1
|
Sykes M, Sachs DH. Progress in xenotransplantation: overcoming immune barriers. Nat Rev Nephrol 2022; 18:745-761. [PMID: 36198911 DOI: 10.1038/s41581-022-00624-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
A major limitation of organ allotransplantation is the insufficient supply of donor organs. Consequently, thousands of patients die every year while waiting for a transplant. Progress in xenotransplantation that has permitted pig organ graft survivals of years in non-human primates has led to renewed excitement about the potential of this approach to alleviate the organ shortage. In 2022, the first pig-to-human heart transplant was performed on a compassionate use basis, and xenotransplantation experiments using pig kidneys in deceased human recipients provided encouraging data. Many advances in xenotransplantation have resulted from improvements in the ability to genetically modify pigs using CRISPR-Cas9 and other methodologies. Gene editing has the capacity to generate pig organs that more closely resemble those of humans and are hence more physiologically compatible and less prone to rejection. Despite such modifications, immune responses to xenografts remain powerful and multi-faceted, involving innate immune components that do not attack allografts. Thus, the induction of innate and adaptive immune tolerance to prevent rejection while preserving the capacity of the immune system to protect the recipient and the graft from infection is desirable to enable clinical xenotransplantation.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University, New York, NY, USA.
| | - David H Sachs
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Carvalho-Oliveira M, Valdivia E, Blasczyk R, Figueiredo C. Immunogenetics of xenotransplantation. Int J Immunogenet 2021; 48:120-134. [PMID: 33410582 DOI: 10.1111/iji.12526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/06/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Xenotransplantation may become the highly desired solution to close the gap between the availability of donated organs and number of patients on the waiting list. In recent years, enormous progress has been made in the development of genetically engineered donor pigs. The introduced genetic modifications showed to be efficient in prolonging xenograft survival. In this review, we focus on the type of immune responses that may target xeno-organs after transplantation and promising immunogenetic modifications that show a beneficial effect in ameliorating or eliminating harmful xenogeneic immune responses. Increasing histocompatibility of xenografts by eliminating genetic discrepancies between species will pave their way into clinical application.
Collapse
Affiliation(s)
- Marco Carvalho-Oliveira
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany.,TRR127 - Biology of Xenogeneic Cell and Organ Transplantation - from bench to bedside, Hannover, Germany
| | - Emilio Valdivia
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany.,TRR127 - Biology of Xenogeneic Cell and Organ Transplantation - from bench to bedside, Hannover, Germany
| |
Collapse
|
3
|
Yamada K, Ariyoshi Y, Pomposelli T, Sekijima M. Co-transplantation of Vascularized Thymic Graft with Kidney in Pig-to-Nonhuman Primates for the Induction of Tolerance Across Xenogeneic Barriers. Methods Mol Biol 2020; 2110:151-171. [PMID: 32002908 DOI: 10.1007/978-1-0716-0255-3_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using advanced gene editing technologies, xenotransplantation from multi-transgenic alpha-1,3-galactosyltransferase knockout pigs has demonstrated marked prolongation of renal xenograft survival, ranging from days to greater than several months for life-supporting kidneys and >2 years in a heterotopic non-life-supporting cardiac xenograft model. However, continuous administration of multiple immunosuppressive drugs continues to be required, and attempts to taper immunosuppression have been unsuccessful. These data are consistent with previous reports indicating that the human-anti-porcine T cell response is similar or stronger than that across allogeneic barriers. Due to the strength of both the innate and adaptive immune responses in xenotransplantation, the level of continuous immunosuppression needed to control these responses and prolong xenograft survival has been associated with prohibitive morbidity and mortality. These facts provide compelling rationale to pursue a clinically applicable strategy for the induction of tolerance.Mixed chimerism and thymic tissue transplantation have both achieved xenogeneic tolerance in pig-to-mouse models, and both have recently been extended to pig-to-baboon models. Although these strategies are promising in small animal models, neither direct intravenous injection of porcine bone marrow cells nor direct fetal thymic tissue transplantation into recipients was able to achieve >2 days chimerism following BM Tx or the engraftment of thymic tissues across xenogeneic barriers in pig-to-nonhuman primate models. Several innovative procedures have been largely developed by Kazuhiko Yamada to overcome these failures. These include vascularized thymic transplantation, combined with either thymokidney (TK) or vascularized thymic lobe (VTL) transplantation. Utilizing the strategy of transplanting vascularized thymic grafts with kidney from the same GalT-KO donor without further gene modification, we have achieved longer than 6 months survival of life-supporting kidneys in a baboon. Notably, the recipient became donor specific unresponsive and developed new thymic emigrants. In this chapter, we introduce a brief summary of our achievements to date toward the successful induction of tolerance by utilizing our novel strategy of vascularized thymic transplantation (including thymokidney transplantation), as well as describe the step-by-step methodology of surgical and in vitro procedures which are required for this experiment.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Yamada Laboratory, Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA.
| | - Yuichi Ariyoshi
- Yamada Laboratory, Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Thomas Pomposelli
- Yamada Laboratory, Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| | - Mitsuhiro Sekijima
- Yamada Laboratory, Department of Surgery, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Krishnan R, Ko D, Foster CE, Liu W, Smink AM, de Haan B, De Vos P, Lakey JRT. Immunological Challenges Facing Translation of Alginate Encapsulated Porcine Islet Xenotransplantation to Human Clinical Trials. Methods Mol Biol 2017; 1479:305-333. [PMID: 27738946 DOI: 10.1007/978-1-4939-6364-5_24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transplantation of alginate-encapsulated islets has the potential to treat patients suffering from type I diabetes, a condition characterized by an autoimmune attack against insulin-secreting beta cells. However, there are multiple immunological challenges associated with this procedure, all of which must be adequately addressed prior to translation from trials in small animal and nonhuman primate models to human clinical trials. Principal threats to graft viability include immune-mediated destruction triggered by immunogenic alginate impurities, unfavorable polymer composition and surface characteristics, and release of membrane-permeable antigens, as well as damage associated molecular patterns (DAMPs) by the encapsulated islets themselves. The lack of standardization of significant parameters of bioencapsulation device design and manufacture (i.e., purification protocols, surface-modification grafting techniques, alginate composition modifications) between labs is yet another obstacle that must be overcome before a clinically effective and applicable protocol for encapsulating islets can be implemented. Nonetheless, substantial progress is being made, as is evident from prolonged graft survival times and improved protection from immune-mediated graft destruction reported by various research groups, but also with regard to discoveries of specific pathways involved in explaining observed outcomes. Progress in the latter is essential for a comprehensive understanding of the mechanisms responsible for the varying levels of immunogenicity of certain alginate devices. Successful translation of encapsulated islet transplantation from in vitro and animal model testing to human clinical trials hinges on application of this knowledge of the pathways and interactions which comprise immune-mediated rejection. Thus, this review not only focuses on the different factors contributing to provocation of the immune reaction by encapsulated islets, but also on the defining characteristics of the response itself.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA
| | - David Ko
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA
| | - Clarence E Foster
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA.,Department of Transplantation, University of California Irvine, Orange, CA, USA
| | - Wendy Liu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - A M Smink
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Bart de Haan
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Paul De Vos
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA. .,Department of Transplantation, University of California Irvine, Orange, CA, USA. .,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
5
|
Yamada K, Shah JA, Tanabe T, Lanaspa MA, Johnson RJ. Xenotransplantation: Where Are We with Potential Kidney Recipients? Recent Progress and Potential Future Clinical Trials. CURRENT TRANSPLANTATION REPORTS 2017; 4:101-109. [PMID: 28989853 DOI: 10.1007/s40472-017-0149-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Inter-species transplantation, xenotransplantation, is becoming a realistic strategy to solve the organ shortage crisis. Here we focus on seminal publications that have driven research in xenotransplantation, as well as recently published literature and future endeavors. RECENT FINDINGS Advances in gene editing technology have allowed for the efficient production of multi-transgenic porcine donors leading improved xenograft survival in baboons, up to 2-years following heterotopic heart xenotransplantation and from weeks to several months following life-supporting kidney xenotransplanation. As technology evolves, additional challenges have arisen, including the development of proteinuria, early graft loss associated with porcine CMV, disparities in organ growth between donors and recipients as well as high-dose continuous immunosuppression requirements. To address these issues, our laboratory developed a tolerance-inducing protocol which has allowed for >6 months survival of a life-supporting kidney with further approaches currently underway to address the challenges mentioned above. SUMMARY Our recent findings, reviewed in this article, led us to develop methods to overcome obstacles, which, in conjunction with the work of others, are promising for future clinical applications of xenotransplantation.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Jigesh A Shah
- Transplantation Biology Research Laboratories, Massachusetts general Hospital, Harvard Medical School, Boston, MA
| | - Tatsu Tanabe
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora CO
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado, Aurora CO
| |
Collapse
|
6
|
Griesemer A, Yamada K, Sykes M. Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 2015; 258:241-58. [PMID: 24517437 DOI: 10.1111/imr.12152] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The discrepancy between organ need and organ availability represents one of the major limitations in the field of transplantation. One possible solution to this problem is xenotransplantation. Research in this field has identified several obstacles that have so far prevented the successful development of clinical xenotransplantation protocols. The main immunologic barriers include strong T-cell and B-cell responses to solid organ and cellular xenografts. In addition, components of the innate immune system can mediate xenograft rejection. Here, we review these immunologic and physiologic barriers and describe some of the strategies that we and others have developed to overcome them. We also describe the development of two strategies to induce tolerance across the xenogeneic barrier, namely thymus transplantation and mixed chimerism, from their inception in rodent models through their current progress in preclinical large animal models. We believe that the addition of further beneficial transgenes to Gal knockout swine, combined with new therapies such as Treg administration, will allow for successful clinical application of xenotransplantation.
Collapse
Affiliation(s)
- Adam Griesemer
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | |
Collapse
|
7
|
Cellular Immune Responses to Xenografts. Xenotransplantation 2014. [DOI: 10.1128/9781555818043.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Scalea J, Hanecamp I, Robson SC, Yamada K. T-cell-mediated immunological barriers to xenotransplantation. Xenotransplantation 2012; 19:23-30. [PMID: 22360750 DOI: 10.1111/j.1399-3089.2011.00687.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Xenotransplantion remains the most viable option for significant expansion of the donor organ pool in clinical transplantation. With the advent of nuclear transfer technologies, the production of transgenic swine has become a possibility. These animals have allowed transplant investigators to overcome humoral mechanisms of hyperacute xenograft rejection in experimental pig-to-non-human primate models. However, other immunologic barriers preclude long-term acceptance of xenografts. This review article focuses on a major feature of xenogeneic rejection: xenogeneic T cell responses. Evidence obtained from both small and large animal models, particularly those using either islet cells or kidneys, have demonstrated that T cell responses play a major role in xenogeneic rejection, and that immunosuppression alone is likely incapable of completely suppressing these responses. Additionally, both the direct and indirect pathway of antigen presentation appear to be involved in these anti donor processes. Enhanced understanding of (i) CD47 and its role in transduced xeno-bone marrow (ii) CD39 and its role in coagulation dysregulation and (iii) thymic transplantation have provided us with encouraging results. Presently, experiments evaluating the possibility of xenogeneic tolerance are underway.
Collapse
Affiliation(s)
- Joseph Scalea
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | | | | | | |
Collapse
|
9
|
Thymic transplantation in pig-to-nonhuman primates for the induction of tolerance across xenogeneic barriers. Methods Mol Biol 2012; 885:191-212. [PMID: 22565997 DOI: 10.1007/978-1-61779-845-0_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the advent of knockout pigs for α1,3-galactosyltransferease (GalT-KO, which lack a cell-surface antigen to which humans have preformed antibodies), investigators have extended the survival of life-supporting xenorenal grafts. However, despite these increases, nonhuman primates transplanted with GalT-KO renal grafts are susceptible to anti-donor T-cell responses that are strong or stronger than allogeneic responses. In order to prevent rejection, recipients must be subjected to morbidly high levels of immunosuppression. For these reasons, our laboratory has attempted to develop novel methods of xenogeneic tolerance using vascularized porcine thymic grafts in order to reteach the recipient's immune system to accept the xenogeneic organ as self. These strategies, largely developed by Dr. Kazuhiko Yamada, involve the co-transplantation of a vascularized donor thymus with a kidney. This has been successfully done in two ways. The first method involves the preparation of a composite tissue "thymokidney" and the second utilizes the transplantation of an isolated vascularized thymic lobe. Both strategies involve the transplantation of fully vascularized thymic tissue at the time of xenotransplantation, a fact which is crucial for function of the thymic tissue immediately after xenografting and reeducation of recipient T-cells. These strategies have successfully induced tolerance across fully allogeneic models in miniature swine and prolonged graft survival in our pig-to-baboon model of life-supporting xenotransplantation to greater than 80 days with in vitro evidence of donor-specific unresponsiveness. Although it is too early for the development of clinical renal xenotransplantation protocols, this chapter describes the authors' unique experience with one of the most promising preclinical large-animal models of xenotransplantation. Furthermore, understanding the importance and measurement of T-cell responses in xenotransplantation is contingent upon a functional knowledge of these procedures.
Collapse
|
10
|
Lin ML, Zhan Y, Nutt SL, Brady J, Wojtasiak M, Brooks AG, Lew AM. NK cells promote peritoneal xenograft rejection through an IFN-?-dependent mechanism. Xenotransplantation 2006; 13:536-46. [PMID: 17059581 DOI: 10.1111/j.1399-3089.2006.00348.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Natural killer (NK) cells have emerged as major players in anti-viral and anti-tumour immune responses. Like cytotoxic T lymphocytes (CTL), they express perforin and are potent secretors of gamma-interferon (IFN-gamma). However, there is conflicting evidence about their role in mediating rejection of xenogeneic tissue. METHODS A pig-to-mouse peritoneal cell model of xenotransplantation was used to investigate the effect of NK deficiency on xenograft recovery and the possible mechanisms behind this NK-mediated graft rejection. gamma c(-/-)RAG(-/-) mice were used as a model of NK deficiency. Additionally, NK cells were depleted in RAG(-/-) mice using anti-asialo GM1. The contributions of IFN-gamma, perforin and NKT cells were studied using knock-out mice that were depleted in vivo of T cells. Mice were injected with 10(7) pig cells intraperitoneally and peritoneal fluid was assessed 5 days later for xenograft recovery and phenotypic analysis. The requirement for NK cells for xenograft rejection was also assessed using luciferase-transfected porcine cells in a renal subcapsular model of transplantation. RESULTS Pig cell recovery was enhanced in both gamma c(-/-)RAG(-/-) and NK-depleted RAG(-/-) mice when compared with RAG(-/-) control mice. IFN-gamma(-/-) mice depleted of T cells also demonstrated superior graft survival compared with their B6 counterparts. However, there were minimal graft survival differences between Pfp(-/-) and B6 control mice. Similarly, a deficiency in NKT cells did not improve pig xenograft recovery from the peritoneum of these mice. CONCLUSIONS Therefore, we conclude that NK cells, but not NKT cells, are important mediators of xenograft rejection in the peritoneal cavity, and that their role may be unmasked in the absence of T cells. The mechanism for this xenorejection appears to involve IFN-gamma but is perforin independent.
Collapse
Affiliation(s)
- Ming-Lee Lin
- Autoimmunity and Transplantation Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Vic., Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Wennberg L, Goto M, Maeda A, Song Z, Benjamin C, Groth CG, Korsgren O. The efficacy of CD40 ligand blockade in discordant pig-to-rat islet xenotransplantation is correlated with an immunosuppressive effect of immunoglobulin. Transplantation 2005; 79:157-64. [PMID: 15665763 DOI: 10.1097/01.tp.0000147317.96481.db] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The authors' aim was to evaluate the efficacy of immunosuppression with monoclonal anti-CD40 ligand antibodies (aCD40L) or nonspecific polyclonal intravenous immunoglobulin (IVIG) in the pig-to-rat islet xenotransplantation model. METHODS Fetal porcine islet-like cell clusters were transplanted under the kidney capsule of nondiabetic rats. All antibodies were administered alone or in combination with cyclosporine A (CsA). In addition, some animals were administered antibodies plus tacrolimus (TAC) or sirolimus (SIR). Twelve days after transplantation, islet xenograft survival and rejection were evaluated using immunohistochemistry. RESULTS aCD40L plus CsA had a pronounced inhibitory effect on islet xenograft rejection for up to 12 days after transplantation. Unexpectedly, treatment with a monoclonal control antibody (anti-keyhole limpet hemocyanin [aKLH]) plus CsA had a similar inhibitory effect. Furthermore, a similar inhibition of islet xenograft rejection was observed also in animals administered IVIG plus CsA. Monotherapy with aCD40L, aKLH, IVIG, or CsA had no effect on the rejection process. Also, when aCD40L or aKLH was administered together with TAC, islet xenograft rejection was inhibited. There was no marked difference compared with rats treated with aCD40L or aKLH and CsA. Immunosuppression with aCD40L or aKLH in combination with SIR also inhibited pig-to-rat islet xenograft rejection, but the protective effect was not as pronounced. CONCLUSIONS Immunosuppression with high doses of antibodies, monoclonal or polyclonal, in combination with CsA or TAC inhibits pig-to-rat islet xenograft rejection. No specific effect of co-stimulatory blockade with aCD40L could be observed. Instead, the results indicate a nonspecific immunosuppressive effect of high doses of antibodies in this model.
Collapse
Affiliation(s)
- Lars Wennberg
- Karolinska Institute, Department of Transplantation Surgery, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
12
|
Schmidt P, Krook H, Goto M, Korsgren O. MyD88-dependent toll-like receptor signalling is not a requirement for fetal islet xenograft rejection in mice. Xenotransplantation 2004; 11:347-52. [PMID: 15196129 DOI: 10.1111/j.1399-3089.2004.00145.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Rejection of pancreatic islet xenografts in mice shares immunopathological features with a Th1-associated delayed-type hypersensitivity (DTH) reaction. The aim of the present study was to investigate the mechanism of acute cellular xenograft rejection in a strain of mice with a targeted gene disruption of the toll-like receptor (TLR) signal adaptor protein MyD88. These mice have been shown to have markedly impaired Th1 immunity. METHODS The MyD88-/- and normal mice were transplanted with 2 microl of fetal porcine islet-like cell clusters (ICC) under the left kidney capsule. On days 3, 6 or 12 after transplantation the mice were killed and the grafts either prepared for immunohistochemistry or real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR). The number of remaining ICC and infiltrating cells with different phenotypic characteristics was assessed semi-quantitatively. Grafts used for quantitative RT-PCR were analysed for content of murine mRNA of interferon (IFN)-gamma, interleukin (IL)-12p40, IL-4 and IL-10. RESULTS On day 3, the rejection process was initiated in both MyD88-/- and normal mice as characterized by a moderate infiltration of F4/80+ and MAC-1+ macrophages and occasional CD3+ and CD4+ cells. Expression of IFN-gamma and IL-12p40 was lower but still detectable in the MyD88-/- mice, when compared with control animals. By day 6, rejection was almost completed in all animals with only few ICC remaining. 12 days after transplantation all grafts were completely destroyed and heavily infiltrated by macrophages. Moderate numbers of CD3+ and CD4+ and occasional CD8+ cells were also present. CONCLUSIONS Islet xenograft rejection was found to persist in MyD88-/- mice. Despite a relatively lower expression of the Th1-associated cytokines IFN-gamma and IL12-p40 within the xenograft area, both the time course and morphological pattern of the rejection were essentially similar to that found in normal animals. Hence, MyD88-dependent TLR signalling does not appear to be a crucial component of acute cellular xenograft rejection.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Cytokines/genetics
- Cytokines/immunology
- Fetus/cytology
- Fetus/immunology
- Graft Rejection/immunology
- Immunohistochemistry
- Islets of Langerhans Transplantation/immunology
- Kinetics
- Membrane Glycoproteins/metabolism
- Mice
- Myeloid Differentiation Factor 88
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- Swine
- Toll-Like Receptors
- Transplantation, Heterologous/immunology
Collapse
Affiliation(s)
- Peter Schmidt
- Division of Clinical Immunology, The Rudbeck Laboratory, Uppsala University, Sweden.
| | | | | | | |
Collapse
|
13
|
Wennberg L, Song Z, Bennet W, Sandberg JO, Sundberg B, Thall A, Korsgren O. Importance of the Gal alpha1-3 Gal antigen in discordant islet xenotransplantation: immunosuppression, which inhibits porcine islet xenograft rejection in ordinary mice, is equally effective in Gal-knockout mice. Transplantation 2004; 77:1275-80. [PMID: 15114098 DOI: 10.1097/01.tp.0000119162.11743.af] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Islet xenotransplantation will most likely be performed in diabetic patients treated with immunosuppressive drugs. The importance of the galactosyl alpha(1-3) galactose (Galalpha1-3Gal) antigen in immunosuppressed islet xenograft recipients has not been studied. METHODS Fetal porcine islet-like cell clusters (ICCs) were transplanted into the renal subcapsular space of both Gal-knockout mice and ordinary mice. Transplantations were performed in untreated mice and mice immunosuppressed with cyclosporine A (CsA) plus 15-deoxyspergualin (DSG). Studies were also performed in immunosuppressed Gal-knockout mice that had been actively immunized against Galalpha1-3Gal. Evaluation was performed 12 days after transplantation using morphologic techniques. The levels of serum immunoglobulin (Ig)G and IgM to the Galalpha1-3Gal antigen or to the ICCs were determined. RESULTS No difference in the morphologic appearance could be seen between ordinary mice and Gal-knockout mice. No deposits of IgG, IgM, or C3 could be detected. Almost no difference could be seen between immunosuppressed Gal-knockout mice and immunosuppressed ordinary mice. In immunosuppressed, immunized Gal-knockout mice, the results were similar. In ordinary mice treated with CsA+DSG, the levels of anti-Gal IgM were lower than they were in untreated mice, whereas the levels of anti-Gal IgG were similar. In Gal-knockout mice (including immunized animals) treated with CsA+DSG, the levels of anti-Gal IgG and IgM were lower than they were in untreated Gal-knockout mice. CONCLUSIONS After renal subcapsular transplantation, antibodies against Galalpha1-3Gal have no major influence on islet xenograft rejection in the pig-to-mouse model. Immunosuppression, which inhibits rejection in the pig-to-mouse model, is equally effective when transplantation is performed across the Galalpha1-3Gal barrier.
Collapse
Affiliation(s)
- L Wennberg
- Department of Transplantation Surgery, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
14
|
Schmidt P, Krook H, Maeda A, Korsgren O, Benda B. A new murine model of islet xenograft rejection: graft destruction is dependent on a major histocompatibility-specific interaction between T-cells and macrophages. Diabetes 2003; 52:1111-8. [PMID: 12716740 DOI: 10.2337/diabetes.52.5.1111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A new murine model of porcine islet-like cell cluster (ICC) xenograft rejection, avoiding interference of unspecific inflammation, was introduced and used to investigate rejection mechanisms. Athymic (nu/nu) mice were transplanted with syngeneic, allogeneic, or xenogeneic islets under the kidney capsule. After the original transplantation, immune cells in porcine ICC xenografts undergoing rejection in native immunocompetent mice were transferred to the peritoneal cavity of the athymic mice. At defined time points after transfer, the primary grafts were evaluated by immunohistochemistry and real-time quantitative RT-PCR to estimate cytokine and chemokine mRNA expression. Transfer of immunocompetent cells enabled athymic (nu/nu) mice to reject a previously tolerated ICC xenograft only when donor and recipient were matched for major histocompatibility complex (MHC). In contrast, allogeneic and syngeneic islets were not rejected. The ICC xenograft rejection was mediated by transferred T-cells. The main effector cells, macrophages, were shown to be part of a specific immune response. By day 4 after transplantation, there was an upreglation of both Th1- and Th2-associated cytokine transcripts. The transferred T-cells were xenospecific and required MHC compatibility to induce rejection. Interaction between the TCR of transferred T-cells and MHC on host endothelial cells and/or macrophages seems necessary for inducing ICC xenograft rejection.
Collapse
Affiliation(s)
- Peter Schmidt
- Division of Clinical Immunology, Uppsala University, Rudbeck Laboratory CII, Dag Hammerskjölds väg 20, SE-75185 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Gores PF, Hayes DH, Copeland MJ, Korbutt GS, Halberstadt C, Kirkpatrick SA, Rajotte RV. Long-term survival of intratesticular porcine islets in nonimmunosuppressed beagles. Transplantation 2003; 75:613-8. [PMID: 12640298 DOI: 10.1097/01.tp.0000052376.89400.8d] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The testis is an immunoprivileged organ, and at 37 degrees C, the intratesticular microenvironment supports the survival of allogeneic islets. The objective of this study was to determine whether the immunoprotection afforded by the intratesticular environment is potent enough to prevent the rejection of xenogeneic porcine islets in a large-animal model. METHODS A bilateral cryptorchid condition was surgically created in sexually mature beagle dogs. Porcine islets were prepared from neonatal pigs by collagenase digestion and 9 days of culture, after which they were injected into each of the cryptorchid testes. Control dogs received liver subcapsular space transplants of porcine islets and autologous islets. After 100 days, the testes and relevant portions of liver were studied immunohistochemically for the presence of islet tissue. RESULTS The testicular interstitial space of all dogs contained abundant islet tissue. No evidence of lymphocytic infiltration or inflammation was observed. In contrast, porcine islets transplanted to the liver subcapsular space do not survive, although autologous islets engraft well in that position. This occurs even though the recipient's serum contains preformed cytotoxic antibodies to porcine islets that persist after transplantation. CONCLUSIONS These results demonstrate that the microenvironment existing within the surgically repositioned intra-abdominal testis supports the survival of xenogeneic tissue. The survival of xenogeneic tissue in the absence of immunosuppression in this large-animal model raises the possibility that xenogeneic porcine islet tissue will also survive in humans if transplanted into a similar environment.
Collapse
Affiliation(s)
- Paul F Gores
- Department of Surgery, Carolinas Medical Center, Charlotte, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Yi S, Hawthorne WJ, Lehnert AM, Ha H, Wong JKW, van Rooijen N, Davey K, Patel AT, Walters SN, Chandra A, O'Connell PJ. T cell-activated macrophages are capable of both recognition and rejection of pancreatic islet xenografts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2750-8. [PMID: 12594306 DOI: 10.4049/jimmunol.170.5.2750] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages have been proposed as the major effector cell in T cell-mediated xenograft rejection. To determine their role in this response, NOD-SCID mice were transplanted with fetal pig pancreas (FPP) before reconstitution with CD4(+) T cells from BALB/c mice. Twelve days after CD4(+) T cell reconstitution, purified macrophages (depleted of T cells) were isolated from CD4(+) T cell-reconstituted FPP recipient mice and adoptively transferred to their nonreconstituted counterparts. After adoptive macrophage transfer, FPP recipient mice transferred with macrophages from CD4(+) T cell-reconstituted mice demonstrated xenograft destruction along with massive macrophage infiltration at day 4 and complete graft destruction at day 8 postmacrophage transfer. By contrast, FPP recipients that received macrophages from nonreconstituted mice showed intact FPP xenografts with few infiltrating macrophages at both days 4 and 8 after macrophage transfer. The graft-infiltrating macrophages showed increased expression of their activation markers. Depletion of endogenous macrophages or any remaining CD4(+) T cells did not delay graft rejection in the macrophage-transferred FPP recipients, whereas depletion of transferred macrophages with clodronate liposomes prevented graft rejection. Our results show that macrophages primed by FPP and activated by CD4(+) T cells were attracted from the peripheral circulation and were capable of specific targeting and destruction of FPP xenografts. This suggests that in xenograft rejection, there are macrophage-specific recognition and targeting signals that are independent of those received by T cells.
Collapse
Affiliation(s)
- Shounan Yi
- National Pancreas Transplant Unit, University of Sydney at Westmead Hospital, Westmead, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Solomon MF, Kuziel WA, Mann DA, Simeonovic CJ. The role of chemokines and their receptors in the rejection of pig islet tissue xenografts. Xenotransplantation 2003; 10:164-77. [PMID: 12588649 DOI: 10.1034/j.1399-3089.2003.01146.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanism by which inflammatory cells are recruited to pig islet tissue (proislet) xenografts was investigated by examining the intragraft mRNA expression of murine alpha- and beta-chemokines in CBA/H mice from days 3 to 10 post-transplant. Xenograft rejection was associated with early intragraft transcript expression for monocyte chemotactic protein-1 (MCP-1) (3 to 5 days), IP-10 (3 to 4 days) and macrophage inflammatory protein-1alpha (MIP-1alpha) (3 to 5 days) and subsequent expression of eotaxin (days 4 to 10), MIP-1beta (days 4 and 5) and regulated on activation, normal T cell expressed and secreted (RANTES) (days 4 to 6) mRNA. This pattern was consistent with the early recruitment of macrophages (MCP-1, MIP-1alpha), the influx of CD4 T cells (MCP-1, MIP-1alpha, MIP-1beta, IP-10 and RANTES) and the characteristic infiltrate of eosinophils (eotaxin and RANTES) associated with islet xenograft rejection. Inhibition of beta-chemokine signaling in CCR2-/- mice (which lack the major co-receptor for MCP-1) resulted in retarded macrophage and CD4 T cell recruitment, enhanced eosinophil influx and a minor delay in rejection, compared with wildtype mice; there was little effect on leukocyte infiltration in xenografts harvested from CCR5-/- mice (lacking the co-receptor for MIP-1alpha, MIP-1beta and RANTES). The impeded migration of leukocytes into xenografts in CCR2-/- hosts was associated with delayed intragraft expression of MCP-1 and RANTES mRNA; absence of MCP-1/CCR2-mediated signaling led to enhanced intragraft expression of MCP-1, MIP-1alpha and MIP-1beta mRNA. These findings suggest that MCP-1 plays an important role in regulating macrophage and CD4 T cell infiltration to xenograft sites via the CCR2 signaling pathway. Additional treatment of xenografted CCR2-/- transplant recipients with anti-interleukin-(IL)-4 and anti-IL-5 mAbs further delayed xenograft rejection demonstrating the potential for combined antirejection strategies in facilitating pig islet xenotransplantation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- CD4-Positive T-Lymphocytes/immunology
- Chemokine CCL2/genetics
- Chemokine CCL2/immunology
- Chemokine CCL3
- Chemokine CCL4
- Chemokine CCL5/genetics
- Chemokine CCL5/immunology
- Chemokine CXCL10
- Chemokines/genetics
- Chemokines/immunology
- Chemokines, CXC/genetics
- Chemokines, CXC/immunology
- Gene Expression/immunology
- Graft Rejection/immunology
- Graft Survival/immunology
- Immunohistochemistry
- Interleukin-4/immunology
- Interleukin-5/immunology
- Islets of Langerhans Transplantation/immunology
- Macrophage Inflammatory Proteins/genetics
- Macrophage Inflammatory Proteins/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- RNA, Messenger/analysis
- Receptors, CCR2
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- Swine
- Transplantation, Heterologous/immunology
Collapse
Affiliation(s)
- Michelle F Solomon
- Division of Molecular Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | | | | | | |
Collapse
|
18
|
Fox A, Mountford J, Braakhuis A, Harrison LC. High avidity antibodies to fetal pig pancreas endocrine cells transfer rejection but are not normally generated to fetal pig pancreas xenografts. Xenotransplantation 2002; 9:382-92. [PMID: 12371934 DOI: 10.1034/j.1399-3089.2002.01008.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous studies on the contribution of T cell-dependent antibody (Ab) to non-vascular xenograft rejection have yielded conflicting results, being confounded by the presence of recipient T cells and the use of different tissues and immunizing regimens to generate Ab. In the present study, the effect of adoptive transfer of Ab on fetal pig pancreas (FPP) and pig PK15 cell xenografts was examined in T cell-deficient severe combined immune deficiency (SCID) mice. T cell-dependent Abs raised by hyperimmunization with different cell types and by FPP transplantation were compared. Ab raised by hyperimmunization with pig thymocytes exhibited strong binding to pig thymocytes and PK15 cells but did not transfer FPP rejection. IgG1 and IgM, but not IgG3, Abs bound strongly to FPP exocrine and connective tissue, whereas binding to endocrine cells in vitro and in vivo was weak or absent. This pattern of Ab binding was similar to that observed after transplanting FPP into BALB/c mice. Furthermore, serum recovered from BALB/c mice 20 days after FPP transplantation bound strongly to non-endocrine but not endocrine cells and did not transfer FPP rejection. In contrast, serum from mice hyperimmunized with PK15 cells bound strongly to PK15 cells and transferred rejection of intraperitoneal PK15 cells. Furthermore, this serum contained IgG1 and IgM Abs that bound strongly, and IgG3 Abs that bound weakly, to endocrine cells in FPP, and also transferred rejection of FPP in SCID mice. These results indicate that endocrine cells express low concentrations of xenoreactive Ab epitopes and that high Ab concentrations and/or high avidity Abs are required for sufficient endocrine cell binding to cause damage and rejection in the immunodeficient mouse model. Such Abs are not elicited by transplanting FPP into immunocompetent mice. Nevertheless, a contribution of Ab to rejection in immunocompetent mice cannot be excluded.
Collapse
Affiliation(s)
- Annette Fox
- Autoimmunity and Transplantation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | | | | |
Collapse
|
19
|
Olack BJ, Jaramillo A, Benshoff ND, Kaleem Z, Swanson CJ, Lowell JA, Mohanakumar T. Rejection of porcine islet xenografts mediated by CD4+ T cells activated through the indirect antigen recognition pathway. Xenotransplantation 2002; 9:393-401. [PMID: 12371935 DOI: 10.1034/j.1399-3089.2002.01070.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have previously demonstrated that human T cells responding to porcine islets are primarily CD4+ and recognized porcine major histocompatibility complex class I molecules through the indirect pathway of antigen presentation. To determine whether this mechanism is responsible for rejection of adult porcine islets xenografts, porcine islets from adult pigs were transplanted under the kidney capsule of streptozotocin-treated CD4-knockout (KO), CD8-KO, Ig-KO and normal C57BL/6 mice. Islet xenografts were acutely rejected with similar kinetics when transplanted into normal C57BL/6 (MST=17.6 +/- 3.5 days) and Ig-KO (MST=19.0 +/- 1.7 days) mice. Interestingly, islet xenografts were rejected significantly earlier when transplanted into CD8-KO mice as compared with normal C57BL/6 (MST=7.0 +/- 0.01 days, P=2 x 10-4). Histopathological analysis revealed classical acute cellular rejection with severe diffuse interstitial cellular infiltrates in all rejected islet xenografts. In contrast, islet xenografts were not rejected when transplanted into CD4-KO mice (MST >/= 100 days, P=1 x 10-9). Histopathological analysis revealed no cellular infiltrates and intact islet xenografts. CD4+ T cells from both normal C57BL/6 and CD8-KO xenograft recipients showed detectable proliferative responses to porcine islets in the presence but not in the absence of syngeneic antigen-presenting cells. In addition, the anti-islet proliferative responses observed in normal C57BL/6 mice were significantly lower than those observed in CD8-KO mice. IgG anti-porcine antibodies were readily detected in C57BL/6 and CD8-KO xenograft recipients but not in Ig-KO or CD4-KO recipients. These results indicate that indirectly activated CD4+ T cells mediate acute rejection of adult porcine islet xenografts and that xenoreactive CD8+ T cells and antibodies are not necessary in this process.
Collapse
Affiliation(s)
- Barbara J Olack
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Simeonovic CJ, Cordery DV, Van Leeuwen B, Popp SK, Townsend MJ, Paule MF, Wilson JD, Cowden WB. Host systemic and local nitric oxide levels do not correlate with rejection of pig proislet xenografts in mice. Xenotransplantation 2002; 9:169-82. [PMID: 11983015 DOI: 10.1034/j.1399-3089.2002.01024.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The rejection of pig proislet xenografts in mice is a CD4 T cell-dependent process in which macrophages play an important role. To assess the potential for activated macrophages to act as effector cells in xenograft destruction, we have examined the relationship between proislet xenograft rejection, two principal markers of macrophage activation, transcription of inducible nitric oxide synthase (iNOS) and production of nitric oxide (NO), and their temporal relationship to intragraft cytokine gene expression. Xenograft rejection in CBA/H mice correlated with early induction of intragraft host iNOS mRNA and marked intragraft production of NO (reactive nitrogen intermediates, RNI). Intragraft mRNA expression for IFN-gamma, IL-1beta and TNF, cytokines associated with macrophage activation, was also found. These findings suggested that activated macrophages could be contributing to xenograft destruction via local NO-mediated toxicity at the graft site. To test the role of NO in this model: (1) Q-fever antigen (QFA) was administered to recipient mice in order to induce high systemic RNI levels and (2) in another experiment, pig proislets were transplanted into iNOS-/- mice. Treatment with QFA correlated with prolonged xenograft survival at 7 days post-transplant. Splenocytes from QFA-treated, but not control mice at 7 and 22 days post-transplant, exhibited inhibition of secondary xenogeneic mouse antiporcine mixed lymphocyte reaction (MLR) that was reversed by culture with the NOS inhibitor N-methylarginine (NMA). Despite continued elevated NO production, xenograft protection was temporary with complete rejection by day 22. Evidence that locally produced NO was not contributing to rejection was seen when pig proislets transplanted into iNOS-/- mice were rejected with normal kinetics; in these animals intragraft NO production was not detected (despite porcine iNOS gene expression). Failure of activated macrophages to achieve indefinite xenograft survival suggests that other factors are also required. Macrophage potential to effect either destructive or protective roles after pig proislet xenotransplantation suggests that such functions may depend on the site and magnitude of macrophage activation. Together these findings clearly demonstrate that high NO levels in the periphery are not damaging to xenogeneic islet tissue, neither host nor donor NO production is essential for islet xenograft rejection and consequently elevated plasma RNI levels do not represent a direct marker for rejection.
Collapse
Affiliation(s)
- Charmaine J Simeonovic
- Division of Molecular Medicine and Immunology and Cell Biology, The John Curtin School of Medical Research, Canberra, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Krook H, Hagberg A, Song Z, Landegren U, Wennberg L, Korsgren O. A distinct Th1 immune response precedes the described Th2 response in islet xenograft rejection. Diabetes 2002; 51:79-86. [PMID: 11756326 DOI: 10.2337/diabetes.51.1.79] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous studies using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) have demonstrated that islet xenograft rejection in mice is dominated by Th2-associated cytokines, i.e., interleukin (IL)-4 and IL-10. However, immunohistochemical stainings show that the morphological pattern in this model is more reminiscent of a delayed-type hypersensitivity (DTH) reaction, which is associated with a Th1 response. This study was designed to resolve the mechanisms of acute cellular xenograft rejection in rats transplanted with fetal porcine islet-like cell clusters (ICCs). Real-time quantitative RT-PCR was used to quantify the mRNA expression of cytokines in the grafts and lymph nodes, and the findings were related to the immunopathology of the rejecting grafts. By day 1, mRNA expression levels of IL-1 beta, IL-2, IL-12p40, interferon-gamma, and tumor necrosis factor-alpha were already induced in the lymph nodes. From days 3 to 12, an increasing amount of activated macrophages was seen in the grafts, whereas T- and NK-cells were fewer and mainly accumulated in the periphery of the grafts. Most of the ICCs were rejected by day 5. Transcripts of Th1-associated cytokines were dominant in both regional lymph nodes and in the grafts, with peak levels on days 3 and 5, respectively. The mRNA expression of IL-4 was increased on day 12, and it correlated with the infiltration of eosinophils and an increased level of xenoreactive IgG. The data presented indicate that an islet xenograft triggers a sequential activation of 1) a Th1-associated response characterized by graft destruction in a DTH-like reaction and then 2) a subsequent Th2-associated response characterized by increased levels of xenoreactive antibodies.
Collapse
Affiliation(s)
- Henrik Krook
- Division of Clinical Immunology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
22
|
Gill RG. Use of small animal models for screening immunoisolation approaches to cellular transplantation. Ann N Y Acad Sci 2001; 944:35-46. [PMID: 11797684 DOI: 10.1111/j.1749-6632.2001.tb03821.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
It has been recognized for many years that immunoisolation strategies form an attractive approach to preventing the rejection of cellular allografts and xenografts. Although immunoisolation has proven dramatically successful in some cases, the results have tended to be somewhat variable. Although many advances have been made in the development of biocompatible materials for separating host immune cells from the transplanted tissues, much of the experimentation in this area has been outcome driven. That is, the nature of host reactivity and/or biomaterial design resulting in the failure of some immunoisolation strategies has mostly been undefined. A first premise of this discussion is that immunoisolation is primarily cell isolation and not antigen isolation, per se. That is, although varied membrane barriers are designed to prevent cell-cell contact between host and donor cells, soluble antigens derived from the transplant are likely to gain access to the host immune system. A key question centers on the degree and consequence of this type of antigen presentation in the host to the immunoisolated transplant. To address this and related concerns, this overview presents a simple paradigm for using defined rodent (mouse) models for systematically screening the efficacy of immunoisolated cellular transplants. The proposition is made that understanding the basis of graft failure will aid in the design of future immunoisolation technologies.
Collapse
Affiliation(s)
- R G Gill
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver 80262, USA.
| |
Collapse
|
23
|
Navdaev A, Clemetson JM, Polgar J, Kehrel BE, Glauner M, Magnenat E, Wells TN, Clemetson KJ. Aggretin, a heterodimeric C-type lectin from Calloselasma rhodostoma (Malayan pit viper), stimulates platelets by binding to α2β1 integrin and glycoprotein Ib, activating Syk and phospholipase Cγ 2, but does not involve the glycoprotein VI/Fc receptor γ chain collagen receptor. J Biol Chem 2001; 276:20882-9. [PMID: 11287424 DOI: 10.1074/jbc.m101585200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aggretin, a potent platelet activator, was isolated from Calloselasma rhodostoma venom, and 30-amino acid N-terminal sequences of both subunits were determined. Aggretin belongs to the heterodimeric snake C-type lectin family and is thought to activate platelets by binding to platelet glycoprotein alpha(2)beta(1). We now show that binding to glycoprotein (GP) Ib is also required. Aggretin-induced platelet activation was inhibited by a monoclonal antibody to GPIb as well as by antibodies to alpha(2)beta(1). Binding of both of these platelet receptors to aggretin was confirmed by affinity chromatography. No binding of other major platelet membrane glycoproteins, in particular GPVI, to aggretin was detected. Aggretin also activates platelets from Fc receptor gamma chain (Fcgamma)-deficient mice to a greater extent than those from normal control mice, showing that it does not use the GPVI/Fcgamma pathway. Platelets from Fcgamma-deficient mice expressed fibrinogen receptors normally in response to collagen, although they did not aggregate, indicating that these platelets may partly compensate via other receptors including alpha(2)beta(1) or GPIb for the lack of the Fcgamma pathway. Signaling by aggretin involves a dose-dependent lag phase followed by rapid tyrosine phosphorylation of a number of proteins. Among these are p72(SYK), p125(FAK), and PLCgamma2, whereas, in comparison with collagen and convulxin, the Fcgamma subunit neither is phosphorylated nor coprecipitates with p72(SYK). This supports an independent, GPIb- and integrin-based pathway for activation of p72(SYK) not involving the Fcgamma receptor.
Collapse
Affiliation(s)
- A Navdaev
- Theodor Kocher Institute, University of Berne, Freiestrasse 1, CH-3012 Berne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
This review summarizes the clinical history and rationale for xenotransplantation; recent progress in understanding the physiologic, immunologic, and infectious obstacles to the procedure's success; and some of the strategies being pursued to overcome these obstacles. The problems of xenotransplantation are complex, and a combination of approaches is required. The earliest and most striking immunologic obstacle, that of hyperacute rejection, appears to be the closest to being solved. This phenomenon depends on the binding of natural antibody to the vascular endothelium, fixation of complement by that antibody, and finally, activation of the endothelium and initiation of coagulation. Therefore, these three pathways have been targeted as sites for intervention in the process. The mechanisms responsible for the next immunologic barrier, that of delayed xenograft/acute vascular rejection, remain to be fully elucidated. They probably also involve multiple pathways, including antibody and/or immune cell binding and endothelial cell activation. The final immunologic barrier, that of the cellular immune response, involves mechanisms that are similar to those involved in allograft rejection. However, the strength of the cellular immune response to xenografts is so great that it is unlikely to be controlled by the types of nonspecific immunosuppression used routinely to prevent allograft rejection. For this reason, it may be essential to induce specific immunologic unresponsiveness to at least some of the most antigenic xenogeneic molecules.
Collapse
Affiliation(s)
- H Auchincloss
- Transplant Unit, Massachusetts General Hospital, Boston 02114, USA
| | | |
Collapse
|
25
|
Affiliation(s)
- E B Pedersen
- Department of Anatomy and Neurobiology, University of Southern Denmark, Odense University, DK-5000 Odense C, Denmark
| | | |
Collapse
|
26
|
|
27
|
Fox A, Mountford J, Braakhuis A, Harrison LC. Innate and adaptive immune responses to nonvascular xenografts: evidence that macrophages are direct effectors of xenograft rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2133-40. [PMID: 11160265 DOI: 10.4049/jimmunol.166.3.2133] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nonvascularized xenograft rejection is T cell mediated, but is dependent on initial macrophage (Mphi) infiltration. We developed an i.p. transplant model to define the roles of Mphi and T cells in xenograft rejection. Nonobese diabetic or BALB/c mice were injected i.p. with xenogeneic, allogeneic, or syngeneic cells, and the responding cells in subsequent lavages were assessed by flow cytometry and adoptive transfer. Neutrophils and monocytes/elicited Mphi were rapidly recruited in response to xenogeneic pig (PK15 or spleen) cells and, to a significantly lesser extent, allogeneic cells. These innate responses preceded T cell infiltration and occurred in their absence in SCID mice. Syngeneic cells induced negligible neutrophil or Mphi responses. Neutrophils and Mphi induced by xenogeneic cells in SCID mice stimulated T cell recruitment after transfer to immunocompetent mice. T cells in turn were required for Mphi activation and xenogeneic cell rejection. Thus, Mphi harvested from immunocompetent but not SCID mice injected with xenogeneic cells expressed activation markers and rejected xenogeneic cells when transferred into SCID mice. These findings demonstrate the interdependent roles of Mphi and T cells in xenograft rejection. The requirement for Mphi reflects their ability to mount a rapid, local innate response that stimulates T cell recruitment and, having received T cell help, to act as direct effectors of rejection.
Collapse
MESH Headings
- 3T3 Cells
- Adoptive Transfer
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Line/transplantation
- Cell Movement/immunology
- Cytokines/biosynthesis
- Female
- Graft Rejection/immunology
- Graft Rejection/pathology
- Graft Rejection/physiopathology
- Immunity, Active
- Immunity, Innate
- Injections, Intraperitoneal
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, SCID
- Neutrophils/immunology
- Neutrophils/pathology
- Spleen/cytology
- Spleen/transplantation
- Swine
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- Transplantation, Heterologous/immunology
- Transplantation, Heterologous/pathology
- Transplantation, Homologous
- Transplantation, Isogeneic
Collapse
Affiliation(s)
- A Fox
- Autoimmunity and Transplantation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
28
|
Zhang Z, Bédard E, Luo Y, Wang H, Deng S, Kelvin D, Zhong R. Animal models in xenotransplantation. Expert Opin Investig Drugs 2000; 9:2051-68. [PMID: 11060792 DOI: 10.1517/13543784.9.9.2051] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The severe shortage of donor organs has provided a strong impetus to push the investigation into the use of animal organs for humans. Xenotransplantation will not only benefit patients, but also represents a unique and potentially profitable business opportunity. However, there are many barriers to successful clinical xenotransplantation, including immunological barriers, physiological incompatibility, zoonosis and ethical concerns. This overview will focus on currently available animal models used in attempts to break through the immunological barriers to xenotransplantation. There are many advantages to using small animal, namely rodent, models in xenotransplantation research. For example, the use of the mouse model allows the use of knockout mice and careful dissection of rejection mechanisms at the molecular level. The following models can be used to study hyperacute rejection (HAR): guinea-pig-to-rat, mouse-to-rabbit, guinea-pig-to-mouse, rat-to-presensitised mouse and rat-to-alpha-Gal knockout mouse. The hamster-to-rat, mouse-to-rat and rat-to-mouse models are commonly used to study acute vascular rejection. Large animal models are complex and expensive, but they are more relevant to clinical xenotransplantation. Based on experiments using transgenic pig-to-primate models, HAR can be overcome. However, acute vascular rejection remains a major barrier at the present time. A pig cartilage-to-monkey model has been developed to study chronic rejection. Other novel models such as pig venous segment-to-monkey model and rat-to-primate model may represent viable options to study immunological barriers following xenotransplantation. Like many other medical breakthroughs, animal research will continue to make enormous contributions towards the eventual success of xenotransplantation.
Collapse
Affiliation(s)
- Z Zhang
- London Health Sciences Center, University Campus, 339 Windermere Road, London, Ontario, N6A 5A5, Canada.
| | | | | | | | | | | | | |
Collapse
|
29
|
Toxicity Associated with Repeated Administration of First-Generation Adenovirus Vectors Does Not Occur with a Helper-Dependent Vector. Mol Med 2000. [DOI: 10.1007/bf03402113] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
30
|
Feng X, Zheng XX, Yi S, Lehnert AM, Strom TB, O'Connell PJ. IL-10/Fc inhibits macrophage function and prolongs pancreatic islet xenograft survival. Transplantation 1999; 68:1775-83. [PMID: 10609956 DOI: 10.1097/00007890-199912150-00023] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Xenograft rejection is a complex response in which macrophages and other effector cells are activated by CD4+ T cells. Initiation and regulation of this response is in part mediated by cytokines. In this study we test the hypothesis that xenograft destruction is an interleukin- (IL) 10 responsive, macrophage-mediated event. METHODS To study the effect of the systemic administration of IL-10 on pancreatic islet xenograft rejection, a fusion protein of IL-10/Fc was used. This immunoligand possesses the bioavailability of IL-10 and the long circulating t1/2 in vivo, characteristic of Ig. Wistar rat islets were transplanted into C57BL6 mice. IL-10/Fc was administered either immediately before transplantation or in the posttransplant period. RESULTS Both therapeutic protocols prolonged xenograft survival. Macrophage effector function was reduced in IL-10/Fc-treated mice, with a reduced macrophage infiltrate, reduced IL-12 and tumor necrosis factor-alpha gene expression and reduced serum NO2- levels. Although the number of T cells infiltrating islet grafts was not reduced, T cell effector function was inhibited in IL-10/Fc-treated animals with reduced interferon-gamma and IL-4 gene expression, reduced anti-donor cytotoxicity by recipient splenocytes and reduced anti-donor IgG1 antibody production. Ultimate rejection of the xenografts appears to be mediated by a CD4+ T cell dependent mechanism probably as a result of inadequate inhibition of IL-12 production by macrophages. CONCLUSION IL-10/Fc prolonged rat pancreatic islet xenograft survival by inhibiting macrophage mediated immune responses. The effectiveness of this agent when administered pretransplant suggests it may have a role as an induction agent with potential clinical application.
Collapse
Affiliation(s)
- X Feng
- National Pancreas Transplant Unit, University of Sydney at Westmead Hospital, NSW, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Korsgren O, Wallgren AC, Satake M, Karlsson-Parra A. Xenograft rejection of fetal porcine islet-like cell clusters in the rat: effects of active and passive immunization. Xenotransplantation 1999; 6:271-80. [PMID: 10704070 DOI: 10.1034/j.1399-3089.1999.00032.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The process of islet xenograft rejection is still poorly understood. To elucidate further possible mechanism(s) involved in xenograft rejection, the effect of different immunization protocols was investigated. Fetal porcine islet-like cell clusters (ICCs) were transplanted under the kidney capsule in otherwise untreated rats, rats pre-immunized by s.c. injections of ICCs and in rats passively immunized with immune serum. The rejection process was evaluated with regard to antibody and complement deposition in the graft, as well as to morphology and phenotype of the infiltrating cells. In otherwise untreated animals, a moderate perigraft mononuclear cell infiltrate was seen after 3 days. Graft destruction became evident on day 6 with marked intragraft infiltration by macrophages (ED1 positive), whereas T cells were in the minority and mainly located in the perigraft area. In contrast to the findings in non-immunized rats, the rejection process in pre-immunized rats was characterized by marked intragraft infiltration by macrophages 3 days after transplantation. Moreover, both T cells and macrophages heavily infiltrated the adjacent kidney parenchyma, and major histocompatibility complex (MHC) class II expression in surrounding kidney tubular cells was concomitantly enhanced. Syngeneic rat islets mixed with porcine ICCs escaped the rejection process in non-immunized rats but were affected in pre-immunized animals. Thus, the specificity of the rejection process in non-immunized animals seems to be lost in pre-immunized animals. The early macrophage infiltration was also accelerated in rats passively immunized with immune serum, but no early switch from perigraft to intragraft infiltration or subsequent cellular infiltration in the adjacent kidney parenchyma was seen. Circulating xenoreactive antibodies of the IgG isotype increased after transplantation in normal and otherwise untreated rats. No distinct IgG deposition in the ICC xenografts was observed until day 12 after transplantation in untreated rats, whereas perigraft deposition of IgG was found 1 day after transplantation in pre-immunized rats and in rats given immune serum. No deposition of complement was observed within the ICC xenograft in any of the groups during the observation period. The dependence on T cells, the massive infiltration of macrophages with a unique phenotype, the cellular distribution, and the loss of specificity (bystander killing) of the rejection process in immunized rats suggest that ICC xenograft rejection shares some of its main characteristics with a delayed type hypersensitivity-like (DTH) immune response.
Collapse
Affiliation(s)
- O Korsgren
- Department of Clinical Immunology and Transfusion Medicine, Uppsala University, Sweden
| | | | | | | |
Collapse
|
32
|
Larsson LC, Czech KA, Widner H, Korsgren O. Discordant neural tissue xenografts survive longer in immunoglobulin deficient mice. Transplantation 1999; 68:1153-60. [PMID: 10551645 DOI: 10.1097/00007890-199910270-00016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The immune response against discordant xenografts in the brain is incompletely understood and remains a major obstacle for future clinical applications of xenogeneic neural tissue transplants in neurodegenerative disorders. To determine the role of antibodies in the rejection process, we compared graft survival and immune reactions between immunoglobulin deficient (IgKO) and normal mice. METHODS A cell suspension of embryonic porcine ventral mesencephalon was injected into the striatum of adult normal and IgKO mice. Graft sizes and number of infiltrating CD4- and CD8-positive lymphocytes were determined by stereological methods at 4 days and 2, 4, and 6 weeks after the transplants. Microglial accumulation was determined using the optical densitometrical method. Intraparenchymal deposition of IgG was investigated at 4 days and 2 weeks. RESULTS The majority of IgKO mice had surviving grafts for up to 4 weeks, whereas survival was minimal in control mice beyond 4 days. Graft sizes differed significantly between IgKO and control mice at 2 weeks (P<0.01, Kruskal Wallis ANOVA, followed by Mann Whitney test). The majority of infiltrating lymphocytes were CD4-positive in control mice but CD8-positive in IgKO mice. Microglial accumulation was strong around surviving grafts in IgKO mice at 4 weeks. Prominent staining of IgG, diffuse in the transplanted hemisphere and specific on grafted neurons, was found in control mice. CONCLUSIONS Our results suggest that immunoglobulins play an initiating role in rejection of discordant neural xenografts. After a prolonged graft survival of approximately 4 weeks, a cellular response with a large proportion CD8-positive cells leads to rejection in IgKO mice.
Collapse
Affiliation(s)
- L C Larsson
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Lund University, Sweden.
| | | | | | | |
Collapse
|
33
|
Brouard S, Gagne K, Blancho G, Soulillou JP. T cell response in xenorecognition and xenografts: a review. Hum Immunol 1999; 60:455-68. [PMID: 10408795 DOI: 10.1016/s0198-8859(99)00020-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Xenotransplantation has recently become a subject of interest for the transplantation community due to the current organ shortage, which could be partially or even totally solved by the development of this strategy. The humoral response, which arises as a result of species disparities, is the major obstacle to the success of xenotransplantation. However, if the use of different strategies such as plasmapheresis, immunoadsorption, the utilization of organs from transgenic pigs for complement regulatory molecules and new immunosuppressive drugs, may allow to overcome or reduce the early antibody mediated rejections (hyperacute or acute vascular rejection), delayed responses based on cellular activations will still occur. In this review, despite the fact that different cell populations have been shown to be implicated in these phenomena (NK, granulocytes, macrophages), we will focus on recent published information concerning T cell response only, in xenorecognition.
Collapse
Affiliation(s)
- S Brouard
- Institut National de la Santé et de la Recherche Médicale, Unité 437: Immunointervention dans les Allo et Xénotransplantation, Centre Hospitalier Universitaire, Nantes, France
| | | | | | | |
Collapse
|
34
|
Simeonovic CJ, Townsend MJ, Morris CF, Hapel AJ, Fung MC, Mann DA, Young IG, Wilson JD. Immune mechanisms associated with the rejection of fetal murine proislet allografts and pig proislet xenografts: comparison of intragraft cytokine mRNA profiles. Transplantation 1999; 67:963-71. [PMID: 10221479 DOI: 10.1097/00007890-199904150-00006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous in vivo depletion studies of CD4 and CD8 T cells indicated that different rejection mechanisms operate for proislet allografts and xenografts. The cellular and molecular mechanisms of acute proislet allograft and xenograft rejection have therefore been characterized and directly compared. METHODS The intragraft cytokine mRNA profile in rejecting BALB/c (H-2d) proislet allografts was analyzed in control, CD4 T cell-depleted, and CD8 T cell-depleted CBA/H (H-2k) recipient mice using semi-quantitative reverse transcriptase-assisted polymerase chain reaction (RT-PCR). The cytokine profiles for proislet allografts and pig proislet xenografts at 3-10 days posttransplant were directly compared and correlated with graft histopathology. RESULTS Allograft rejection was protracted (2-3 weeks), characterized by infiltrating CD8 T cells and CD4 T cells (no eosinophils) and was associated with a Th1-type CD4 T cell response (IL-2, IFN-gamma, and IL-3 mRNA) and a CD8 T cell-dependent spectrum of cytokine gene expression (IL-2, IFN-gamma, IL-3, and IL-10 mRNA). Xenograft rejection was rapid (6-8 days), involved predominantly CD4 T cells and eosinophils, and in contrast to allografts, exhibited intragraft mRNA expression for the Th2 cytokines IL-4 and IL-5. CONCLUSIONS Proislet allograft and xenograft rejection differ in the tempo of destruction, phenotype of the cellular response and intragraft profile of cytokine mRNA. The recruitment of eosinophils only to the site of xenorejection correlates with IL4 and IL-5 mRNA expression. These findings suggest that different anti-rejection strategies may need to be developed to optimally target the allograft and the xenograft response.
Collapse
Affiliation(s)
- C J Simeonovic
- Division of Molecular Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Söderlund J, Wennberg L, Castaños-Velez E, Biberfeld P, Zhu S, Tibell A, Groth CG, Korsgren O. Fetal porcine islet-like cell clusters transplanted to cynomolgus monkeys: an immunohistochemical study. Transplantation 1999; 67:784-91. [PMID: 10199724 DOI: 10.1097/00007890-199903270-00002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The mechanism(s) involved in acute cellular xenograft rejection have hitherto been generated in vitro or in different experimental models, with pig tissue being transplanted to rodents. There is an urgent need to validate these results in a clinically more relevant combination of species. METHODS Fetal porcine islet-like cell clusters (ICC) were transplanted under the kidney capsule in cynomolgus monkeys, either untreated or given immunosuppression with cyclosporine (CsA; 10 mg/kg body weight, intramuscularly) and 15-deoxyspergualin (DSG; 5 mg/kg body weight, intramuscularly). ICC xenografts were examined at 1, 3, 6, or 10-12 days after transplantation, using immunohistochemical techniques. Serum levels of xenoreactive antibodies were measured with ELISA. RESULTS No deposits of IgM, IgG, Clq, or C3 were detected within the ICC xenograft in any of the monkeys. Likewise, no significant increase in the levels of xenoreactive antibodies were found after transplantation. In untreated animals, a few N-Elastase-positive cells (neutrophil granulocytes) were seen in the xenograft at day 1. A few mononuclear cells were present in the adjacent renal parenchyma, but they did not infiltrate the xenograft. At this time (day 1), early signs of necrosis were observed in the central parts of the graft. On day 3, the graft had a large, central necrotic area that contained polymorphonuclear cells; the remaining parts of the xenograft showed severe infiltration with CD8+ T cells. Occasional CD68+ cells (macrophages) were seen on days 1 and 3. On day 6, large numbers of macrophages were found infiltrating the entire graft. A few CD20+ B cells, accumulated as small clusters, were also found. Only a few natural killer cells (CD56+) were detected. The CsA/DSG-treated monkeys showed markedly fewer CD2+/CD8+ T cells on day 6 than the untreated monkeys, and the ICC graft was clearly better preserved. However, the number of CD8+ and CD68+ cells had increased considerably at 12 days after transplantation and diffusely infiltrated the whole ICC xenograft. CONCLUSION Porcine ICC transplanted under the kidney capsule in cynomolgus monkeys were rejected by an acute cell-mediated rejection progressing during the first 6 days after transplantation. The process was not dependent on host Ig or C3 binding to the graft. Although the rejection of porcine ICC was significantly delayed in CsA/DSG-treated monkeys, the ICC xenografts were almost completely destroyed 12 days after transplantation.
Collapse
Affiliation(s)
- J Söderlund
- Immunopathology Laboratory, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- C J Simeonovic
- Division of Molecular Medicine, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
37
|
Rivereau AS, You S, Lalain S, Gouin E, Saï P. In vitro xenorecognition of adult pig pancreatic islet cells by splenocytes from nonobese diabetic or non-diabetes-prone mice. Transplantation 1998; 66:633-8. [PMID: 9753345 DOI: 10.1097/00007890-199809150-00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In vitro studies of the nonobese diabetic (NOD) mouse prone to type 1 autoimmune diabetes were conducted in order to investigate the mechanisms possibly involved in cell-mediated rejection of adult pig islet xenografts. Mouse cellular proliferation in discordant situations was previously investigated only with stimulator lymphocytes and found to be low in intensity and due to an indirect recognition mechanism involving murine antigen-presenting cells (APC). It was also important to characterize murine anti-pig islet response. METHODS AND RESULTS In the present study, mouse splenocytes responded to pig islet cells since primary proliferations were detected in non-diabetes-prone Balb/c (P<0.04) or NOD (P<0.001) mice. Moreover, NOD mice displayed a higher (P<0.003) splenocyte response to pig islet cells (stimulation index: 5.8+/-0.7) than did Balb/c mice (stimulation index: 2.3+/-0.3), whereas responses to pig stimulator splenocytes were similar in both strains. The proliferation of NOD splenocytes to pig islet cells was lower (P<0.0001) than the allogeneic response to Balb/c islet cells but similar to syngeneic proliferation to NOD islet cells. In both NOD and Balb/c mice, splenocyte proliferation to pig islet cells was abolished (P<0.01) when CD4+ cells were blocked with antibodies, whereas the blocking of CD8+ cells had a nonsignificant effect. The main T-splenocyte subsets involved were restricted to mouse MHC class II molecules as they did not proliferate in the presence of monoclonal antibodies directed at I-A molecules. NOD and Balb/c splenocyte proliferation to pig islet cells was abolished after removal of plastic-adherent APC, which indicates that the major activation pathway was indirect. Purified CD4+ or CD8- cells alone did not proliferate in response to pig islet cells but recovered a proliferative ability when mixed with APC. CD4- cells, alone or in the presence of APC, were not capable of responding to pig islet cells. Both Th1 and Th2 splenocytes were involved in response to pig islet cells since interferon-gamma (IFN-gamma) and interleukin (IL-)-4 production increased significantly (300-fold and 11-fold, respectively, P<0.02 for both), whereas the increase in IL-10 production was much lower (only 1.5-fold). The IFN-gamma/IL-4 and IFN-gamma/IL-10 ratios stimulated by pig islet cells were not different with NOD and Balb/c splenocytes. CONCLUSION In conclusion, mouse cell-mediated reaction against xenogeneic adult pig islet cells mainly involves class II-restricted CD4+ T lymphocytes of Th1 and Th2 subtypes, with an indirect pathway for the recognition. Although of low intensity, this cell-mediated reaction constitutes an obstacle to pig islet engraftment in the mouse, although one not necessarily more insurmountable than alloreactivity. The peculiarity of NOD mouse splenocytes, in terms of proliferation against pig islets, suggests that the study of islet xenograft rejection should take the immunogenetic context of diabetes into account, in which case the use of non-diabetes-prone mice has its limitations.
Collapse
Affiliation(s)
- A S Rivereau
- Cellular and Molecular Immuno-Endocrinology, University/INRA/ENVN, Nantes, France
| | | | | | | | | |
Collapse
|
38
|
Benda B, Sandberg JO, Holstad M, Korsgren O. T cells in islet-like cell cluster xenograft rejection: a study in the pig-to-mouse model. Transplantation 1998; 66:435-40. [PMID: 9734484 DOI: 10.1097/00007890-199808270-00004] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The aim of the present study was to evaluate the nature of T cells involved in and, presumably, critical to fetal porcine islet-like cell cluster (ICC) xenograft rejection. METHODS Normal mice and T cell receptor (TCR)-beta-, TCR-delta-, or TCR-betaxdelta-deficient mice were transplanted with fetal porcine ICC under the kidney capsule. Perforin- or granzyme B (GraB)-deficient mice were used to further characterize T cell-dependent pathways. For evaluation of the role of T cells in the activation process of macrophages, TCR-betaxdelta mutants were treated with recombinant mouse tumor necrosis factor (TNF)-alpha. In addition, normal mice transplanted with porcine ICC were treated with MDL 201,449A, a novel transcriptional inhibitor of TNF-alpha. RESULTS In normal mice, the majority of the infiltrating cells were large, macrophage-like cells expressing the macrophage-specific phenotype marker F4/80. CD3+ T lymphocytes were found to be mainly accumulated in the peripheral parts of the ICC xenograft. TCR-beta mutants and TCR-betaxdelta mutants exhibited no signs of xenograft rejection, whereas TCR-delta mutants and perforin- and GraB-deficient animals rejected the ICC xenograft. Posttransplant high-dose recombinant mouse TNF-alpha-treatment of TCR-betaxdelta mutants did not result in fetal porcine ICC xenograft rejection. However, a somewhat increased amount of F4/80+ and Mac-1+ cells was observed within the xenograft area. Similarly, although graft survival was not found to be prolonged, reduced numbers of CD4+ T cells were observed in mice treated with MDL 201,449A. CONCLUSIONS In the pig-to-mouse model, fetal porcine ICC xenograft rejection is exclusively dependent on T cells bearing TCR-alphabeta chains. In addition, the absence of perforin or GraB has no influence on the rejection process, suggesting that xenospecific cytolytic T cells are of minor importance. Even if TNF-alpha is of importance to the developing process of ICC xenograft rejection, other cytokines, i.e., interferon-gamma, might efficiently substitute for the lack of TNF-alpha.
Collapse
Affiliation(s)
- B Benda
- Department of Oncology, Radiology, and Clinical Immunology, Uppsala University, Sweden.
| | | | | | | |
Collapse
|
39
|
|
40
|
Simeonovic CJ, McKenzie KU, Wilson JD, Zarb JC, Hodgkin PD. Role of anti-donor antibody in the rejection of pig proislet xenografts in mice. Xenotransplantation 1998; 5:18-28. [PMID: 9507729 DOI: 10.1111/j.1399-3089.1998.tb00004.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CBA/H mice produced serum anti-pig IgG1, IgG2a, and IgG2b following xenotransplantation of pig proislets beneath the kidney capsule; anti-pig IgM was present as pre-existing antibody in the serum of normal CBA/H mice and was also produced in response to pig proislet xenografts. Serum anti-pig IgG3 was not detected post-xenotransplantation. Rejection of pig proislet xenografts and the production of anti-pig IgG1, IgG2a, and IgG2b isotypes were CD4 T cell-dependent. The capacity for adoptively transferred hyperimmune CBA/H mouse anti-pig PBL serum to induce the rejection of intact pig proislet xenografts in CD4 T cell-depleted mice was dose dependent and correlated with markedly elevated levels of serum anti-pig IgG3. Levels of anti-pig IgG1, IgG2a, IgG2b, and IgM comparable to control mice acutely rejecting pig proislet xenografts and achieved following adoptive transfer of hyperimmune serum did not correlate with induced xenograft rejection. These findings suggest that anti-pig Ig isotypes produced during the conventional process of acute proislet xenograft rejection do not play a major role in mediating graft damage. The acute rejection of pig proislet xenografts in the absence of serum anti-pig Ig in microMT-/- hosts confirmed that anti-pig antibody is not essential for proislet xenograft destruction.
Collapse
Affiliation(s)
- C J Simeonovic
- Division of Molecular Medicine, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Sandberg JO, Benda B, Lycke N, Korsgren O. Xenograft rejection of porcine islet-like cell clusters in normal, interferon-gamma, and interferon-gamma receptor deficient mice. Transplantation 1997; 63:1446-52. [PMID: 9175809 DOI: 10.1097/00007890-199705270-00014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The aim of the present study was to evaluate the role of the T-cell cytokine interferon (IFN)-gamma in mediating macrophage activation in xenograft rejection. METHODS For this purpose, fetal porcine islet-like cell cluster (ICC) transplants were placed under the renal capsule of normal mice and mice with a homozygous targeted disruption of the IFN-gamma or the IFN-gamma receptor gene. Some of the mice were continuously infused with cyclosporine (CsA, 12.4 mg/kg body weight/day) or CsA vehicle by subcutaneously implanted osmotic pumps. Histological evaluation of the xenografts was performed 6 or 12 days after transplantation. RESULTS All animals, irrespective of recipient group, readily rejected the ICC xenograft, although the rejection process was slightly delayed in mice deficient in IFN-gamma. Analysis of the infiltrating cells within the xenograft in knockout mice revealed a pattern similar to that found in control animals. Six days after transplantation, there was an abundant infiltration of macrophages (Mac-1, F4/80, and major histocompatibility complex II markers) in the ICC grafts. Quite in contrast, there was only a low to moderate number of T cells (CD3 marker) present in the ICC grafts. Treatment with CsA had no effect on the rejection process. In grafts removed from mice with a disruption of the IFN-gamma gene, occasional surviving endocrine cells, and in some cases also a few intact ICC, were found within the otherwise obliterated xenograft. Few or no surviving endocrine cells were found in the grafts obtained from the other groups of mice. CONCLUSIONS Thus, the present study demonstrates that macrophage activation, and subsequent destruction of an ICC xenograft, can operate in the absence of IFN-gamma in the pig-to-mouse model.
Collapse
Affiliation(s)
- J O Sandberg
- Department of Clinical Immunology and Transfusion Medicine, Uppsala University, Sweden
| | | | | | | |
Collapse
|
43
|
Auchincloss H. Xenotransplantation literature update. Xenotransplantation 1997. [DOI: 10.1111/j.1399-3089.1997.tb00174.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
|