1
|
Lu P, Shi Y, Ye D, Lu X, Tang X, Cheng L, Xu Y, Huang J. Intravitreal Injection of PACAP Attenuates Acute Ocular Hypertension-Induced Retinal Injury Via Anti-Apoptosis and Anti-Inflammation in Mice. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35293951 PMCID: PMC8944396 DOI: 10.1167/iovs.63.3.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Pituitary adenylate cyclase-activating polypeptide (PACAP) has shown potent neuroprotective effects in central nervous system and retina disorders. However, whether PACAP can attenuate retinal neurodegeneration induced by acute ocular hypertension (AOH) and the underlying mechanisms remain unknown. In this study, we aimed to investigate the effects of PACAP on the survival and function of retinal ganglion cells (RGCs), apoptosis, and inflammation in a mouse model of AOH injury. Methods PACAP was injected into the vitreous body immediately after inducing AOH injury. Hematoxylin and eosin staining and optical coherence tomography were used to evaluate the loss of retina tissue. Pattern electroretinogram was used to evaluate the function of RGCs. TUNEL assay was used to detect apoptosis. Immunofluorescence and western blot were employed to evaluate protein expression levels. Results PACAP treatment significantly reduced the losses of whole retina and inner retina thicknesses, Tuj1-positive RGCs, and the amplitudes of pattern electroretinograms induced by AOH injury. Additionally, PACAP treatment remarkably reduced the number of TUNEL-positive cells and inhibited the upregulation of Bim, Bax, and cleaved caspase-3 and downregulation of Bcl-xL after AOH injury. Moreover, PACAP markedly inhibited retinal reactive gliosis and vascular inflammation, as demonstrated by the downregulation of GFAP, Iba1, CD68, and CD45 in PACAP-treated mice. Furthermore, upregulated expression of NF-κB and phosphorylated NF-κB induced by AOH injury was attenuated by PACAP treatment. Conclusions PACAP could prevent the loss of retinal tissue and improve the survival and function of RGCs. The neuroprotective effect of PACAP is probably associated with its potent anti-apoptotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Peng Lu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dan Ye
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Lu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lu Cheng
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
2
|
Toth D, Szabo E, Tamas A, Juhasz T, Horvath G, Fabian E, Opper B, Szabo D, Maugeri G, D'Amico AG, D'Agata V, Vicena V, Reglodi D. Protective Effects of PACAP in Peripheral Organs. Front Endocrinol (Lausanne) 2020; 11:377. [PMID: 32765418 PMCID: PMC7381171 DOI: 10.3389/fendo.2020.00377] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP is also expressed in peripheral organs but its peripheral protective effects have not been summarized so far. Therefore, the aim of the present paper is to review the existing literature regarding the cytoprotective effects of PACAP in non-neuronal cell types, peripheral tissues, and organs. Among others, PACAP has widespread expression in the digestive system, where it shows protective effects in various intestinal pathologies, such as duodenal ulcer, small bowel ischemia, and intestinal inflammation. PACAP is present in both the exocrine and endocrine pancreas as well as liver where it reduces inflammation and steatosis by interfering with hepatic pathology related to obesity. It is found in several exocrine glands and also in urinary organs, where, with its protective effects being mainly published regarding renal pathologies, PACAP is protective in numerous conditions. PACAP displays anti-inflammatory effects in upper and lower airways of the respiratory system. In the skin, it is involved in the development of inflammatory pathology such as psoriasis and also has anti-allergic effects in a model of contact dermatitis. In the non-neuronal part of the visual system, PACAP showed protective effects in pathological conditions of the cornea and retinal pigment epithelial cells. The positive role of PACAP has been demonstrated on the formation and healing processes of cartilage and bone where it also prevents osteoarthritis and rheumatoid arthritis development. The protective role of PACAP was also demonstrated in the cardiovascular system in different pathological processes including hyperglycaemia-induced endothelial dysfunction and age-related vascular changes. In the heart, PACAP protects against ischemia, oxidative stress, and cardiomyopathies. PACAP is also involved in the protection against the development of pre-senile systemic amyloidosis, which is presented in various peripheral organs in PACAP-deficient mice. The studies summarized here provide strong evidence for the cytoprotective effects of the peptide. The survival-promoting effects of PACAP depend on a number of factors which are also shortly discussed in the present review.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Gabriella Horvath
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Eszter Fabian
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Opper
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Szabo
- Heart Institute, Medical School, University of Pécs, Pécs, Hungary
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Agata G. D'Amico
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
- *Correspondence: Dora Reglodi
| |
Collapse
|
3
|
The Neuropeptide Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is Protective in Inflammation and Oxidative Stress-Induced Damage in the Kidney. Int J Mol Sci 2019; 20:ijms20194944. [PMID: 31591326 PMCID: PMC6801442 DOI: 10.3390/ijms20194944] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide with a widespread distribution throughout the entire body including the urinary system. PACAP exerts protective actions in different injury models related to several organ systems. Its protective effect is mainly based on its antiapoptotic, anti-inflammatory and antioxidant effects. The present review aims to summarize the effects of PACAP in pathologies associated with inflammation and oxidative stress-induced damage in the kidney. Both in vitro and in vivo data are available proving its protective actions against oxidative stress, hypoxia, renal ischemia/reperfusion, diabetic nephropathy, myeloma kidney injury, amyloidosis and different types of drug-induced nephropathies. Data showing the nephroprotection by PACAP emphasize the potential of PACAP’s therapeutic use in various renal pathologies.
Collapse
|
4
|
Neuropeptide Y levels are associated with nutritional status and cardiovascular events in adults with chronic kidney disease. Eur J Clin Nutr 2015; 69:717-21. [DOI: 10.1038/ejcn.2015.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/05/2015] [Accepted: 03/15/2015] [Indexed: 01/05/2023]
|
5
|
László E, Kiss P, Horváth G, Szakály P, Tamás A, Reglődi D. The effects of pituitary adenylate cyclase activating polypeptide in renal ischemia/reperfusion. ACTA BIOLOGICA HUNGARICA 2014; 65:369-78. [PMID: 25475976 DOI: 10.1556/abiol.65.2014.4.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP ) is a multifunctional neuropeptide occurring in the nervous system as well as in the peripheral organs. Beneficial action of PACAP has been shown in different pathological processes. The strong protective effects of the peptide are probably due to its complex modulatory actions in antiapoptotic, anti-inflammatory and antioxidant pathways. In the kidney, PACAP is protective in models of diabetic nephropathy, myeloma kidney injury, cisplatin-, gentamycin- and cyclosporin-induced damages. Numerous studies have been published describing the protective effect of this peptide in renal ischemia/reperfusion. The present review focuses on the ischemia/reperfusion-induced kidney injury and gives a brief summary about the results published in this area.
Collapse
Affiliation(s)
- Eszter László
- PTE-MTA PACAP "Lendület" Research Team Department of Anatomy Pécs Hungary
| | - P Kiss
- PTE-MTA PACAP "Lendület" Research Team Department of Anatomy Pécs Hungary
| | - Gabriella Horváth
- PTE-MTA PACAP "Lendület" Research Team Department of Anatomy Pécs Hungary
| | - P Szakály
- University of Pécs Department of Surgery Pécs Hungary
| | - Andrea Tamás
- PTE-MTA PACAP "Lendület" Research Team Department of Anatomy Pécs Hungary
| | - Dóra Reglődi
- PTE-MTA PACAP "Lendület" Research Team Department of Anatomy Pécs Hungary
| |
Collapse
|
6
|
Nomiya M, Andersson KE, Yamaguchi O. Chronic bladder ischemia and oxidative stress: New pharmacotherapeutic targets for lower urinary tract symptoms. Int J Urol 2014; 22:40-6. [DOI: 10.1111/iju.12652] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/15/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Masanori Nomiya
- Division of Bioengineering and LUTD Research; Nihon University School of Engineering; Koriyama Japan
| | - Karl-Erik Andersson
- Institute for Regenerative Medicine; Wake Forest University School of Medicine; Winston-Salem North Carolina USA
- Aarhus Institute for Advanced Studies; Aarhus University; Aarhus Denmark
| | - Osamu Yamaguchi
- Division of Bioengineering and LUTD Research; Nihon University School of Engineering; Koriyama Japan
| |
Collapse
|
7
|
Jackson EK, Gillespie DG, Mi Z, Cheng D, Bansal R, Janesko-Feldman K, Kochanek PM. Role of 2',3'-cyclic nucleotide 3'-phosphodiesterase in the renal 2',3'-cAMP-adenosine pathway. Am J Physiol Renal Physiol 2014; 307:F14-24. [PMID: 24808540 PMCID: PMC4080157 DOI: 10.1152/ajprenal.00134.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/02/2014] [Indexed: 11/22/2022] Open
Abstract
Energy depletion increases the renal production of 2',3'-cAMP (a positional isomer of 3',5'-cAMP that opens mitochondrial permeability transition pores) and 2',3'-cAMP is converted to 2'-AMP and 3'-AMP, which in turn are metabolized to adenosine. Because the enzymes involved in this "2',3'-cAMP-adenosine pathway" are unknown, we examined whether 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) participates in the renal metabolism of 2',3'-cAMP. Western blotting and real-time PCR demonstrated expression of CNPase in rat glomerular mesangial, preglomerular vascular smooth muscle and endothelial, proximal tubular, thick ascending limb and collecting duct cells. Real-time PCR established the expression of CNPase in human glomerular mesangial, proximal tubular and vascular smooth muscle cells; and the level of expression of CNPase was greater than that for phosphodiesterase 4 (major enzyme for the metabolism of 3',5'-cAMP). Overexpression of CNPase in rat preglomerular vascular smooth muscle cells increased the metabolism of exogenous 2',3'-cAMP to 2'-AMP. Infusions of 2',3'-cAMP into isolated CNPase wild-type (+/+) kidneys increased renal venous 2'-AMP, and this response was diminished by 63% in CNPase knockout (-/-) kidneys, whereas the conversion of 3',5'-cAMP to 5'-AMP was similar in CNPase +/+ vs. -/- kidneys. In CNPase +/+ kidneys, energy depletion (metabolic poisons) increased kidney tissue levels of adenosine and its metabolites (inosine, hypoxanthine, xanthine, and uric acid) without accumulation of 2',3'-cAMP. In contrast, in CNPase -/- kidneys, energy depletion increased kidney tissue levels of 2',3'-cAMP and abolished the increase in adenosine and its metabolites. In conclusion, kidneys express CNPase, and renal CNPase mediates in part the renal 2',3'-cAMP-adenosine pathway.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania;
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dongmei Cheng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rashmi Bansal
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Andersson KE, Nomiya M, Sawada N, Yamaguchi O. Pharmacological treatment of chronic pelvic ischemia. Ther Adv Urol 2014; 6:105-14. [PMID: 24883108 DOI: 10.1177/1756287214526768] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Epidemiological studies have shown that lower urinary tract symptoms, including overactive bladder, commonly occur in both men and women, with an age-related increase in both sexes. Vascular endothelial dysfunction and urological symptoms are common in the metabolic syndrome; they also occur during the human ageing process and are independent risk factors for the development of atherosclerosis and hypertension. Pelvic arterial insufficiency may lead to impaired lower urinary tract perfusion and play an important role in the development of bladder dysfunction such as detrusor overactivity and overactive bladder. It seems reasonable, but has not been definitely established clinically, that chronic ischemia-related bladder dysfunction will progress to bladder underactivity. Studies in experimental models in rabbits and rats have shown that pelvic arterial insufficiency may result in significant bladder ischemia with reduced bladder wall oxygen tension, oxidative stress, increased muscarinic receptor activity, ultrastructural damage, and neurodegeneration. Several types of drug may be able to prevent some of these changes. Even if the α1-adrenoceptor blocker, silodosin, the phosphodiesterase type 5 inhibitor, tadalafil, the β3-α1-adrenoceptor agonist, mirabegron, and the free radical scavenger, melatonin, were unable to prevent the development of neointimal hyperplasia and consequent luminal occlusion in animal models, they all exerted a protecting effect on urodynamic parameters, and on the functional and morphological changes of the bladder demonstrable in vitro. The different mechanisms of action of the drugs suggest that many factors are involved in the pathogenesis of chronic ischemia-induced bladder dysfunction and can be targets for intervention. Since several of the agents tested are used clinically and effectively for relieving lower urinary tract symptoms, the results from animal models of chronic bladder ischemia seem to have translational value. Animal models may be of relevance for designing clinical studies to demonstrate if a certain drug may prevent progression of ischemia-related functional and morphological bladder changes.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- AIAS, Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, building 1632, 8000 Aarhus C, Denmark
| | - Masanori Nomiya
- Division of Bioengineering and LUTD Research, Nihon University College of Engineering, Koriyama, Japan
| | - Norifumi Sawada
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo City, Yamanashi, Japan
| | - Osamu Yamaguchi
- Division of Bioengineering and LUTD Research, Nihon University College of Engineering, Koriyama, Japan
| |
Collapse
|
9
|
Nedvig K, Szabó G, Csukás D, Sándor J, Németh J, Kovács K, Reglődi D, Kemény A, Wéber G, Ferencz A. [Examination of cytoprotective and anti-inflammatory effect of PACAP-38 on small bowel autotransplantation]. Magy Seb 2014; 66:250-5. [PMID: 24144817 DOI: 10.1556/maseb.66.2013.5.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The small intestine is one of the most sensitive organs to ischemia-reperfusion injury during transplantation. Cytoprotective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) is well known. The aim of our study was to measure changes of PACAP-38-like immunoreactivities and cytokine levels in intestinal grafts stored PACAP-38 containing preservation solution. MATERIAL AND METHODS Small-bowel autotransplantation was performed on male Wistar rats (n = 56). Grafts were stored in University of Wisconsin (UW) solution at 4 °C for 1 (GI), 3 (GII), and 6 hours (GIII); and in PACAP-38 containing UW solution for 1 (GIV), 3 (GV), and 6 hours (GVI). Reperfusion lasted 3 hours in each group. Intestinal PACAP-38 immunoreactivities were measured by radioimmunoassay. To measure cytokine from tissue homogenates we used rat cytokine array and Luminex Multiplex Immunoassay. RESULTS Levels of PACAP-38-like and PACAP-27-like immunoreactivities decreased by preservation time compared to control. This decrease was significant following 6 hours cold storage (p < 0.05). Values remained significantly higher in grafts stored in PACAP-38 containing UW. Expressions of sICAM-1, L-selectin, tissue inhibitor of metalloproteinase-1 were increased in GIII and were decreased in GVI. CONCLUSION PACAP-38 increased tissue levels of PACAP-38 and PACAP-27, and decreased cytokine expression. This indicates that PACAP-38 has anti-inflammatory and cytoprotective effects in intestinal autotransplantation model.
Collapse
Affiliation(s)
- Klára Nedvig
- Zala Megyei Kórház Általános Sebészeti és Érsebészeti Osztály Zalaegerszeg
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Khan AM, Maderdrut JL, Li M, Toliver HL, Coy DH, Simon EE, Batuman V. Pituitary adenylate cyclase-activating polypeptide prevents contrast-induced nephropathy in a novel mouse model. Physiol Rep 2013; 1:e00163. [PMID: 24400164 PMCID: PMC3871477 DOI: 10.1002/phy2.163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 01/31/2023] Open
Abstract
We determined whether pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) prevents contrast-induced nephropathy using human renal proximal tubule epithelial (HK-2) cells and homozygous endothelial nitric oxide synthase-deficient (eNOS(-/-)) mice as a novel in vivo model. Cultured HK-2 cells were pretreated with 10(-9)-10(-6) mol/L PACAP or vasoactive intestinal peptide (VIP) for 1 h, and then exposed to ionic (Urografin) or nonionic (iohexol) contrast media at 50 mg iodine/mL for 24 h. Male eNOS(-/-) mice received Urografin (1.85 g iodine/kg) intravenously after water deprivation for 24 h, and PACAP38 (10 μg) intraperitoneally 1 h before and 12 h after Urografin injection. Urografin and iohexol increased lactate dehydrogenase and kidney injury molecule 1 in the culture medium, induced apoptosis, and inhibited cell proliferation in HK-2 cell cultures. PACAP38 and VIP reduced these changes in a dose-dependent manner. PACAP38 was more potent than VIP. In eNOS(-/-) mice, Urografin raised serum creatinine and cystatin C levels, caused renal tubule damage, induced apoptosis, and promoted neutrophil influx. Urografin also increased kidney protein levels of proinflammatory cytokines, and kidney mRNA levels of proinflammatory cytokines, kidney injury biomarkers, and enzymes responsible for reactive oxygen and nitrogen species. PACAP38 significantly reduced these Urografin-induced changes in eNOS(-/-) mice. This study shows that both Urografin and iohexol are toxic to HK-2 cells, but Urografin is more toxic than iohexol. Urografin causes acute kidney injury in eNOS(-/-) mice. PACAP38 protects HK-2 cells and mouse kidneys from contrast media and is a potential therapeutic agent for contrast-induced nephropathy.
Collapse
Affiliation(s)
- Altaf-M Khan
- Department of Medicine, Section of Nephrology and Hypertension, Tulane University School of Medicine New Orleans, Louisiana
| | - Jerome L Maderdrut
- Department of Medicine, Peptide Research Laboratory, Tulane University School of Medicine New Orleans, Louisiana
| | - Min Li
- Department of Medicine, Section of Nephrology and Hypertension, Tulane University School of Medicine New Orleans, Louisiana
| | - Herman L Toliver
- Department of Medicine, Section of Nephrology and Hypertension, Tulane University School of Medicine New Orleans, Louisiana
| | - David H Coy
- Department of Medicine, Peptide Research Laboratory, Tulane University School of Medicine New Orleans, Louisiana
| | - Eric E Simon
- Department of Medicine, Section of Nephrology and Hypertension, Tulane University School of Medicine New Orleans, Louisiana ; Department of Veterans Affairs, Southeast Louisiana Veterans Health Care System New Orleans, Louisiana
| | - Vecihi Batuman
- Department of Medicine, Section of Nephrology and Hypertension, Tulane University School of Medicine New Orleans, Louisiana ; Department of Veterans Affairs, Southeast Louisiana Veterans Health Care System New Orleans, Louisiana
| |
Collapse
|
11
|
Protective effect of a β3-adrenoceptor agonist on bladder function in a rat model of chronic bladder ischemia. Eur Urol 2013; 64:664-71. [PMID: 23838637 DOI: 10.1016/j.eururo.2013.06.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/21/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND The β3-adrenoceptor (AR) agonist mirabegron has been introduced as a treatment for the overactive bladder. Its effects on the function of the ischemic bladder are not known. OBJECTIVE To investigate the effect of mirabegron in a rat model of chronic ischemia-related bladder dysfunction. DESIGN, SETTING, AND PARTICIPANTS Male Sprague-Dawley rats were divided into three groups: control (n=10), arterial endothelial injury (AI; n=16), and AI with mirabegron treatment (AI-mirabegron; n=10). AI and AI-mirabegron groups underwent endothelial injury of the iliac arteries and received a 2% cholesterol diet following AI. AI-mirabegron rats received mirabegron (10mg/kg/d) orally for 8 wk. The control group received a regular diet. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS After 8 wk, urodynamic investigation was performed in awake animals. Pharmacologic in vitro studies and histologic examination of the iliac arteries and bladders were performed. RESULTS AND LIMITATIONS Iliac arteries from both AI and AI-mirabegron rats displayed neointimal formation and luminal occlusion. Micturition interval (MI), bladder capacity (Bcap), and voided volume (VV) in the AI group were significantly less than in the control group (p<0.01). In the AI-mirabegron group, MI, Bcap, and VV were significantly larger than in the AI group (p<0.05) but significantly less than in the control group (p<0.05). Contractile responses of bladder strips to potassium chloride, electrical field stimulation, and carbachol were significantly lower after AI than in controls; responses in preparations from AI-mirabegron-treated animals were similar to those of controls. The AI group showed a significantly higher percentage of collagen (28.6 ± 1.57%) compared with the controls (8.65 ± 0.67%) and AI-mirabegron-treated animals (17.2 ± 2.32%). The mirabegron dose used in this study may potentially limit the translational value of the results. CONCLUSIONS In the chronically ischemic rat bladder, treatment with mirabegron seems to protect bladder function and morphology, resulting in reduced bladder hyperactivity. If the results are valid for humans, they support β3-AR agonism as a potential treatment of chronic ischemia-related bladder dysfunction.
Collapse
|
12
|
Nedvig K, Weber G, Nemeth J, Kovacs K, Reglodi D, Kemeny A, Ferencz A. Changes of PACAP immunoreactivities and cytokine levels after PACAP-38 containing intestinal preservation and autotransplantation. J Mol Neurosci 2012; 48:788-94. [PMID: 22899163 DOI: 10.1007/s12031-012-9870-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/31/2012] [Indexed: 01/28/2023]
Abstract
Small bowel is one of the most sensitive organs to ischemia-reperfusion injury, which is a significant problem during transplantation. Pituitary adenylate cyclase-activating polypeptide (PACAP) has cytoprotective effect in ischemic injuries of various tissues. The aim of our study was to measure changes of PACAP-38 and PACAP-27 immunoreactivities and cytokine levels in intestinal grafts stored in PACAP-38-containing preservation solution. Small bowel autotransplantation was performed on male Wistar rats. Grafts were stored in University of Wisconsin (UW) solution at 4 °C for 1 h (group (G)I), for 3 h (GII), and for 6 h (GIII) and in PACAP-38-containing UW solution for 1 h (GIV), for 3 h (GV), and for 6 h (GVI). After preservation, performing vessel anastomosis reperfusion began, which lasted 3 h in each group. Tissue biopsies were collected after laparotomy (control) and at the end of the reperfusion periods. Intestinal PACAP-38 and PACAP-27 immunoreactivities were measured by radioimmunoassay. To measure cytokines from tissue homogenates, we used rat cytokine array and Luminex Multiplex Immunoassay. Levels of PACAP-38 and PACAP-27 immunoreactivity decreased after 1 and 3 h preservation compared to control levels. This decrease was significant following 6 h cold storage (p < 0.05). Values remained significantly higher in grafts stored in PACAP-38-containing UW. Cytokine array revealed that expression of the soluble intercellular adhesion molecule-1 (CD54) and L-selectin (CD62L/LECAM-1) was increased in GIII. Both 6 h cold storage in PACAP-38-containing UW solution and 3 h reperfusion caused strong reduction in these cytokines activation in GVI. RANTES (CCL5) levels were increased in all groups. Strong activation of the tissue inhibitor of metalloproteinase-1 was in GIII. However, PACAP-38-containing cold storage could decrease its activation in GVI. Furthermore, strong activation of the tissue inhibitor of metalloproteinase-1 was detected in 6 h preserved grafts without PACAP-38 (GIII). PACAP-38-containing cold storage could decrease its activation in GVI. Our present study showed that PACAP-38 and PACAP-27 immunoreactivities decreased in a time-dependent manner during intestinal cold preservation, which could be ameliorated by administration of exogenous PACAP-38 to the preservation solution. Moreover, PACAP-38 could attenuate tissue cold ischemic injury-induced changes in cytokine expression.
Collapse
Affiliation(s)
- Klara Nedvig
- Department of Surgical Research and Techniques, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | |
Collapse
|
13
|
Jiang B, Chen Q, Liu X, Kong D, Kuang Y, Weng X, Chen H. Ischemic Postconditioning Protects Renal Function After 24 Hours of Cold Preservation in a Canine Autotransplantation Model. Transplant Proc 2012; 44:1776-81. [DOI: 10.1016/j.transproceed.2012.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Reglodi D, Kiss P, Horvath G, Lubics A, Laszlo E, Tamas A, Racz B, Szakaly P. Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney. Neuropeptides 2012; 46:61-70. [PMID: 21621841 DOI: 10.1016/j.npep.2011.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a widespread neuropeptide with diverse effects in the nervous system and peripheral organs. One of the most well-studied effects of PACAP is its cytoprotective action, against different harmful stimuli in a wide variety of cells and tissues. PACAP occurs in the urinary system, from the kidney to the lower urinary tract. The present review focuses on the nephroprotective effects of PACAP and summarizes data obtained regarding the protective effects of PACAP in different models of kidney pathologies. In vitro data show that PACAP protects tubular cells against oxidative stress, myeloma light chain, cisplatin, cyclosporine-A and hypoxia. In vivo data provide evidence for its protective effects in ischemia/reperfusion, cisplatin, cyclosporine-A, myeloma kidney injury, diabetic nephropathy and gentamicin-induced kidney damage. Results accumulated on the renoprotective effects of PACAP suggest that PACAP is an emerging candidate for treatment of human kidney pathologies.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, University of Pecs, Szigeti u 12, 7624 Pecs, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Szakaly P, Laszlo E, Kovacs K, Racz B, Horvath G, Ferencz A, Lubics A, Kiss P, Tamas A, Brubel R, Opper B, Baba A, Hashimoto H, Farkas J, Matkovits A, Magyarlaki T, Helyes Z, Reglodi D. Mice deficient in pituitary adenylate cyclase activating polypeptide (PACAP) show increased susceptibility to in vivo renal ischemia/reperfusion injury. Neuropeptides 2011; 45:113-21. [PMID: 21211837 DOI: 10.1016/j.npep.2010.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/12/2010] [Accepted: 12/07/2010] [Indexed: 11/29/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with well-known cytoprotective effects. We have reported earlier that PACAP decreases mortality and the degree of tubular atrophy in a rat model of renal ischemia/reperfusion injury. Recently, we have shown that kidney cultures isolated from PACAP deficient mice show increased susceptibility to renal oxidative stress. Based on these previous studies, we raised the question whether PACAP deficient mice display increased sensitivity to in vivo kidney ischemia/reperfusion. PACAP⁻/⁻ mice underwent 45 or 60 min of renal ischemia followed by 2 weeks reperfusion. Kidneys were processed for histological analysis. Sections stained with PAS-haematoxylin were graded for the following parameters: degree of tubular dilation, Bowmann's capsule dilation, lymphocyte and macrophage infiltration, thyroidization and the disappearance of the PAS-positive glycocalyx from under the brush border. In other sets of experiments, tissue cytokine expression and the level of the endogenous antioxidant superoxide dismutase (SOD) were also determined after 60 min ischemia/reperfusion. Our results show that while intact kidneys were not different between wild-type and PACAP deficient mice, marked differences were observed in the histological structures in groups that underwent ischemia/reperfusion. PACAP deficient mice had a worse histological outcome, with significantly higher histological scores for all tested parameters. Cytokine expression was also markedly different between wild-type and PACAP deficient mice. In addition, the level of SOD was significantly lower in PACAP⁻/⁻ animals after ischemia/reperfusion. In conclusion, the lack of endogenous PACAP leads to higher susceptibility to in vivo renal ischemia/reperfusion, suggesting that PACAP has an endogenous renoprotective effect.
Collapse
|
16
|
Ferencz A, Nedvig K, Fekecs T, Rácz B, Wéber G, Hashimoto H, Baba A, Helyes Z, Reglödi D. Comparison of intestinal cold preservation injury on pituitary adenylate cyclase-activating polypeptide in knockout and wild-type mice. Transplant Proc 2011; 42:2290-2. [PMID: 20692465 DOI: 10.1016/j.transproceed.2010.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Tissue injury caused by cold preservation remains a problem in small intestinal transplantation. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a central role in intestinal physiology. The objective of the present study was to compare the effects of cold ischemia injury in PACAP-38 knockout and wild-type mice after cold storage of small bowel. Cold ischemia was produced using small bowel preservation in University of Wisconsin solution at 4 degrees C in 20 PACAP-38 wild-type mice for 1, 3, and 6 hours (groups 1, 2, and 3, respectively) and 20 PACAP-38 knockout mice for 1, 3, and 6 hours (groups 4, 5, and 6, respectively). Biopsy samples of small bowel were obtained after laparotomy (control) and at the end of preservation periods. To determine oxidative stress, malondialdehyde, reduced glutathione, and superoxide dismutase concentrations were measured. Tissue damage was assessed using a quantitative method on sections stained with hematoxylin-eosin. After 6 hours, tissue lipid peroxidation was increased significantly in PACAP-38 knockout mice (mean +/- SD, 153.04 +/- 7.2 micromol/g) compared with sham-operated mice (110.44 +/- 5.5 micromol/g) and wild-type mice (120.0 +/- 1.1 micromol/g) (P < .05). The capacity and activity of the endogenous antioxidant system decreased significantly after 3 and 6 hours of preservation (reduced glutathione, 808.7 +/- 5.2 micromol/g and 720.4 +/- 8.7 micromol/g; and superoxide dismutase, 125.1 +/- 1.4 IU/g and 103.3 +/- 1.9 IU/g vs 212.11 +/- 5.8 IU/g; P < .05). Quantitative histologic analysis demonstrated destruction of mucosal and submucosal layers and crypts in knockout mice compared with wild-type mice. These processes depended on duration of cold preservation. These findings demonstrate that PACAP-38 has a key role in protection against intestinal cold preservation injury.
Collapse
Affiliation(s)
- A Ferencz
- Department of Surgical Research and Techniques, University of Pécs Medical School, Pécs, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Horvath G, Racz B, Szakaly P, Kiss P, Laszlo E, Hau L, Tamas A, Helyes Z, Lubics A, Hashimoto H, Baba A, Reglodi D. Mice Deficient in Neuropeptide PACAP Demonstrate Increased Sensitivity to In Vitro Kidney Hypoxia. Transplant Proc 2010; 42:2293-5. [DOI: 10.1016/j.transproceed.2010.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Pituitary Adenylate Cyclase-Activating Polypeptide Prevents Cisplatin-Induced Renal Failure. J Mol Neurosci 2010; 43:58-66. [DOI: 10.1007/s12031-010-9394-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
|
19
|
Comparison of intestinal warm ischemic injury in PACAP knockout and wild-type mice. J Mol Neurosci 2010; 42:435-42. [PMID: 20387008 DOI: 10.1007/s12031-010-9357-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is present in the gastrointestinal tract and plays a central role in the intestinal physiology, mainly in the secretion and motility. The aim of our study was to compare the ischemic injury in wild-type and PACAP-38 knockout mice following warm mesenteric small bowel ischemia. Warm ischemia groups were designed with occlusion of superior mesenteric artery for 1, 3, and 6 h in wild-type (n = 10 in each group) and PACAP-38 knockout (n = 10 in each group) mice. Small bowel biopsies were collected after laparotomy (control) and at the end of the ischemia periods. To determine oxidative stress parameters, malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) were measured. Tissue damage was analyzed by qualitative and quantitative methods on hematoxylin/eosin-stained sections. In PACAP-38 knockout animals, tissue MDA increased significantly after 3 and 6 h ischemia (133.97 ± 6,2; 141.86 ± 5,8) compared to sham-operated (100.92 ± 3,6) and compared to wild-type results (112.8 ± 2,1; 118.4 ± 1.03 μmol/g, p < 0.05). Meanwhile, tissue concentration of GSH and activity of SOD decreased significantly in knockout mice compared to wild-type form (GSH, 795.97 ± 10.4; 665.1 ± 8,8 vs. 893.23 ± μmol/g; SOD, 94.4 ± 1.4; 81.2 ± 3.9 vs. 208.09 ± 3,7 IU/g). Qualitative and quantitative histological results showed destruction of the mucous, submucous layers, and crypts in knockout mice compared to wild-type tissues. These processes correlated with the warm ischemia periods. Our present results propose an important protective effect of endogenous PACAP-38 against intestinal warm ischemia, which provides basis for further investigation to elucidate the mechanism of this protective effect.
Collapse
|
20
|
Li M, Balamuthusamy S, Khan AM, Maderdrut JL, Simon EE, Batuman V. Pituitary adenylate cyclase-activating polypeptide ameliorates cisplatin-induced acute kidney injury. Peptides 2010; 31:592-602. [PMID: 20034524 DOI: 10.1016/j.peptides.2009.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/11/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
Cisplatin nephrotoxicity involves DNA damage, proinflammatory responses and apoptosis/necrosis of renal proximal tubular epithelial cells. Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to protect kidneys from ischemic injury and light chain-induced damage by modulating inflammation. Confluent monolayer of HK-2 human renal cells were exposed to 50 microM cisplatin in the presence or absence of either PACAP38 or p53 siRNA. Mice injected with cisplatin were also treated with PACAP38 daily for 3 days. The damage to HK-2 cells caused by cisplatin involved the activation of p53, caspase-7, and poly (ADP-ribose) polymerase-1 (PARP-1). PACAP38 prevented the decrease in the apurinic/apyrimidinic endonuclease-1 by suppressing p53 activation and blocked the cleavage of caspase-7 and PARP-1 in cisplatin-exposed cells. PACAP also markedly inhibited cisplatin-induced apoptotic tubule cell death. Exposure to cisplatin significantly suppressed the expression of fibronectin and collagens I and IV, and altered the integrin repertoire of human renal tubule cells, while PACAP partially reversed the reduction of fibronectin, collagen IV, and the integrin subunits in cells exposed to cisplatin. Experiments with PACAP receptor antagonists and siRNA silencing of p53 showed that the renoprotection with PACAP was mediated by the PAC(1) receptor and through both p53-dependent and -independent suppression of apoptosis. PACAP was renoprotective in vivo and prevented the rise in blood urea nitrogen and creatinine in mice treated with cisplatin. These results suggest that p53 plays a pivotal role in decreased integrin-mediated extracellular matrix component expression in cisplatin-induced tubule cell apoptosis, and reveal a novel aspect of PACAP-mediated renoprotection.
Collapse
Affiliation(s)
- Min Li
- Section of Nephrology and Hypertension, Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Horvath G, Racz B, Reglodi D, Kovacs K, Kiss P, Gallyas F, Bognar Z, Szabo A, Magyarlaki T, Laszlo E, Lubics A, Tamas A, Toth G, Szakaly P. Effects of PACAP on mitochondrial apoptotic pathways and cytokine expression in rats subjected to renal ischemia/reperfusion. J Mol Neurosci 2010; 42:411-8. [PMID: 20229361 DOI: 10.1007/s12031-010-9342-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with highly efficient cytoprotective actions. Its neuroprotective effects are well-known, but PACAP is able to exert similar actions in non-neuronal cells. Recently, we have shown that PACAP prolongs renal ischemic time, decreases mortality, and attenuates tubular degeneration in a rat model of renal ischemia/reperfusion, but the mechanism of renoprotection is not yet known. Therefore, the aim of the present study was to obtain further insight into the renoprotective effects of PACAP by examining its direct effects of PACAP on mitochondrial permeability transition in vitro and on the expression of the anti-apoptotic Bcl-2 and cytokines/chemokines in kidney tissues following 45 and 60 min renal ischemia and reperfusion in vivo. We found that PACAP did not have any direct effect on mitochondrial permeability transition. Cytokine array revealed that the expression of a few cytokines/chemokines was strongly increased after ischemia/reperfusion, which was ameliorated by PACAP treatment. Furthermore, in rats subjected to renal ischemia, PACAP treatment counteracted the ischemia/reperfusion-induced decrease of the anti-apoptotic Bcl-2, both after 45 and 60 min ischemia, as analyzed by Western blot. In summary, we showed that PACAP could attenuate tissue injury involving both anti-inflammatory and anti-apoptotic effects, but not directly acting on mitochondrial permeability transition.
Collapse
Affiliation(s)
- Gabriella Horvath
- Department of Anatomy, School of Medicine, University of Pecs, Szigeti u 12, Pecs, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Horvath G, Mark L, Brubel R, Szakaly P, Racz B, Kiss P, Tamas A, Helyes Z, Lubics A, Hashimoto H, Baba A, Shintani N, Furjes G, Nemeth J, Reglodi D. Mice deficient in pituitary adenylate cyclase activating polypeptide display increased sensitivity to renal oxidative stress in vitro. Neurosci Lett 2009; 469:70-4. [PMID: 19932736 DOI: 10.1016/j.neulet.2009.11.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 12/24/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional neuropeptide, showing widespread occurrence in the nervous system and also in peripheral organs. The neuroprotective effects of PACAP are well-established in different neuronal systems against noxious stimuli in vitro and in vivo. Recently, its general cytoprotective actions have been recognized, including renoprotective effects. However, the effect of endogenous PACAP in the kidneys is not known. The main aim of the present study was to investigate whether the lack of this endogenous neuropeptide influences survival of kidney cells against oxidative stress. First, we determined the presence of endogenous PACAP from mouse kidney homogenates by mass spectrometry and PACAP-like immunoreactivity by radioimmunoassay. Second, primary cultures were isolated from wild type and PACAP deficient mice and cell viability was assessed following oxidative stress induced by 0.5, 1.5 and 3mM H(2)O(2). Our mass spectrometry and radioimmunoassay results show that PACAP is endogenously present in the kidney. The main part of our study revealed that the sensitivity of cells from PACAP deficient mice was increased to oxidative stress: both after 2 or 4h of exposure, cell viability was significantly reduced compared to that from control wild type mice. This increased sensitivity of kidneys from PACAP deficient mice could be counteracted by exogenously given PACAP38. These results show, for the first time, that endogenous PACAP protects against oxidative stress in the kidney, and that PACAP may act as a stress sensor in renal cells. These findings further support the general cytoprotective nature of this neuropeptide.
Collapse
|
23
|
ZHANG YU, ZOU ZUI, LI YINGKE, YUAN HONGBIN, SHI XUEYIN. Glutamine-induced heat shock protein protects against renal ischaemia-reperfusion injury in rats. Nephrology (Carlton) 2009; 14:573-80. [DOI: 10.1111/j.1440-1797.2009.01108.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Szakály P. [Clinical value of "zero-hour biopsy"]. Magy Seb 2009; 62:188-98. [PMID: 19679527 DOI: 10.1556/maseb.62.2009.4.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In spite of the improving results the long-term benefits of renal transplantation fell behind the expectable potential possibilities. The main cause of kidney graft loss is chronic allograft nephropathy following cardiovascular deaths. This is such a multiple etiologic clinical picture which may occur at any time. When adequate treatment is not available in time repeated development of chronic renal failure is unavoidable. The aim of my study is, how can we rise the number of transplanted kidney and the quality of them.
Collapse
Affiliation(s)
- Péter Szakály
- Pécsi Tudományegyetem KK Sebészeti Klinika 7643 Pécs Ifjúság útja 13.
| |
Collapse
|
25
|
Ferencz A, Rácz B, Tamás A, Nedvig K, Németh J, Kalmár-Nagy K, Horváth OP, Wéber G, Röth E, Reglödi D. Changes and effect of PACAP-38 on intestinal ischemia-reperfusion and autotransplantation. Transplant Proc 2009; 41:57-9. [PMID: 19249475 DOI: 10.1016/j.transproceed.2008.10.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/01/2008] [Accepted: 10/02/2008] [Indexed: 11/18/2022]
Abstract
Tissue injury caused by cold preservation and reperfusion during small bowel transplantation remains an unsolved problem. Increasing evidence suggests that pituitary adenylate cyclase-activating polypeptide (PACAP) has protective effects in several ischemia-reperfusion (I/R) models. This study investigated the effect of PACAP-38 on oxidative stress in autotransplanted intestine. We established sham-operated, I/R, and autotransplanted groups in Wistar rats (n = 55). We applied ischemia for 1 (GI), 2 (GII), or 3 hours (GIII). In autotransplanted groups, we performed total orthotopic intestinal autotransplantation. Grafts were preserved in University of Wisconsin (UW) solution for 1 (GIV), 2 (GV), 3 (GVI), or 6 (GVII) hours and in PACAP-38-containing UW for 1 (GVIII), 2 (GIX), 3 (GX), or 6 (GXI) hours. Reperfusion lasted 3 hours in each group. Endogenous PACAP-38 values were measured by radioimmunoassay. Oxidative stress parameters malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) were measured in tissue homogenates. Concentration of endogenous PACAP-38 significantly decreased in GI to GIII compared with the sham-operated animals following I/R periods (P < .05). Cold preservation in UW and reperfusion of the intestine increased the level of tissue MDA in GIV to GVII, which correlated with the duration of cold storage. The content of GSH decreased in GIV to GVII to levels that were significantly different between GIV and GVIII and between GVII and GXI. SOD activity decreased dramatically in GIV to GVII with significantly higher activity in GIX to GXI. Our findings confirmed that I/R decreased endogenous PACAP-38 concentration. Administration of PACAP-38 to UW solution mitigated the oxidative injury during intestinal autotransplantation.
Collapse
Affiliation(s)
- A Ferencz
- Department of Surgical Research and Techniques, University of Pécs, Pécs, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ferencz A, Racz B, Tamas A, Reglodi D, Lubics A, Nemeth J, Nedvig K, Kalmar-Nagy K, Horvath OP, Weber G, Roth E. Influence of PACAP on oxidative stress and tissue injury following small-bowel autotransplantation. J Mol Neurosci 2008; 37:168-76. [PMID: 18651248 DOI: 10.1007/s12031-008-9132-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/31/2008] [Indexed: 02/06/2023]
Abstract
Tissue injury caused by cold preservation and reperfusion remains an unsolved problem during small-bowel transplantation. Pituitary adenylate cyclase-activating polypeptide (PACAP) is present and plays a central role in the intestinal physiology. This study investigated effect of PACAP-38 on the oxidative stress and tissue damage in autotransplanted intestine. Sham-operated, ischemia/reperfusion, and autotransplanted groups were established in Wistar rats. In ischemia/reperfusion groups, 1 h (group A), 2 h (group B), and 3 h (group C) ischemia followed by 3 h of reperfusion was applied. In autotransplanted groups, total orthotopic intestinal autotransplantation was performed. Grafts were preserved in University of Wisconsin (UW) solution and in UW containing 30 microg PACAP-38 for 1, 2, 3, and 6 h. Reperfusion lasted 3 h in all groups. Endogenous PACAP-38 concentration was measured by radioimmunoassay. To determine oxidative stress parameters, malondialdehyde, reduced glutathione, and superoxide dismutase were measured in tissue samples. Tissue damage was analyzed by qualitative and quantitative methods on hematoxylin/eosin-stained sections. Concentration of endogenous PACAP-38 significantly decreased in groups B and C compared to sham-operated group. Preservation solution containing PACAP-38 ameliorated bowel tissue oxidative injury induced by cold ischemia and reperfusion. Histological results showed that preservation caused destruction of the mucous, submucous, and muscular layers, which were further deteriorated by the end of reperfusion. In contrast, PACAP-38 significantly protected the intestinal structure. Ischemia/reperfusion decreased the endogenous PACAP-38 concentration in the intestinal tissue. Administration of PACAP-38 mitigated the oxidative injury and histological lesions in small-bowel autotransplantation model.
Collapse
Affiliation(s)
- Andrea Ferencz
- Department of Surgical Research and Techniques, University of Pécs, Medical Faculty, Kodály Zoltán Street 20, 7624, Pecs, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Effects of PACAP on Survival and Renal Morphology in Rats Subjected to Renal Ischemia/Reperfusion. J Mol Neurosci 2008; 36:89-96. [PMID: 18478450 DOI: 10.1007/s12031-008-9064-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
|
28
|
Rácz B, Gasz B, Gallyas F, Kiss P, Tamás A, Szántó Z, Lubics A, Lengvári I, Tóth G, Hegyi O, Roth E, Reglodi D. PKA-Bad-14-3-3 and Akt-Bad-14-3-3 signaling pathways are involved in the protective effects of PACAP against ischemia/reperfusion-induced cardiomyocyte apoptosis. ACTA ACUST UNITED AC 2007; 145:105-15. [PMID: 17981349 DOI: 10.1016/j.regpep.2007.09.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The neuropeptide PACAP (pituitary adenylate cyclase activating polypeptide) and its receptors are widely expressed in the nervous system and various other tissues. PACAP has well-known anti-apoptotic effects in neuronal cell lines. Recent data suggest that PACAP exerts anti-apoptotic effects also in non-neuronal cells. The peptide is present in the cardiovascular system, and has various distinct effects. The aim of the present study was to investigate whether PACAP is protective against in vitro ischemia/reperfusion-induced apoptosis in cardiomyocytes. Cultured cardiomyocytes were exposed to 60 min ischemia followed by 120 min reperfusion. The addition of PACAP1-38 significantly increased cell viability and decreased the ratio of apoptotic cells as measured by MTT test and flow cytometry. PACAP induced the phosphorylation of Akt and protein kinase A. In the present study we also examined the possible involvement of Akt- and protein kinase A-induced phosphorylation and thus inactivation of Bad, a pro-apoptotic member of the Bcl-2 family. It was found that ischemia significantly decreased the levels of phosphorylated Bad, which was counteracted by PACAP. Furthermore, PACAP increased the levels of Bcl-xL and 14-3-3 protein, both of which promote cell survival, and decreased the apoptosis executor caspase-3 cleavage. All effects of PACAP1-38 were inhibited by the PACAP antagonist PACAP6-38. In summary, our results show that PACAP has protective effects against ischemia/reperfusion-induced cardiomyocyte apoptosis and provides new insights into the signaling mechanisms involved in the PACAP-mediated anti-apoptotic effects.
Collapse
Affiliation(s)
- B Rácz
- Department of Surgical Research and Techniques, University of Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen Y, Samal B, Hamelink CR, Xiang CC, Chen Y, Chen M, Vaudry D, Brownstein MJ, Hallenbeck JM, Eiden LE. Neuroprotection by endogenous and exogenous PACAP following stroke. ACTA ACUST UNITED AC 2006; 137:4-19. [PMID: 17027094 PMCID: PMC4183206 DOI: 10.1016/j.regpep.2006.06.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/13/2006] [Accepted: 06/13/2006] [Indexed: 11/28/2022]
Abstract
We investigated the effects of PACAP treatment, and endogenous PACAP deficiency, on infarct volume, neurological function, and the cerebrocortical transcriptional response in a mouse model of stroke, middle cerebral artery occlusion (MCAO). PACAP-38 administered i.v. or i.c.v. 1 h after MCAO significantly reduced infarct volume, and ameliorated functional motor deficits measured 24 h later in wild-type mice. Infarct volumes and neurological deficits (walking faults) were both greater in PACAP-deficient than in wild-type mice, but treatment with PACAP reduced lesion volume and neurological deficits in PACAP-deficient mice to the same level of improvement as in wild-type mice. A 35,546-clone mouse cDNA microarray was used to investigate cortical transcriptional changes associated with cerebral ischemia in wild-type and PACAP-deficient mice, and with PACAP treatment after MCAO in wild-type mice. 229 known (named) transcripts were increased (228) or decreased (1) in abundance at least 50% following cerebral ischemia in wild-type mice. 49 transcripts were significantly up-regulated only at 1 h post-MCAO (acute response transcripts), 142 were up-regulated only at 24 h post-MCAO (delayed response transcripts) and 37 transcripts were up-regulated at both times (sustained response transcripts). More than half of these are transcripts not previously reported to be altered in ischemia. A larger percentage of genes up-regulated at 24 hr than at 1 hr required endogenous PACAP, suggesting a more prominent role for PACAP in later response to injury than in the initial response. This is consistent with a neuroprotective role for PACAP in late response to injury, i.e., even when administered 1 hr or more after MCAO. Putative injury effector transcripts regulated by PACAP include beta-actin, midline 2, and metallothionein 1. Potential neuroprotective transcripts include several demonstrated to be PACAP-regulated in other contexts. Prominent among these were transcripts encoding the PACAP-regulated gene Ier3, and the neuropeptides enkephalin, substance P (tachykinin 1), and neurotensin.
Collapse
Affiliation(s)
- Yun Chen
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, NIH, Bethesda, MD, 20892, USA
| | - Babru Samal
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, NIH, Bethesda, MD, 20892, USA
| | - Carol R. Hamelink
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, NIH, Bethesda, MD, 20892, USA
| | - Charlie C. Xiang
- Laboratory of Genetics, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - Yong Chen
- Stroke Branch, National Institute of Neurological Diseases and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Mei Chen
- Laboratory of Genetics, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - David Vaudry
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, NIH, Bethesda, MD, 20892, USA
| | - Michael J. Brownstein
- Laboratory of Genetics, National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA
| | - John M. Hallenbeck
- Stroke Branch, National Institute of Neurological Diseases and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Lee E. Eiden
- Corresponding author. Tel.: +1 301 496 4110; fax: +1 301 402 1748. (L.E. Eiden)
| |
Collapse
|
30
|
Zhang Y, Ma Q. The enhancement of cellular cAMP with olprinone protects autotransplanted rat kidney against cold ischemia-reperfusion injury. Transplant Proc 2006; 38:1580-3. [PMID: 16797361 DOI: 10.1016/j.transproceed.2006.02.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Indexed: 10/24/2022]
Abstract
The administration of a cyclic nucleotide analog improves cold ischemia/reperfusion injury in several organs. The type 3 phosphodiesterase inhibitor olprinone is a potent stimulus that enhances cellular cAMP levels. The present study was performed to investigate the protective effects of enhanced intracellular cAMP levels by olprinone in rat orthotopic kidney transplantation. Autotransplantation and immediate contralateral nephrectomy were performed in Lewis rats after 18 hours of graft storage at 4 degrees C in University of Wisconsin (UW) solution with or without 25 microg/mL olprinone hydrochloride. At 2 hours after reperfusion, serum and urinary biochemical indicators of renal dysfunction and injury were measured: serum creatinine, fractional excretion of Na+ and urinary N-acetyl-D-glucosaminidase. Additionally, intracellular cAMP in kidney tissues was measured by a radioimmunology method. Compared to the only UW solution group, olprinone hydrochloride significantly reduced the increased in serum creatinine, FENa and NAG caused by renal ischemia/reperfusion injury, after 2 hours of reperfusion. The content of cAMP at the endpoint of 18 hours cold preservation was significantly greater in the UW plus olprinone hydrochloride group than that in the UW group. Two hours after reperfusion, the content of cAMP in the UW plus olprinone hydrochloride group was still significantly higher than that in the UW group without containing olprinone hydrochloride. These results support a beneficial effect of olprinone against cold ischemia and reperfusion injury via an increased intracellular cAMP levels.
Collapse
Affiliation(s)
- Y Zhang
- Department of Surgical Oncology, First Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.
| | | |
Collapse
|
31
|
Mizutani A, Murakami K, Okajima K, Kira SI, Mizutani S, Kudo K, Takatani J, Goto K, Hattori S, Noguchi T. Olprinone reduces ischemia/reperfusion-induced acute renal injury in rats through enhancement of cAMP. Shock 2005; 24:281-7. [PMID: 16135969 DOI: 10.1097/01.shk.0000175555.95676.34] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activated leukocytes are implicated in development of ischemia/reperfusion (I/R)-induced organ injuries. Phosphodiesterase 3 inhibitors have anti-inflammatory effects by preventing cyclic adenosine monophosphate (cAMP) degradation. We examined the effects of olprinone, a specific phosphodiesterase 3 inhibitor, on I/R-induced acute renal injury model in rats. Forty-five minute renal I/R was induced in uni-nephrectomized rats. Rats were divided into a vehicle group, an olprinone group, and a dibutyril (DB) cAMP group. Olprinone (0.2 microg/kg/minute) infusion began 30 min after reperfusion and continued for 3 h. DBcAMP (5 mg/kg), a stable analog of cAMP, was intraperitoneally administered 5 min after reperfusion to clarify the effect of cAMP in our model. Olprinone reduced the I/R-induced increases in serum levels of blood urea nitrogen and creatinine, and improved histological changes, including acute tubular necrosis in the outer medulla. Hemodynamic status was not affected by olprinone. I/R-induced a decrease in renal tissue blood flow, an increase in renal vascular permeability, and an enhancement of leukocyte activation, reflected by renal tissue levels of myeloperoxidase activity, and the tissue levels of cytokine-induced neutrophil chemoattractant (an equivalent of human interleukin 8) and tumor necrosis factor-alpha were all significantly decreased by olprinone. Olprinone also increased the renal tissue and plasma levels of cAMP in rats subjected to renal I/R. DBcAMP showed similar effects. Our results indicated that olprinone reduced the I/R-induced acute renal injury, probably by inhibiting leukocyte activation. The effects of olprinone could be explained through its action on cAMP levels.
Collapse
Affiliation(s)
- Akio Mizutani
- Division of Intensive Care Unit, Oita University Faculty of Medicine Hospital, Hasama-machi, Oita, 879-5593, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
de Vries B, Walter SJ, Wolfs TGAM, Hochepied T, Räbinä J, Heeringa P, Parkkinen J, Libert C, Buurman WA. Exogenous alpha-1-acid glycoprotein protects against renal ischemia-reperfusion injury by inhibition of inflammation and apoptosis. Transplantation 2004; 78:1116-24. [PMID: 15502707 DOI: 10.1097/01.tp.0000138096.14126.ca] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although ischemia-reperfusion (I/R) injury represents a major problem in posttransplant organ failure, effective treatment is not available. The acute phase protein alpha-1-acid glycoprotein (AGP) has been shown to be protective against experimental I/R injury. The effects of AGP are thought to be mediated by fucose groups expressed on the AGP protein inhibiting neutrophil infiltration. However, the precise mechanism of protection remains to be established. We therefore studied the effects of exogenous human AGP (hAGP) in a mouse model of ischemic acute renal failure. METHODS Mice were subjected to renal I/R and treated with hAGP, fucose-depleted hAGP, or control treated. Also, transgenic mice over-expressing rat AGP or wild-type controls were subjected to renal I/R. RESULTS Treatment was with hAGP as well as fucose-depleted hAGP protected mice against I/R-induced acute renal failure. Surprisingly, AGP-over-expressing mice were not protected against I/R injury. Both natural and fucose-depleted hAGP inhibited the activation of the complement system, as determined by renal C3 deposition and influx of neutrophils measured by immunohistochemistry and myeloperoxidase-enzyme-linked immunoadsorbent assay. Tubular epithelial cell structure (actin cytoskeleton) and cell-cell interaction (tight-junction architecture) were completely preserved in AGP-treated mice. Also, epithelial caspase activation and apoptotic DNA cleavage were prevented by AGP treatment. CONCLUSIONS Both natural and fucose-depleted hAGP protect against renal I/R injury by preservation of tubular epithelial structure and inhibition of apoptosis and subsequent inflammation. Therefore, hAGP can be regarded as a potential new therapeutic intervention in the treatment of acute renal failure, as seen after transplantation of ischemically injured kidneys.
Collapse
Affiliation(s)
- Bart de Vries
- Department of Surgery, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Academic Hospital Maastricht and Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kielar ML, Rohan Jeyarajah D, Lu CY. The regulation of ischemic acute renal failure by extrarenal organs. Curr Opin Nephrol Hypertens 2002; 11:451-7. [PMID: 12105397 DOI: 10.1097/00041552-200207000-00013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Recent work suggests that extrarenal organs, such as the liver, lung, spleen, brain, lymphoid tissues, and bone marrow, regulate acute renal failure. We now review several examples of such regulation. RECENT FINDINGS First, we demonstrate kidney-liver crosstalk during ischemic renal failure. Renal ischemia induces the renal production of interleukin 6 and the renal expression of interleukin 10 receptors; interleukin 6 stimulates the production of interleukin 10 by the liver; interleukin 10 ameliorates renal injury. The potential mechanisms of interleukin 6 and 10 are discussed. Second, we review the possible effects of the acute phase response on renal ischemic injury. We point out potential analogies between the recently reported association of increased interleukin 6 and C-reactive protein with myocardial ischemia, and renal ischemia. Third, we briefly review the salutary effects of hepatocyte growth factor, produced by the lung, spleen, and liver, on ischemic renal injury. Finally, we discuss how renal ischemia elicits an inflammatory response of neutrophils, macrophages, and T cells that may exacerbate the injury. Granulocyte-colony stimulating factor, produced by the kidney in response to ischemia, may participate in eliciting this inflammation. Such inflammation may be exacerbated by cytokines and growth factors released by the brain after traumatic injury. SUMMARY We discuss the existing evidence for extrarenal regulation of acute renal failure. This suggests that concurrent disease of those extrarenal organs might alter the course of acute renal failure.
Collapse
Affiliation(s)
- Mariusz L Kielar
- Departments of Internal Medicine and Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8856, USA.
| | | | | |
Collapse
|
34
|
Lloberas N, Torras J, Herrero-Fresneda I, Cruzado JM, Riera M, Hurtado I, Grinyó JM. Postischemic renal oxidative stress induces inflammatory response through PAF and oxidized phospholipids. Prevention by antioxidant treatment. FASEB J 2002; 16:908-10. [PMID: 12039876 DOI: 10.1096/fj.01-0880fje] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reperfusion injury is considered primarily an inflammatory response to oxidative stress. In vitro, oxygen free radicals induce the formation of oxidized phospholipids with platelet-activating factor (PAF) activity (PAF-like lipids). We examined the following: 1) whether PAF and PAF-like lipids are released during reperfusion; 2) the relationship between these phospholipids and oxidative damage on the one hand, and leukocyte recruitment in renal tissue on the other; and 3) whether antioxidant treatment influences the behavior of these phospholipids, the renal inflammatory response, and the outcome of postischemic acute renal failure. After 60 min of warm renal ischemia in rabbits, a release of PAF and, particularly, PAF-like lipids was seen in the first 15 min of reperfusion. In addition, the release of those phospholipids was associated with intense tissue DNA oxidation and with an increase in myeloperoxidase activity. Vitamin C was able to attenuate these postischemic oxidative changes, decrease PAF and PAF-like lipid levels, and, consequently, reduce myeloperoxidase activity. After 40 min of warm renal ischemia in rats, vitamin C treatment ameliorated renal function and structure. This is the first in vivo demonstration of the release of phospholipid oxidation products as part of an oxidative-inflammatory response after renal ischemia-reperfusion, with the release of phospholipid oxidation products significantly reduced by antioxidant treatment.
Collapse
Affiliation(s)
- Núria Lloberas
- Laboratory of Experimental Nephrology, Department of Medicine, University of Barcelona, and Nephrology Service, Hospital Bellvitge, L'Hospitalet, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|