1
|
Guo K, van den Beucken T. Advances in drug-induced liver injury research: in vitro models, mechanisms, omics and gene modulation techniques. Cell Biosci 2024; 14:134. [PMID: 39488681 DOI: 10.1186/s13578-024-01317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Drug-induced liver injury (DILI) refers to drug-mediated damage to the structure and function of the liver, ranging from mild elevation of liver enzymes to severe hepatic insufficiency, and in some cases, progressing to liver failure. The mechanisms and clinical symptoms of DILI are diverse due to the varying combination of drugs, making clinical treatment and prevention complex. DILI has significant public health implications and is the primary reason for post-marketing drug withdrawals. The search for reliable preclinical models and validated biomarkers to predict and investigate DILI can contribute to a more comprehensive understanding of adverse effects and drug safety. In this review, we examine the progress of research on DILI, enumerate in vitro models with potential benefits, and highlight cellular molecular perturbations that may serve as biomarkers. Additionally, we discuss omics approaches frequently used to gather comprehensive datasets on molecular events in response to drug exposure. Finally, three commonly used gene modulation techniques are described, highlighting their application in identifying causal relationships in DILI. Altogether, this review provides a thorough overview of ongoing work and approaches in the field of DILI.
Collapse
Affiliation(s)
- Kaidi Guo
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands.
| | - Twan van den Beucken
- Department of Toxicogenomics, GROW - Research Institute for Oncology & Reproduction, Maastricht University, Maastricht, 6200, MD, The Netherlands
| |
Collapse
|
2
|
Bruneau V, Hartmann F, Viviano K. Retrospective description of the clinical use of chloramphenicol in client-owned cats: 12 cases (2015-2023). J Feline Med Surg 2024; 26:1098612X241254024. [PMID: 39387137 PMCID: PMC11483659 DOI: 10.1177/1098612x241254024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVES The study aimed to describe the clinical use of chloramphenicol in client-owned cats, examining the patient population, sites of infection, targeted pathogens, prescribed dosing regimen, outcomes and adverse effects. METHODS Between 2015 and 2023, a retrospective medical record review was undertaken to identify a case series of cats treated with chloramphenicol. RESULTS Twelve client-owned cats with complicated infections were treated with chloramphenicol at a median dose of 13.3 mg/kg (range 9.1-34.7) administered orally every 12 h for a median duration of 14.5 days. Within 30 days before starting chloramphenicol, 11/12 cats had received treatment with at least one antibiotic. The sites of infection included skin, urinary tract and multisystemic. Multidrug-resistant pathogens, for which no alternative oral antibiotic therapy was available, were commonly targeted. These included meticillin-resistant Staphylococcus species and multidrug-resistant Enterococcus faecium. Of the 12 cats treated with chloramphenicol, nine effectively achieved either bacteriologic or clinical cure. Chloramphenicol adverse effects were uncommon and limited to gastrointestinal upset, which was self-limiting or manageable with supportive treatment in two cats. CONCLUSIONS AND RELEVANCE In these cats, the decision to treat with chloramphenicol was made because an alternative oral antibiotic was not available to target the multidrug-resistant pathogens. Infections of the skin or urinary tract were common. Overall, chloramphenicol was well tolerated, and treatment success was possible for most cats.
Collapse
Affiliation(s)
- Vanessa Bruneau
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Faye Hartmann
- University of Wisconsin Veterinary Care, University of Wisconsin-Madison, Madison WI, USA
| | - Katrina Viviano
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Fernandes NS, Passos YDB, Arcoverde KN, Mouta AN, Paiva TC, Oliveira KDS, Araujo-Silva G, de Paula VV. Clinical Effects and Pharmacokinetic Profile of Intramuscular Dexmedetomidine (10 μg/kg) in Cats. Animals (Basel) 2024; 14:2274. [PMID: 39123800 PMCID: PMC11310985 DOI: 10.3390/ani14152274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
This study investigated the pharmacokinetic profile of and pharmacodynamic response to dexmedetomidine administered intramuscularly (IM) at a dose of 10 μg/kg in healthy cats. Nine adult cats were evaluated before and after administration of the drug, with serial collections of plasma samples. Dexmedetomidine induced deep sedation, with a rapid onset of action and a duration of one hour, reaching a peak between 20 and 30 min after administration. The half-life (T½) was 70.2 ± 48 min, with a maximum concentration (Cmax) of 2.2 ± 1.9 ng/mL and time to reach maximum concentration (Tmax) of 26.4 ± 19.8 min. The area under the curve (AUC) was 167.1 ± 149.1 ng/mL*min, with a volume of distribution (Vd) of 2159.9 ± 3237.8 mL/kg and clearance (Cl) of 25.8 ± 33.0 mL/min/kg. There was a reduction in heart rate (HR) and respiratory rate (RR) in relation to the baseline, with a slight decrease in systolic (SBP), diastolic (DBP), and mean (MAP) blood pressure in the first hour. Blood glucose increased after 60 min. Dexmedetomidine proved to be effective and safe, with rapid absorption, metabolization, and elimination, promoting good sedation with minimal adverse effects after IM administration in healthy cats.
Collapse
Affiliation(s)
- Naftáli S. Fernandes
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| | - Yanna D. B. Passos
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| | - Kathryn N. Arcoverde
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| | - Andressa N. Mouta
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| | - Thainá C. Paiva
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| | - Kalyne D. S. Oliveira
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| | | | - Valéria Veras de Paula
- Department of Animal Sciences, Semi-Arid Federal University, Mossoró 59625-900, RN, Brazil; (N.S.F.); (Y.D.B.P.); (K.N.A.); (A.N.M.); (T.C.P.); (K.D.S.O.)
| |
Collapse
|
4
|
Kastl BC, Springer NL. Serum biochemical changes in cats with naturally acquired feline cytauxzoonosis. J Am Vet Med Assoc 2023; 261:517-525. [PMID: 36656676 DOI: 10.2460/javma.22.05.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The geographical distribution of feline cytauxzoonosis is expanding in the US. Clinical signs of feline cytauxzoonosis, including lethargy, anorexia, and icterus, are similar to hepatic lipidosis and cholangiohepatitis. Hematologic and serum biochemical abnormality patterns may assist practitioners in prioritizing feline cytauxzoonosis as a differential diagnosis over hepatic lipidosis and cholangiohepatitis. SAMPLE Hematology and serum biochemical profiles of cats with naturally acquired feline cytauxzoonosis, hepatic lipidosis, or cholangiohepatitis. PROCEDURES Retrospective search and analysis of the Kansas State Veterinary Diagnostic Laboratory or Kansas State University Veterinary Health Center records between January 2007 and June 2018 for cats with cytauxzoonosis, hepatic lipidosis, or cholangiohepatitis. RESULTS Patients with acute feline cytauxzoonosis presented with frequent nonregenerative anemia (20/28 [71%]), leukopenia (23/28 [82%]), thrombocytopenia (23/23 [100%]), hyperbilirubinemia (27/28 [97%]), hypoalbuminemia (26/28 [93%]), reduced (18/28 [64%]) or low normal (10/28 [36%]) serum ALP activity, and hyponatremia (23/28 [82%]). Reduced ALP activity was unique to cats with feline cytauxzoonosis relative to hepatic lipidosis and cholangiohepatitis. No correlation between the severity of anemia and the magnitude of hyperbilirubinemia was identified in feline cytauxzoonosis patients. CLINICAL RELEVANCE The combination of nonregenerative anemia, leukopenia, thrombocytopenia, hyperbilirubinemia, and reduced serum ALP activity in icteric cats may increase the clinical suspicion, but is not pathognomonic, for acute feline cytauxzoonosis. Hematologic and serum biochemical abnormalities of naturally acquired feline cytauxzoonosis are like those reported with feline bacterial sepsis. Blood smear evaluation for intraerythrocytic Cytauxzoon felis piroplasms, tissue aspirates for schizont-laden macrophages, and/or molecular testing are required to diagnose feline cytauxzoonosis.
Collapse
Affiliation(s)
- Brandy C Kastl
- 1Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS
- 2Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Nora L Springer
- 1Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS
- 2Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| |
Collapse
|
5
|
Duplication, Loss, and Evolutionary Features of Specific UDP-Glucuronosyltransferase Genes in Carnivora (Mammalia, Laurasiatheria). Animals (Basel) 2022; 12:ani12212954. [DOI: 10.3390/ani12212954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are one of the most important enzymes for xenobiotic metabolism or detoxification. Through duplication and loss of genes, mammals evolved the species-specific variety of UGT isoforms. Among mammals, Carnivora is one of the orders that includes various carnivorous species, yet there is huge variation of food habitat. Recently, lower activity of UGT1A and 2B were shown in Felidae and pinnipeds, suggesting evolutional loss of these isoforms. However, comprehensive analysis for genetic or evolutional features are still missing. This study was conducted to reveal evolutional history of UGTs in Carnivoran species. We found specific gene expansion of UGT1As in Canidae, brown bear and black bear. We also found similar genetic duplication in UGT2Bs in Canidae, and some Mustelidae and Ursidae. In addition, we discovered contraction or complete loss of UGT1A7–12 in phocids, some otariids, felids, and some Mustelids. These studies indicate that even closely related species have completely different evolution of UGTs and further imply the difficulty of extrapolation of the pharmacokinetics and toxicokinetic result of experimental animals into wildlife carnivorans.
Collapse
|
6
|
Steagall PV, Robertson S, Simon B, Warne LN, Shilo-Benjamini Y, Taylor S. 2022 ISFM Consensus Guidelines on the Management of Acute Pain in Cats. J Feline Med Surg 2022; 24:4-30. [PMID: 34937455 PMCID: PMC10845386 DOI: 10.1177/1098612x211066268] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PRACTICAL RELEVANCE Increases in cat ownership worldwide mean more cats are requiring veterinary care. Illness, trauma and surgery can result in acute pain, and effective management of pain is required for optimal feline welfare (ie, physical health and mental wellbeing). Validated pain assessment tools are available and pain management plans for the individual patient should incorporate pharmacological and non-pharmacological therapy. Preventive and multimodal analgesia, including local anaesthesia, are important principles of pain management, and the choice of analgesic drugs should take into account the type, severity and duration of pain, presence of comorbidities and avoidance of adverse effects. Nursing care, environmental modifications and cat friendly handling are likewise pivotal to the pain management plan, as is a team approach, involving the cat carer. CLINICAL CHALLENGES Pain has traditionally been under-recognised in cats. Pain assessment tools are not widely implemented, and signs of pain in this species may be subtle. The unique challenges of feline metabolism and comorbidities may lead to undertreatment of pain and the development of peripheral and central sensitisation. Lack of availability or experience with various analgesic drugs may compromise effective pain management. EVIDENCE BASE These Guidelines have been created by a panel of experts and the International Society of Feline Medicine (ISFM) based on the available literature and the authors' experience. They are aimed at general practitioners to assist in the assessment, prevention and management of acute pain in feline patients, and to provide a practical guide to selection and dosing of effective analgesic agents.
Collapse
Affiliation(s)
- Paulo V Steagall
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Universite de Montréal, Saint-Hyacinthe, Canada; and Department of Veterinary Clinical Sciences and Centre for Companion Animal Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | | | - Bradley Simon
- Department of Small Animal Clinical Sciences, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, Texas, USA
| | - Leon N Warne
- Veterinary Anaesthesia & Pain Management Australia, Perth, Western Australia; and Veterinary Cannabis Medicines Australia, Perth, Western Australia, Australia
| | - Yael Shilo-Benjamini
- Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
7
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
8
|
Functional Characterisation of Three Glycine N-Acyltransferase Variants and the Effect on Glycine Conjugation to Benzoyl-CoA. Int J Mol Sci 2021; 22:ijms22063129. [PMID: 33803916 PMCID: PMC8003330 DOI: 10.3390/ijms22063129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
The glycine conjugation pathway in humans is involved in the metabolism of natural substrates and the detoxification of xenobiotics. The interactions between the various substrates in this pathway and their competition for the pathway enzymes are currently unknown. The pathway consists of a mitochondrial xenobiotic/medium-chain fatty acid: coenzyme A (CoA) ligase (ACSM2B) and glycine N-acyltransferase (GLYAT). The catalytic mechanism and substrate specificity of both of these enzymes have not been thoroughly characterised. In this study, the level of evolutionary conservation of GLYAT missense variants and haplotypes were analysed. From these data, haplotype variants were selected (156Asn > Ser, [17Ser > Thr,156Asn > Ser] and [156Asn > Ser,199Arg > Cys]) in order to characterise the kinetic mechanism of the enzyme over a wide range of substrate concentrations. The 156Asn > Ser haplotype has the highest frequency and the highest relative enzyme activity in all populations studied, and hence was used as the reference in this study. Cooperative substrate binding was observed, and the kinetic data were fitted to a two-substrate Hill equation. The coding region of the GLYAT gene was found to be highly conserved and the rare 156Asn > Ser,199Arg > Cys variant negatively affected the relative enzyme activity. Even though the 156Asn > Ser,199Arg > Cys variant had a higher affinity for benzoyl-CoA (s0.5,benz = 61.2 µM), kcat was reduced to 9.8% of the most abundant haplotype 156Asn > Ser (s0.5,benz = 96.6 µM), while the activity of 17Ser > Thr,156Asn > Ser (s0.5,benz = 118 µM) was 73% of 156Asn > Ser. The in vitro kinetic analyses of the effect of the 156Asn > Ser,199Arg > Cys variant on human GLYAT enzyme activity indicated that individuals with this haplotype might have a decreased ability to metabolise benzoate when compared to individuals with the 156Asn > Ser variant. Furthermore, the accumulation of acyl-CoA intermediates can inhibit ACSM2B leading to a reduction in mitochondrial energy production.
Collapse
|
9
|
Westbury MV, Le Duc D, Duchêne DA, Krishnan A, Prost S, Rutschmann S, Grau JH, Dalen L, Weyrich A, Norén K, Werdelin L, Dalerum F, Schöneberg T, Hofreiter M. Ecological Specialisation and Evolutionary Reticulation in Extant Hyaenidae. Mol Biol Evol 2021; 38:3884-3897. [PMID: 34426844 PMCID: PMC8382907 DOI: 10.1093/molbev/msab055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During the Miocene, Hyaenidae was a highly diverse family of Carnivora that has since been severely reduced to four species: the bone-cracking spotted, striped, and brown hyenas, and the specialized insectivorous aardwolf. Previous studies investigated the evolutionary histories of the spotted and brown hyenas, but little is known about the remaining two species. Moreover, the genomic underpinnings of scavenging and insectivory, defining traits of the extant species, remain elusive. Here, we generated an aardwolf genome and analyzed it together with the remaining three species to reveal their evolutionary relationships, genomic underpinnings of their scavenging and insectivorous lifestyles, and their respective genetic diversities and demographic histories. High levels of phylogenetic discordance suggest gene flow between the aardwolf lineage and the ancestral brown/striped hyena lineage. Genes related to immunity and digestion in the bone-cracking hyenas and craniofacial development in the aardwolf showed the strongest signals of selection, suggesting putative key adaptations to carrion and termite feeding, respectively. A family-wide expansion in olfactory receptor genes suggests that an acute sense of smell was a key early adaptation. Finally, we report very low levels of genetic diversity within the brown and striped hyenas despite no signs of inbreeding, putatively linked to their similarly slow decline in effective population size over the last ∼2 million years. High levels of genetic diversity and more stable population sizes through time are seen in the spotted hyena and aardwolf. Taken together, our findings highlight how ecological specialization can impact the evolutionary history, demographics, and adaptive genetic changes of an evolutionary lineage.
Collapse
Affiliation(s)
- M V Westbury
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany.,Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark
| | - Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, 04103, Germany.,Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - David A Duchêne
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, Denmark.,Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Arunkumar Krishnan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.,Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Stefan Prost
- LOEWE-Center for Translational Biodiversity Genomics, Senckenberg, 60325, Germany. Frankfurt.,South African National Biodiversity Institute, National Zoological Garden, Pretoria, 0184, South Africa
| | - Sereina Rutschmann
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| | - Jose H Grau
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany.,amedes Genetics, amedes Medizinische Dienstleistungen, Berlin, Germany
| | - Love Dalen
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, Stockholm, 10405, Sweden
| | - Alexandra Weyrich
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, 10315, Germany
| | - Karin Norén
- Department of Zoology, Stockholm University, Stockholm, 106 91, Sweden
| | - Lars Werdelin
- Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, Stockholm, SE-10405, Sweden
| | - Fredrik Dalerum
- Department of Zoology, Stockholm University, Stockholm, 106 91, Sweden.,Research Unit of Biodiversity (UO-CSIC-PA), Mieres Campus, University of Oviedo, Mieres, Asturias, 33600, Spain.,Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Johannisallee 30, Leipzig, 04103, Germany
| | - Michael Hofreiter
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, Potsdam, 14476, Germany
| |
Collapse
|
10
|
Kovaříková S, Maršálek P, Habánová M, Konvalinová J. Serum concentration of bisphenol A in elderly cats and its association with clinicopathological findings. J Feline Med Surg 2021; 23:105-114. [PMID: 32538247 PMCID: PMC10741350 DOI: 10.1177/1098612x20932260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Bisphenol A (BPA) has been mentioned as a possible factor contributing to feline hyperthyroidism. Nevertheless, there are no previous studies reporting on the concentration of BPA in feline serum and its association with thyroid function. The objectives of this study were to measure serum BPA concentration in cats aged ⩾7 years, considered as healthy by their owners, and to compare the results with clinicopathological findings. METHODS Sixty-nine cats aged ⩾7 years considered as healthy by their owners were enrolled in the study. The concentration of BPA in feline serum was measured using liquid chromatography-tandem mass spectrometry. In all cats, signalment, living environment, diet history, and the results of haematological and biochemical analysis, including thyroxine levels, were available. RESULTS The mean serum BPA concentration in feline serum was 1.06 ± 0.908 ng/ml. Significant correlation was found between BPA concentration and haemoglobin (r = 0.3397; P = 0.0043), haematocrit (r = 0.3245; P = 0.0065) and the number of red blood cells (r = 0.2916; P = 0.0151), concentration of total protein (r = 0.2383; P = 0.0486), concentration of calcium (r = 0.3915; P = 0.0009) and level of bilirubin (r = 0.3848; P = 0.0011). No other significant correlations were found. Significant differences (P <0.01) were found between mature (1.28 ± 0.994 ng/ml) and geriatric cats (0.420 ± 0.240 ng/ml), between strictly indoor cats (1.27 ± 0.992 ng/ml) and cats with outdoor access (0.660 ± 0.529 ng/ml), and between cats fed canned food (1.23 ± 0.935 ng/ml) and cats fed non-canned food (0.774 ± 0.795 ng/ml). CONCLUSIONS AND RELEVANCE Measurable serum BPA levels were found in all examined samples. The age of the cats was revealed as a significant factor affecting BPA concentration and mature cats had the highest levels. A significantly higher concentration of BPA was found in cats living strictly indoors and in cats fed canned food. No association was found between BPA and thyroid function. Further studies are needed that focus on hyperthyroid cats for better evaluation of this relationship.
Collapse
Affiliation(s)
- Simona Kovaříková
- Department of Animal Protection and Welfare and
Public Veterinary Medicine, Faculty of Veterinary Hygiene and Ecology,
University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech
Republic
| | - Petr Maršálek
- Department of Animal Protection and Welfare and
Public Veterinary Medicine, Faculty of Veterinary Hygiene and Ecology,
University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech
Republic
| | - Monika Habánová
- Department of Animal Protection and Welfare and
Public Veterinary Medicine, Faculty of Veterinary Hygiene and Ecology,
University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech
Republic
| | - Jarmila Konvalinová
- Department of Animal Protection and Welfare and
Public Veterinary Medicine, Faculty of Veterinary Hygiene and Ecology,
University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech
Republic
| |
Collapse
|
11
|
Lautz LS, Jeddi MZ, Girolami F, Nebbia C, Dorne JLCM. Metabolism and pharmacokinetics of pharmaceuticals in cats (Felix sylvestris catus) and implications for the risk assessment of feed additives and contaminants. Toxicol Lett 2020; 338:114-127. [PMID: 33253781 DOI: 10.1016/j.toxlet.2020.11.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/25/2023]
Abstract
In animal health risk assessment, hazard characterisation of feed additives has been often using the default uncertainty factor (UF) of 100 to translate a no-observed-adverse-effect level in test species (rat, mouse, dog, rabbit) to a 'safe' level of chronic exposure in farm and companion animal species. Historically, both 10-fold factors have been further divided to include chemical-specific data in both dimensions when available. For cats (Felis Sylvestris catus), an extra default UF of 5 is applied due to the species' deficiency in particularly glucuronidation and glycine conjugation. This paper aims to assess the scientific basis and validity of the UF for inter-species differences in kinetics (4.0) and the extra UF applied for cats through a comparison of kinetic parameters between rats and cats for 30 substrates of phase I and phase II metabolism. When the parent compound undergoes glucuronidation the default factor of 4.0 is exceeded, with exceptions for zidovudine and S-carprofen. Compounds that were mainly renally excreted did not exceed the 4.0-fold default. Mixed results were obtained for chemicals which are metabolised by CYP3A in rats. When chemicals were administered intravenously the 4.0-fold default was not exceeded with the exception of clomipramine, lidocaine and alfentanil. The differences seen after oral administration might be due to differences in first-pass metabolism and bioavailability. Further work is needed to further characterise phase I, phase II enzymes and transporters in cats to support the development of databases and in silico models to support hazard characterisation of chemicals particularly for feed additives.
Collapse
Affiliation(s)
- L S Lautz
- Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - M Z Jeddi
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno, 1A, 43126 Parma, Italy
| | - F Girolami
- University of Torino, Department of Veterinary Sciences, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - C Nebbia
- University of Torino, Department of Veterinary Sciences, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - J L C M Dorne
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno, 1A, 43126 Parma, Italy.
| |
Collapse
|
12
|
Bäumer W, Baynes R. Surface distribution of pyrethroids following topical application to veterinary species: Implications for lateral transport. J Vet Pharmacol Ther 2020; 44:1-10. [PMID: 32910498 PMCID: PMC7821121 DOI: 10.1111/jvp.12907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/01/2020] [Accepted: 08/13/2020] [Indexed: 11/29/2022]
Abstract
Pyrethroids like permethrin have been used as topical formulations for their ectoparasiticidal effects since the 1970s. There are numerous efficacy studies in dogs and livestock animals that indicate a fast spread of pyrethroids after topical administration onto rather confined areas of the skin. Some studies correlate the efficacy against ticks, fleas or lice with concentrations of pyrethroids in hair and, less frequently, stratum corneum samples. It is often stated that lateral transport is responsible for the distribution of the pyrethroids over the body surface. With this review, we attempt to demonstrate evidence for lateral transport of pyrethroids after topical administration in dogs, cattle and sheep and to present data gaps that should be addressed in follow‐up studies.
Collapse
Affiliation(s)
- Wolfgang Bäumer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ronald Baynes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
13
|
Abstract
The era of Precision / Genomic Medicine has arrived and can improve the veterinary healthcare of companion animals. The goal of Precision / Genomic Medicine is to use an individual's DNA signature / profile to tailor their treatments of their specific health problems. Whole genome sequencing is now a cost-effective diagnostic tool, leading to the discovery of DNA variants associated with health outcomes. These DNA variants become genetic tests and can readily be applied to future cases of individuals with similar symptoms. This article addresses the current state of Precision Medicine in domestic cats and the implications for veterinary care.
Collapse
Affiliation(s)
- Reuben M Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, E109 Vet Med Building, 825 East Campus Loop, Columbia, MO 65211, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, E109 Vet Med Building, 825 East Campus Loop, Columbia, MO 65211, USA.
| |
Collapse
|
14
|
The Effects of Propofol Anesthesia on Lipid Profile and Some Biochemical Indices in Cats. Top Companion Anim Med 2020; 41:100451. [PMID: 32823152 DOI: 10.1016/j.tcam.2020.100451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to evaluate lipid profile (triglyceride, total cholesterol, HDL, LDL, and VLDL), pancreas (lipase and amylase), liver (AST, ALT, and ALP), blood urea nitrogen, creatinine, uric acid, sodium and potassium function indicators in cats undergoing two different durations of anesthesia with propofol. Ten adult female cats were randomly divided into two groups (n= 5) and anaesthetized with propofol 1% (induction: 8 mg/kg; infusion: 0.3 mg/kg/min) for either 45 or 90 minutes. Blood samples were collected at predetermined intervals up to 72 hours later. Comparison of the measured variables between treatments did not show significant differences. Triglyceride and cholesterol levels showed significant increase after induction of anesthesia (P < .05). The highest triglyceride and cholesterol values were recorded at 6 and 24 hours. HDL was lower while LDL and VLDL were higher at several time points after anesthesia (P < .05). Higher values of lipase, ALT and AST were detected after induction (P < .05). All the observed alterations were within normal ranges. In conclusion, propofol anesthesia was associated with some changes in lipid profile, as well as pancreatic and liver function indices, which should be considered in clinical situations. It seems that in the absence of pre- or co-existing disturbances, induction and maintenance of anesthesia with propofol did not carry additional risk to cats.
Collapse
|
15
|
Analgesia: What Makes Cats Different/Challenging and What Is Critical for Cats? Vet Clin North Am Small Anim Pract 2020; 50:749-767. [PMID: 32354487 DOI: 10.1016/j.cvsm.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cats have unique anatomic, physiologic, and behavioral considerations that may influence analgesia and pain management. They present specific challenges that require an individualized, feline-specific approach. This article presents an overview of recent advances in feline pain management and their differences in relation to other species and evolves on its future challenges. The main specific anatomy and physiology of the cat and how it may affect analgesia is discussed. Validated pain assessment tools including the UNESP-Botucatu Multidimensional Composite Pain Scale, Glasgow Feline Composite Measure Pain Scale, and the Feline Grimace Scale are summarized.
Collapse
|
16
|
Khidkhan K, Mizukawa H, Ikenaka Y, Nakayama SMM, Nomiyama K, Yokoyama N, Ichii O, Darwish WS, Takiguchi M, Tanabe S, Ishizuka M. Tissue distribution and characterization of feline cytochrome P450 genes related to polychlorinated biphenyl exposure. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108613. [PMID: 31487551 DOI: 10.1016/j.cbpc.2019.108613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
Cats have been known to be extremely sensitive to chemical exposures. To understand these model species' sensitivity to chemicals and their toxicities, the expression profiles of xenobiotic-metabolizing enzymes should be studied. Unfortunately, the characterization of cytochrome P450 (CYP), the dominant enzyme in phase I metabolism, in cats has not extensively been studied. Polychlorinated biphenyls (PCBs) are known as CYP inducers in animals, but the information regarding the PCB-induced CYP expression in cats is limited. Therefore, in the present study, we aimed to elucidate the mRNA expression of the CYP1-CYP3 families in the cat tissues and to investigate the CYP mRNA expression related to PCB exposure. In cats, the greatest abundance of CYP1-CYP3 (CYP1A2, CYP2A13, CYP2C41, CYP2D6, CYP2E1, CYP2E2, CYP2F2, CYP2F5, CYP2J2, CYP2U1, and CYP3A132) was expressed in the liver, but some extrahepatic isozymes were found in the kidney (CYP1A1), heart (CYP1B1), lung (CYP2B11 and CYP2S1) and small intestine (CYP3A131). In cats, CYP1A1, CYP1A2 and CYP1B1 were significantly upregulated in the liver as well as in several tissues exposed to PCBs, indicating that these CYPs were distinctly induced by PCBs. The strong correlations between 3,3',4,4'-tetrachlorobiphenyl (CB77) and CYP1A1 and CYP1B1 mRNA expressions were noted, demonstrating that CB77 could be a potent CYP1 inducer. In addition, these CYP isoforms could play an essential role in the PCBs biotransformation, particularly 3-4 Cl-PCBs, because a high hydroxylated metabolite level of 3-4 Cl-OH-PCBs was observed in the liver.
Collapse
Affiliation(s)
- Kraisiri Khidkhan
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Hazuki Mizukawa
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime, 790-8577, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Shouta M M Nakayama
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Nozomu Yokoyama
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Osamu Ichii
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Wageh Sobhy Darwish
- Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0818, Japan; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mitsuyoshi Takiguchi
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| |
Collapse
|
17
|
Kawai YK, Shinya S, Ikenaka Y, Saengtienchai A, Kondo M, Darwish WS, Nakayama SMM, Mizukawa H, Ishizuka M. Characterization of function and genetic feature of UDP-glucuronosyltransferase in avian species. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:5-14. [PMID: 30476594 DOI: 10.1016/j.cbpc.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/02/2018] [Indexed: 02/01/2023]
Abstract
Birds are exposed to many xenobiotics during their lifetime. For accurate prediction of xenobiotic-induced toxic effects on avian species, it is necessary to understand metabolic capacities in a comprehensive range of bird species. However, there is a lack of information about avian xenobiotic metabolizing enzymes (XMEs), particularly in wild birds. Uridine diphosphate glucuronosyltransferase (UGT) is an XME that plays an important role in phase II metabolism in the livers of mammals and birds. This study was performed to determine the characteristics of UGT1E isoform in avian species, those are related to mammals UGT 1A. To understand the characteristics of avian UGT1E isoforms, in vitro metabolic activity and genetic characteristics were investigated. Furthermore, mRNA expression levels of all chicken UGT1E isoforms were measured. On in vitro enzymatic analysis, the white-tailed eagle, great horned owl, and Humboldt penguin showed lower UGT-dependent activity than domestic birds. In synteny analysis, carnivorous birds were shown to have fewer UGT1E isoforms than herbivorous and omnivorous birds, which may explain why they have lower in vitro UGT activity. These observations suggested that raptors and seabirds, in which UGT activity is low, may be at high risk if exposed to elevated levels of xenobiotics in the environment. Phylogenetic analysis suggested that avian UGT1Es have evolved independently from mammalian UGT1As. We identified the important UGT isoforms, such as UGT1E13, and suspected their substrate specificities in avian xenobiotic metabolism by phylogenetic and quantitative real-time PCR analysis. This is the first report regarding the genetic characteristics and interspecies differences of UGT1Es in avian species.
Collapse
Affiliation(s)
- Yusuke K Kawai
- Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - So Shinya
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Aksorn Saengtienchai
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, 50 Ngam Wong Wan Rd, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Mitsuki Kondo
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Wageh Sobhy Darwish
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shota M M Nakayama
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Hazuki Mizukawa
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Faculty of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan.
| |
Collapse
|
18
|
Hecker N, Sharma V, Hiller M. Convergent gene losses illuminate metabolic and physiological changes in herbivores and carnivores. Proc Natl Acad Sci U S A 2019; 116:3036-3041. [PMID: 30718421 PMCID: PMC6386725 DOI: 10.1073/pnas.1818504116] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The repeated evolution of dietary specialization represents a hallmark of mammalian ecology. To detect genomic changes that are associated with dietary adaptations, we performed a systematic screen for convergent gene losses associated with an obligate herbivorous or carnivorous diet in 31 placental mammals. For herbivores, our screen discovered the repeated loss of the triglyceride lipase inhibitor PNLIPRP1, suggesting enhanced triglyceride digestion efficiency. Furthermore, several herbivores lost the pancreatic exocytosis factor SYCN, providing an explanation for continuous pancreatic zymogen secretion in these species. For carnivores, we discovered the repeated loss of the hormone-receptor pair INSL5-RXFP4 that regulates appetite and glucose homeostasis, which likely relates to irregular feeding patterns and constant gluconeogenesis. Furthermore, reflecting the reduced need to metabolize plant-derived xenobiotics, several carnivores lost the xenobiotic receptors NR1I3 and NR1I2 Finally, the carnivore-associated loss of the gastrointestinal host defense gene NOX1 could be related to a reduced gut microbiome diversity. By revealing convergent gene losses associated with differences in dietary composition, feeding patterns, and gut microbiomes, our study contributes to understanding how similar dietary specializations evolved repeatedly in mammals.
Collapse
Affiliation(s)
- Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany;
- Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| |
Collapse
|
19
|
van den Hurk P, Kerkkamp HMI. Phylogenetic origins for severe acetaminophen toxicity in snake species compared to other vertebrate taxa. Comp Biochem Physiol C Toxicol Pharmacol 2019; 215:18-24. [PMID: 30268769 DOI: 10.1016/j.cbpc.2018.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 11/24/2022]
Abstract
While it has been known for a while that some snake species are extremely sensitive to acetaminophen, the underlying mechanism for this toxicity has not been reported. To investigate if essential detoxification enzymes are missing in snake species that are responsible for biotransformation of acetaminophen in other vertebrate species, livers were collected from a variety of snake species, together with samples from alligator, snapping turtle, cat, rat, and cattle. Subcellular fractions were analyzed for enzymatic activities of phenol-type sulfotransferase and UDP‑glucuronosyltransferase, total glutathione S‑transferase, and N‑acetyltransferase. The results showed that none of the snake species, together with the cat samples, had any phenol-type glucuronidation activity, and that this activity was much lower in alligator and turtle samples than in the mammalian species. Combined with the lack of N‑acetyltransferase activity in snakes and cats, this would explain the accumulation of the aminophenol metabolite, which induces methemoglobinemia and subsequent suffocation of snakes and cats after acetaminophen exposure. While previous investigations have concluded that in cats the gene for the phenol-type glucuronosyltransferase isoform has turned into a pseudogene because of several point mutations, evaluation of genomic information for snake species revealed that they have only 2 genes that may code for glucuronosyltransferase isoforms. Similarity of these genes with mammalian genes is <50%, and suggests that the expressed enzymes may act on other types of substrates than aromatic amines. This indicates that the extreme sensitivity for acetaminophen in snakes is based on a different phylogenetic origin than the sensitivity observed in cats.
Collapse
Affiliation(s)
- Peter van den Hurk
- Department of Biological Sciences, Clemson University, Clemson, SC 20624, USA.
| | | |
Collapse
|
20
|
McGill MR, Jaeschke H. Animal models of drug-induced liver injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1031-1039. [PMID: 31007174 DOI: 10.1016/j.bbadis.2018.08.037] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Drug-induced liver injury (DILI) presents unique challenges for consumers, clinicians, and regulators. It is the most common cause of acute liver failure in the US. It is also one of the most common reasons for termination of new drugs during pre-clinical testing and withdrawal of new drugs post-marketing. DILI is generally divided into two forms: intrinsic and idiosyncratic. Many of the challenges with DILI are due in large part to poor understanding of the mechanisms of toxicity. Although useful models of intrinsic DILI are available, they are frequently misused. Modeling idiosyncratic DILI presents greater challenges, but promising new models have recently been developed. The purpose of this manuscript is to provide a critical review of the most popular animal models of DILI, and to discuss the future of DILI research.
Collapse
Affiliation(s)
- Mitchell R McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hartmut Jaeschke
- Dept. of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
21
|
Perez Jimenez TE, Mealey KL, Schnider D, Grubb TL, Greene SA, Court MH. Identification of canine cytochrome P-450s (CYPs) metabolizing the tramadol (+)-M1 and (+)-M2 metabolites to the tramadol (+)-M5 metabolite in dog liver microsomes. J Vet Pharmacol Ther 2018; 41:815-824. [PMID: 30113702 DOI: 10.1111/jvp.12706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
Abstract
We previously showed that (+)-tramadol is metabolized in dog liver to (+)-M1 exclusively by CYP2D15 and to (+)-M2 by multiple CYPs, but primarily CYP2B11. However, (+)-M1 and (+)-M2 are further metabolized in dogs to (+)-M5, which is the major metabolite found in dog plasma and urine. In this study, we identified canine CYPs involved in metabolizing (+)-M1 and (+)-M2 using recombinant enzymes, untreated dog liver microsomes (DLMs), inhibitor-treated DLMs, and DLMs from CYP inducer-treated dogs. A canine P-glycoprotein expressing cell line was also used to evaluate whether (+)-tramadol, (+)-M1, (+)-M2, or (+)-M5 are substrates of canine P-glycoprotein, thereby limiting their distribution into the central nervous system. (+)-M5 was largely formed from (+)-M1 by recombinant CYP2C21 with minor contributions from CYP2C41 and CYP2B11. (+)-M5 formation in DLMs from (+)-M1 was potently inhibited by sulfaphenazole (CYP2C inhibitor) and chloramphenicol (CYP2B11 inhibitor) and was greatly increased in DLMs from phenobarbital-treated dogs. (+)-M5 was formed from (+)-M2 predominantly by CYP2D15. (+)-M5 formation from (+)-M1 in DLMs was potently inhibited by quinidine (CYP2D inhibitor) but had only a minor impact from all CYP inducers tested. Intrinsic clearance estimates showed over 50 times higher values for (+)-M5 formation from (+)-M2 compared with (+)-M1 in DLMs. This was largely attributed to the higher enzyme affinity (lower Km) for (+)-M2 compared with (+)-M1 as substrate. (+)-tramadol, (+)-M1, (+)-M2, or (+)-M5 were not p-glycoprotein substrates. This study provides a clearer picture of the role of individual CYPs in the complex metabolism of tramadol in dogs.
Collapse
Affiliation(s)
- Tania E Perez Jimenez
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, Pharmacogenomics Laboratory, Washington State University College of Veterinary Medicine, Pullman, Washington
| | - Katrina L Mealey
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, Pharmacogenomics Laboratory, Washington State University College of Veterinary Medicine, Pullman, Washington
| | - Darren Schnider
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, Pharmacogenomics Laboratory, Washington State University College of Veterinary Medicine, Pullman, Washington
| | - Tamara L Grubb
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, Pharmacogenomics Laboratory, Washington State University College of Veterinary Medicine, Pullman, Washington
| | - Stephen A Greene
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, Pharmacogenomics Laboratory, Washington State University College of Veterinary Medicine, Pullman, Washington
| | - Michael H Court
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, Pharmacogenomics Laboratory, Washington State University College of Veterinary Medicine, Pullman, Washington
| |
Collapse
|
22
|
Kondo T, Ikenaka Y, Nakayama SMM, Kawai YK, Mizukawa H, Mitani Y, Nomiyama K, Tanabe S, Ishizuka M. Uridine Diphosphate-Glucuronosyltransferase (UGT) 2B Subfamily Interspecies Differences in Carnivores. Toxicol Sci 2018; 158:90-100. [PMID: 28453659 DOI: 10.1093/toxsci/kfx072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are among the most important xenobiotic metabolizing enzymes that conjugate a wide range of chemicals. Previous studies showed that Felidae and Pinnipedia species have very low UGT activities toward some phenolic compounds because of the UGT1A6 pseudogene and small numbers of UGT1A isozymes. In addition to the UGT1As, UGT2Bs isozymes also conjugate various endogenous (eg, estrogens, androgens, and bile acids) and exogenous compounds (opioids, non-steroidal anti-inflammatory drugs, and environmental pollutants). However UGT2B activity and genetic background are unknown in carnivore species. Therefore, this study was performed to elucidate the species differences of UGT2Bs. Using typical substrates for UGT2Bs, UGT activity was measured in vitro. In addition, UGT2B genetic features are analyzed in silico. Results of UGT activity measurement indicate marked species differences between dogs and other carnivores (cats, Northern fur seals, Steller sea lions, Harbor seals, and Caspian seals). Dogs have very high Vmax/Km toward estradiol (17-glucuronide), estrone, lorazepam, oxazepam, and temazepam. Conversely, cats and pinniped species (especially Caspian seals and Harbor seals) have very low activities toward these substrates. The results of genetic synteny analysis indicate that Felidae and pinniped species have very small numbers of UGT2B isozymes (one or none) compared with dogs, rodents, and humans. Furthermore, Felidae species have the same nonsense mutation in UGT2B, which suggests that Felidae UGT2B31-like is also a pseudogene in addition to UGT1A6. These findings of lower activity of UGT2B suggest that Felidae and some pinniped species have very low UGT activity toward a wide range of chemicals. These results are important for Felidae and Pinnipedia species that are frequently exposed to drugs and environmental pollutants.
Collapse
Affiliation(s)
- Takamitsu Kondo
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan.,Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yusuke K Kawai
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Hazuki Mizukawa
- Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoko Mitani
- Field Science Center for Northern Biosphere, Hokkaido University, N11, W10, Kita-ku, Sapporo 060-0811, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, N18, W9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
23
|
Sharpe EK, Meekins JM, Roush JK, Rankin AJ, KuKanich B. Effect of oral administration of robenacoxib on inhibition of paracentesis-induced blood-aqueous barrier breakdown in healthy cats. Am J Vet Res 2018; 79:443-449. [PMID: 29583043 DOI: 10.2460/ajvr.79.4.443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the effect of oral administration of robenacoxib on inhibition of anterior chamber paracentesis (ACP)-induced breakdown of the blood-aqueous barrier (BAB) and assess whether robenacoxib can cross an intact BAB in healthy cats. ANIMALS 12 healthy adult domestic shorthair cats. PROCEDURES Cats received robenacoxib (6-mg tablet in a treat, PO; n = 6) or a control treatment (treat without any drug, PO; 6) once daily for 3 days, beginning 1 day before ACP. One eye of each cat served as an untreated control, whereas the other underwent ACP, during which a 30-gauge needle was used to aspirate 100 μL of aqueous humor for determination of robenacoxib concentration. Both eyes of each cat underwent anterior chamber fluorophotometry at 0 (immediately before), 6, 24, and 48 hours after ACP. Fluorescein concentration and percentage fluorescein increase were used to assess extent of ACP-induced BAB breakdown and compared between cats that did and did not receive robenacoxib. RESULTS Extent of BAB breakdown induced by ACP did not differ significantly between cats that did and did not receive robenacoxib. Low concentrations of robenacoxib were detected in the aqueous humor (mean, 5.32 ng/mL; range, 0.9 to 16 ng/mL) for 5 of the 6 cats that received the drug. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that oral administration of robenacoxib did not significantly decrease extent of BAB breakdown in healthy cats. Detection of low robenacoxib concentrations in the aqueous humor for most treated cats indicated that the drug can cross an intact BAB.
Collapse
|
24
|
Skouropoulou D, Lacitignola L, Centonze P, Simone A, Crovace AM, Staffieri F. Perioperative analgesic effects of an ultrasound-guided transversus abdominis plane block with a mixture of bupivacaine and lidocaine in cats undergoing ovariectomy. Vet Anaesth Analg 2018; 45:374-383. [PMID: 29627201 DOI: 10.1016/j.vaa.2018.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/12/2017] [Accepted: 01/20/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To evaluate the perioperative analgesic effects of a transversus abdominis plane (TAP) block with a mixture of lidocaine and bupivacaine administered to cats undergoing ovariectomy. STUDY DESIGN Controlled, randomized, prospective, blinded clinical study. ANIMALS A group of 20 healthy cats. METHODS Robenacoxib (2 mg kg-1) was administered subcutaneously 0.5 hour before intramuscular (IM) administration of ketamine (5 mg kg-1), methadone (0.1 mg kg-1) and dexmedetomidine (0.01 mg kg-1). General anesthesia was induced with intravenous (IV) propofol and maintained with isoflurane. An ultrasound-guided TAP block was performed by injecting 0.5% bupivacaine (0.2 mL kg-1) diluted in a total volume of 1.5 mL 2% lidocaine bilaterally (TAP group, n = 10) or the same volume of saline solution bilaterally in controls (CTR group, n = 10). During surgery, a 20% increase in heart rate and respiratory frequency was treated with IV fentanyl (0.001 mg kg-1). Before premedication and at 1, 2, 3, 4, 6, 8, 12, 16, 20 and 24 hours after extubation, pain was assessed with a simple descriptive pain scale, that ranged from 0 (no pain) to 4 (intense pain). For pain scores ≥3, IM methadone (0.1 mg kg-1) was administered. Data were analyzed with the Friedman or the analysis of variance (anova) test, and p < 0.05 was considered statistically significant. RESULTS Only two cats in the CTR group were administered one dose of fentanyl during surgery. At 2, 6, 8, 12, 16, 20 and 24 hours after surgery, the pain score was higher in the CTR group. A mean dose of 0.5 ± 0.2 mg kg-1 methadone was administered to all cats in the CTR groups within 24 hours. Methadone was not administered to the TAP group (pain score < 3). CONCLUSIONS AND CLINICAL RELEVANCE Ultrasound-guided TAP block can be a reliable adjunctive technique, providing analgesia for up to 24 hours in cats undergoing ovariectomy.
Collapse
Affiliation(s)
- Despoina Skouropoulou
- Transplants of Organs and Tissues and Cellular Therapies, D.E.O.T., University of Bari, Italy; Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, "Aldo Moro" University of Bari, Bari, Italy
| | - Luca Lacitignola
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, "Aldo Moro" University of Bari, Bari, Italy
| | - Paola Centonze
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, "Aldo Moro" University of Bari, Bari, Italy
| | - Angela Simone
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, "Aldo Moro" University of Bari, Bari, Italy
| | - Alberto M Crovace
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, "Aldo Moro" University of Bari, Bari, Italy
| | - Francesco Staffieri
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, "Aldo Moro" University of Bari, Bari, Italy.
| |
Collapse
|
25
|
Mizukawa H, Nomiyama K, Nakatsu S, Yamamoto M, Ishizuka M, Ikenaka Y, Nakayama SMM, Tanabe S. Anthropogenic and Naturally Produced Brominated Phenols in Pet Blood and Pet Food in Japan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11354-11362. [PMID: 28854783 DOI: 10.1021/acs.est.7b01009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Present study determined concentrations and residue patterns of bromophenols (BPhs) in whole blood samples of pet cats and pet dogs collected from veterinary hospitals in Japan. BPhs concentrations were higher in cat blood than in dog blood, with statistically insignificant differences (p = 0.07). Among the congeners, 2,4,6-tribromophenol (TBPh) constituted the majority of BPhs (>90%) detected in both species. Analysis of commercial pet food to estimate exposure routes showed that the most abundant congener in all pet food samples was 2,4,6-TBPh, accounting for >99% of total BPhs. This profile is quite similar to the blood samples of the pets, suggesting that diet might be an important exposure route for BPhs in pets. After incubation in polybrominated diphenyl ether (PBDE) mixtures (BDE-47, BDE-99 and BDE-209), 2,4,5-TBPh was found in dog liver microsomes but not in cat liver microsomes, implying species-specific metabolic capacities for PBDEs. Formation of 2,4,5-TBPh occurred by hydroxylation at the 1' carbon atom of the ether bond of BDE-99 is similar to human study reported previously. Hydroxylated PBDEs were not detected in cats or dogs; therefore, diphenyl ether bond cleavage of PBDEs can also be an important metabolic pathway for BPhs formation in cats and dogs.
Collapse
Affiliation(s)
- Hazuki Mizukawa
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Susumu Nakatsu
- Nakatsu Veterinary Surgery, 2-2-5, Shorinjichonishi, Sakai-ku, Sakai-shi, Osaka 590-0960, Japan
| | - Miyuki Yamamoto
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University , Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University , Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University , 53 Borcherd Street, Potchefstroom 2531, South Africa
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University , Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
26
|
Cao L, Kwara A, Greenblatt DJ. Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies. J Pharm Pharmacol 2017; 69:1762-1772. [PMID: 28872689 DOI: 10.1111/jphp.12812] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Excessive exposure to acetaminophen (APAP, paracetamol) can cause liver injury through formation of a reactive metabolite that depletes hepatic glutathione and causes hepatocellular oxidative stress and damage. Generation of this metabolite is mediated by Cytochrome-P450 (CYP) isoforms, mainly CYP2E1. A number of naturally occurring flavonoids can mitigate APAP-induced hepatotoxicity in experimental animal models. Our objective was to determine the mechanism of these protective effects and to evaluate possible human applicability. METHODS Two flavonoids, luteolin and quercetin, were evaluated as potential inhibitors of eight human CYP isoforms, of six UDP-glucuronosyltransferase (UGT) isoforms and of APAP glucuronidation and sulfation. The experimental model was based on in-vitro metabolism by human liver microsomes, using isoform-specific substrates. KEY FINDINGS Luteolin and quercetin inhibited human CYP isoforms to varying degrees, with greatest potency towards CYP1A2 and CYP2C8. However, 50% inhibitory concentrations (IC50 values) were generally in the micromolar range. UGT isoforms were minimally inhibited. Both luteolin and quercetin inhibited APAP sulfation but not glucuronidation. CONCLUSIONS Inhibition of human CYP activity by luteolin and quercetin occurred with IC50 values exceeding customary in-vivo human exposure with tolerable supplemental doses of these compounds. The findings indicate that luteolin and quercetin are not likely to be of clinical value for preventing or treating APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lei Cao
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Awewura Kwara
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - David J Greenblatt
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.,Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
27
|
Cao L, Greenblatt DJ, Kwara A. Inhibitory Effects of Selected Antituberculosis Drugs on Common Human Hepatic Cytochrome P450 and UDP-glucuronosyltransferase Enzymes. Drug Metab Dispos 2017; 45:1035-1043. [PMID: 28663285 DOI: 10.1124/dmd.117.076034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 11/22/2022] Open
Abstract
The comorbidities of tuberculosis and diseases such as HIV require long-term treatment with multiple medications. Despite substantial in vitro and in vivo information on effects of rifampicin and isoniazid on human CYPs, there is limited published data regarding the inhibitory effects of other anti-TB drugs on human CYPs and UGTs. The inhibitory effects of five first-line anti-TB drugs (isoniazid, rifampicin, pyrazinamide, ethambutol, and rifabutin), and the newly approved bedaquiline, were evaluated for six common human hepatic UGT enzymes (UGT1A1, 1A4, 1A6, 1A9, 2B7 and 2B15) in vitro using HLMs. Pyrazinamide, ethambutol, rifabutin and bedaquiline were also studied for their inhibitory effects on eight of the most common human CYP enzymes (CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A). Rifabutin inhibited multiple CYPs to varying degrees in vitro, but with all IC50 values exceeding 25 µM. Rifabutin and rifampicin also inhibited several human UGTs including UGT1A4. The Ki value for rifabutin on human hepatic UGT1A4 was 2 μM. Finally, the six anti-TB drugs produced minimal inhibition of acetaminophen glucuronidation in vitro. Overall, the findings do not raise major concerns regarding metabolic inhibition of human hepatic CYPs and UGTs by the tested anti-TB drugs.
Collapse
Affiliation(s)
- Lei Cao
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences (L.C., D.J.G.) and Department of Integrative Physiology and Pathobiology (D.J.G.), Tufts University School of Medicine, Boston, Massachusetts; Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island (A.K.); and The Miriam Hospital, Providence, Rhode Island (A.K.)
| | - David J Greenblatt
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences (L.C., D.J.G.) and Department of Integrative Physiology and Pathobiology (D.J.G.), Tufts University School of Medicine, Boston, Massachusetts; Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island (A.K.); and The Miriam Hospital, Providence, Rhode Island (A.K.)
| | - Awewura Kwara
- Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences (L.C., D.J.G.) and Department of Integrative Physiology and Pathobiology (D.J.G.), Tufts University School of Medicine, Boston, Massachusetts; Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island (A.K.); and The Miriam Hospital, Providence, Rhode Island (A.K.)
| |
Collapse
|
28
|
Yang G, Ge S, Singh R, Basu S, Shatzer K, Zen M, Liu J, Tu Y, Zhang C, Wei J, Shi J, Zhu L, Liu Z, Wang Y, Gao S, Hu M. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab Rev 2017; 49:105-138. [PMID: 28266877 DOI: 10.1080/03602532.2017.1293682] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucuronidation is a well-recognized phase II metabolic pathway for a variety of chemicals including drugs and endogenous substances. Although it is usually the secondary metabolic pathway for a compound preceded by phase I hydroxylation, glucuronidation alone could serve as the dominant metabolic pathway for many compounds, including some with high aqueous solubility. Glucuronidation involves the metabolism of parent compound by UDP-glucuronosyltransferases (UGTs) into hydrophilic and negatively charged glucuronides that cannot exit the cell without the aid of efflux transporters. Therefore, elimination of parent compound via glucuronidation in a metabolic active cell is controlled by two driving forces: the formation of glucuronides by UGT enzymes and the (polarized) excretion of these glucuronides by efflux transporters located on the cell surfaces in various drug disposition organs. Contrary to the common assumption that the glucuronides reaching the systemic circulation were destined for urinary excretion, recent evidences suggest that hepatocytes are capable of highly efficient biliary clearance of the gut-generated glucuronides. Furthermore, the biliary- and enteric-eliminated glucuronides participate into recycling schemes involving intestinal microbes, which often prolong their local and systemic exposure, albeit at low systemic concentrations. Taken together, these recent research advances indicate that although UGT determines the rate and extent of glucuronide generation, the efflux and uptake transporters determine the distribution of these glucuronides into blood and then to various organs for elimination. Recycling schemes impact the apparent plasma half-life of parent compounds and their glucuronides that reach intestinal lumen, in addition to prolonging their gut and colon exposure.
Collapse
Affiliation(s)
- Guangyi Yang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China.,b Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine , Shiyan , Hubei , China
| | - Shufan Ge
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Rashim Singh
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Sumit Basu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Katherine Shatzer
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Ming Zen
- d Department of Thoracic and Cardiomacrovascular Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jiong Liu
- e Department of Digestive Diseases Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Yifan Tu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Chenning Zhang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jinbao Wei
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jian Shi
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Lijun Zhu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Zhongqiu Liu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Yuan Wang
- g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Song Gao
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Ming Hu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| |
Collapse
|
29
|
Nomiyama K, Takaguchi K, Mizukawa H, Nagano Y, Oshihoi T, Nakatsu S, Kunisue T, Tanabe S. Species- and Tissue-Specific Profiles of Polybrominated Diphenyl Ethers and Their Hydroxylated and Methoxylated Derivatives in Cats and Dogs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5811-5819. [PMID: 28440655 DOI: 10.1021/acs.est.7b01262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The adverse effects of elevated polybrominated diphenyl ether (PBDE) levels, reported in the blood of domestic dogs and cats, are considered to be of great concern. However, the tissue distribution of PBDEs and their derivatives in these animals is poorly understood. This study determined the concentrations and profiles of PBDEs, hydroxylated PBDEs (OH-PBDEs), methoxylated PBDEs (MeO-PBDEs), and 2,4,6-tribromophenol (2,4,6-tri-BPh) in the blood, livers, bile, and brains of dogs and cats in Japan. Higher tissue concentrations of PBDEs were found in cats, with the dominant congener being BDE209. BDE207 was also predominant in cat tissues, indicating that BDE207 was formed via BDE209 debromination. BDE47 was the dominant congener in dog bile, implying a species-specific excretory capacity of the liver. OH-PBDE and MeO-PBDE concentrations were several orders of magnitude higher in cat tissues, with the dominant congener being 6OH-BDE47, possibly owing to their intake of naturally occurring MeO-PBDEs in food, MeO-PBDE demethylation in the liver, and lack of UDP-glucuronosyltransferase, UGT1A6. Relatively high concentrations of BDE209, BDE207, 6OH-BDE47, 2'MeO-BDE68, and 2,4,6-tri-BPh were found in cat brains, suggesting a passage through the blood-brain barrier. Thus, cats in Japan might be at a high risk from PBDEs and their derivatives, particularly BDE209 and 6OH-BDE47.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Kohki Takaguchi
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hazuki Mizukawa
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Yasuko Nagano
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Tomoko Oshihoi
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Susumu Nakatsu
- Nakatsu Veterinary Surgery, 2-2-5, Shorinjichonishi, Sakai-ku, Sakai, Osaka 590-0960, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
30
|
Mizukawa H, Ikenaka Y, Kakehi M, Nakayama S, Ishizuka M. Characterization of Species Differences in Xenobiotic Metabolism in Non-experimental Animals. YAKUGAKU ZASSHI 2017; 137:257-263. [PMID: 28250318 DOI: 10.1248/yakushi.16-00230-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability to metabolize xenobiotics in organisms has a wide degree of variation among organisms. This is caused by differences in the pattern of xenobiotic bioaccumulation among organisms, which affects their tolerance. It has been reported in the veterinary field that glucuronidation (UGT) activity in cats, acetylation activity in dogs and sulfation (SULT) activity in pigs are sub-vital in these species, respectively, and require close attention when prescribing the medicine. On the other hand, information about species differences in xenobiotics metabolism remains insufficient, especially in non-experimental animals. In the present study, we tried to elucidate xenobiotic metabolism ability, especially in phase II UGT conjugation of various non-experimental animals, by using newly constructed in vivo, in vitro and genomic techniques. The results indicated that marine mammals (Steller sea lion, northern fur seal, and Caspian seal) showed UGT activity as low as that in cats, which was significantly lower than in rats and dogs. Furthermore, UGT1A6 pseudogenes were found in the Steller sea lion and Northern fur seal; all Otariidae species are thought to have the UGT1A6 pseudogene as well. Environmental pollutants and drugs conjugated by UGT are increasing dramatically in the modern world, and their dispersal into the environment can be of great consequence to Carnivora species, whose low xenobiotic glucuronidation capacity makes them highly sensitive to these compounds.
Collapse
|
31
|
Davidson G. Veterinary Compounding: Regulation, Challenges, and Resources. Pharmaceutics 2017; 9:pharmaceutics9010005. [PMID: 28075379 PMCID: PMC5374371 DOI: 10.3390/pharmaceutics9010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022] Open
Abstract
The spectrum of therapeutic need in veterinary medicine is large, and the availability of approved drug products for all veterinary species and indications is relatively small. For this reason, extemporaneous preparation, or compounding, of drugs is commonly employed to provide veterinary medical therapies. The scope of veterinary compounding is broad and focused primarily on meeting the therapeutic needs of companion animals and not food-producing animals in order to avoid human exposure to drug residues. As beneficial as compounded medical therapies may be to animal patients, these therapies are not without risks, and serious adverse events may occur from poor quality compounds or excipients that are uniquely toxic when administered to a given species. Other challenges in extemporaneous compounding for animals include significant regulatory variation across the global veterinary community, a relative lack of validated compounding formulas for use in animals, and poor adherence by compounders to established compounding standards. The information presented in this article is intended to provide an overview of the current landscape of compounding for animals; a discussion on associated benefits, risks, and challenges; and resources to aid compounders in preparing animal compounds of the highest possible quality.
Collapse
Affiliation(s)
- Gigi Davidson
- Clinical Pharmacy Services, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA.
| |
Collapse
|
32
|
Okamatsu G, Kawakami K, Komatsu T, Kitazawa T, Uno Y, Teraoka H. Functional expression and comparative characterization of four feline P450 cytochromes using fluorescent substrates. Xenobiotica 2016; 47:951-961. [DOI: 10.1080/00498254.2016.1257172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gaku Okamatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Kei Kawakami
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Tetsuya Komatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories Ltd., Kainan, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan and
| |
Collapse
|
33
|
Cattai A, Pilla T, Cagnardi P, Zonca A, Franci P. Evaluation and optimisation of propofol pharmacokinetic parameters in cats for target-controlled infusion. Vet Rec 2016; 178:503. [PMID: 27044652 DOI: 10.1136/vr.103560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 11/04/2022]
Abstract
The aim of this study was to develop and evaluate a pharmacokinetic model-driven infusion of propofol in premedicated cats. In a first step, propofol (10 mg/kg) was administered intravenously over 60 seconds to induce anaesthesia for the elective neutering of seven healthy cats, premedicated intramuscularly with 0.3 mg/kg methadone, 0.01 mg/kg medetomidine and 2 mg/kg ketamine. Venous blood samples were collected over 240 minutes, and propofol concentrations were measured via a validated high-performance liquid chromatography assay. Selected pharmacokinetic parameters, determined by a three-compartment open linear model, were entered into a computer-controlled infusion pump (target-controlled infusion-1 (TCI-1)). In a second step, TCI-1 was used to induce and maintain general anaesthesia in nine cats undergoing neutering. Predicted and measured plasma concentrations of propofol were compared at specific time points. In a third step, the pharmacokinetic parameters were modified according to the results from the use of TCI-1 and were evaluated again in six cats. For this TCI-2 group, the median values of median performance error and median absolute performance error were -1.85 per cent and 29.67 per cent, respectively, indicating that it performed adequately. Neither hypotension nor respiratory depression was observed during TCI-1 and TCI-2. Mean anaesthesia time and time to extubation in the TCI-2 group were 73.90 (±20.29) and 8.04 (±5.46) minutes, respectively.
Collapse
Affiliation(s)
- A Cattai
- Department of Animal Medicine, Production and Health, Università degli Studi di Padova, Padua 35020, Italy
| | - T Pilla
- AHP-Animal Hospital PostojnaÂ, 6230 Postojna, Slovenia Centro Veterinario di Diagnostica per Immagini, Udine 0432, Italy
| | - P Cagnardi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan 20133, Italy
| | - A Zonca
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan 20133, Italy
| | - P Franci
- Department of Animal Medicine, Production and Health, Università degli Studi di Padova, Padua 35020, Italy
| |
Collapse
|
34
|
Riemer F, Kuehner KA, Ritz S, Sauter-Louis C, Hartmann K. Clinical and laboratory features of cats with feline infectious peritonitis--a retrospective study of 231 confirmed cases (2000-2010). J Feline Med Surg 2016; 18:348-56. [PMID: 26185109 PMCID: PMC11112253 DOI: 10.1177/1098612x15586209] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The objectives of this study were to review signalment, clinical signs and laboratory features in a large number of naturally occurring cases of feline infectious peritonitis (FIP), and to evaluate potential changes in diagnostic criteria for FIP and compare findings in cats with and without effusion. METHODS The medical records of 231 cats with confirmed FIP that presented to the Clinic of Small Animal Medicine of the Ludwig-Maximilian University of Munich, Germany, were reviewed for signalment, history, and clinical and laboratory parameters. Age, sex and breed distribution of the cats were compared with the clinic population. RESULTS Male sex and young age were significantly correlated with FIP. Neutering status was not associated with FIP. No breed predisposition was observed and the majority of cats presented were domestic shorthair and mixed breed. Microcytosis of peripheral erythrocytes was found in 35.1% of cats, of which 42.4% did not have concurrent anaemia. Band neutrophilia was documented in 44.3% (81/183), of which 35.8% did not have mature neutrophilia. Lymphopenia, observed significantly more often with effusion, was documented in only 26.8% of cats without effusion. Hyperbilirubinaemia also occurred significantly more often in cats with vs without effusion. While serum total protein was increased in only 17.5% of cats, hyperglobulinaemia was documented in 89.1%. Nearly 85.0% of cats had an albumin-to-globulin (A:G) ratio <0.8, while 67.8% had an A:G ratio <0.6. CONCLUSIONS AND RELEVANCE Microcytosis was common and can increase suspicion of FIP in the presence of other typical clinical and laboratory abnormalities. The low prevalence of lymphopenia in cats without effusion suggests that this is not a useful parameter in non-effusive FIP. The frequent occurrence of a left shift in the absence of a mature neutrophilia complicates the differentiation of effusive FIP and septic peritonitis. Globulins and A:G ratio were of higher diagnostic value than hyperproteinaemia.
Collapse
Affiliation(s)
- Friederike Riemer
- Clinic of Small Animal Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Kirsten A Kuehner
- Clinic of Small Animal Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Susanne Ritz
- Clinic of Small Animal Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Carola Sauter-Louis
- Clinic for Ruminants with Ambulatory and Herd Health Services, Ludwig-Maximilian University, Munich, Germany
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Ludwig-Maximilian University, Munich, Germany
| |
Collapse
|
35
|
Okamatsu G, Komatsu T, Ono Y, Inoue H, Uchide T, Onaga T, Endoh D, Kitazawa T, Hiraga T, Uno Y, Teraoka H. Characterization of feline cytochrome P450 2B6. Xenobiotica 2016; 47:93-102. [DOI: 10.3109/00498254.2016.1145754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Gaku Okamatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Tetsuya Komatsu
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Yuka Ono
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Hiroki Inoue
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Tsuyoshi Uchide
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Takenori Onaga
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Daiji Endoh
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Takeo Hiraga
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan and
| |
Collapse
|
36
|
O'Neill KE, Labato MA, Court MH. The pharmacokinetics of intravenous fenoldopam in healthy, awake cats. J Vet Pharmacol Ther 2016; 39:202-4. [PMID: 26763106 DOI: 10.1111/jvp.12274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/19/2015] [Indexed: 11/30/2022]
Abstract
Fenoldopam is a selective dopamine-1 receptor agonist that improves diuresis by increasing renal blood flow and perfusion and causing peripheral vasodilation. Fenoldopam has been shown to induce diuresis and be well-tolerated in healthy cats. It is used clinically in cats with oliguric kidney injury at doses extrapolated from human medicine and canine studies. The pharmacokinetics in healthy beagle dogs has been reported; however, pharmacokinetic data in cats are lacking. The goal of this study was to determine pharmacokinetic data for healthy, awake cats receiving an infusion of fenoldopam. Six healthy, awake, client-owned cats aged 2-6 years old received a 120-min constant rate infusion of fenoldopam at 0.8 μg/kg/min followed by a 20-min washout period. Ascorbate stabilized plasma samples were collected during and after the infusion for the measurement of fenoldopam concentration by HPLC with mass spectrometry detection. This study showed that the geometric mean of the volume of distribution, clearance, and half-life (198 mL/kg, 46 mL/kg/min, and 3.0 mins) is similar to pharmacokinetic parameters for humans. No adverse events were noted. Fenoldopam at a constant rate infusion of 0.8 μg/kg per min was well tolerated in healthy cats. Based on the results, further evaluation of fenoldopam in cats with kidney disease is recommended.
Collapse
Affiliation(s)
- K E O'Neill
- St. Francis Veterinary Specialists, Decatur, GA, USA
| | - M A Labato
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA
| | - M H Court
- College of Veterinary Medicine at Washington State University, Pullman, WA, USA
| |
Collapse
|
37
|
van Beusekom CD, van den Heuvel JJ, Koenderink JB, Russel FG, Schrickx JA. Feline hepatic biotransformation of diazepam: Differences between cats and dogs. Res Vet Sci 2015; 103:119-25. [DOI: 10.1016/j.rvsc.2015.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 07/14/2015] [Accepted: 09/21/2015] [Indexed: 01/31/2023]
|
38
|
Redmon JM, Shrestha B, Cerundolo R, Court MH. Soy isoflavone metabolism in cats compared with other species: urinary metabolite concentrations and glucuronidation by liver microsomes. Xenobiotica 2015; 46:406-15. [PMID: 26366946 PMCID: PMC4967369 DOI: 10.3109/00498254.2015.1086038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
1. Soybean is a common source of protein in many pet foods. Slow glucuronidation of soy-derived isoflavones in cats has been hypothesized to result in accumulation with adverse health consequences. Here, we evaluated species' differences in soy isoflavone glucuronidation using urine samples from cats and dogs fed a soy-based diet and liver microsomes from cats compared with microsomes from 12 other species. 2. Significant concentrations of conjugated (but not unconjugated) genistein, daidzein and glycitein, and the gut microbiome metabolites, dihydrogenistein and dihydrodaidzein, were found in cat and dog urine samples. Substantial amounts of conjugated equol were also found in cat urine but not in dog urine. 3. β-Glucuronidase treatment showed that all these compounds were significantly glucuronidated in dog urine while only daidzein (11%) and glycitein (37%) showed any glucuronidation in cat urine suggesting that alternate metabolic pathways including sulfation predominate in cats. 4. Glucuronidation rates of genistein, daidzein and equol by cat livers were consistently ranked within the lowest 3 out of 13 species' livers evaluated. Ferret and mongoose livers were also ranked in the lowest four species. 5. Our results demonstrate that glucuronidation is a minor pathway for soy isoflavone metabolism in cats compared with most other species.
Collapse
Affiliation(s)
- Joanna M Redmon
- a Pharmacogenomics Laboratory (JMR, MHC), Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences , College of Veterinary Medicine, Washington State University , Pullman , WA , USA
| | - Binu Shrestha
- a Pharmacogenomics Laboratory (JMR, MHC), Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences , College of Veterinary Medicine, Washington State University , Pullman , WA , USA
| | - Rosario Cerundolo
- a Pharmacogenomics Laboratory (JMR, MHC), Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences , College of Veterinary Medicine, Washington State University , Pullman , WA , USA
| | - Michael H Court
- a Pharmacogenomics Laboratory (JMR, MHC), Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences , College of Veterinary Medicine, Washington State University , Pullman , WA , USA
| |
Collapse
|
39
|
Kakehi M, Ikenaka Y, Nakayama SMM, Kawai YK, Watanabe KP, Mizukawa H, Nomiyama K, Tanabe S, Ishizuka M. Uridine Diphosphate-Glucuronosyltransferase (UGT) Xenobiotic Metabolizing Activity and Genetic Evolution in Pinniped Species. Toxicol Sci 2015; 147:360-9. [DOI: 10.1093/toxsci/kfv144] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
40
|
Lanuza R, Rankin AJ, KuKanich B, Meekins JM. Evaluation of systemic absorption and renal effects of topical ophthalmic flurbiprofen and diclofenac in healthy cats. Vet Ophthalmol 2015; 19 Suppl 1:24-9. [PMID: 26119523 DOI: 10.1111/vop.12295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate systemic absorption and renal effects of topically applied ophthalmic flurbiprofen and diclofenac in healthy cats. ANIMALS STUDIED Twelve domestic shorthair cats. PROCEDURES Cats were randomly assigned to two treatment groups (n = 6) and administered one drop (approximately 40 μL) of either flurbiprofen 0.03% or diclofenac 0.1% in both eyes four times daily (6 am, 12 pm, 6 pm, and 12 am) for 14 days. Blood samples were collected on days 0, 4, 8, 14, 16, and 17 and analyzed by liquid chromatography and mass spectrometry for flurbiprofen and diclofenac plasma concentrations. A complete blood count (CBC), serum chemistry, and urinalysis were analyzed at the beginning of the study (Day 0) and at the end of topical drug administration (Day 15). RESULTS Both drugs demonstrated systemic absorption. Flurbiprofen was detected (mean ± SD) at day 4 (237 ± 65 ng/mL), day 8 (396 ± 91 ng/mL), day 14 (423 ± 56 ng/mL), day 16 (350 ± 66 ng/mL), and day 17 (270 ± 62 ng/mL), and diclofenac was detected (mean ± SD) at day 4 (130 ± 44 ng/mL), day 8 (131 ± 25 ng/mL), day 14 (150 ± 36 ng/mL), and sporadically on day 16 [corrected]. Flurbiprofen plasma concentration decreased slowly over 48 h after the last dose. No clinically significant abnormalities were noted in the serum blood urea nitrogen, creatinine, or urine specific gravity at the end of topical drug administration compared to the beginning of the study. CONCLUSIONS Flurbiprofen and diclofenac were systemically absorbed after topical administration four times daily to both eyes of healthy cats. Flurbiprofen reached higher plasma concentrations compared to diclofenac.
Collapse
Affiliation(s)
- Rick Lanuza
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | - Amy J Rankin
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | - Butch KuKanich
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Jessica M Meekins
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
41
|
Xu D, Michie SA, Zheng M, Takeda S, Wu M, Peltz G. Humanized thymidine kinase-NOG mice can be used to identify drugs that cause animal-specific hepatotoxicity: a case study with furosemide. J Pharmacol Exp Ther 2015; 354:73-8. [PMID: 25962391 DOI: 10.1124/jpet.115.224493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/08/2015] [Indexed: 12/21/2022] Open
Abstract
Interspecies differences have limited the predictive utility of toxicology studies performed using animal species. A drug that could be a safe and effective treatment in humans could cause toxicity in animals, preventing it from being used in humans. We investigated whether the use of thymidine kinase (TK)-NOG mice with humanized livers could prevent this unfortunate outcome (i.e., "rescue" a drug for use in humans). A high dose of furosemide is known to cause severe liver toxicity in mice, but it is a safe and effective treatment in humans. We demonstrate that administration of a high dose of furosemide (200 mg/kg i.p.) causes extensive hepatotoxicity in control mice but not in humanized TK-NOG mice. This interspecies difference results from a higher rate of production of the toxicity-causing metabolite by mouse liver. Comparison of their survival curves indicated that the humanized mice were more resistant than control mice to the hepatotoxicity caused by high doses of furosemide. In this test case, humanized TK-NOG mouse studies indicate that humans could be safely treated with a high dose of furosemide.
Collapse
Affiliation(s)
- Dan Xu
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California (D.X., M.Z., M.W., G.P.); Department of Pathology, Stanford University, Stanford, California (S.A.M.); and In Vivo Sciences International, Sunnyvale, California (S.T.)
| | - Sara A Michie
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California (D.X., M.Z., M.W., G.P.); Department of Pathology, Stanford University, Stanford, California (S.A.M.); and In Vivo Sciences International, Sunnyvale, California (S.T.)
| | - Ming Zheng
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California (D.X., M.Z., M.W., G.P.); Department of Pathology, Stanford University, Stanford, California (S.A.M.); and In Vivo Sciences International, Sunnyvale, California (S.T.)
| | - Saori Takeda
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California (D.X., M.Z., M.W., G.P.); Department of Pathology, Stanford University, Stanford, California (S.A.M.); and In Vivo Sciences International, Sunnyvale, California (S.T.)
| | - Manhong Wu
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California (D.X., M.Z., M.W., G.P.); Department of Pathology, Stanford University, Stanford, California (S.A.M.); and In Vivo Sciences International, Sunnyvale, California (S.T.)
| | - Gary Peltz
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California (D.X., M.Z., M.W., G.P.); Department of Pathology, Stanford University, Stanford, California (S.A.M.); and In Vivo Sciences International, Sunnyvale, California (S.T.)
| |
Collapse
|
42
|
Bortolami E, Love EJ. Practical use of opioids in cats: a state-of-the-art, evidence-based review. J Feline Med Surg 2015; 17:283-311. [PMID: 25832586 PMCID: PMC11104155 DOI: 10.1177/1098612x15572970] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
RATIONALE Recent recognition of the need to improve pain management in cats has led to the investigation of the pharmacokinetics and efficacy of opioid analgesic drugs in this species. The results of these studies may be difficult to interpret because the effect of these drugs varies with dose, route of administration and the method used to assess them. As equipotency of different opioids is not known, it is hard to compare their effects. Animals do not verbalise the pain they feel and, in cats, it may be more difficult to recognise signs of pain in comparison with other species such as dogs. AIM This article reviews the use of opioid analgesics in cats. It must be remembered that not all drugs are licensed for use in cats, and that marketing authorisations vary between different countries.
Collapse
Affiliation(s)
- Elisa Bortolami
- Department of Animal Medicine, Production and Health, University of Padua, Italy
| | - Emma J Love
- School of Veterinary Sciences, University of Bristol, Langford, UK
| |
Collapse
|
43
|
Villa R, Ravasio G, Ferraresi C, Zonca A, Carli S, Borghi L, Cagnardi P. Pharmacokinetics of intravenous ketorolac in cats undergoing gonadectomy. N Z Vet J 2015; 63:162-6. [DOI: 10.1080/00480169.2014.987329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Okamatsu G, Komatsu T, Kubota A, Onaga T, Uchide T, Endo D, Kirisawa R, Yin G, Inoue H, Kitazawa T, Uno Y, Teraoka H. Identification and functional characterization of novel feline cytochrome P450 2A. Xenobiotica 2014; 45:503-10. [PMID: 25547627 DOI: 10.3109/00498254.2014.998322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Cytochrome P450s are the major metabolizing enzymes for xenobiotics in humans and other mammals. Although the domestic cat Felis catus, an obligate carnivore, is the most common companion animal, the properties of cytochrome P450 subfamilies are largely unknown. 2. We newly identified the feline CYP2A13, which consists of 494 deduced amino acids, showing the highest identity to CYP2As of dogs, followed by those of pigs, cattle and humans. 3. The feline CYP2A13 transcript and protein were expressed almost exclusively in the liver without particular sex-dependent differences. 4. The feline CYP2A13 protein heterogeneously expressed in Escherichia coli showed metabolic activity similar to those of human and canine CYP2As for coumarin, 7-ethoxycoumarin and nicotine. 5. The results indicate the importance of CYP2A13 in systemic metabolism of xenobiotics in cats.
Collapse
Affiliation(s)
- Gaku Okamatsu
- School of Veterinary Medicine, Rakuno Gakuen University , Ebetsu, Hokkaido , Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Warne LN, Beths T, Whittem T, Carter JE, Bauquier SH. A review of the pharmacology and clinical application of alfaxalone in cats. Vet J 2014; 203:141-8. [PMID: 25582797 DOI: 10.1016/j.tvjl.2014.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/03/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
Abstract
Alfaxalone-2-hydroxpropyl-β-cyclodextrin (alfaxalone-HPCD) was first marketed for veterinary use in Australia in 2001 and has since progressively became available throughout the world, including the USA, where in 2012 Food and Drug Administration (FDA) registration was granted. Despite the growing body of published works and increasing global availability of alfaxalone-HPCD, the accumulating evidence for its use in cats has not been thoroughly reviewed. The purpose of this review is: (1) to detail the pharmacokinetic properties of alfaxalone-HPCD in cats; (2) to assess the pharmacodynamic properties of alfaxalone-HPCD, including its cardiovascular, respiratory, central nervous system, neuromuscular, hepatic, renal, haematological, blood-biochemical, analgesic and endocrine effects; and (3) to consider the clinical application of alfaxalone-HPCD for sedation, induction and maintenance of anaesthesia in cats. Based on the published literature, alfaxalone-HPCD provides a good alternative to the existing intravenous anaesthetic options for healthy cats.
Collapse
Affiliation(s)
- Leon N Warne
- Translational Research and Clinical Trials (TRACTs), Veterinary Hospital, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic 3030, Australia
| | - Thierry Beths
- Translational Research and Clinical Trials (TRACTs), Veterinary Hospital, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic 3030, Australia
| | - Ted Whittem
- Translational Research and Clinical Trials (TRACTs), Veterinary Hospital, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic 3030, Australia
| | - Jennifer E Carter
- Translational Research and Clinical Trials (TRACTs), Veterinary Hospital, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic 3030, Australia
| | - Sébastien H Bauquier
- Translational Research and Clinical Trials (TRACTs), Veterinary Hospital, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic 3030, Australia.
| |
Collapse
|
46
|
Collier AC, Thévenon AD, Goh W, Hiraoka M, Kendal-Wright CE. Placental profiling of UGT1A enzyme expression and activity and interactions with preeclampsia at term. Eur J Drug Metab Pharmacokinet 2014; 40:471-80. [PMID: 25465229 DOI: 10.1007/s13318-014-0243-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/26/2014] [Indexed: 11/28/2022]
Abstract
Placental UDP-glucuronosyltransferase (UGT) enzymes have critical roles in hormone, nutrient, chemical balance and fetal exposure during pregnancy. Placental UGT1A isoforms were profiled and differences between preeclamptic (PE) and non-PE placental UGT expression determined. In third trimester villous placenta, UGT1A1, 1A4, 1A6 and 1A9 were expressed and active in all specimens (n = 10), but UGT1A3, 1A5, 1A7, 1A8 and 1A10 were absent. The UGT1A activities were comparable to human liver microsomes per milligram, but placental microsome yields were only 2 % of liver (1 mg/g of tissue vs. 45 mg/g of tissue). For successful PCR, placental collection and processing within 60 min from delivery, including DNAse and ≥300 ng of RNA in reverse transcription were essential and snap freezing in liquid nitrogen immediately was the best preservation method. Although UGT1A6 mRNA was lower in PE (P < 0.001), there were no other significant effects on UGT mRNA, protein or activities. A more comprehensive tissue sample set is required for confirmation of PE interactions with UGT. Placental UGT1A enzyme expression patterns are similar to the liver and a detoxicative role for placental UGT1A is inferred.
Collapse
Affiliation(s)
- Abby C Collier
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA. .,Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Audrey D Thévenon
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - William Goh
- Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, Kapi'olani Medical Center for Women and Children, 1319 Punahou Street, Honolulu, HI, 96826, USA
| | - Mark Hiraoka
- Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, Kapi'olani Medical Center for Women and Children, 1319 Punahou Street, Honolulu, HI, 96826, USA
| | - Claire E Kendal-Wright
- Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, Kapi'olani Medical Center for Women and Children, 1319 Punahou Street, Honolulu, HI, 96826, USA.,Division of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA
| |
Collapse
|
47
|
Evaluation of the effect of short-term treatment with the integrase inhibitor raltegravir (Isentress) on the course of progressive feline leukemia virus infection. Vet Microbiol 2014; 175:167-78. [PMID: 25500005 DOI: 10.1016/j.vetmic.2014.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 11/22/2022]
Abstract
Cats persistently infected with the gammaretrovirus feline leukemia virus (FeLV) are at risk to die within months to years from FeLV-associated disease, such as immunosuppression, anemia or lymphoma/leukemia. The integrase inhibitor raltegravir has been demonstrated to reduce FeLV replication in vitro. The aim of the present study was to investigate raltegravir in vivo for its safety and efficacy to suppress FeLV replication. The safety was tested in three naïve specified pathogen-free (SPF) cats during a 15 weeks treatment period (initially 20mg then 40mg orally b.i.d.). No adverse effects were noted. The efficacy was tested in seven persistently FeLV-infected SPF cats attained from 18 cats experimentally exposed to FeLV-A/Glasgow-1. The seven cats were treated during nine weeks (40mg then 80mg b.i.d.). Raltegravir was well tolerated even at the higher dose. A significant decrease in plasma viral RNA loads (∼5×) was found; however, after treatment termination a rebound effect was observed. Only one cat developed anti-FeLV antibodies and viral RNA loads remained decreased after treatment termination. Of note, one of the untreated FeLV-A infected cats developed fatal FeLV-C associated anemia within 5 weeks of FeLV-A infection. Moreover, progressive FeLV infection was associated with significantly lower enFeLV loads prior to infection supporting that FeLV susceptibility may be related to the genetic background of the cat. Overall, our data demonstrate the ability of raltegravir to reduce viral replication also in vivo. However, no complete control of viremia was achieved. Further investigations are needed to find an optimized treatment against FeLV. (250 words).
Collapse
|
48
|
Saengtienchai A, Ikenaka Y, Nakayama SMM, Mizukawa H, Kakehi M, Bortey-Sam N, Darwish WS, Tsubota T, Terasaki M, Poapolathep A, Ishizuka M. Identification of interspecific differences in phase II reactions: determination of metabolites in the urine of 16 mammalian species exposed to environmental pyrene. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2062-2069. [PMID: 24899081 DOI: 10.1002/etc.2656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/28/2014] [Accepted: 05/29/2014] [Indexed: 06/03/2023]
Abstract
Interspecific differences in xenobiotic metabolism are a key to determining relative sensitivities of animals to xenobiotics. However, information on domesticated livestock, companion animals, and captive and free-ranging wildlife is incomplete. The present study evaluated interspecific differences in phase II conjugation using pyrene as a nondestructive biomarker of polycyclic aromatic hydrocarbon (PAH) exposure. Polycyclic aromatic hydrocarbons and their metabolites have carcinogenic and endocrine-disrupting effects in humans and wildlife and can have serious consequences. The authors collected urine from 16 mammalian species and analyzed pyrene metabolites. Interspecific differences in urinary pyrene metabolites, especially in the concentration and composition of phase II conjugated metabolites, were apparent. Glucuronide conjugates are dominant metabolites in the urine of many species, including deer, cattle, pigs, horses, and humans. However, they could not be detected in ferret urine even though the gene for ferret Uridine 5'-diphospho-glucuronosyltransferase (UDP-glucuronosyltransferase, UGT) 1A6 is not a pseudogene. Sulfate conjugates were detected mainly in the urine of cats, ferrets, and rabbits. Interestingly, sulfate conjugates were detected in pig urine. Although pigs are known to have limited aryl sulfotransferase activity, the present study demonstrated that pig liver was active in 1-hydroxypyrene sulfation. The findings have some application for biomonitoring environmental pollution.
Collapse
Affiliation(s)
- Aksorn Saengtienchai
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Graduate, School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pedersen NC. An update on feline infectious peritonitis: diagnostics and therapeutics. Vet J 2014; 201:133-41. [PMID: 24857253 PMCID: PMC7110619 DOI: 10.1016/j.tvjl.2014.04.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 03/24/2014] [Accepted: 04/27/2014] [Indexed: 11/29/2022]
Abstract
This review is concerned with what has been learned about feline infectious peritonitis (FIP) diagnostics and therapeutics since the publication of an extensive overview of literature covering the period 1963-2009. Although progress has been made in both areas, obtaining a definitive diagnosis of FIP remains a problem for those veterinarians and/or cat owners who require absolute certainty. This review will cover both indirect and direct diagnostic tests for the disease and will emphasize their limitations, as well as their specificity and sensitivity. There is still no effective treatment for FIP, although there are both claims that such therapies exist and glimmers of hope coming from new therapies that are under research. FIP has also been identified in wild felids and FIP-like disease is now a growing problem among pet ferrets.
Collapse
Affiliation(s)
- Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
50
|
Kvaternick V, Kellermann M, Knaus M, Rehbein S, Rosentel J. Pharmacokinetics and metabolism of eprinomectin in cats when administered in a novel topical combination of fipronil, (S)-methoprene, eprinomectin and praziquantel. Vet Parasitol 2014; 202:2-9. [PMID: 24703069 DOI: 10.1016/j.vetpar.2014.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Four studies were conducted to determine the pharmacokinetic characteristics and in vitro metabolism of eprinomectin, a semi-synthetic avermectin, in cats. Pharmacokinetic parameters including bioavailability of eprinomectin were determined in a parallel study design comprised of one group of eight cats which were treated once topically at 0.12 mL/kg bodyweight with BROADLINE(®), a novel combination product (fipronil 8.3% (w/v), (S)-methoprene 10% (w/v), eprinomectin 0.4% (w/v) and praziquantel 8.3% (w/v)), delivering a dose of 0.5mg eprinomectin per kg body weight, and a group of six cats which received 0.4% (w/v) eprinomectin at 0.4 mg/kg bodyweight once by intravenous injection. For cats treated by topical application, the average eprinomectin (B1a component) maximum plasma concentration (Cmax) was 20 ng/mL. The maximum concentrations were reached 24h after dosing in the majority of the animals (six of eight cats). The average terminal half-life was 114 h due to slow absorption ('flip-flop' kinetics). Following intravenous administration the average Cmax was 503 ng/mL at 5 min post-dose, and the mean elimination half-life was 23 h. Eprinomectin was widely distributed with a mean volume of distribution of 2,390 mL/kg, and the clearance rate was 81 mL/h/kg. Mean areas under the plasma concentration versus time curves extrapolated to infinity were 2,100 ngh/mL and 5,160 ngh/mL for the topical and intravenous doses, respectively. Topical eprinomectin was absorbed with an average absolute bioavailability of 31%. In a second parallel design study, the dose proportionality of eprinomectin after single topical administration of BROADLINE(®) was studied. Four groups of eight cats each were treated once topically with 0.5, 1, 2 or 5 times the minimum recommended dose of the combination, 0.12 mL/kg bodyweight. Based on comparison of areas under the plasma concentration versus time curves from the time of dosing to the last time point at which eprinomectin B1a was quantified, and Cmax, dose proportionality was established. In addition, the metabolic pathway of eprinomectin using cat liver microsomes, and plasma protein binding using cat, rat, and dog plasma were studied in vitro. Results of the analyses of eprinomectin B1a described here showed that it is metabolically stable and highly protein bound (>99%), and thus likely to be, as with other species, excreted mainly as unchanged parent drug in the feces of cats.
Collapse
Affiliation(s)
- Valerie Kvaternick
- Merial Limited, Pharmacokinetics and Drug Metabolism, North Brunswick, NJ 08902, USA.
| | | | - Martin Knaus
- Merial GmbH, Kathrinenhof Research Center, 83101 Rohrdorf, Germany
| | - Steffen Rehbein
- Merial GmbH, Kathrinenhof Research Center, 83101 Rohrdorf, Germany
| | - Joseph Rosentel
- Merial Limited, Pharmaceutical Research and Development, Duluth, GA 30096, USA
| |
Collapse
|