including coagulopathy, and particularly thrombocytopenia. In contrast, ex vivo pig liver (wild type) perfusion systems have been proven to be effective in "bridging" liver failure patients until subsequent liver allotransplantation, and transgenic (human CD55/CD59) modifications have even prolonged the duration of pig liver perfusion. Despite the fact that hepatocyte cell lines have also been proposed for extracorporeal blood circulation in conditions of acute liver failure, porcine hepatocyte cell lines, and the GalT-KO background in particular, have not been developed and applied in this field. Herein, we established immortalized wild-type and GalT-KO porcine hepatocyte cell lines, which can be used for artificial liver support systems, cell transplantation, and even in vitro studies of xenotransplantation. METHODS Primary hepatocytes extracted from GalT-KO and wild-type pigs were transfected with SV40 LT lentivirus to establish immortalized GalT-KO porcine hepatocytes (GalT-KO-hep) and wild-type porcine hepatocytes (WT). Hepatocyte biomarkers and function-related genes were assessed by immunofluorescence, periodic acid-Schiff staining, indocyanine green (ICG) uptake, biochemical analysis, ELISA, and RT-PCR. Furthermore, the tumorigenicity of immortalized cells was detected. In addition, a complement-dependent cytotoxicity (CDC) assay was performed with GalT-KO-hep and WT cells. Cell death and viability rates were assessed by flow cytometry and CCK-8 assay. RESULTS GalT-KO and wild-type porcine hepatocytes were successfully immortalized and maintained the characteristics of primary porcine hepatocytes, including albumin secretion, ICG uptake, urea and glycogen production, and expression of hepatocyte marker proteins and specific metabolic enzymes. GalT-KO-hep and WT cells were confirmed as having no tumorigenicity. In addition, GalT-KO-hep cells showed less apoptosis and more viability than WT cells when exposed to complement and xenogeneic serum. CONCLUSIONS Two types of immortalized cell lines of porcine hepatocytes with GalT-KO and wild-type backgrounds were successfully established. GalT-KO-hep cells exhibited higher viability and injury resistance against a xenogeneic immune response.
Collapse
Affiliation(s)
- Quancheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ge Bai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dengke Pan
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of an Transplant Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Hawkins RB, Ghanta RK. Mammalian meat allergy and advances in bioprosthetic valve technology. J Thorac Cardiovasc Surg 2019; 154:1327-1328. [PMID: 28918923 DOI: 10.1016/j.jtcvs.2017.05.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/23/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Robert B Hawkins
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Va
| | - Ravi K Ghanta
- Division of Cardiothoracic Surgery, Department of Surgery, Baylor College of Medicine, Houston, Tex
| |
Collapse
|
22
|
Smith KE, Johnson RC, Papas KK. Update on cellular encapsulation. Xenotransplantation 2018; 25:e12399. [DOI: 10.1111/xen.12399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Kate E. Smith
- Department of Physiological Sciences; University of Arizona; Tucson AZ USA
- Department of Surgery; University of Arizona; Tucson AZ USA
| | | | | |
Collapse
|
23
|
3D artificial round section micro-vessels to investigate endothelial cells under physiological flow conditions. Sci Rep 2018; 8:5898. [PMID: 29651108 PMCID: PMC5897395 DOI: 10.1038/s41598-018-24273-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
In the context of xenotransplantation, in ischemia/reperfusion injury as well as in cardiovascular research, the study of the fascinating interplay between endothelial cells (EC) and the plasma cascade systems often requires in vitro models. Blood vessels are hardly reproducible with standard flat-bed culture systems and flow-plate assays are limited in their low surface-to-volume ratio which impedes the study of the anticoagulant properties of the endothelial cells. According to the 3R regulations (reduce, replace and refine animal experimentation) we developed a closed circuit microfluidic in vitro system in which endothelial cells are cultured in 3D round section microchannels and subjected to physiological, pulsatile flow. In this study, a 3D monolayer of porcine aortic EC was perfused with human serum to mimic a xenotransplantation setting. Complement as well as EC activation was assessed in the presence or absence of complement inhibitors showing the versatility of the model for drug testing. Complement activation products as well as E-selectin expression were detected and visualized in situ by high resolution confocal microscopy. Furthermore, porcine pro-inflammatory cytokines as well as soluble complement components in the recirculating fluid phase were detected after human serum perfusion providing a better overview of the artificial vascular environment.
Collapse
|
24
|
Te Velde A, Flendrig L, Ladiges N, Chamuleau R. Possible Immunological Problems of Bioartificial Liver Support. Int J Artif Organs 2018. [DOI: 10.1177/039139889702000802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- A.A. Te Velde
- Department of Experimental Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam - The Netherlands
| | - L.M. Flendrig
- Department of Experimental Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam - The Netherlands
| | - N.C.J.J. Ladiges
- Department of Experimental Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam - The Netherlands
| | - R.A.F.M. Chamuleau
- Department of Experimental Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam - The Netherlands
| |
Collapse
|
25
|
Gleißner M, Bornemann R, Stemerowicz R, Meißler M, Neuhaus P, Gerlach J. Immunoisolation of Hybrid Liver Support Systems by Semipermeable Membranes. Int J Artif Organs 2018. [DOI: 10.1177/039139889702001108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunoisolation of hybrid liver support systems (LSS) utilizing suitable semipermeable membranes as an immune barrier enables neither immunocompetent cytotoxic factors to cause damage to the hepatocytes in the bioreactor nor xenogenic hepatocyte products to cause immunological side effects in patients. To determine the capability of membranes as an immune barrier, 6 flat membranes were investigated: Cuprophan (C-100), cut-off MW 1000, Cuprophan (C-240), cut-off MW 10,000, Polypropylen hydrophilic and hydrophobic (PPhi, PPho), cut-off MW 500,000-1,000,000, Polysulfon (PS), cut-off MW 1,000,000, Polyamid (PA), cut-off beyond MW 1,000,000. The permeability of the membranes to plasma factors and liver protein fractions (LP) was studied by routine biochemical methods and gel electrophoresis. In a second study, pigs (n=7) were immunised by LP after membrane passage. The results showed PA, PS, and PPhi to be completely permeable for plasma factors and LP, C-100 and C-240 for urophanic substances, and C-240 again for LP under MW 14.000. All 7 pig sera studied by Western blot discovered pre-formed xenoreactive natural IgG-antibodies (NAB) against human liver antigen (AG) with MW 26.000. AB de-novo-synthesis was demonstrated for AG with MW 45.000. No AB-synthesis was induced for epitopes under MW 26,000. These results suggest that limiting the cut-off of bioreactor outflow membranes to MW < 26,000 could avoid immunological side effects to patients.
Collapse
Affiliation(s)
- M. Gleißner
- Zentrum für Kinderheilkunde der Otto von Guericke Universität Magdeburg, Magdeburg
| | - R. Bornemann
- Virchow-Klinikum, Medizinische Fakultät der Humboldt-Universität zu Berlin Chirurgische Klinik, Berlin - Germany
| | - R. Stemerowicz
- Virchow-Klinikum, Medizinische Fakultät der Humboldt-Universität zu Berlin Chirurgische Klinik, Berlin - Germany
| | - M. Meißler
- Virchow-Klinikum, Medizinische Fakultät der Humboldt-Universität zu Berlin Chirurgische Klinik, Berlin - Germany
| | - P. Neuhaus
- Virchow-Klinikum, Medizinische Fakultät der Humboldt-Universität zu Berlin Chirurgische Klinik, Berlin - Germany
| | - J.C. Gerlach
- Virchow-Klinikum, Medizinische Fakultät der Humboldt-Universität zu Berlin Chirurgische Klinik, Berlin - Germany
| |
Collapse
|
26
|
Bornemann R, Smith M, Gerlach J. Consideration of Potential Immunological Problems in the Application of Xenogenic Hybrid Liver Support. Int J Artif Organs 2018. [DOI: 10.1177/039139889601901106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hybrid liver support systems (LSS) for the use of pig liver cells are under development for extracorporeal therapy of acute liver failure and for bridging to liver transplantation. A literature overview about possible immunological side effects of a clinical application is given. The data summarised from experimental studies and those clinical applications of porcine cells reported so far, suggest that clinical use of LSS utilising porcine cells and an immuno-isolation membrane should not be compromised by severe immunological complications. The reported data suggest that clinical application should be conducted in conjunction with carefully planned immunological monitoring. Only after such applications of LSS have been carried out and further data have been evaluated, might one be able to judge the immunological consequences of broader application of hybrid liver support.
Collapse
Affiliation(s)
- R. Bornemann
- Chirurgische Klinik, Virchow - Klinikum, Humboldt - Universität Berlin - Germany
| | - M.D. Smith
- Chirurgische Klinik, Virchow - Klinikum, Humboldt - Universität Berlin - Germany
| | - J.C. Gerlach
- Chirurgische Klinik, Virchow - Klinikum, Humboldt - Universität Berlin - Germany
| |
Collapse
|
27
|
Lee HS, Song S, Shin DY, Kim GS, Lee JH, Cho CW, Lee KW, Park H, Ahn C, Yang J, Yang HM, Park JB, Kim SJ. Enhanced effect of human mesenchymal stem cells expressing human TNF-αR-Fc and HO-1 gene on porcine islet xenotransplantation in humanized mice. Xenotransplantation 2017; 25. [DOI: 10.1111/xen.12342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/25/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Han-Sin Lee
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Sanghyun Song
- Department of Surgery; Dankook University College of Medicine; Dankook University Hospital; Cheonam Korea
| | - Du Yeon Shin
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Health Sciences & Technology; Samsung Advanced Institute for Health Sciences & Technology; Graduate School; Sungkyunkwan University; Seoul Korea
| | - Geun-Soo Kim
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Jong-Hyun Lee
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Chan Woo Cho
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Kyo Won Lee
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Hyojun Park
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Curie Ahn
- Transplantation Center; Seoul National University Hospital; Seoul Korea
| | - Jaeseok Yang
- Transplantation Center; Seoul National University Hospital; Seoul Korea
| | - Heung-Mo Yang
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Medicine; Sungkyunkwan University School of Medicine; Kyunggi Korea
| | - Jae Berm Park
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Sung-Joo Kim
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Health Sciences & Technology; Samsung Advanced Institute for Health Sciences & Technology; Graduate School; Sungkyunkwan University; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| |
Collapse
|
28
|
Gao B, Long C, Lee W, Zhang Z, Gao X, Landsittel D, Ezzelarab M, Ayares D, Huang Y, Cooper DKC, Wang Y, Hara H. Anti-Neu5Gc and anti-non-Neu5Gc antibodies in healthy humans. PLoS One 2017; 12:e0180768. [PMID: 28715486 PMCID: PMC5513429 DOI: 10.1371/journal.pone.0180768] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/21/2017] [Indexed: 02/03/2023] Open
Abstract
Our group previously investigated the levels of anti-Gal and anti-nonGal IgM and IgG in a cohort of 75 healthy humans of various backgrounds, and found some significant differences related to factors such as age, gender, ABO blood group, diet, vaccination history, and geographic location during childhood. We have now expanded our cohort (n = 84) to investigate the levels of anti-Neu5Gc and anti-nonGal/nonNeu5Gc antibodies in healthy humans. Anti-nonGal and anti-nonGal/nonNeu5Gc human IgM and IgG binding to pRBCs and pAECs from GTKO/CD46 and GTKO/CD46/Neu5GcKO pigs were measured by flow cytometry. Anti-Gal and anti-Neu5Gc IgM and IgG levels were measured by ELISA. In summary, (i) the great majority (almost 100%) of humans had anti-Neu5Gc IgM and IgG antibodies that bound to pAECs and approximately 50% had anti-Neu5Gc antibodies that bound to pRBCs, (ii) there was significantly less human antibody binding to pig cells that did not express either Gal or Neu5Gc compared with those that did not express Gal alone, (iii) the levels of both IgM and IgG binding to GTKO/CD46/Neu5GcKO pRBCs and pAECs were low, (iv) the level of anti-Neu5Gc IgG was higher in men than women, (v) the level did not change with age or diet, and there was some variability associated with (vi) previous vaccination history and (vii) the geographic region in which the individual spent his or her childhood. Our study confirms that human antibody binding to RBCs and AECs from GTKO/CD46/Neu5GcKO pigs is greatly reduced compared to binding to GTKO/CD46 cells. However, all humans appear to have a low level of antibody that binds to pAECs that is not directed to either Gal or Neu5Gc. Our findings require consideration in planning clinical trials of xenotransplantation.
Collapse
Affiliation(s)
- Bingsi Gao
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Whayoung Lee
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Zhongqiang Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of General Surgery, Second Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Xiaotian Gao
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Doug Landsittel
- Department of Biostatistics and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David Ayares
- Revivicor, Blacksburg, VA, United States of America
| | - Yuliang Huang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Yi Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
- * E-mail: (HH); (YW)
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail: (HH); (YW)
| |
Collapse
|
29
|
Martens GR, Reyes LM, Li P, Butler JR, Ladowski JM, Estrada JL, Sidner RA, Eckhoff DE, Tector M, Tector AJ. Humoral Reactivity of Renal Transplant-Waitlisted Patients to Cells From GGTA1/CMAH/B4GalNT2, and SLA Class I Knockout Pigs. Transplantation 2017; 101:e86-e92. [PMID: 28114170 DOI: 10.1097/tp.0000000000001646] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Antipig antibodies are a barrier to clinical xenotransplantation. We evaluated antibody binding of waitlisted renal transplant patients to 3 glycan knockout (KO) pig cells and class I swine leukocyte antigens (SLA). METHODS Peripheral blood mononuclear cells from SLA identical wild type (WT), α1, 3-galactosyltransferase (GGTA1) KO, GGTA1/ cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) KO, and GGTA1/ CMAH /b1,4 N-acetylgalactosaminyl transferase (B4GalNT2) KO pigs were screened for human antibody binding using flow cytometric crossmatch (FCXM). Sera from 820 patients were screened on GGTA1/CMAH/B4GalNT2 KO cells and a subset with elevated binding was evaluated further. FCXM was performed on SLA intact cells and GGTA1/SLA class I KO cells after depletion with WT pig RBCs to remove cell surface reactive antibodies, but leave SLA antibodies. Lastly, human and pig reactive antibodies were eluted and tested for cross-species binding and reactivity to single-antigen HLA beads. RESULTS Sequential glycan KO modifications significantly reduce antibody binding of waitlisted patients. Sera exhibiting elevated binding without reduction after depletion with WT RBCs demonstrate reduced binding to SLA class I KO cells. Human IgG, eluted from human and pig peripheral blood mononuclear cells, interacted across species and bound single-antigen HLA beads in common epitope-restricted patterns. CONCLUSIONS Many waitlisted patients have minimal xenoreactive antibody binding to the triple KO pig, but some HLA antibodies in sensitized patients cross-react with class I SLA. SLA class I is a target for genome editing in xenotransplantation.
Collapse
Affiliation(s)
- Gregory R Martens
- 1 Department of Surgery, University of Alabama at Birmingham, Birmingham, AL. 2 Department of Surgery, Indiana University, School of Medicine, Indianapolis, IN. 3 Transplant Surgery, University of Alabama at Birmingham, Birmingham, AL
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lee E, Milan A, Urbani L, De Coppi P, Lowdell MW. Decellularized material as scaffolds for tissue engineering studies in long gap esophageal atresia. Expert Opin Biol Ther 2017; 17:573-584. [PMID: 28303723 DOI: 10.1080/14712598.2017.1308482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Esophageal atresia refers to an anomaly in foetal development in which the esophagus terminates in a blind end. Whilst surgical correction is achievable in most patients, when a long gap is present it still represents a major challenge associated with higher morbidity and mortality. In this context, tissue engineering could represent a successful alternative to restore oesophageal function and structure. Naturally derived biomaterials made of decellularized tissues retain native extracellular matrix architecture and composition, providing a suitable bed for the anchorage and growth of relevant cell types. Areas covered: This review outlines the various strategies and challenges in esophageal tissue engineering, highlighting the evolution of ideas in the development of decellularized scaffolds for clinical use. It explores the interplay between clinical needs, ethical dilemmas, and manufacturing challenges in the development of a tissue engineered decellularized scaffold for oesophageal atresia. Expert opinion: Current progress on oesophageal tissue engineering has enabled effective repair of patch defects, whilst the development of a full circumferential construct remains a challenge. Despite the different approaches available and the improvements achieved, a gold standard for fully functional tissue engineered oesophageal constructs has not been defined yet.
Collapse
Affiliation(s)
- Esmond Lee
- a Centre for Cell, Gene & Tissue Therapeutics , Royal Free Hospital , London , UK.,b Institute for Stem Cell Biology and Regenerative Medicine , Stanford University , Stanford , CA , USA.,c Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR) , Singapore
| | - Anna Milan
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Luca Urbani
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Paolo De Coppi
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Mark W Lowdell
- a Centre for Cell, Gene & Tissue Therapeutics , Royal Free Hospital , London , UK
| |
Collapse
|
31
|
Abstract
Ever since the discovery of the major histocompatibility complex, scientific and clinical understanding in the field of transplantation has been advanced through genetic and genomic studies. Candidate-gene approaches and recent genome-wide association studies (GWAS) have enabled a deeper understanding of the complex interplay of the donor-recipient interactions that lead to transplant tolerance or rejection. Genetic analysis in transplantation, when linked to demographic and clinical outcomes, has the potential to drive personalized medicine by enabling individualized risk stratification and immunosuppression through the identification of variants associated with immune-mediated complications, post-transplant disease or alterations in drug-metabolizing genes.
Collapse
Affiliation(s)
- Joshua Y C Yang
- Division of Transplant Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, USA
| | - Minnie M Sarwal
- Division of Transplant Surgery, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143, USA
| |
Collapse
|
32
|
ABO typing in experimental cynomolgus monkeys using non-invasive methods. Sci Rep 2017; 7:41274. [PMID: 28112245 PMCID: PMC5256026 DOI: 10.1038/srep41274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022] Open
Abstract
ABH antigens are not expressed on the red blood cells of monkeys, making it difficult to accurately determine their blood type. In this study, we evaluated the feasibility, convenience, and stability of two non-invasive methods for ABO typing (a reverse gel system assay and a buccal mucosal cell immunofluorescent assay) in cynomolgus monkeys (n = 72). The renal tissue immunofluorescent assay was used to obtain an accurate blood type in the monkeys. Using the reverse gel system assay and preabsorbed serum, we achieved accurate detection of ABO blood groups in 65 of the 72 monkeys but obtained confusing results in the remaining 7. The original immunofluorescent staining of the buccal mucosal smears clearly and correctly identified the ABO blood groups in 50 of the 72 monkeys. After repeated smearing and staining, the ABO group type could be correctly identified in samples from the rest of the monkeys, which were either lacking sufficient buccal mucosal cells or contained impurities. Based on our findings, we recommend the reverse gel system assay as the first choice for primate blood type analysis, and the buccal mucosal cell immunofluorescent assay as a Supplementary Method whenever the reverse gel system assay fails to give a clear result.
Collapse
|
33
|
Efficient production of multi-modified pigs for xenotransplantation by 'combineering', gene stacking and gene editing. Sci Rep 2016; 6:29081. [PMID: 27353424 PMCID: PMC4926246 DOI: 10.1038/srep29081] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Xenotransplantation from pigs could alleviate the shortage of human tissues and organs for transplantation. Means have been identified to overcome hyperacute rejection and acute vascular rejection mechanisms mounted by the recipient. The challenge is to combine multiple genetic modifications to enable normal animal breeding and meet the demand for transplants. We used two methods to colocate xenoprotective transgenes at one locus, sequential targeted transgene placement - ‘gene stacking’, and cointegration of multiple engineered large vectors - ‘combineering’, to generate pigs carrying modifications considered necessary to inhibit short to mid-term xenograft rejection. Pigs were generated by serial nuclear transfer and analysed at intermediate stages. Human complement inhibitors CD46, CD55 and CD59 were abundantly expressed in all tissues examined, human HO1 and human A20 were widely expressed. ZFN or CRISPR/Cas9 mediated homozygous GGTA1 and CMAH knockout abolished α-Gal and Neu5Gc epitopes. Cells from multi-transgenic piglets showed complete protection against human complement-mediated lysis, even before GGTA1 knockout. Blockade of endothelial activation reduced TNFα-induced E-selectin expression, IFNγ-induced MHC class-II upregulation and TNFα/cycloheximide caspase induction. Microbial analysis found no PERV-C, PCMV or 13 other infectious agents. These animals are a major advance towards clinical porcine xenotransplantation and demonstrate that livestock engineering has come of age.
Collapse
|
34
|
Cooper DKC. Modifying the sugar icing on the transplantation cake. Glycobiology 2016; 26:571-81. [PMID: 26935763 DOI: 10.1093/glycob/cww028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022] Open
Abstract
As a transplant surgeon, my interest in glycobiology began through my research into ABO-incompatible allotransplantation, and grew when my goal became overcoming the shortage of organs from deceased human donors by the transplantation of pig organs into patients with terminal organ failure (xenotransplantation/cross-species transplantation). The major target for human "natural" (preformed) anti-pig antibodies is galactose-α(1,3)-galactose (the "Gal" epitope), which is expressed on many pig cells, including the vascular endothelium. The binding of human IgM and IgG antibodies to Gal antigens initiates the process of hyperacute rejection, resulting in destruction of the pig graft within minutes or hours. This major barrier has been overcome by the production of pigs in which the gene for the enzyme α(1,3)-galactosyltransferase (GT) has been deleted by genetic engineering, resulting in GT knockout (GTKO) pigs. The two other known carbohydrate antigenic targets on pig cells for human anti-pig antibodies are (i) the product of the cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene, i.e., N-glycolylneuraminic acid, and (ii) the product of the β1,4 N-acetylgalactosaminyltransferase gene, i.e., the Sd(a) antigen. Expression of these two has also been deleted in pigs. These genetic manipulations, together with others directed to overcoming primate complement and coagulation activation (the latter of which also relates to glycobiology) have contributed to the prolongation of pig graft survival in nonhuman primate recipients to many months rather than a few minutes. Clinical trials of the transplantation of pig cells are already underway and transplantation of pig organs may be expected within the relatively near future.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Griffiths PD. From PERV to CRISPR. Rev Med Virol 2016; 26:73-4. [PMID: 26892543 DOI: 10.1002/rmv.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 2016; 23:83-105. [PMID: 26813438 DOI: 10.1111/xen.12219] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti-pig antibodies in humans and non-human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose-α1,3-galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti-pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3-galactosyltransferase gene-knockout [GTKO] pigs) and express one or more human complement-regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade-based immunosuppressive regimen, prevents early antibody-mediated and cellular rejection. However, low levels of anti-non-Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation-anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation-regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non-human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Butler JR, Skill NJ, Priestman DL, Platt FM, Li P, Estrada JL, Martens GR, Ladowski JM, Tector M, Tector AJ. Silencing the porcine iGb3s gene does not affect Galα3Gal levels or measures of anticipated pig-to-human and pig-to-primate acute rejection. Xenotransplantation 2016; 23:106-16. [PMID: 27106872 DOI: 10.1111/xen.12217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/12/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND The Galα(1,3)Gal epitope (α-GAL), created by α-1,3-glycosyltransferase-1 (GGTA1), is a major xenoantigen causing hyperacute rejection in pig-to-primate and pig-to-human xenotransplantation. In response, GGTA1 gene-deleted pigs have been generated. However, it is unclear whether there is a residual small amount of α-Gal epitope expressed in GGTA1(-/-) pigs. Isoglobotrihexosylceramide synthase (iGb3s), another member of the glycosyltransferase family, catalyzes the synthesis of isoglobo-series glycosphingolipids with an α-GAL-terminal disaccharide (iGb3), creating the possibility that iGb3s may be a source of α-GAL epitopes in GGTA1(-/-) animals. The objective of this study was to examine the impact of silencing the iGb3s gene (A3GalT2) on pig-to-primate and pig-to-human immune cross-reactivity by creating and comparing GGTA1(-/-) pigs to GGTA1(-/-) - and A3GalT2(-/-) -double-knockout pigs. METHODS We used the CRISPR/Cas 9 system to target the GGTA1 and A3GalT2 genes in pigs. Both GGTA1 and A3GalT2 genes are functionally inactive in humans and baboons. CRISPR-treated cells used directly for somatic cell nuclear transfer produced single- and double-gene-knockout piglets in a single pregnancy. Once grown to maturity, the glycosphingolipid profile (including iGb3) was assayed in renal tissue by normal-phase liquid chromatography. In addition, peripheral blood mononuclear cells (PBMCs) were subjected to (i) comparative cross-match cytotoxicity analysis against human and baboon serum and (ii) IB4 staining for α-GAL/iGb3. RESULTS Silencing of the iGb3s gene significantly modulated the renal glycosphingolipid profile and iGb3 was not detected. Moreover, the human and baboon serum PBMC cytotoxicity and α-GAL/iGb3 staining were unchanged by iGb3s silencing. CONCLUSIONS Our data suggest that iGb3s is not a contributor to antibody-mediated rejection in pig-to-primate or pig-to-human xenotransplantation. Although iGb3s gene silencing significantly changed the renal glycosphingolipid profile, the effect on Galα3Gal levels, antibody binding, and cytotoxic profiles of baboon and human sera on porcine PBMCs was neutral.
Collapse
Affiliation(s)
- James R Butler
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas J Skill
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Ping Li
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jose L Estrada
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gregory R Martens
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joseph M Ladowski
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew Tector
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Joseph Tector
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
38
|
|
39
|
Wang LR, Lin YQ, Wang JT, Pan LL, Huang KT, Wan L, Zhu GQ, Liu WY, Braddock M, Zheng MH. Recent advances in re-engineered liver: de-cellularization and re-cellularization techniques. Cytotherapy 2015; 17:1015-24. [PMID: 25981396 DOI: 10.1016/j.jcyt.2015.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/08/2015] [Accepted: 04/03/2015] [Indexed: 01/26/2023]
Abstract
Allogeneic transplantation is the definitive treatment for patients with end-stage liver disease but is limited by donor shortage and very high cost. Through de-cellularization and re-cellularization methods, re-engineered liver may provide a promising alternative for treating patients with end-stage liver disease. To achieve this, the prevention of the native extracellular matrix ultrastructure plays a central role in de-cellularization protocol; the re-seeding cell types, as well as re-seeding strategies, need more explorations in re-cellularization protocol. Some success of this approach has been published in a rat model; however, the re-engineered liver remains functional in vivo for only several hours, which suggests that the recent protocol may be far from the ideal target. This Review highlights the challenges still to be overcome and presents an overview and summary of methods of de-cellularization and re-cellularization strategies, together with a view on future directions that may lead to the regeneration of a functional liver.
Collapse
Affiliation(s)
- Li-Ren Wang
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi-Qian Lin
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Renji School of Wenzhou Medical University, Wenzhou, China
| | - Jiang-Tao Wang
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liang-Liang Pan
- School of Laboratory and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Ka-Te Huang
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Wan
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gui-Qi Zhu
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wen-Yue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Martin Braddock
- Global Medicines Development, AstraZeneca R&D, Alderley Park, United Kingdom
| | - Ming-Hua Zheng
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
40
|
Zeyland J, Woźniak A, Gawrońska B, Juzwa W, Jura J, Nowak A, Słomski R, Smorąg Z, Szalata M, Mazurek U, Lipiński D. Double transgenic pigs with combined expression of human α1,2-fucosyltransferase and α-galactosidase designed to avoid hyperacute xenograft rejection. Arch Immunol Ther Exp (Warsz) 2014; 62:411-22. [PMID: 24554032 PMCID: PMC4164832 DOI: 10.1007/s00005-014-0280-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/04/2013] [Indexed: 01/25/2023]
Abstract
Hyperacute rejection (HAR) depends on the response of xenoreactive antibodies principally against porcine α-Gal epitope. Methods eliminating HAR include GGTA1 inactivation, regulation of the complement system and modification of the oligosaccharide structure of surface proteins in donor's cells. Transgenic animals designed for the purpose of xenotransplantation with single modification do not display full reduction of the α-Gal epitope level, which means that a accumulation of several modifications in one transgenic individual is needed. The aim of the study was to create a molecular and cytogenetic profile of a double transgenic animal with α1,2-fucosyltransferase and α-galactosidase expression. As a result of interbreeding of an individual with α1,2-fucosyltransferase expression with an individual with α-galactosidase expression 12 living piglets were obtained. PCR revealed the pCMVFUT gene construct was present in four individuals and pGAL-GFPBsd in three, including one with a confirmed integration of both the gene constructs. Fluorescence in situ hybridization confirmed the site of transgene integration, which corresponded to the mapping site of the transgenes which occurred in the parental generations. Karyotype analysis did not show any changes in the structure or the number of chromosomes (2n = 38, XX). As for the results pertaining to the single transgenic individuals, expression analysis demonstrated a high extent of α-Gal epitope level reduction on the surface of cells, whereas human serum cytotoxicity tests revealed the smallest decrease in longevity of cells in the obtained double transgenic individual (4.35 %). The tests suggest that the co-expression of both the transgenes leads to a considerable reduction of the α-Gal antigen level on the surface of cells and a decrease of xenotransplant immunogenicity.
Collapse
Affiliation(s)
- Joanna Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632, Poznan, Poland,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Azimzadeh AM, Byrne GW, Ezzelarab M, Welty E, Braileanu G, Cheng X, Robson SC, McGregor CGA, Cooper DKC, Pierson RN. Development of a consensus protocol to quantify primate anti-non-Gal xenoreactive antibodies using pig aortic endothelial cells. Xenotransplantation 2014; 21:555-66. [PMID: 25176173 DOI: 10.1111/xen.12125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 05/30/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Scientists working in the field of xenotransplantation do not employ a uniform method to measure and report natural and induced antibody responses to non-Galα(1,3)Gal (non-Gal) epitopes. Such humoral responses are thought to be particularly pathogenic after transplantation of vascularized GalTKO pig organs and having a more uniform assay and reporting format would greatly facilitate comparisons between laboratories. METHODS Flow cytometry allows examination of antibody reactivity to intact antigens in their natural location and conformation on cell membranes. We have established a simple and reproducible flow cytometric assay to detect antibodies specific for non-Gal pig antigens using primary porcine aortic endothelial cells (pAECs) and cell culture-adapted pAEC cell lines generated from wild type and α1,3galactosyl transferase knockout (GalTKO) swine. RESULTS The consensus protocol we propose here is based on procedures routinely used in four xenotransplantation centers and was independently evaluated at three sites using shared cells and serum samples. Our observation support use of the cell culture-adapted GalTKO pAEC KO:15502 cells as a routine method to determine the reactivity of anti-non-Gal antibodies in human and baboon serum. CONCLUSIONS We have developed an assay that allows the detection of natural and induced non-Gal xenoreactive antibodies present in human or baboon serum in a reliable and consistent manner. This consensus assay and format for reporting the data should be accessible to laboratories and will be useful for assessing experimental results between multiple research centers. Adopting this assay and format for reporting the data should facilitate the detection, monitoring, and detailed characterization of non-Gal antibody responses.
Collapse
Affiliation(s)
- Agnes M Azimzadeh
- Division of Cardiac Surgery, University of Maryland and VAMC Baltimore, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Highly sensitive glycosylation analysis of membrane glycoproteins avoiding polymeric contaminants. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0117-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Therapeutic Strategies for Xenotransplantation. Xenotransplantation 2014. [DOI: 10.1128/9781555818043.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Commins SP, James HR, Stevens W, Pochan SL, Land MH, King C, Mozzicato S, Platts-Mills TAE. Delayed clinical and ex vivo response to mammalian meat in patients with IgE to galactose-alpha-1,3-galactose. J Allergy Clin Immunol 2014; 134:108-15. [PMID: 24656556 DOI: 10.1016/j.jaci.2014.01.024] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND In 2009, we reported a novel form of delayed anaphylaxis to red meat related to serum IgE antibodies to the oligosaccharide galactose-alpha-1,3-galactose (alpha-gal). Although patients were remarkably consistent in their description of a 3- to 6-hour delay between eating mammalian meat and the appearance of symptoms, this delay has not been demonstrated under observed studies. OBJECTIVES We sought to formally document the time course of clinical symptoms after the ingestion of mammalian meat in subjects with IgE to alpha-gal and to monitor ex vivo for the appearance of markers of an allergic reaction. METHODS Open food challenges were performed with mammalian meat in 12 subjects with a history of severe urticarial reactions 3 to 6 hours after eating beef, pork, or lamb, as well as in 13 control subjects. Blood samples were taken hourly during each challenge. RESULTS Ten of 12 subjects with IgE to alpha-gal had clinical evidence of a reaction during the food challenge (vs none of the control subjects, P < .001). The reactions occurred 3 to 7 hours after the initial ingestion of mammalian meat and ranged from urticaria to anaphylaxis. Tryptase levels were positive in 3 challenges. Basophil activation, as measured by increased expression of CD63, correlated with the appearance of clinical symptoms. CONCLUSION The results presented provide clear evidence of an IgE-mediated food allergy that occurs several hours after ingestion of the inciting allergen. Moreover, here we report that in vivo basophil activation during a food challenge occurs in the same time frame as clinical symptoms and likely reflects the appearance of the antigen in the bloodstream.
Collapse
Affiliation(s)
- Scott P Commins
- Asthma and Allergic Diseases Center, Department of Medicine, University of Virginia, Charlottesville, Va.
| | - Hayley R James
- Asthma and Allergic Diseases Center, Department of Medicine, University of Virginia, Charlottesville, Va
| | - Whitney Stevens
- Asthma and Allergic Diseases Center, Department of Medicine, University of Virginia, Charlottesville, Va
| | - Shawna L Pochan
- Asthma and Allergic Diseases Center, Department of Medicine, University of Virginia, Charlottesville, Va
| | - Michael H Land
- Duke Asthma, Allergy and Airway Center, Duke University, Durham, NC
| | - Carol King
- Asthma and Allergic Diseases Center, Department of Medicine, University of Virginia, Charlottesville, Va
| | - Susan Mozzicato
- Asthma and Allergic Diseases Center, Department of Medicine, University of Virginia, Charlottesville, Va
| | - Thomas A E Platts-Mills
- Asthma and Allergic Diseases Center, Department of Medicine, University of Virginia, Charlottesville, Va
| |
Collapse
|
45
|
Preliminary experience with porcine intestinal submucosa (CorMatrix) for valve reconstruction in congenital heart disease: histologic evaluation of explanted valves. J Thorac Cardiovasc Surg 2014; 148:2216-4, 2225.e1. [PMID: 24698560 DOI: 10.1016/j.jtcvs.2014.02.081] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/12/2014] [Accepted: 02/26/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We compared the histologic findings in explanted CorMatrix (9 patients) and autologous pericardium (9 patients) used for valvuloplasty of the aortic (7 patients) and/or mitral (11 patients) valve in patients with congenital heart defects. METHODS We used standard tissue stains and immunohistochemistry to identify the inflammatory cell type. RESULTS CorMatrix was associated with an intense inflammatory response in the surrounding native tissue, extending into CorMatrix in 8 of 9 cases, continuing to the longest follow-up point (9 months). The typical response included macrophages and giant cells in contact with the material, surrounded by lymphocytes, macrophages, plasma cells, and eosinophils. The thickness of the residual CorMatrix material was 280 to 300 μm, similar to the nominal thickness at implantation and unrelated to the implantation duration. Only at the longest follow-up interval was any significant resorption of CorMatrix material evident. A neointima had formed on the surface of CorMatrix, increasing in thickness with the period in situ. Mild cellular infiltration of CorMatrix was noted in all cases; however, in no case, did it appear that CorMatrix was being remodeled into tissue resembling a 3-layered native valve. In contrast, a near absence of any inflammatory reaction was seen and no eosinophilia associated with autologous pericardium was present, irrespective of the duration in situ. Furthermore, we observed more tissue infiltration, remodeling, vascularization, and neointima formation with autologous pericardium. CONCLUSIONS Although CorMatrix used for valve repair induced an intense inflammatory response, little or no remodeling to form tissue resembling a 3-layered native valve was seen at ≤9 months after implantation.
Collapse
|
46
|
Park HM, Park JH, Kim YW, Kim KJ, Jeong HJ, Jang KS, Kim BG, Kim YG. The Xeno-glycomics database (XDB): a relational database of qualitative and quantitative pig glycome repertoire. Bioinformatics 2013; 29:2950-2. [PMID: 24013926 DOI: 10.1093/bioinformatics/btt504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SUMMARY In recent years, the improvement of mass spectrometry-based glycomics techniques (i.e. highly sensitive, quantitative and high-throughput analytical tools) has enabled us to obtain a large dataset of glycans. Here we present a database named Xeno-glycomics database (XDB) that contains cell- or tissue-specific pig glycomes analyzed with mass spectrometry-based techniques, including a comprehensive pig glycan information on chemical structures, mass values, types and relative quantities. It was designed as a user-friendly web-based interface that allows users to query the database according to pig tissue/cell types or glycan masses. This database will contribute in providing qualitative and quantitative information on glycomes characterized from various pig cells/organs in xenotransplantation and might eventually provide new targets in the α1,3-galactosyltransferase gene-knock out pigs era. AVAILABILITY The database can be accessed on the web at http://bioinformatics.snu.ac.kr/xdb.
Collapse
Affiliation(s)
- Hae-Min Park
- School of Chemical and Biological Engineering and Department of Computer Science and Engineering, Seoul National University, Seoul 151-742, Korea Department of Chemical Engineering, Soongsil University, Seoul 156-743, Korea Institute of Molecular Biology and Genetics and Institute of Bioengineering, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Burlak C, Bern M, Brito AE, Isailovic D, Wang ZY, Estrada JL, Li P, Tector AJ. N-linked glycan profiling of GGTA1/CMAH knockout pigs identifies new potential carbohydrate xenoantigens. Xenotransplantation 2013; 20:277-91. [PMID: 24033743 DOI: 10.1111/xen.12047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/16/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND The temporary or long-term xenotransplantation of pig organs into people would save thousands of lives each year if not for the robust human antibody response to pig carbohydrates. Genetically engineered pigs deficient in galactose α1,3 galactose (gene modified: GGTA1) and N-glycolylneuraminic acid (gene modified: CMAH) have significantly improved cell survival when challenged by human antibody and complement in vitro. There remains, however, a significant portion of human antibody binding. METHODS To uncover additional xenoantigens, we compared the asparagine-linked (N-linked) glycome from serum proteins of humans, domestic pigs, GGTA1 knockout pigs, and GGTA1/CMAH knockout pigs using mass spectrometry. Carbohydrate structures were determined with assistance from GlycoWorkbench, Cartoonist, and SimGlycan software by comparison to existing database entries and collision-induced dissociation fragmentation data. RESULTS Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of reduced and solid-phase permethylated glycans resulted in the detection of high-mannose, hybrid, and complex type N-linked glycans in the 1000-4500 m/z ion range. GGTA1/CMAH knockout pig samples had increased relative amounts of high-mannose, incomplete, and xylosylated N-linked glycans. All pig samples had significantly higher amounts of core and possibly antennae fucosylation. CONCLUSIONS We provide for the first time a comparison of the serum protein glycomes of the human, domestic pig, and genetically modified pigs important to xenotransplantation.
Collapse
Affiliation(s)
- Christopher Burlak
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Byrne GW, Azimzadeh AM, Ezzelarab M, Tazelaar HD, Ekser B, Pierson RN, Robson SC, Cooper DKC, McGregor CGA. Histopathologic insights into the mechanism of anti-non-Gal antibody-mediated pig cardiac xenograft rejection. Xenotransplantation 2013; 20:292-307. [PMID: 25098626 PMCID: PMC4126170 DOI: 10.1111/xen.12050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/31/2013] [Indexed: 01/13/2023]
Abstract
The histopathology of cardiac xenograft rejection has evolved over the last 20 yr with the development of new modalities for limiting antibody-mediated injury, advancing regimens for immune suppression, and an ever-widening variety of new donor genetics. These new technologies have helped us progress from what was once an overwhelming anti-Gal-mediated hyperacute rejection to a more protracted anti-Gal-mediated vascular rejection to what is now a more complex manifestation of non-Gal humoral rejection and coagulation dysregulation. This review summarizes the changing histopathology of Gal- and non-Gal-mediated cardiac xenograft rejection and discusses the contributions of immune-mediated injury, species-specific immune-independent factors, transplant and therapeutic procedures, and donor genetics to the overall mechanism(s) of cardiac xenograft rejection.
Collapse
Affiliation(s)
- Guerard W Byrne
- Institute of Cardiovascular Science, University College London, London, UK; Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Scobie L, Padler-Karavani V, Le Bas-Bernardet S, Crossan C, Blaha J, Matouskova M, Hector RD, Cozzi E, Vanhove B, Charreau B, Blancho G, Bourdais L, Tallacchini M, Ribes JM, Yu H, Chen X, Kracikova J, Broz L, Hejnar J, Vesely P, Takeuchi Y, Varki A, Soulillou JP. Long-term IgG response to porcine Neu5Gc antigens without transmission of PERV in burn patients treated with porcine skin xenografts. THE JOURNAL OF IMMUNOLOGY 2013; 191:2907-15. [PMID: 23945141 DOI: 10.4049/jimmunol.1301195] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acellular materials of xenogenic origin are used worldwide as xenografts, and phase I trials of viable pig pancreatic islets are currently being performed. However, limited information is available on transmission of porcine endogenous retrovirus (PERV) after xenotransplantation and on the long-term immune response of recipients to xenoantigens. We analyzed the blood of burn patients who had received living pig-skin dressings for up to 8 wk for the presence of PERV as well as for the level and nature of their long term (maximum, 34 y) immune response against pig Ags. Although no evidence of PERV genomic material or anti-PERV Ab response was found, we observed a moderate increase in anti-αGal Abs and a high and sustained anti-non-αGal IgG response in those patients. Abs against the nonhuman sialic acid Neu5Gc constituted the anti-non-αGal response with the recognition pattern on a sialoglycan array differing from that of burn patients treated without pig skin. These data suggest that anti-Neu5Gc Abs represent a barrier for long-term acceptance of porcine xenografts. Because anti-Neu5Gc Abs can promote chronic inflammation, the long-term safety of living and acellular pig tissue implants in recipients warrants further evaluation.
Collapse
Affiliation(s)
- Linda Scobie
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zeyland J, Gawrońska B, Juzwa W, Jura J, Nowak A, Słomski R, Smorąg Z, Szalata M, Woźniak A, Lipiński D. Transgenic pigs designed to express human α-galactosidase to avoid humoral xenograft rejection. J Appl Genet 2013; 54:293-303. [PMID: 23780397 PMCID: PMC3720986 DOI: 10.1007/s13353-013-0156-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 04/18/2013] [Accepted: 05/27/2013] [Indexed: 12/01/2022]
Abstract
The use of animals as a source of organs and tissues for xenotransplantation can overcome the growing shortage of human organ donors. However, the presence of xenoreactive antibodies in humans directed against swine Gal antigen present on the surface of xenograft donor cells leads to the complement activation and immediate xenograft rejection as a consequence of hyperacute reaction. To prevent hyperacute rejection, it is possible to change the swine genome by a human gene modifying the set of donor’s cell surface proteins. The gene construct pGal-GFPBsd containing the human gene encoding α-galactosidase enzyme under the promoter of EF-1α elongation factor ensuring systemic expression was introduced by microinjection into a male pronucleus of the fertilised porcine oocyte. As a result, the founder male pig was obtained with the transgene mapping to chromosome 11p12. The polymerase chain reaction (PCR) analysis revealed and the Southern analysis confirmed transgene integration estimating the approximate number of transgene copies as 16. Flow cytometry analysis revealed a reduction in the level of epitope Gal on the cell surface of cells isolated from F0 and F1 transgenic animals. The complement-mediated cytotoxicity assay showed increased viability of the transgenic cells in comparison with the wild-type, which confirmed the protective influence of α-galactosidase expression.
Collapse
Affiliation(s)
- J Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632, Poznan, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|