1
|
Liu D, Zhu Y, Hou Z, Wang H, Li Q. Polysaccharides from Astragalus membranaceus Bunge alleviate LPS-induced neuroinflammation in mice by modulating microbe-metabolite-brain axis and MAPK/NF-κB signaling pathway. Int J Biol Macromol 2025; 304:140885. [PMID: 39938846 DOI: 10.1016/j.ijbiomac.2025.140885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/27/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Neuroinflammation can lead to various neurodegenerative disorders, resulting in irreversible neurological dysfunction. Astragalus membranaceus Bunge polysaccharides (APS) present great potential in alleviating neuroinflammation; however, the specific mechanism underlying its neuroprotective effect remains unclear, leading to uncertain prospects for pharmaceutical applications. This study aims to elucidate the mechanism underlying APS-mediated inhibition of neuroinflammation in mice induced by lipopolysaccharide (LPS) through regulation of metabolic function, intestinal flora composition, and cell signaling transduction. Results indicated that APS pretreatment effectively mitigated LPS-induced brain damage. Metabolomics analysis revealed that APS pretreatment also regulated the metabolic disturbances induced by LPS through targeting five specific metabolic pathways. This regulation was supported by notable alterations in nine metabolite markers. Furthermore, APS pretreatment significantly modulated the abundance of four taxa of gut microbes (i.e., Romboutsia, Rikenella, Dubosiella, Odoribacter) closely associated with regulations in eleven metabolic and signaling pathways. Additionally, transcriptome analysis and Western blotting unveiled that APS pretreatment exerted a neuroprotective effect by modulating the MAPK/NF-κB signaling pathway. Our findings provide insights into the potential mechanisms underlying the neuroprotective effects of APS while establishing a solid foundation for future utilization of APS.
Collapse
Affiliation(s)
- Dongyuan Liu
- Department of Neurosurgery, Beijing Luhe Hospital Capital Medical University, Beijing 101149, China
| | - Yuying Zhu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ziming Hou
- Department of Neurosurgery, Beijing Luhe Hospital Capital Medical University, Beijing 101149, China
| | - Hao Wang
- Department of Neurosurgery, Beijing Luhe Hospital Capital Medical University, Beijing 101149, China.
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
2
|
Jiang R, Chen W, Li Q, Guo J, Lv Z, Chen W. Genome-wide identification of the WD40 protein family and functional characterization of AaTTG1 in Artemisia annua. Int J Biol Macromol 2025; 289:138834. [PMID: 39689807 DOI: 10.1016/j.ijbiomac.2024.138834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/19/2024]
Abstract
Sweet wormwood (Artemisia annua), an annual herb belonging to the Compositae family, is the main source of the potent anti-malarial drug artemisinin, which is mainly produced in glandular trichomes of A. annua leaves. The WD40 protein family is one of the largest protein families in eukaryotes and plays crucial roles in regulating plant growth and development, stress responses, and secondary metabolite biosynthesis. However, WD40 proteins have not been comprehensively identified in A. annua. In this study, we identified 236 WD40 proteins in the A. annua genome and examined their conserved domains, motifs, and cis-regulatory elements, gene structures, chromosomal distribution, duplication events of their encoding genes. Furthermore, we isolated and characterized TRANSPARENT TESTA GLABROUS 1 (AaTTG1), a homolog of Arabidopsis TTG1, and confirmed that AaTTG1 was localized to the nucleus and cytoplasm. Indeed, AaTTG1 can rescue the glabrous phenotype of the Arabidopsis ttg1 mutant and enhanced trichome production when heterologously expressed in wild-type Arabidopsis plants. Transgenic A. annua lines overexpressing AaTTG1 displayed a significantly higher density of glandular trichomes and higher artemisinin contents. Transgenic A. annua lines with inhibited AaTTG1 function had fewer glandular trichomes and lower artemisinin levels. Moreover, we demonstrated that AaTTG1 positively regulates glandular trichome development in A. annua through interactions with AaSPL9. This study thus provides fundamental insights into the role of WD40 proteins in A. annua and introduces a promising approach to enhance artemisinin production by manipulating glandular trichome development in this valuable medicinal plant.
Collapse
Affiliation(s)
- Rui Jiang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenhua Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Li
- Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, 610075, China.
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Second Affiliated Hospital of Navy Medical University, Shanghai 200003, China.
| |
Collapse
|
3
|
Zhang Y, He X, Di R, Wang X, Chu M. An Insight into Differentially Expressed Genes and MicroRNAs in the Pituitary Glands of the Two Estrous Phases of Sheep with Different FecB Genotypes. Animals (Basel) 2025; 15:392. [PMID: 39943161 PMCID: PMC11815726 DOI: 10.3390/ani15030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/08/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
As an important class of non-coding RNAs, miRNAs participate in a variety of biological processes, including cell proliferation, differentiation, apoptosis, and hormone secretion. However, little is known about the role of pituitary miRNAs in follicular development in FecB mutant (Fecundity Booroola) sheep. Given the critical role of the pituitary gland in follicular development, this study employed miRNA-seq technology to analyze pituitary transcriptome expression patterns during the follicular phase (F) and the luteal phase (L) of FecB mutant homozygous (BB) and wild-type (WW) of Small Tail Han sheep. This study identified differentially expressed miRNAs (DEMs) related to re-production. Of these, 10, 4, 10, and 4 were differentially expressed (DE) between BB_F and BB_L, WW_F and WW_L, BB_F and WW_F, and BB_L and WW_L, respectively. Bioinformatics analysis revealed the enrichment of the target genes of these DEMs in multiple GO terms linked to animal re-productive processes and KEGG signaling pathways. The follicular phase and luteal phase show significant enrichment in multiple pathways closely related to cell communication and signal transduction, including the MAPK signaling pathway, neuroactive ligand-receptor interaction, and the cAMP signaling pathway. In comparisons of genotypes, the calcium signaling pathway, the cAMP signaling pathway, and the MAPK signaling pathway are enriched. The miRNA-mRNA co-expression network indicates that novel121 and oar-miR-10b may regulate CUL4B and ZFAND5, respectively, playing crucial roles in sheep reproduction. Dual luciferase reporter gene assays hinted at a potential targeting relationship between novel-121 and DNMT3A. These findings elucidate the impact of pituitary miRNAs on follicular development influenced by FecB gene mutation, providing valuable insights into sheep breeding.
Collapse
Affiliation(s)
| | | | | | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.H.); (R.D.)
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.H.); (R.D.)
| |
Collapse
|
4
|
Ma Y, Zhao C, Feng J, Gou J, Kang E, Guan F, Wu Q, Li X. MSC-sEVs exacerbate senescence by transferring bisecting GlcNAcylated GPNMB. Stem Cell Res Ther 2025; 16:23. [PMID: 39849576 PMCID: PMC11756183 DOI: 10.1186/s13287-025-04140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND The senescence of bone marrow mesenchymal stem cells (BMMSCs) is increasingly recognized as a critical factor contributing to the pathophysiology of age-related diseases. Recent studies suggest that small extracellular vesicles (sEVs) derived from the serum of elderly individuals may play a pivotal role in promoting BMMSC senescence. Glycoprotein non-metastatic melanoma protein B (GPNMB), a type I transmembrane glycoprotein, is upregulated during cellular senescence and can regulate stem cell ageing. However, the precise mechanisms by which GPNMB influences BMMSCs senescence remain poorly understood. Understanding this relationship could provide valuable insights into therapeutic strategies for enhancing BMMSCs function and mitigating age-related degeneration. METHODS In this study, we conducted comprehensive in vitro experiments to elucidate the effects of sEVs isolated from the serum of elderly donors on the senescence of BMMSCs. We employed advanced proteomic analysis to quantify the expression levels of GPNMB in both BMMSCs and sEVs. Statistical methods were utilized to investigate the correlations between GPNMB expression, glycosylation modifications, and established senescence markers. RESULTS Our findings demonstrate a robust positive correlation between the expression of GPNMB in BMMSCs and sEVs and the induction of cellular senescence. Notably, we observed that elevated levels of GPNMB, particularly those bearing bisecting N-acetylglucosamine (GlcNAc) modifications, significantly enhance the senescent phenotype of BMMSCs. Furthermore, we identified the bisecting GlcNAc modification at the Asn 249 residue of GPNMB as a critical determinant for its senescence-promoting function. CONCLUSIONS This study elucidates the substantial role of sEVs derived from mesenchymal stem cells in exacerbating BMMSC senescence through mechanisms that are critically dependent on the presence of bisecting GlcNAcylated GPNMB. These insights emphasize the necessity of targeting glycosylation modifications of GPNMB in the design of novel senolytic therapies aimed at mitigating cellular ageing and its associated pathologies.
Collapse
Affiliation(s)
- Yihan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Chongfu Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Jingjing Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Junjie Gou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Enci Kang
- Xi'an Gaoxin No.1 High School International Division, Xi'an, Shaanxi, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China
| | - Qiong Wu
- The First Affiliated Hospital of Northwest University, Xi'an No.1 Hospital, Xi'an, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi, Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Faculty of Life Science, Northwest University, Xi'an, China.
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Ministry of Education, Northwest University, Xi'an, China.
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
5
|
Oviedo JM, Cortes-Selva D, Marchetti M, Gordon L, Gibbs L, Maschek JA, Cox J, Frietze S, Amiel E, Fairfax KC. Schistosoma mansoni antigen induced innate immune memory features mitochondrial biogenesis and can be inhibited by ovarian produced hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632838. [PMID: 39868249 PMCID: PMC11761400 DOI: 10.1101/2025.01.14.632838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
We have previously identified that S. mansoni infection induces a unique form of myeloid training that protects male but not female mice from high fat diet induced disease. Here we demonstrate that ovarian derived hormones account for this sex specific difference. Ovariectomy of females prior to infection permits metabolic reprogramming of the myeloid lineage, with BMDM exhibiting carbon source flexibility for cellular respiration, and mice protected from systemic metabolic disease. The innate training phenotype of infection can be replicated by in vivo injection of SEA, and by exposure of bone marrow to SEA in culture prior to macrophage differentiation (Day 0). This protective phenotype is linked to increased chromatin accessibility of lipid and mitochondrial pathways in BMDM including Nrf1 and Tfam, as well as mitochondrial biogenesis. This work provides evidence that S. mansoni antigens induce a unique form of innate training inhibited by ovarian-derived hormones in females.
Collapse
Affiliation(s)
- Juan Marcos Oviedo
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City UT, 84112
| | - Diana Cortes-Selva
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City UT, 84112
| | - Marco Marchetti
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Lisa Gibbs
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City UT, 84112
| | - J. Alan Maschek
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, UT, 84112
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City UT, 84112
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, UT, 84112
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405
| | - Keke C. Fairfax
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City UT, 84112
| |
Collapse
|
6
|
Liu JN, Yan L, Chai Z, Liang Q, Dong Y, Wang C, Li X, Li C, Mu Y, Gong A, Yang J, Li J, Yang KQ, Wu D, Fang H. Pan-genome analyses of 11 Fraxinus species provide insights into salt adaptation in ash trees. PLANT COMMUNICATIONS 2025; 6:101137. [PMID: 39308021 PMCID: PMC11783884 DOI: 10.1016/j.xplc.2024.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/01/2024] [Accepted: 09/19/2024] [Indexed: 11/10/2024]
Abstract
Ash trees (Fraxinus) exhibit rich genetic diversity and wide adaptation to various ecological environments, and several species are highly salt tolerant. Dissecting the genomic basis of salt adaptation in Fraxinus is vital for its resistance breeding. Here, we present 11 high-quality chromosome-level genome assemblies for Fraxinus species, which reveal two unequal subgenome compositions and two recent whole-genome triplication events in their evolutionary history. A Fraxinus pan-genome was constructed on the basis of structural variations and revealed that presence-absence variations (PAVs) of transmembrane transport genes have likely contributed to salt adaptation in Fraxinus. Through whole-genome resequencing of an F1 population from an interspecies cross of F. velutina 'Lula 3' (salt tolerant) with F. pennsylvanica 'Lula 5' (salt sensitive), we mapped salt-tolerance PAV-based quantitative trait loci (QTLs) and pinpointed two PAV-QTLs and candidate genes associated with Fraxinus salt tolerance. Mechanistically, FvbHLH85 enhances salt tolerance by mediating reactive oxygen species and Na+/K+ homeostasis, whereas FvSWEET5 enhances salt tolerance by mediating osmotic homeostasis. Collectively, these findings provide valuable genomic resources for Fraxinus salt-resistance breeding and the research community.
Collapse
Affiliation(s)
- Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan 250014, China
| | - Zejia Chai
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Xichen Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Chunyu Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Yutian Mu
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Andi Gong
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Jinfeng Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Jiaxiao Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China.
| | - Dejun Wu
- Shandong Provincial Academy of Forestry, Jinan 250014, China.
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Shandong Agricultural University, Taian 271018, China; Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
7
|
Ge H, Liu S, Zheng H, Chang P, Huang W, Lin S, Zheng J, Li H, Huang Z, Jia Q, Zhong F. Identification and Expression Analysis of Lipoxygenase Gene in Bitter Gourd ( Momordica charantia). Genes (Basel) 2024; 15:1557. [PMID: 39766824 PMCID: PMC11675646 DOI: 10.3390/genes15121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Lipoxygenases (LOXs) are key enzymes in the unsaturated fatty acid oxidation reaction pathway and play an important regulatory role in the synthesis of fruit aroma volatiles. METHODS LOX gene family members were identified in the whole genome database of bitter gourd and analyzed bioinformatically. An RT-qPCR was used to analyze the expression differences in different tissues. Monoterpenes were determined by gas chromatography-mass spectrometry (GC-MS) technique. RESULTS A total of 12 LOX gene family members were identified in the genome. The expression of LOX genes varied significantly among the tissues of roots, stems, leaves, flowers, fruits, seeds and tendrils. A total of 29 monoterpenes were detected in the fruits of five different fruit colors of bitter gourd, mainly containing six types of alcohols, aldehydes, terpenes, ketones, esters and alkynes, with the highest relative content of alcohols. CONCLUSIONS The present study provides a reference for further elucidation of the biological functions of the LOX gene in the synthesis pathway of aroma volatiles in bitter gourd.
Collapse
Affiliation(s)
- Haicui Ge
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.G.); (S.L.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
| | - Shuang Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.G.); (S.L.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
| | - Hongzhe Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.G.); (S.L.); (H.Z.)
| | - Pengyan Chang
- Subtropical Agriculture Research Institute, Fujian Academy of Agricultural Sciences, Zhangzhou 363005, China;
| | - Weiqun Huang
- Fujian Seed Station, Fuzhou 350003, China; (W.H.); (S.L.)
| | - Shanshan Lin
- Fujian Seed Station, Fuzhou 350003, China; (W.H.); (S.L.)
| | - Jingyuan Zheng
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Honglong Li
- Fujian Tianmei Seed Industry Technology Co., Fuzhou 350109, China; (H.L.); (Z.H.)
| | - Zedong Huang
- Fujian Tianmei Seed Industry Technology Co., Fuzhou 350109, China; (H.L.); (Z.H.)
| | - Qi Jia
- Jiuquan Institute of Agricultural Sciences Research, Jiuquan 735000, China;
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.G.); (S.L.); (H.Z.)
- Fuzhou Smart Agriculture (Seed Industry) Industry Innovation Center, Fuzhou 350002, China
| |
Collapse
|
8
|
Montavoci L, Romano D, Colombo L, Zulueta A, Cas MD, Scavone M, Tosi D, Bernardelli C, Autelitano A, Trinchera M, Rossetti L, Caretti A. Use of Myriocin as co-adjuvant in glaucoma surgery: An in vitro study. Int J Biochem Cell Biol 2024; 177:106699. [PMID: 39571676 DOI: 10.1016/j.biocel.2024.106699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Mitomycin C as well as other antiproliferative drugs are off-label agents widely used to prevent the failure of glaucoma surgery due to activation of Tenon's fibroblasts and the ensuing excessive subconjunctival scarring. Though efficacious, these treatments are associated with some severe long-term complications, so it is crucial to investigate less cytotoxic compounds as adjuvant therapy in glaucoma surgery. The aim of this study was to evaluate the effect and potential cytotoxicity of Myriocin, a natural sphingolipid synthesis inhibitor, on TGF-β1-induced myofibroblasts transformation of human dermal fibroblasts. We found that myriocin significantly attenuated the transcript levels of αSMA, CTGF, and MMP9 which are involved in the fibrosis process. Mitomycin C poorly affects the same pro-fibrotic markers while reducing fibroblasts motility as much as myriocin. At similar doses, five minutes of mitomycin C treatment consistently affects human dermal fibroblast viability and proliferation compared to prolonged myriocin application, strengthening already published data on the good tolerability of this natural compound. Our results draw attention to the use of myriocin as an adjuvant in glaucoma surgery due to the effectiveness in reducing fibroblasts to myofibroblasts transformation and the low cytotoxicity.
Collapse
Affiliation(s)
- Linda Montavoci
- Department of Health Sciences, Biochemistry Laboratory, University of Milan, Via A. di Rudinì 8, Milan, Italy.
| | - Dario Romano
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, Via A. di Rudinì 8, Milan, Italy.
| | - Leonardo Colombo
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, Via A. di Rudinì 8, Milan, Italy.
| | - Aida Zulueta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, Via Camaldoli 64, Milan, Italy.
| | - Michele Dei Cas
- Department of Health Sciences, Biochemistry Laboratory, University of Milan, Via A. di Rudinì 8, Milan, Italy.
| | - Mariangela Scavone
- Department of Health Sciences, Haemostasis and Thrombosis Laboratory, University of Milan, Via A. di Rudinì 8, Milan, Italy.
| | - Delfina Tosi
- Unit of Pathology, ASST Santi Paolo e Carlo Hospital, University of Milan, Via A. di Rudinì 8, Milan, Italy.
| | - Clara Bernardelli
- Department of Health Sciences, Pharmacology Laboratory, University of Milan, Via A. di Rudinì 8, Milan, Italy.
| | - Alessandro Autelitano
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, Via A. di Rudinì 8, Milan, Italy.
| | - Marco Trinchera
- Dipartimento di Medicina e Chirurgia, University of Insubria, J.H. Dunant 5, Varese, Italy.
| | - Luca Rossetti
- Eye Clinic, ASST Santi Paolo e Carlo Hospital, University of Milan, Via A. di Rudinì 8, Milan, Italy.
| | - Anna Caretti
- Department of Health Sciences, Biochemistry Laboratory, University of Milan, Via A. di Rudinì 8, Milan, Italy.
| |
Collapse
|
9
|
Song XP, Cao BY, Xu ZP, Liang L, Xiao J, Tang W, Xie MH, Wang D, Zhu L, Huang Z, Lai YS, Sun B, Tang Y, Li HX. Molecular regulation by H 2S of antioxidant and glucose metabolism in cold-sensitive Capsicum. BMC PLANT BIOLOGY 2024; 24:931. [PMID: 39375603 PMCID: PMC11457385 DOI: 10.1186/s12870-024-05635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cold is an important environmental limiting factor affecting plant yield and quality. Capsicum (chili pepper), a tropical and subtropical vegetable crop, is extremely sensitive to cold. Although H2S is an important signaling regulator in the responses of plant growth and development to abiotic stress, few studies have examined its effects on cold-sensitive capsicum varieties. Through biotechnology methods to enhance the cold resistance of peppers, to provide some reference for pepper breeding, investigated molecular regulation by H2S of responses to cold stress in cold-sensitive capsicum plants, via physiological and transcriptomic analyses. RESULTS In capsicum seedlings, exogenous H2S enhanced relative electrical conductivity (REC) and levels of malondialdehyde (MDA) under cold stress, maintained membrane integrity, increased the activity of enzymatic and non-enzymatic antioxidants, balanced reactive oxygen species levels (O2·- and H2O2), and improved photosynthesis, mitigating the damage caused by cold. In addition, 416 differentially expressed genes (DEGs) were involved in the response to cold stress after H2S treatment. These DEGs were mainly enriched in the ascorbate-glutathione and starch-sucrose metabolic pathways and plant hormone signal-transduction pathways. Exogenous H2S altered the expression of key enzyme-encoding genes such as GST, APX, and MDHAR in the ascorbate-glutathione metabolism pathway, as well as that of regulatory genes for stimulatory hormones (auxin, cytokinins, and gibberellins) and inhibitory hormones (including jasmonate and salicylic acid) in the plant hormone signal-transduction pathway, helping to maintain the energy supply and intracellular metabolic stability under cold stress. CONCLUSIONS These findings reveal that exogenous H2S improves cold tolerance in cold-sensitive capsicum plants, elucidating the molecular mechanisms underlying its responses to cold stress. This study provides a theoretical basis for exploring and improving cold tolerance in capsicum plants.
Collapse
Affiliation(s)
- Xue Ping Song
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bi Yan Cao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ze Ping Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - JiaChang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wen Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ming Hui Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li Zhu
- Sichuan Academy of Agricultural Characteristic Plants, No.14 Yongxing Road, Chonglong Town, Zizhong County, Neijiang City, Sichuan Province, 641200, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yun Song Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Huan Xiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
10
|
Zhang M, Jiang S, Zhang W, Xiong Y, Jin S, Wang J, Qiao H, Fu H. Functional Study of the Role of the Methyl Farnesoate Epoxidase Gene in the Ovarian Development of Macrobrachium nipponense. Int J Mol Sci 2024; 25:7318. [PMID: 39000423 PMCID: PMC11242038 DOI: 10.3390/ijms25137318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Methyl farnesoate epoxidase (MFE) is a gene encoding an enzyme related to the last step of juvenile hormone biosynthesis. Mn-MFE cDNA has a total length of 1695 bp and an open reading frame (ORF) length of 1482 bp, encoding 493 amino acids. Sequence analysis showed that its amino acid sequence has a PPGP hinge, an FGCG structural domain, and other structural domains specific to the P450 family of enzymes. Mn-MFE was most highly expressed in the hepatopancreas, followed by the ovary and gill, weakly expressed in heart and muscle tissue, and barely expressed in the eyestalk and cranial ganglion. Mn-MFE expression remained stable during the larval period, during which it mainly played a critical role in gonadal differentiation. Expression in the ovary was positively correlated and expression in the hepatopancreas was negatively correlated with ovarian development. In situ hybridization (ISH) showed that the signal was expressed in the oocyte, nucleus, cell membrane and follicular cells, and the intensity of expression was strongest at stage O-IV. The knockdown of Mn-MFE resulted in a significantly lower gonadosomatic index and percentage of ovaries past stage O-III compared to the control group. However, no differences were found in the cumulative frequency of molting between the experimental and control groups. Moreover, the analysis of ovarian tissue sections at the end of the experiment showed differences between groups in development speed but not in subcellular structure. These results demonstrate that Mn-MFE promotes the ovarian development of Macrobrachium nipponense adults but has no effect on molting.
Collapse
Affiliation(s)
- Mengying Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
| | - Sufei Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Jisheng Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
| | - Hui Qiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.Z.); (S.J.); (J.W.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (Y.X.); (S.J.)
| |
Collapse
|
11
|
Liang Y, Jiang L, Hu M, Luo X, Cheng T, Wang Y. Tea tree oil inhibits hydrogen sulfide-induced oxidative damage in chicken lungs through CYP450s/ROS pathway. Poult Sci 2024; 103:103860. [PMID: 38795514 PMCID: PMC11153251 DOI: 10.1016/j.psj.2024.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024] Open
Abstract
A large amount of hydrogen sulfide (H2S) is produced in the process of chicken breeding, which can cause serious inflammation and oxidative damage to the respiratory system of chickens. Tea tree oil (TTO) has antioxidant and anti-inflammatory properties. No studies have been reported on the use of TTO in H2S-induced lung injury in chickens. Therefore, in this study, 240 one-day-old Roman pink laying hens were randomly and equally divided into 3 groups: control group (CON), H2S exposure group (AVG, containing H2S), and TTO treatment group (TTG, containing H2S and 0.02 mL/L TTO) to establish an experimental model of TTO treatment with H2S exposure for a period of 42 d. Hematoxylin and eosin (H&E) staining was used to detect lung histopathology. Gene expression profiles were analyzed using transcriptomics. The underlying mechanism of the amelioration of lung injury by TTO was further revealed by antioxidant enzyme assays and qRT-PCR. The results showed that H2S exposure induced significant gene expression of CYP450s (CYP1B1 and CYP1C1) (P < 0.05), and caused intense oxidative stress, apoptosis and inflammation compared with CON. TTO could reduce ROS production and enhance antioxidant capacity (SOD, CAT, T-AOC, and GSH-PX) by regulating the CYP450s/ROS pathway (P < 0.05). Compared with the control group, the treatment group showed significantly decreased expression of apoptotic (Caspase-8, Caspase-3, Bid and Fas) (P < 0.05) and inflammatory (IL-4, IL-16, NF-κB, TNF-α and IFN-γ) (P < 0.05) factors in the lung. This study revealed that TTO regulated CYP450s/ROS pathway to alleviate H2S-induced lung injury in chickens. These results enrich the theory of the action mechanism of TTO on H2S-exposed chicken lungs and are of great value for the treatment of H2S-exposed animals.
Collapse
Affiliation(s)
- Yilei Liang
- Biomass Center, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China, 621000; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China, 621000
| | - Li Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China, 621000
| | - Mao Hu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China, 621000
| | - Xuegang Luo
- Biomass Center, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China, 621000; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China, 621000
| | - Tingting Cheng
- Biomass Center, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China, 621000; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China, 621000
| | - Yachao Wang
- Biomass Center, School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China, 621000; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China, 621000.
| |
Collapse
|
12
|
Liu L, Wang W, Lu X, Zhang T, Wu J, Fang Y, Ma L, Pu Y, Yang G, Wang W, Sun W. Methyl-Sensitive Amplification Polymorphism (MSAP) Analysis Provides Insights into the DNA Methylation Changes Underlying Adaptation to Low Temperature of Brassica rapa L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1748. [PMID: 38999588 PMCID: PMC11244143 DOI: 10.3390/plants13131748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND DNA methylation can change rapidly to regulate the expression of stress-responsive genes. Previous studies have shown that there are significant differences in the cold resistance of winter rapeseed (Brassica rapa L.) after being domesticated in different selection environments; however, little is known about the epigenetic regulatory mechanisms of its cold resistance formation. METHODS Four winter rapeseed materials ('CT-2360', 'MXW-1', '2018-FJT', and 'DT-7') domesticated in different environments were selected to analyze the DNA methylation level and pattern changes under low temperature using methylation-sensitive amplified polymorphism technology with 60 primer pairs. RESULTS A total of 18 pairs of primers with good polymorphism were screened, and 1426 clear bands were amplified, with 594 methylation sites, accounting for 41.65% of the total amplified bands. The total methylation ratios of the four materials were reduced after low-temperature treatment, in which the DNA methylation level of 'CT-2360' was higher than that of the other three materials; the analysis of methylation patterns revealed that the degree of demethylation was higher than that of methylation in 'MXW-1', '2018-FJT', and 'DT-7', which were 22.99%, 19.77%, and 24.35%, respectively, and that the methylation events in 'CT-2360' were predominantly dominant at 22.95%. Fifty-three polymorphic methylated DNA fragments were randomly selected and further analyzed, and twenty-nine of the cloned fragments were homologous to genes with known functions. The candidate genes VQ22 and LOC103871127 verified the existence of different expressive patterns before and after low-temperature treatment. CONCLUSIONS Our work implies the critical role of DNA methylation in the formation of cold resistance in winter rapeseed. These results provide a comprehensive insight into the adaptation epigenetic regulatory mechanism of Brassica rapa L. to low temperature, and the identified differentially methylated genes can also be used as important genetic resources for the multilateral breeding of winter-resistant varieties.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wanpeng Wang
- Zhangye Academy of Agricultural Sciences, Zhangye 734000, China
| | - Xiaoming Lu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Tianyu Zhang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Ma
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
13
|
Yang C, Li G, Zhang Q, Bai W, Li Q, Zhang P, Zhang J. Histone deacetylase Sir2 promotes the systemic Candida albicans infection by facilitating its immune escape via remodeling the cell wall and maintaining the metabolic activity. mBio 2024; 15:e0044524. [PMID: 38682948 PMCID: PMC11237532 DOI: 10.1128/mbio.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Histone deacetylation affects Candida albicans (C. albicans) pathogenicity by modulating virulence factor expression and DNA damage. The histone deacetylase Sir2 is associated with C. albicans plasticity and maintains genome stability to help C. albicans adapt to various environmental niches. However, whether Sir2-mediated chromatin modification affects C. albicans virulence is unclear. The purpose of our study was to investigate the effect of Sir2 on C. albicans pathogenicity and regulation. Here, we report that Sir2 is required for C. albicans pathogenicity, as its deletion affects the survival rate, fungal burden in different organs and the extent of tissue damage in a mouse model of disseminated candidiasis. We evaluated the impact of Sir2 on C. albicans virulence factors and revealed that the Sir2 null mutant had an impaired ability to adhere to host cells and was more easily recognized by the innate immune system. Comprehensive analysis revealed that the disruption of C. albicans adhesion was due to a decrease in cell surface hydrophobicity rather than the differential expression of adhesion genes on the cell wall. In addition, Sir2 affects the distribution and exposure of mannan and β-glucan on the cell wall, indicating that Sir2 plays a role in preventing the immune system from recognizing C. albicans. Interestingly, our results also indicated that Sir2 helps C. albicans maintain metabolic activity under hypoxic conditions, suggesting that Sir2 contributes to C. albicans colonization at hypoxic sites. In conclusion, our findings provide detailed insights into antifungal targets and a useful foundation for the development of antifungal drugs. IMPORTANCE Candida albicans (C. albicans) is the most common opportunistic fungal pathogen and can cause various superficial infections and even life-threatening systemic infections. To successfully propagate infection, this organism relies on the ability to express virulence-associated factors and escape host immunity. In this study, we demonstrated that the histone deacetylase Sir2 helps C. albicans adhere to host cells and escape host immunity by mediating cell wall remodeling; as a result, C. albicans successfully colonized and invaded the host in vivo. In addition, we found that Sir2 contributes to carbon utilization under hypoxic conditions, suggesting that Sir2 is important for C. albicans survival and the establishment of infection in hypoxic environments. In summary, we investigated the role of Sir2 in regulating C. albicans pathogenicity in detail; these findings provide a potential target for the development of antifungal drugs.
Collapse
Affiliation(s)
- Chen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guanglin Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiyue Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhui Bai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingiqng Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Guo X, Wang C, Zhu Q, Dongchen W, Zhang X, Li W, Zhang H, Zhang C, Nant Nyein ZNN, Li M, Chen L, Lee D. Albino lethal 13, a chloroplast-imported protein required for chloroplast development in rice. PLANT DIRECT 2024; 8:e610. [PMID: 38903415 PMCID: PMC11189691 DOI: 10.1002/pld3.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/22/2024]
Abstract
Chloroplasts play a vital role in plant growth and development, which are the main sites of photosynthesis and the production of hormones and metabolites. Despite their significance, the regulatory mechanisms governing chloroplast development remain unclear. In our investigation, we identified a rice mutant with defective chloroplasts in rice (Oryza sativa L.), named albino lethal 13 (osal13), which displayed a distinct albino phenotype in leaves, ultimately resulting in seedling lethality. Molecular cloning revealed that OsAL13 encodes a novel rice protein with no homologous gene or known conserved domain. This gene was located in the chloroplast and exhibited constitutive expression in various tissues, particularly in green tissues and regions of active cell growth. Our study's findings reveal that RNAi-mediated knockdown of OsAL13 led to a pronounced albino phenotype, reduced chlorophyll and carotenoid contents, a vesicle chloroplast structure, and a decrease in the expression of chloroplast-associated genes. Consequently, the pollen fertility and seed setting rate were lower compared with the wild type. In contrast, the overexpression of OsAL13 resulted in an increased photosynthetic rate, a higher total grain number per panicle, and enhanced levels of indole-3-acetic acid (IAA) in the roots and gibberellin A3 (GA3) in the shoot. These outcomes provide new insights on the role of OsAL13 in regulating chloroplast development in rice.
Collapse
Affiliation(s)
- Xiaoqiong Guo
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
- College of Biological Resource and Food EngineeringQujing Normal UniversityQujingChina
| | - Chunli Wang
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
| | - Qian Zhu
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan ProvinceYunnan Agricultural UniversityKunmingChina
| | - Wenhua Dongchen
- College of Agronomy and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | | | - Wei Li
- College of Biological Resource and Food EngineeringQujing Normal UniversityQujingChina
| | - Hui Zhang
- College of Agronomy and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Cui Zhang
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
| | | | - Mengting Li
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
| | - Lijuan Chen
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan ProvinceYunnan Agricultural UniversityKunmingChina
| | - Dongsun Lee
- Rice Research InstituteYunnan Agricultural UniversityKunmingChina
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in YunnanYunnan Agricultural UniversityKunmingChina
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan ProvinceYunnan Agricultural UniversityKunmingChina
| |
Collapse
|
15
|
Xiao F, Jia Z, Wang L, Liu M, Chen X, Gu Z, Chen Y, Li Y, Chen M, Hong M. T-cell Immunoglobulin and Mucin Domain 3 in Circulating Monocytes as a Novel Biomarker for Coronary Artery Disease. J Cardiovasc Transl Res 2024; 17:648-656. [PMID: 38062335 DOI: 10.1007/s12265-023-10466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/17/2023] [Indexed: 07/03/2024]
Abstract
The diagnostic role of T-cell immunoglobulin and mucin domain 3 (Tim-3) expression levels in circulating monocytes in coronary artery disease (CAD) remains to be determined. Here, we enrolled of 265 patients and isolated circulating monocytes from the blood of all participants. We found that the Tim-3 expression levels in monocytes were lower in CAD patients than in the control group. Spearman correlation analysis verified that the Tim-3 levels in monocytes were negatively correlated with the Gensini score and the number of coronary vessels. Multivariate logistic regression analysis showed that the Tim-3 levels in circulating monocytes were negatively correlated with CAD, severe CAD, and three-vessel CAD. The ROC curve showed that Tim-3 possessed high diagnostic value for CAD, severe CAD, and three-vessel CAD, with CAD prediction being the most significant of these values. In conclusion, Tim-3 in circulating monocytes is a novel biomarker for CAD.
Collapse
Affiliation(s)
- Fangping Xiao
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiqiang Jia
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Wang
- Department of Pathology, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Liu
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxiao Chen
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhan Gu
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yizhou Chen
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Li
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingyue Chen
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mei Hong
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Xiao C, Du S, Zhou S, Cheng H, Rao S, Wang Y, Cheng S, Lei M, Li L. Identification and functional characterization of ABC transporters for selenium accumulation and tolerance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108676. [PMID: 38714125 DOI: 10.1016/j.plaphy.2024.108676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/16/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
ATP-binding cassette (ABC) transporters were crucial for various physiological processes like nutrition, development, and environmental interactions. Selenium (Se) is an essential micronutrient for humans, and its role in plants depends on applied dosage. ABC transporters are considered to participate in Se translocation in plants, but detailed studies in soybean are still lacking. We identified 196 ABC genes in soybean transcriptome under Se exposure using next-generation sequencing and single-molecule real-time sequencing technology. These proteins fell into eight subfamilies: 8 GmABCA, 51 GmABCB, 39 GmABCC, 5 GmABCD, 1 GmABCE, 10 GmABCF, 74 GmABCG, and 8 GmABCI, with amino acid length 121-3022 aa, molecular weight 13.50-341.04 kDa, and isoelectric point 4.06-9.82. We predicted a total of 15 motifs, some of which were specific to certain subfamilies (especially GmABCB, GmABCC, and GmABCG). We also found predicted alternative splicing in GmABCs: 60 events in selenium nanoparticles (SeNPs)-treated, 37 in sodium selenite (Na2SeO3)-treated samples. The GmABC genes showed differential expression in leaves and roots under different application of Se species and Se levels, most of which are belonged to GmABCB, GmABCC, and GmABCG subfamilies with functions in auxin transport, barrier formation, and detoxification. Protein-protein interaction and weighted gene co-expression network analysis suggested functional gene networks with hub ABC genes, contributing to our understanding of their biological functions. Our results illuminate the contributions of GmABC genes to Se accumulation and tolerance in soybean and provide insight for a better understanding of their roles in soybean as well as in other plants.
Collapse
Affiliation(s)
- Chunmei Xiao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Sainan Du
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shengli Zhou
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hua Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shen Rao
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuan Wang
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ming Lei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Li Li
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, 430023, China; School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
17
|
Peng X, Zhou J, Lan Z, Tan R, Chen T, Shi D, Li H, Yang Z, Zhou S, Jin M, Li JW, Yang D. Carbonaceous particulate matter promotes the horizontal transfer of antibiotic resistance genes. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:915-927. [PMID: 38618896 DOI: 10.1039/d3em00547j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
There is growing concern about the transfer of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in airborne particulate matter. In this study, we investigated the effects of various types of carbonaceous particulate matter (CPM) on the transfer of ARGs in vitro. The results showed that CPM promoted the transfer of ARGs, which was related to the concentration and particle size. Compared with the control group, the transfer frequency was 95.5, 74.7, 65.4, 14.7, and 3.8 times higher in G (graphene), CB (carbon black), NGP (nanographite powder), GP1.6 (graphite powder 1.6 micron), and GP45 (graphite powder 45 micron) groups, respectively. Moreover, the transfer frequency gradually increased with the increase in CPM concentration, while there was a negative relationship between the CPM particle size and conjugative transfer frequency. In addition, the results showed that CPM could promote the transfer of ARGs by increasing ROS, as well as activating the SOS response and expression of conjugative transfer-related genes (trbBp, trfAp, korA, kroB, and trbA). These findings are indicative of the potential risk of CPM for the transfer of ARGs in the environment, enriching our understanding of environmental pollution and further raising awareness of environmental protection.
Collapse
Affiliation(s)
- Xuexia Peng
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Jiake Zhou
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Zishu Lan
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Rong Tan
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Tianjiao Chen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Danyang Shi
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Haibei Li
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Zhongwei Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Shuqing Zhou
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Jun-Wen Li
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, P. R. China.
| |
Collapse
|
18
|
Zheng S, Liu C, Zhou Z, Xu L, Lai Z. Physiological and Transcriptome Analyses Reveal the Protective Effect of Exogenous Trehalose in Response to Heat Stress in Tea Plant ( Camellia sinensis). PLANTS (BASEL, SWITZERLAND) 2024; 13:1339. [PMID: 38794411 PMCID: PMC11125205 DOI: 10.3390/plants13101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
It is well known that application of exogenous trehalose can enhance the heat resistance of plants. To investigate the underlying molecular mechanisms by which exogenous trehalose induces heat resistance in C. sinensis, a combination of physiological and transcriptome analyses was conducted. The findings revealed a significant increase in the activity of superoxide dismutase (SOD) and peroxidase (POD) upon treatment with 5.0 mM trehalose at different time points. Moreover, the contents of proline (PRO), endogenous trehalose, and soluble sugar exhibited a significant increase, while malondialdehyde (MDA) content decreased following treatment with 5.0 mM trehalose under 24 h high-temperature stress (38 °C/29 °C, 12 h/12 h). RNA-seq analysis demonstrated that the differentially expressed genes (DEGs) were significantly enriched in the MAPK pathway, plant hormone signal transduction, phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, flavonoid biosynthesis, and the galactose metabolism pathway. The capability to scavenge free radicals was enhanced, and the expression of a heat shock factor gene (HSFB2B) and two heat shock protein genes (HSP18.1 and HSP26.5) were upregulated in the tea plant. Consequently, it was concluded that exogenous trehalose contributes to alleviating heat stress in C. sinensis. Furthermore, it regulates the expression of genes involved in diverse pathways crucial for C. sinensis under heat-stress conditions. These findings provide novel insights into the molecular mechanisms underlying the alleviation of heat stress in C. sinensis with trehalose.
Collapse
Affiliation(s)
- Shizhong Zheng
- College of Biological Science and Engineering, Ningde Normal University, Ningde 352100, China; (S.Z.); (C.L.); (Z.Z.); (L.X.)
| | - Chufei Liu
- College of Biological Science and Engineering, Ningde Normal University, Ningde 352100, China; (S.Z.); (C.L.); (Z.Z.); (L.X.)
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziwei Zhou
- College of Biological Science and Engineering, Ningde Normal University, Ningde 352100, China; (S.Z.); (C.L.); (Z.Z.); (L.X.)
| | - Liyi Xu
- College of Biological Science and Engineering, Ningde Normal University, Ningde 352100, China; (S.Z.); (C.L.); (Z.Z.); (L.X.)
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
19
|
Song C, Liu R, Yin D, Xie C, Liang Y, Yang D, Jiang M, Zhang H, Shen N. A Comparative Transcriptome Analysis Unveils the Mechanisms of Response in Feather Degradation by Pseudomonas aeruginosa Gxun-7. Microorganisms 2024; 12:841. [PMID: 38674785 PMCID: PMC11052024 DOI: 10.3390/microorganisms12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Microbial degradation of feathers offers potential for bioremediation, yet the microbial response mechanisms warrant additional investigation. In prior work, Pseudomonas aeruginosa Gxun-7, which demonstrated robust degradation of feathers at elevated concentrations, was isolated. However, the molecular mechanism of this degradation remains only partially understood. To investigate this, we used RNA sequencing (RNA-seq) to examine the genes that were expressed differentially in P. aeruginosa Gxun-7 when exposed to 25 g/L of feather substrate. The RNA-seq analysis identified 5571 differentially expressed genes; of these, 795 were upregulated and 603 were downregulated. Upregulated genes primarily participated in proteolysis, amino acid, and pyruvate metabolism. Genes encoding proteases, as well as those involved in sulfur metabolism, phenazine synthesis, and type VI secretion systems, were notably elevated, highlighting their crucial function in feather decomposition. Integration of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) taxonomies, combined with a review of the literature, led us to propose that metabolic feather degradation involves environmental activation, reducing agent secretion, protease release, peptide/amino acid uptake, and metabolic processes. Sulfite has emerged as a critical activator of keratinase catalysis, while cysteine serves as a regulatory mediator. qRT-PCR assay results for 11 selected gene subset corroborated the RNA-seq findings. This study enhances our understanding of the transcriptomic responses of P. aeruginosa Gxun-7 to feather degradation and offers insights into potential degradation mechanisms, thereby aiding in the formulation of effective feather waste management strategies in poultry farming.
Collapse
Affiliation(s)
- Chaodong Song
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Rui Liu
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Doudou Yin
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Chenjie Xie
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Ying Liang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, No. 98, Daxue Road, Nanning 530007, China;
| | - Mingguo Jiang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Hongyan Zhang
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| | - Naikun Shen
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530000, China; (C.S.); (R.L.); (D.Y.); (C.X.); (Y.L.); (M.J.)
| |
Collapse
|
20
|
Zhang Y, Lu Y, Jin Z, Li B, Wu L, He Y. Antifungal mechanism of cell-free supernatant produced by Trichoderma virens and its efficacy for the control of pear Valsa canker. Front Microbiol 2024; 15:1377683. [PMID: 38694806 PMCID: PMC11061385 DOI: 10.3389/fmicb.2024.1377683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/13/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Pear Valsa canker, caused by Valsa pyri (V. pyri), poses a major threat to pear production. We aimed to assess the effectiveness of the cell-free supernatant (CFS) produced by Trichoderma virens (T. virens) to control the development of pear Valsa canker and reveal the inhibitory mechanism against the pathogenic fungi. Results Using morphological characteristics and phylogenetic analysis, the pathogen G1H was identified as V. pyri, and the biocontrol fungus WJ561 was identified as Trichoderma virens. CFS derived from WJ561 exhibited strong inhibition of mycelial growth and was capable of reducing the pathogenicity of V. pyri on pear leaves and twigs. Scanning electron microscopy (SEM) observations revealed deformations and shrinkages in the fungal hyphae treated with CFS. The CFS also destroyed the hyphal membranes leading to the leakage of cellular contents and an increase in the malondialdehyde (MDA) content. Additionally, CFS significantly inhibited the activities of catalase (CAT) and superoxide dismutase (SOD), and downregulated the expression of antioxidant defense-related genes in V. pyri, causing the accumulation of reactive oxygen species (ROS). Artesunate, identified as the main component in CFS by liquid chromatograph-mass spectrometry (LC-MS), exhibited antifungal activity against V. pyri. Conclusion Our findings demonstrate the promising potential of T. virens and its CFS in controlling pear Valsa canker. The primary inhibitory mechanism of CFS involves multiple processes, including membrane damage and negatively affecting enzymatic detoxification pathways, consequently leading to hyphal oxidative damage of V. pyri. This study lays a theoretical foundation for the utilization of T. virens to control V. pyri in practical production.
Collapse
Affiliation(s)
- Yang Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoyang Jin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
- Institute of Farmland Water Conservancy and Soil Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi City, China
| |
Collapse
|
21
|
Xuan L, Wang Y, Qu C, Yi W, Yang J, Pan H, Zhang J, Chen C, Bai C, Zhou PK, Huang R. Exposure to polystyrene nanoplastics induces abnormal activation of innate immunity via the cGAS-STING pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116255. [PMID: 38552388 DOI: 10.1016/j.ecoenv.2024.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Endogenous immune defenses provide an intrinsic barrier against external entity invasion. Microplastics in the environment, especially those at the nanoscale (nanoplastics or NPs), may pose latent health risks through direct exposure. While links between nanoplastics and inflammatory processes have been established, detailed insights into how they may perturb the innate immune mechanisms remain uncharted. Employing murine and macrophage (RAW264.7) cellular models subjected to polystyrene nanoplastics (PS-NPs), our investigative approach encompassed an array of techniques: Cell Counting Kit-8 assays, flow cytometric analysis, acridine orange/ethidium bromide (AO/EB) fluorescence staining, cell transfection, cell cycle scrutiny, genetic manipulation, messenger RNA expression profiling via quantitative real-time PCR, and protein expression evaluation through western blotting. The results showed that PS-NPs caused RAW264.7 cell apoptosis, leading to cell cycle arrest, and activated the cGAS-STING pathway. This resulted in NF-κB signaling activation and increased pro-inflammatory mediator expression. Importantly, PS-NPs-induced activation of NF-κB and its downstream inflammatory cascade were markedly diminished after the silencing of the STING gene. Our findings highlight the critical role of the cGAS-STING pathway in the immunotoxic effects induced by PS-NPs. We outline a new mechanism whereby nanoplastics may trigger dysregulated innate immune and inflammatory responses via the cGAS/STING pathway.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Yin Wang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Can Qu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Wensen Yi
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Jingjing Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China
| | - Huiji Pan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| | - Jing Zhang
- Clinical Medical Oncology, Xiangya Medical College, Central South University, China.
| | - Cuimei Chen
- School of Public Health, Xiang Nan University, Chenzhou, Hunan 423000, China.
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|
22
|
Wang P, Zhu P, Yin W, Wu J, Zhang S. ICA/SDF-1α/PBMSCs loaded onto alginate and gelatin cross-linked scaffolds promote damaged cartilage repair. J Cell Mol Med 2024; 28:e18236. [PMID: 38509746 PMCID: PMC10955157 DOI: 10.1111/jcmm.18236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/13/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
A three-dimensional alginate-coated scaffold (GAIS) was constructed in the present study to showcase the multidifferentiation potential of peripheral blood mesenchymal stem cells (PBMSCs) and to investigate the role and mechanism by which Icariin (ICA)/stromal cell-derived factor (SDF-1α)/PBMSCs promote damaged articular repair. In addition, the ability of ICA, in combination with SDF-1α, to promote the migration and proliferation of stem cells was validated through the utilization of CCK-8 and migration experiments. The combination of ICA and SDF-1α inhibited the differentiation of PBMSCs into cartilage, as demonstrated by in vivo experiments and histological staining. Both PCR and western blot experiments showed that GAIS could upregulate the expression of particular genes in chondrocytes. In comparison to scaffolds devoid of alginate (G0), PBMSCs seeded into GAIS scaffolds exhibited a greater rate of proliferation, and the conditioned medium derived from scaffolds containing SDF-1α enhanced the capacity for cell migration. Moreover, after a 12-week treatment period, GAIS, when successfully transplanted into osteochondral defects of mice, was found to promote cartilage regeneration and repair. The findings, therefore, demonstrate that GAIS enhanced the in vitro capabilities of PBMSCs, including proliferation, migration, homing and chondrogenic differentiation. In addition, ICA and SDF-1α effectively collaborated to support cartilage formation in vivo. Thus, the ICA/SDF-1α/PBMSC-loaded biodegradable alginate-gelatin scaffolds showcase considerable potential for use in cartilage repair.
Collapse
Affiliation(s)
- Pengzhen Wang
- Guangzhou Institute of Traumatic SurgeryGuangzhou Red Cross Hospital of Jinan UniversityGuangzhouGuangdongChina
- Key Laboratory of Regenerative Medicine, Ministry of EducationJinan UniversityGuangzhouGuangdongChina
| | - Pingping Zhu
- Department of NeurologyGuangzhou Red Cross Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Wenhui Yin
- Department of CardiologyGuangzhou Red Cross Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Jian Wu
- Department of OtorhinolaryngologyGuangzhou Red Cross Hospital of Jinan UniversityGuangzhouGuangdongChina
| | - Shaoheng Zhang
- Department of CardiologyGuangzhou Red Cross Hospital of Jinan UniversityGuangzhouGuangdongChina
| |
Collapse
|
23
|
Wang J, Wu X, Zhang L, Wang Q, Sun X, Ji D, Li Y. miR-133a-3p and miR-145-5p co-promote goat hair follicle stem cell differentiation by regulating NANOG and SOX9 expression. Anim Biosci 2024; 37:609-621. [PMID: 37946416 PMCID: PMC10915213 DOI: 10.5713/ab.23.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Hair follicle stem cells (HFSCs) differentiation is a critical physiological progress in skin hair follicle (HF) formation. Goat HFSCs differentiation is one of the essential processes of superior-quality brush hair (SQBH) synthesis. However, knowledge regarding the functions and roles of miR-133a-3p and miR-145-5p in differentiated goat HFSCs is limited. METHODS To examine the significance of chi-miR-133a-3p and chi-miR-145-5p in differentiated HFSCs, overexpression and knockdown experiments of miR-133a-3p and miR-145-5p (Mimics and Inhibitors) separately or combined were performed. NANOG, SOX9, and stem cell differentiated markers (β-catenin, C-myc, Keratin 6 [KRT6]) expression levels were detected and analyzed by using real-time quantitative polymerase chain reaction, western blotting, and immunofluorescence assays in differentiated goat HFSCs. RESULTS miR-133a-3p and miR-145-5p inhibit NANOG (a gene recognized in keeping and maintaining the totipotency of embryonic stem cells) expression and promote SOX9 (an important stem cell transcription factor) expression in differentiated stem cells. Functional studies showed that miR-133a-3p and miR-145-5p individually or together overexpression can facilitate goat HFSCs differentiation, whereas suppressing miR-133a-3p and miR-145-5p or both inhibiting can inhibit goat HFSCs differentiation. CONCLUSION These findings could more completely explain the modulatory function of miR-133a-3p and miR-145-5p in goat HFSCs growth, which also provide more understandings for further investigating goat hair follicle development.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009,
China
| | - Xi Wu
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Liuming Zhang
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Qiang Wang
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Xiaomei Sun
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Dejun Ji
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Yongjun Li
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009,
China
| |
Collapse
|
24
|
Alzahrani KR, Gomez-Cardona E, Gandhi VD, Palikhe NS, Laratta C, Julien O, Vliagoftis H. German cockroach extract prevents IL-13-induced CCL26 expression in airway epithelial cells through IL-13 degradation. FASEB J 2024; 38:e23531. [PMID: 38466220 DOI: 10.1096/fj.202300828rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Inhaled aeroallergens can directly activate airway epithelial cells (AECs). Exposure to cockroach allergens is a strong risk factor for asthma. Cockroach allergens mediate some of their effects through their serine protease activity; protease activity is also a major contributor to allergenicity. The Th2 cytokine interleukin-13 (IL-13) induces upregulation of the eosinophil chemotactic factor CCL26. CCL26 induces eosinophil migration in allergic inflammation. In this work, we studied the effect of cockroach proteases on IL-13-induced effects. Immersed cultures of the human bronchial epithelial cell line BEAS-2B and air-liquid interface (ALI) cultures of primary normal human bronchial epithelial (NHBE) cells were stimulated with IL-13, Blattella Germanica cockroach extract (CE), or both. IL-13-induced genes were analyzed with qRT-PCR. IL-13 induced upregulation of CCL26, periostin, and IL-13Rα2 in bronchial epithelial cells which were decreased by CE. CE was heat-inactivated (HICE) or pre-incubated with protease inhibitors. HICE and CE preincubated with serine protease inhibitors did not prevent IL-13-induced CCL26 upregulation. CE-degraded IL-13 and specific cleavage sites were identified. CE also decreased IL-4-induced CCL26 upregulation and degraded IL-4. Other serine proteases such as bovine trypsin and house dust mite (HDM) serine proteases did not have the same effects on IL-13-induced CCL26. We conclude that CE serine proteases antagonize IL-13-induced effects in AECs, and this CE effect is mediated primarily through proteolytic cleavage of IL-13. IL-13 cleavage by cockroach serine proteases may modulate CCL26-mediated effects in allergic airway inflammation by interfering directly with the pro-inflammatory effects of IL-13 in vivo.
Collapse
Affiliation(s)
- Khadija Rashed Alzahrani
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Erik Gomez-Cardona
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vivek D Gandhi
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Nami Shrestha Palikhe
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Cheryl Laratta
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Olivier Julien
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Zhou Z, Huang J, Wang Y, He S, Yang J, Wang Y, Li W, Liu Y, Xu R, Li Y, Wu L. Genome-Wide Identification and Expression Analysis of the DA1 Gene Family in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2024; 25:3000. [PMID: 38474246 DOI: 10.3390/ijms25053000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The DA1-like gene family plays a crucial role in regulating seed and organ size in plants. The DA1 gene family has been identified in several species but has not yet been reported in sweet potatoes. In this study, nine, eleven, and seven DA1s were identified in cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid wild relatives, I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively. The DA1 genes were classified into three subgroups based on their phylogenetic relationships with Arabidopsis thaliana and Oryza sativa (rice). Their protein physiological properties, chromosomal localization, phylogenetic relationships, gene structure, promoter cis-elements, and expression patterns were systematically analyzed. The qRT-PCR results showed that the expression levels of four genes, IbDA1-1, IbDA1-3, IbDA1-6, and IbDA1-7, were higher in the sweet potato leaves than in the roots, fiber roots, and stems. In our study, we provide a comprehensive comparison and further the knowledge of DA1-like genes in sweet potatoes, and provide a theoretical basis for functional studies.
Collapse
Affiliation(s)
- Zelong Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Jianzhi Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yuehui Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Shixiang He
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Jing Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Ying Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Wenxing Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yi Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Ran Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lian Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| |
Collapse
|
26
|
Yu H, Shao M, Luo X, Pang C, So KF, Yu J, Zhang L. Treadmill exercise improves hippocampal neural plasticity and relieves cognitive deficits in a mouse model of epilepsy. Neural Regen Res 2024; 19:657-662. [PMID: 37721298 PMCID: PMC10581559 DOI: 10.4103/1673-5374.377771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/18/2023] [Accepted: 05/25/2023] [Indexed: 09/19/2023] Open
Abstract
Epilepsy frequently leads to cognitive dysfunction and approaches to treatment remain limited. Although regular exercise effectively improves learning and memory functions across multiple neurological diseases, its application in patients with epilepsy remains controversial. Here, we adopted a 14-day treadmill-exercise paradigm in a pilocarpine injection-induced mouse model of epilepsy. Cognitive assays confirmed the improvement of object and spatial memory after endurance training, and electrophysiological studies revealed the maintenance of hippocampal plasticity as a result of physical exercise. Investigations of the mechanisms underlying this effect revealed that exercise protected parvalbumin interneurons, probably via the suppression of neuroinflammation and improved integrity of blood-brain barrier. In summary, this work identified a previously unknown mechanism through which exercise improves cognitive rehabilitation in epilepsy.
Collapse
Affiliation(s)
- Hang Yu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Mingting Shao
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Xi Luo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Chaoqin Pang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
| | - Jiandong Yu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Shandong Province, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
27
|
Chen J, Gong Y, Sun X, Chen N, Zhao Z, Zhang W, Zheng Y. Prostaglandin E2 may clinically alleviate dry eye disease by inducing Th17 cell differentiation. Chem Biol Drug Des 2024; 103:e14477. [PMID: 38361150 DOI: 10.1111/cbdd.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Dry eye (DE) is a multifactorial ocular surface disease characterised by an imbalance in tear homeostasis. The pathogenesis of DE is complex and related to environmental, immunological (e.g., T helper 17 cells) and other factors. However, the DE disease pathogenesis remains unclear, thereby affecting its clinical treatment. This study aimed to explore the mechanism through which prostaglandin E2 (PGE2) affects DE inflammation by regulating Th17. The DE mouse model was established through subcutaneous injection of scopolamine hydrobromide. The tear secretion test and break-up time (BUT) method were used to detect tear secretion and tear film BUT, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to detect the concentrations of PGE2, interleukin (IL)-17, IL-6 and tumour necrosis factor (TNF-α) in tear fluid and those of PGE2 and IL-17 in the serum. RT-qPCR and western blotting were used to test the mRNA and protein expression levels of IL-17 and retinoid-related orphan receptor-γt (RORγt). PGE2 was highly expressed in the DE mouse model. The mRNA and protein levels of IL-17 and the key Th17 transcription factor RORγt were increased in tissues of the DE mice. Moreover, PGE2 promoted tear secretion, reduced the BUT, increased the IL-17 concentration in tears and increased the Th17 cell proportion in DE, whereas the PGE2 receptor inhibitor AH6809 reversed the effects of PGE2 on tear secretion, BUT, and the Th17 cell proportion in draining lymph node (DLN) cells. Taken together, the study findings indicate that PGE2 could induce DE-related symptoms by promoting Th17 differentiation.
Collapse
Affiliation(s)
- Jingyao Chen
- Department of Ophthalmology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
- Ophthalmology Department of Kunming First People's Hospital, Kunming, China
| | - Yu Gong
- Kunming Medical University, Kunming, China
| | - Xiaoyu Sun
- Kunming Medical University, Kunming, China
| | - Nuo Chen
- Kunming Medical University, Kunming, China
| | - Zijun Zhao
- Department of Ophthalmology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Weijia Zhang
- Department of Ophthalmology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Yixin Zheng
- Department of Ophthalmology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| |
Collapse
|
28
|
Hu W, Zhao C, Zheng R, Duan S, Lu Z, Zhang Z, Yi L, Zhang N. Serratia marcescens induces apoptosis in Diaphorina citri gut cells via reactive oxygen species-mediated oxidative stress. PEST MANAGEMENT SCIENCE 2024; 80:602-612. [PMID: 37740936 DOI: 10.1002/ps.7787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/17/2023] [Accepted: 09/23/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Asian citrus psyllid, Diaphorina citri, is a notorious pest in the citrus industry because it transmits Candidatus Liberibacter asiaticus, which causes an uncurable, devastating disease in citrus worldwide. Serratia marcescens is widely distributed in various environments that exhibits toxic effects to many insects. To develop strategies for enhancing the efficiency of pathogen-induced host mortality, a better understanding of the toxicity mechanism of Serratia marcescens on Diaphorina citri is critical. RESULTS Serratia marcescens KH-001 successfully colonized Diaphorina citri gut by feeding artificial diets, resulting in the damage of cells including nucleus, mitochondria, vesicles, and microvilli. Oral ingestion of Serratia marcescens KH-001 strongly induced apoptosis in gut cells by enhancing levels of Cyt c, p53 and caspase-1 and decreasing levels of inhibitors of apoptosis (IAP) and Bax inhibitor-1 (BI-1). The expression of dual oxidase (Duox) and nitric oxide synthase (Nos) was up-regulated by Serratia marcescens KH-001, which increased hydrogen peroxide (H2 O2 ) levels in the gut. Injection of abdomen of Diaphorina citri with H2 O2 accelerated the death of the adults and induced apoptosis in the gut cells by activating Cyt c, p53 and caspase-1 and suppressing IAP and BI-1. Pretreatment of infected Diaphorina citri with vitamin c (Vc) increased the adult survival and diminished the apoptosis-inducing effect. CONCLUSIONS The colonization of Serratia marcescens KH-001 in the guts of Diaphorina citri increased H2 O2 accumulation, leading to severe changes and apoptosis in intestinal cells, which enhanced a higher mortality level of D. citr. This study identifies the underlying virulence mechanism of Serratia marcescens KH-001 on Diaphorina citri that contributes to a widespread application in the integrated management of citrus psyllid. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Hu
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Chongfei Zhao
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Rongkun Zheng
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Shuo Duan
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Zhanjun Lu
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Long Yi
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ning Zhang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
29
|
Wen X, Cheng M, Song Z, Hu J, Liang X, Lang W, Yang M, Zhou R, Hao Y. Molecular mechanism of honeysuckle + forsythia in treatment of acute lung injury based on network pharmacology. Biomed Rep 2024; 20:32. [PMID: 38273899 PMCID: PMC10809323 DOI: 10.3892/br.2024.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/08/2023] [Indexed: 01/27/2024] Open
Abstract
The pathogenesis of acute lung injury (ALI) is complex and it is a common critical illness in clinical practice, seriously threatening the lives of critically ill patients, for which no specific molecular marker exists and there is a lack of effective methods for the treatment of ALI. The present study aimed to investigate the mechanism of action of honeysuckle and forsythia in treatment of acute lung injury (ALI) based on network pharmacology and in vitro modeling. The active ingredients and targets of honeysuckle and forsythia were predicted using traditional Chinese medicine systems pharmacology, PubChem and Swiss Target Prediction databases, and the Cytoscape 3.7.2 software was used to construct a drug-component-potential target network. The potential targets were imported into the Search tool for recurring instances of neighboring genes) database to obtain protein-protein interactions and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Targets analysis using Database for Annotation, Visualization, and Integrated Discovery. AutoDock Vina 1.1.2 software was used for docking between key active ingredients and the target proteins to analyze the binding ability of the active ingredients to the primary targets in honeysuckle and forsythia. A total of 64 male BALB/c mice were randomly divided into control, model, positive drug (Lianhua-Qingwen capsule), honeysuckle, forsythia, honeysuckle + forsythia high-, medium- and low-dose groups. Lipopolysaccharide (LPS) was used to induced an ALI model. The lung tissues of the mice were stained with hematoxylin-eosin and the serum levels of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured 4 h after the LPS administration. Reverse transcription-quantitative PCR and western blotting were used to detect NF-κB mRNA and protein expression, respectively. Active ingredients of honeysuckle and forsythia acted on 265 common targets in ALI, which regulated NF-κB, tumor necrosis factor-α (TNF-α) and PI3K-AKT signaling pathway, HIF-1 signalling pathway to slow the inflammatory response in treatment of ALI. In the positive drug group, honeysuckle, forsythia group, honeysuckle + forsythia high-, medium- and low-dose groups, lung tissue damage were significantly decrease compared with the model group, and inflammatory cell infiltration was reduced. Compared with the model group, honeysuckle + forsythia groups experienced decreased damage caused by the LPS and inflammation in the lung tissues and significantly decreased TNF-α and NF-κB and MDA concentration and significantly increased the SOD and GSH-Px activities. The mechanism of the effect of honeysuckle and forsythia on ALI may be mediated by inhibition of TNF-α and NF-κB expression and the activation of antioxidant mechanisms to decrease production of pro-inflammatory cytokines in lung tissue, thus treating ALI.
Collapse
Affiliation(s)
- Xin Wen
- Shaanxi University of Chinese Medicine, Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Xianyang, Shaanxi 712046, P.R. China
| | - Min Cheng
- Shaanxi University of Chinese Medicine, Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Xianyang, Shaanxi 712046, P.R. China
- Shangluo University, College of Biomedical and Food Engineering, Shangluo, Shaanxi 726000, P.R. China
| | - Zhongxing Song
- Shaanxi University of Chinese Medicine, Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Xianyang, Shaanxi 712046, P.R. China
| | - Jinhang Hu
- Shaanxi University of Chinese Medicine, Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Xianyang, Shaanxi 712046, P.R. China
| | - Xuhu Liang
- Shangluo University, College of Biomedical and Food Engineering, Shangluo, Shaanxi 726000, P.R. China
| | - Wuying Lang
- Shangluo University, College of Biomedical and Food Engineering, Shangluo, Shaanxi 726000, P.R. China
| | - Mengqi Yang
- Shaanxi University of Chinese Medicine, Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Xianyang, Shaanxi 712046, P.R. China
| | - Ruina Zhou
- Shaanxi University of Chinese Medicine, Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi and Education Ministry, State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), Xianyang, Shaanxi 712046, P.R. China
| | - Yunjing Hao
- Northwest University, College of Life Sciences, Xian, Shaanxi 710075, P.R. China
| |
Collapse
|
30
|
Xu L, Tang X, Yang L, Chang M, Xu Y, Chen Q, Lu C, Liu S, Jiang J. Mitochondria-derived peptide is an effective target for treating streptozotocin induced painful diabetic neuropathy through induction of activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1alpha -mediated mitochondrial biogenesis. Mol Pain 2024; 20:17448069241252654. [PMID: 38658141 PMCID: PMC11113074 DOI: 10.1177/17448069241252654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Painful Diabetic Neuropathy (PDN) is a common diabetes complication that frequently causes severe hyperalgesia and allodynia and presents treatment challenges. Mitochondrial-derived peptide (MOTS-c), a novel mitochondrial-derived peptide, has been shown to regulate glucose metabolism, insulin sensitivity, and inflammatory responses. This study aimed to evaluate the effects of MOTS-c in streptozocin (STZ)-induced PDN model and investigate the putative underlying mechanisms. We found that endogenous MOTS-c levels in plasma and spinal dorsal horn were significantly lower in STZ-treated mice than in control animals. Accordingly, MOTS-c treatment significantly improves STZ-induced weight loss, elevation of blood glucose, mechanical allodynia, and thermal hyperalgesia; however, these effects were blocked by dorsomorphin, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor. In addition, MOTS-c treatment significantly enhanced AMPKα1/2 phosphorylation and PGC-1α expression in the lumbar spinal cord of PDN mice. Mechanistic studies indicated that MOTS-c significantly restored mitochondrial biogenesis, inhibited microglia activation, and decreased the production of pro-inflammatory factors, which contributed to the alleviation of pain. Moreover, MOTS-c decreased STZ-induced pain hypersensitivity in PDN mice by activating AMPK/PGC-1α signaling pathway. This provides the pharmacological and biological evidence for developing mitochondrial peptide-based therapeutic agents for PDN.
Collapse
Affiliation(s)
- Lingfei Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xihui Tang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Long Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuqing Xu
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qingsong Chen
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chen Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Su Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jinhong Jiang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
31
|
Gu M, Cheng X, Zhang D, Wu W, Cao Y, He J. Chemokine platelet factor 4 accelerates peripheral nerve regeneration by regulating Schwann cell activation and axon elongation. Neural Regen Res 2024; 19:190-195. [PMID: 37488866 PMCID: PMC10479853 DOI: 10.4103/1673-5374.375346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/04/2023] [Accepted: 04/03/2023] [Indexed: 07/26/2023] Open
Abstract
Schwann cells in peripheral nerves react to traumatic nerve injury by attempting to grow and regenerate. However, it is unclear what factors play a role in this process. In this study, we searched a GEO database and found that expression of platelet factor 4 was markedly up-regulated after sciatic nerve injury. Platelet factor is an important molecule in cell apoptosis, differentiation, survival, and proliferation. Further, polymerase chain reaction and immunohistochemical staining confirmed the change in platelet factor 4 in the sciatic nerve at different time points after injury. Enzyme-linked immunosorbent assay confirmed that platelet factor 4 was secreted by Schwann cells. We also found that silencing platelet factor 4 decreased the proliferation and migration of primary cultured Schwann cells, while exogenously applied platelet factor 4 stimulated Schwann cell proliferation and migration and neuronal axon growth. Furthermore, knocking out platelet factor 4 inhibited the proliferation of Schwann cells in injured rat sciatic nerve. These findings suggest that Schwann cell-secreted platelet factor 4 may facilitate peripheral nerve repair and regeneration by regulating Schwann cell activation and axon growth. Thus, platelet factor 4 may be a potential therapeutic target for traumatic peripheral nerve injury.
Collapse
Affiliation(s)
- Miao Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
- School of Basic Medical Sciences, Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, Hebei Province, China
| | - Xiao Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Di Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Weiyan Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Yi Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Jianghong He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
32
|
Li S, Song C, Zhang H, Qin Y, Jiang M, Shen N. Comparative Transcriptome Analysis Reveals the Molecular Mechanisms of Acetic Acid Reduction by Adding NaHSO 3 in Actinobacillus succinogenes GXAS137. Pol J Microbiol 2023; 72:399-411. [PMID: 38000010 PMCID: PMC10725169 DOI: 10.33073/pjm-2023-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 11/26/2023] Open
Abstract
Acetic acid (AC) is a major by-product from fermentation processes for producing succinic acid (SA) using Actinobacillus succinogenes. Previous experiments have demonstrated that sodium bisulfate (NaHSO3) can significantly decrease AC production by A. succinogenes GXAS137 during SA fermentation. However, the mechanism of AC reduction is poorly understood. In this study, the transcriptional profiles of the strain were compared through Illumina RNA-seq to identify differentially expressed genes (DEGs). A total of 210 DEGs were identified by expression analysis: 83 and 127 genes up-regulated and down-regulated, respectively, in response to NaHSO3 treatment. The functional annotation analysis of DEGs showed that the genes were mainly involved in carbohydrates, inorganic ions, amino acid transport, metabolism, and energy production and conversion. The mechanisms of AC reduction might be related to two aspects: (i) the lipoic acid synthesis pathway (LipA, LipB) was significantly down-regulated, which blocked the pathway catalyzed by pyruvate dehydrogenase complex to synthesize acetyl-coenzyme A (acetyl-CoA) from pyruvate; (ii) the expression level of the gene encoding bifunctional acetaldehyde-alcohol dehydrogenase was significantly up-regulated, and this effect facilitated the synthesis of ethanol from acetyl-CoA. However, the reaction of NaHSO3 with the intermediate metabolite acetaldehyde blocked the production of ethanol and consumed acetyl-CoA, thereby decreasing AC production. Thus, our study provides new insights into the molecular mechanism of AC decreased underlying the treatment of NaHSO3 and will deepen the understanding of the complex regulatory mechanisms of A. succinogenes.
Collapse
Affiliation(s)
- Shiyong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Chaodong Song
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yan Qin
- National Non-Grain Bio-Energy Engineering Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
33
|
Ren S, Cheng Y, Deng Y, Xia M, Yang Y, Lei L, Hu T. Pudilan Keyanning mouthwash inhibits dextran-dependent aggregation and biofilm organization of Streptococcus mutans. J Appl Microbiol 2023; 134:lxad298. [PMID: 38086612 DOI: 10.1093/jambio/lxad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
AIMS This research aimed to investigate the inhibitory effects of Pudilan mouthwash (PDL) on Streptococcus mutans (S. mutans) biofilms and identify its chemical components. METHODS AND RESULTS The impacts of 100% concentrated PDL on S. mutans biofilm were detected by colony-forming unit (CFU) assays, crystal violet staining, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and quantitative real-time PCR (qRT‒PCR). The biocompatibility with human gingival fibroblasts (HGFs) was evaluated by Cell-Counting-Kit-8 (CCK-8) assay. And chemical components were identified by UPLC-HRMS. PBS and 0.12% chlorhexidine were used as negative and positive controls, respectively. Results indicate early 8-h S. mutans biofilms are sensitive to PDL. Additionally, it leads to a decrease in bacterial activities and dextran-dependent aggregation in 24-h S. mutans biofilms. PDL significantly downregulates the gene expression of gtfB/C/D and smc. And 114 components are identified. CONCLUSIONS PDL has an inhibitory effect on S. mutans and favorable biocompatibility. It has potential to be exploited as a novel anti-biofilm agent.
Collapse
Affiliation(s)
- Shirui Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiting Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yalan Deng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mengying Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
34
|
Ran Z, Chen X, Li R, Duan W, Zhang Y, Fang L, Guo L, Zhou J. Transcriptomics and metabolomics reveal the changes induced by arbuscular mycorrhizal fungi in Panax quinquefolius L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4919-4933. [PMID: 36942522 DOI: 10.1002/jsfa.12563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Panax quinquefolius L. is one of the most important foods and herbs because of its high nutritional value and medicinal potential. In our previous study we found that the ginsenoside content in P. quinquefolius was improved by arbuscular mycorrhizal fungi (AMFs). However, little research has been conducted on the molecular mechanisms in P. quinquefolius roots induced by AMFs colonization. To identify the metabolomic and transcriptomic mechanisms of P. quinquefolius induced by AMFs, non-mycorrhized (control) and mycorrhized (AMF) P. quinquefolius were used as experimental materials for comparative analysis of the transcriptome and metabolome. RESULTS Compared with the control, 182 metabolites and 545 genes were significantly changed at the metabolic and transcriptional levels in AMFs treatment. The metabolic pattern of AMFs was changed, and the contents of ginsenosides (Rb1, Rg2), threonine, and glutaric acid were significantly increased. There were significant differences in the expression of genes involved in plant hormone signal transduction, glutathione metabolism, and the plant-pathogen interaction pathway. In addition, several transcription factors from the NAC, WRKY, and basic helix-loop-helix families were identified in AMFs versus the control. Furthermore, the combined analysis of 'transcriptomics-metabolomics' analysis showed that 'Plant hormone signal transduction', 'Amino sugar and nucleotide sugar metabolism' and 'Glutathione metabolism' pathways were the important enriched pathways in response to AMFs colonization. CONCLUSION Overall, these results provide new insights into P. quinquefolius response to AMFs, which improve our understanding of the molecular mechanisms of P. quinquefolius induced by AMFs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhifang Ran
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiaoli Chen
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Rui Li
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wanying Duan
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Yongqing Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Lei Fang
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jie Zhou
- School of Biological Science and Technology, University of Jinan, Jinan, People's Republic of China
| |
Collapse
|
35
|
Liang Z, Pan J, Xie S, Yang X, Cao R. Interaction between hTIM-1 and Envelope Protein Is Important for JEV Infection. Viruses 2023; 15:1589. [PMID: 37515282 PMCID: PMC10383738 DOI: 10.3390/v15071589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne zoonotic virus, is one of the most important causes of human viral encephalitis. JEV relies on various attachment or entry co-factors to enter host cells. Among these co-factors, hTIM-1 has been identified as an attachment factor to promote JEV infection through interacting with phosphatidylserine (PS) on the viral envelope. However, the reasons why JEV prefers to use hTIM-1 over other PS binding receptors are unknown. Here, we demonstrated that hTIM-1 can directly interact with JEV E protein. The interaction between hTIM-1 and JEV relies on specific binding sites, respectively, ND114115 in the hTIM-1 IgV domain and K38 of the E protein. Furthermore, during the early stage of infection, hTIM-1 and JEV are co-internalized into cells and transported into early and late endosomes. Additionally, we found that the hTIM-1 soluble ectodomain protein effectively inhibits JEV infection in vitro. Moreover, hTIM-1-specific antibodies have been shown to downregulate JEV infectivity in cells. Taken together, these findings suggested that hTIM-1 protein directly interacts with JEV E protein and mediates JEV infection, in addition to the PS-TIM-1 interaction.
Collapse
Affiliation(s)
- Zhenjie Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhui Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengda Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingmiao Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruibing Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Li Q, Zhang C, Wen J, Chen L, Shi Y, Yang Q, Li D. Transcriptome Analyses Show Changes in Gene Expression Triggered by a 31-bp InDel within OsSUT3 5'UTR in Rice Panicle. Int J Mol Sci 2023; 24:10640. [PMID: 37445819 DOI: 10.3390/ijms241310640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Pollen development and its fertility are obligatory conditions for the reproductive success of flowing plants. Sucrose transporter 3 (OsSUT3) is known to be preferentially expressed and may play critical role in developing pollen. A 31-bp InDel was identified as a unique variation and was shown to be responsible for the expression of downstream gene in our previous study. In this study, to analyze the changes of gene expression triggered by 31-bp InDel during pollen development, two vectors (p385-In/Del::OsSUT3-GUS) were constructed and then stably introduced into rice. Histochemical and quantitative real-time PCR (qRT-PCR) analysis of transgenic plants showed that 31-bp deletion drastically reduced the expressions of downstream genes, including both OsSUT3 and GUS in rice panicle at booting stage, especially that of OsSUT3. The transcriptome profile of two types of panicles at booting stage revealed a total of 1028 differentially expressed genes (DEGs) between 31-bp In and 31-bp Del transgenic plants. Further analyses showed that 397 of these genes were significantly enriched for the 'metabolic process' and 'binding'. Among them, nineteen genes had a strong relationship with starch and sucrose metabolism and were identified as candidate genes potentially associated with the starch accumulation in rice pollen, which that was also verified via qRT-PCR. In summary, 31-bp InDel plays a crucial role not only in the regulation of downstream genes but in the expression of sucrose-starch metabolizing genes in multiple biological pathways, and provides a different regulation mechanism for sucrose metabolism in pollen.
Collapse
Affiliation(s)
- Qiuping Li
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China
| | - Chunlong Zhang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China
| | - Jiancheng Wen
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China
| | - Lijuan Chen
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China
| | - Yitong Shi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Qinghui Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Dandan Li
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
37
|
Tong A, Liu W, Wang H, Liu X, Xia G, Zhu J. Transcriptome analysis provides insights into the cell wall and aluminum toxicity related to rusty root syndrome of Panax ginseng. FRONTIERS IN PLANT SCIENCE 2023; 14:1142211. [PMID: 37384362 PMCID: PMC10293891 DOI: 10.3389/fpls.2023.1142211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 06/30/2023]
Abstract
Rusty root syndrome is a common and serious disease in the process of Panax ginseng cultivation. This disease greatly decreases the production and quality of P. ginseng and causes a severe threat to the healthy development of the ginseng industry. However, its pathogenic mechanism remains unclear. In this study, Illumina high-throughput sequencing (RNA-seq) technology was used for comparative transcriptome analysis of healthy and rusty root-affected ginseng. The roots of rusty ginseng showed 672 upregulated genes and 526 downregulated genes compared with the healthy ginseng roots. There were significant differences in the expression of genes involved in the biosynthesis of secondary metabolites, plant hormone signal transduction, and plant-pathogen interaction. Further analysis showed that the cell wall synthesis and modification of ginseng has a strong response to rusty root syndrome. Furthermore, the rusty ginseng increased aluminum tolerance by inhibiting Al entering cells through external chelating Al and cell wall-binding Al. The present study establishes a molecular model of the ginseng response to rusty roots. Our findings provide new insights into the occurrence of rusty root syndrome, which will reveal the underlying molecular mechanisms of ginseng response to this disease.
Collapse
Affiliation(s)
- Aizi Tong
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Wei Liu
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Haijiao Wang
- College of Life Science, Changchun Normal University, Changchun, China
| | - Xiaoliang Liu
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Guangqing Xia
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| | - Junyi Zhu
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Germplasm Resources of Jilin Province, College of Life Science, Tonghua Normal University, Tonghua, China
| |
Collapse
|
38
|
Sheng H, Zhang J, Pan C, Wang S, Gu S, Li F, Ma Y, Ma Y. Genome-wide identification of bovine ADAMTS gene family and analysis of its expression profile in the inflammatory process of mammary epithelial cells. Int J Biol Macromol 2023:125304. [PMID: 37315674 DOI: 10.1016/j.ijbiomac.2023.125304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS) are secreted, multi-domain matrix-related zinc endopeptidases that play a role in organogenesis, assembly and degradation of extracellular matrix (ECM), cancer and inflammation. Genome-wide identification and analysis of the bovine ADAMTS gene family has not yet been carried out. In this study, 19 ADAMTS family genes were identified in Bos taurus by genome-wide bioinformatics analysis, and they were unevenly distributed on 12 chromosomes. Phylogenetic analysis shows that the Bos taurus ADAMTS are divided into eight subfamilies, with highly consistent gene structures and motifs within the same subfamily. Collinearity analysis showed that the Bos taurus ADAMTS gene family is homologous to other bovine subfamily species, and many ADAMTS genes may be derived from tandem replication and segmental replication. In addition, based on the analysis of RNA-seq data, we found the expression pattern of ADAMTS gene in different tissues. Meanwhile, we also analyzed the expression profile of ADAMTS gene in the inflammatory response of bovine mammary epithelial cells (BMECs) stimulated by LPS by qRT-PCR. The results can provide ideas for understanding the evolutionary relationship and expression pattern of ADAMTS gene in Bovidae, and clarify the theoretical basis of the function of ADAMTS in inflammation.
Collapse
Affiliation(s)
- Hui Sheng
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Junxing Zhang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Cuili Pan
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Shuzhe Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Shuaifeng Gu
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Fen Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yanfen Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
39
|
Shan J, Ma XF, Wu MY, Lin YJ, Wang Y, Wang R, Li HM, Wu ZL, Xu HM. Preliminary study on the role of aryl hydrocarbon receptor in the neurotoxicity of three typical bisphenol compounds (BPA, BPS and TBBPA) at environmentally relevant concentrations to adult zebrafish ( Danio rerio). Heliyon 2023; 9:e16649. [PMID: 37292267 PMCID: PMC10245060 DOI: 10.1016/j.heliyon.2023.e16649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Objective This study was aimed to explore the role of AhR in the neurotoxicity of adult zebrafish induced by three typical bisphenol compounds (BPA, BPS, TBBPA) at environmentally relevant doses. Methods The adult zebrafish were randomly divided into solvent control group (DMSO) and AhR inhibitor CH223191 (CH) group (0.05 μmol/L), bisphenol exposure groups (10, 100, 1000 nmol/L) and combined exposure groups (0.05 μmol/L CH and 1000 nmol/L bisphenol compounds). Each tank contained 8 fish (4 male and 4 female), and two parallel tanks were set synchronously. After 30 days of exposure, zebrafish were put on ice plate for anesthesia, weighed and measured for body length, and dissected for brain tissue. The gene expression was detected by RT-qPCR, and the activities of antioxidant enzymes were detected by commercial kits. SPSS 26.0 was used to analyze the data. Additionally, GO, KEGG and principal component analysis (PCA) were carried out. Results Compared with the solvent control group, there were no significant differences in body weight and length among the exposed groups. In general, exposure to bisphenol compounds could affect the expression of Ahr2 and AhR target genes (cyp1a1, cyp1a2, and cyp1c1), key genes of neural function (elavl3, gfap, mbp, syn2a, gap43, Zn5, shha, and ache), oxidative stress related genes (nrf2, gpx1a, gstp1/gstp1.2, gstp2/gstp1.1, sod1, sod2, and cat), and the activities of antioxidant enzymes (SOD, CAT and GSH-Px/GPX) in zebrafish brain tissue to some extent. Compared with the groups exposed to bisphenols alone, CH could antagonize the above interference effects caused by bisphenols to some extent. Therefore, the toxic effects of BPA, BPS and TBBPA might be produced through similar mechanisms. Conclusion Environmentally related doses of bisphenols (BPA, BPS, TBBPA) could disturb the expression of key molecules of oxidative stress and neural function through activating the AhR signaling pathway, and ultimately lead to neurotoxicity.
Collapse
Affiliation(s)
- Jing Shan
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, 750004, Ningxia, China
| | - Xiao-Fa Ma
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, 750004, Ningxia, China
| | - Meng-Yu Wu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, 750004, Ningxia, China
| | - Yu-Jia Lin
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, 750004, Ningxia, China
| | - Yi Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, 750004, Ningxia, China
| | - Rui Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, 750004, Ningxia, China
| | - Hong-Mei Li
- The Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Zhong-Lan Wu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- Ningxia Center for Disease Control and Prevention, Yinchuan, 750004, Ningxia, China
| | - Hai-Ming Xu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, 750004, Ningxia, China
| |
Collapse
|
40
|
Sheng H, Zhang J, Li F, Pan C, Yang M, Liu Y, Cai B, Zhang L, Ma Y. Genome-Wide Identification and Characterization of Bovine Fibroblast Growth Factor (FGF) Gene and Its Expression during Adipocyte Differentiation. Int J Mol Sci 2023; 24:ijms24065663. [PMID: 36982739 PMCID: PMC10054561 DOI: 10.3390/ijms24065663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Fibroblast growth factor (FGF) family genes are a class of polypeptide factors with similar structures that play an important role in regulating cell proliferation and differentiation, nutritional metabolism, and neural activity. In previous studies, the FGF gene has been widely studied and analyzed in many species. However, the systematic study of the FGF gene in cattle has not been reported. In this study, 22 FGF genes distributed on 15 chromosomes were identified in the Bos taurus genome and clustered into seven subfamilies according to phylogenetic analysis and conservative domains. Collinear analysis showed that the bovine FGF gene family was homologous to Bos grunniens, Bos indicus, Hybrid-Bos taurus, Bubalus bubalis, and Hybrid-Bos indicus, and tandem replication and fragment replication were the key driving forces for the expansion of the gene family. Tissue expression profiling showed that bovine FGF genes were commonly expressed in different tissues, with FGF1, FGF5, FGF10, FGF12, FGF16, FGF17, and FGF20 being highly expressed in adipose tissue. In addition, real-time fluorescence quantitative PCR (qRT-PCR) detection showed that some FGF genes were differentially expressed before and after adipocyte differentiation, indicating their diverse role in the formation of lipid droplets. This study made a comprehensive exploration of the bovine FGF family and laid a foundation for further study on the potential function in the regulation of bovine adipogenic differentiation.
Collapse
|
41
|
Wei M, Zhang M, Sun J, Zhao Y, Pak S, Ma M, Chen Y, Lu H, Yang J, Wei H, Li Y, Li C. PuHox52 promotes coordinated uptake of nitrate, phosphate, and iron under nitrogen deficiency in Populus ussuriensis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:791-809. [PMID: 36226597 DOI: 10.1111/jipb.13389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
It is of great importance to better understand how trees regulate nitrogen (N) uptake under N deficiency conditions which severely challenge afforestation practices, yet the underlying molecular mechanisms have not been well elucidated. Here, we functionally characterized PuHox52, a Populus ussuriensis HD-ZIP transcription factor, whose overexpression greatly enhanced nutrient uptake and plant growth under N deficiency. We first conducted an RNA sequencing experiment to obtain root transcriptome using PuHox52-overexpression lines of P. ussuriensis under low N treatment. We then performed multiple genetic and phenotypic analyses to identify key target genes of PuHox52 and validated how they acted against N deficiency under PuHox52 regulation. PuHox52 was specifically induced in roots by N deficiency, and overexpression of PuHox52 promoted N uptake, plant growth, and root development. We demonstrated that several nitrate-responsive genes (PuNRT1.1, PuNRT2.4, PuCLC-b, PuNIA2, PuNIR1, and PuNLP1), phosphate-responsive genes (PuPHL1A and PuPHL1B), and an iron transporter gene (PuIRT1) were substantiated to be direct targets of PuHox52. Among them, PuNRT1.1, PuPHL1A/B, and PuIRT1 were upregulated to relatively higher levels during PuHox52-mediated responses against N deficiency in PuHox52-overexpression lines compared to WT. Our study revealed a novel regulatory mechanism underlying root adaption to N deficiency where PuHox52 modulated a coordinated uptake of nitrate, phosphate, and iron through 'PuHox52-PuNRT1.1', 'PuHox52-PuPHL1A/PuPHL1B', and 'PuHox52-PuIRT1' regulatory relationships in poplar roots.
Collapse
Affiliation(s)
- Ming Wei
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Mengqiu Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Jiali Sun
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ying Zhao
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Solme Pak
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Miaomiao Ma
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Yingxi Chen
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Han Lu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jingli Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Yuhua Li
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
42
|
Chaperonin TRiC/CCT Participates in Mammarenavirus Multiplication in Human Cells via Interaction with the Viral Nucleoprotein. J Virol 2023; 97:e0168822. [PMID: 36656012 PMCID: PMC9973018 DOI: 10.1128/jvi.01688-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The eukaryotic chaperonin containing tailless complex polypeptide 1 ring complex (CCT, also known as TCP-1 Ring Complex, TRiC/CCT) participates in the folding of 5% to 10% of the cellular proteome and has been involved in the life cycle of several viruses, including dengue, Zika, and influenza viruses, but the mechanisms by which the TRiC/CCT complex contributes to virus multiplication remain poorly understood. Here, we document that the nucleoprotein (NP) of the mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a substrate of the human TRiC/CCT complex, and that pharmacological inhibition of TRiC/CCT complex function, or RNAi-mediated knockdown of TRiC/CCT complex subunits, inhibited LCMV multiplication in human cells. We obtained evidence that the TRiC/CCT complex is required for the production of NP-containing virus-like particles (VLPs), and the activity of the virus ribonucleoprotein (vRNP) responsible for directing replication and transcription of the viral genome. Pharmacological inhibition of the TRIC/CCT complex also restricted multiplication of the live-attenuated vaccine candidates Candid#1 and ML29 of the hemorrhagic fever causing Junin (JUNV) and Lassa (LASV) mammarenaviruses, respectively. Our findings indicate that the TRiC/CCT complex is required for mammarenavirus multiplication and is an attractive candidate for the development of host directed antivirals against human-pathogenic mammarenaviruses. IMPORTANCE Host-directed antivirals have gained great interest as an antiviral strategy to counteract the rapid emergence of drug-resistant viruses. The chaperonin TRiC/CCT complex has been involved in the life cycle of several viruses, including dengue, Zika, and influenza viruses. Here, we have provided evidence that the chaperonin TRiC/CCT complex participates in mammarenavirus infection via its interaction with the viral NP. Importantly, pharmacological inhibition of TRiC/CCT function significantly inhibited multiplication of LCMV and the distantly related mammarenavirus JUNV in human cells. Our findings support that the TRiC/CCT complex is required for multiplication of mammarenaviruses and that the TRiC/CCT complex is an attractive host target for the development of antivirals against human-pathogenic mammarenaviruses.
Collapse
|
43
|
Ma S, Yan F, Hou Y. Intermedin 1-53 Ameliorates Atrial Fibrosis and Reduces Inducibility of Atrial Fibrillation via TGF-β1/pSmad3 and Nox4 Pathway in a Rat Model of Heart Failure. J Clin Med 2023; 12:jcm12041537. [PMID: 36836072 PMCID: PMC9959393 DOI: 10.3390/jcm12041537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE New drugs to block the occurrence of atrial fibrillation (AF) based on atrial structural remodeling (ASR) are urgently needed. The purpose of this study was to study the role of intermedin 1-53 (IMD1-53) in ASR and AF formation in rats after myocardial infarction (MI). MATERIAL AND METHODS Heart failure was induced by MI in rats. Fourteen days after MI surgery, rats with heart failure were randomized into control (untreated MI group, n = 10) and IMD-treated (n = 10) groups. The MI group and sham group received saline injections. The rats in the IMD group received IMD1-53, 10 nmol/kg/day intraperitoneally for 4 weeks. The AF inducibility and atrial effective refractory period (AERP) were assessed with an electrophysiology test. Additionally, the left-atrial diameter was determined, and heart function and hemodynamic tests were performed. We detected the area changes of myocardial fibrosis in the left atrium using Masson staining. To detect the protein expression and mRNA expression of transforming growth factor-β1 (TGF-β1), α-SMA, collagen Ⅰ, collagen III, and NADPH oxidase (Nox4) in the myocardial fibroblasts and left atrium, we used the Western blot method and real-time quantitative polymerase chain reaction (PCR) assays. RESULTS Compared with the MI group, IMD1-53 treatment decreased the left-atrial diameter and improved cardiac function, while it also improved the left-ventricle end-diastolic pressure (LVEDP). IMD1-53 treatment attenuated AERP prolongation and reduced atrial fibrillation inducibility in the IMD group. In vivo, IMD1-53 reduced the left-atrial fibrosis content in the heart after MI surgery and inhibited the mRNA and protein expression of collagen type Ⅰ and III. IMD1-53 also inhibited the expression of TGF-β1, α-SMA, and Nox4 both in mRNA and protein. In vivo, we found that IMD1-53 inhibited the phosphorylation of Smad3. In vitro, we found that the downregulated expression of Nox4 was partly dependent on the TGF-β1/ALK5 pathway. CONCLUSIONS IMD1-53 decreased the duration and inducibility of AF and atrial fibrosis in the rats after MI operation. The possible mechanisms are related to the inhibition of TGF-β1/Smad3-related fibrosis and TGF-β1/Nox4 activity. Therefore, IMD1-53 may be a promising upstream treatment drug to prevent AF.
Collapse
Affiliation(s)
- Shenzhou Ma
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Cardiology Departments, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Yinglong Hou
- Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Cardiology Departments, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
- Correspondence:
| |
Collapse
|
44
|
Zhu Q, Zhao X, Zhang D, Xia W, Zhang J. Abnormal expression of SLIT3 induces intravillous vascularization dysplasia in ectopic pregnancy. PeerJ 2023; 11:e14850. [PMID: 36793891 PMCID: PMC9924138 DOI: 10.7717/peerj.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023] Open
Abstract
Objective To investigate whether the morphology, capillary number, and transcriptome expression profiles of ectopic pregnancy (EP) villi differ from those of normal pregnancy (NP) villi. Methods Hematoxylin-eosin (HE) and immunohistochemistry (IHC) staining for CD31 were conducted to compare differences in morphology and capillary number between EP and NP villi. Differentially expressed (DE) miRNAs and mRNAs were determined from transcriptome sequencing of both types of villi and used to construct a miRNA-mRNA network, from which hub genes were identified. Candidate DE-miRNAs and DE-mRNAs were validated by quantitative reverse transcription (qRT)-PCR. Correlations were identified between the number of capillaries and serum beta human chorionic gonadotropin (β-HCG) levels and between the expression levels of hub genes associated with angiogenesis and β-HCG levels. Results The mean and total cross-sectional areas of placental villi were significantly increased in EP compared with NP villi. Capillary density was greatly reduced in EP villi and was positively correlated with β-HCG levels. A total of 49 DE-miRNAs and 625 DE-mRNAs were identified from the sequencing data. An integrated analysis established a miRNA-mRNA network containing 32 DE-miRNAs and 103 DE-mRNAs. Based on the validation of hub mRNAs and miRNAs in the network, a regulatory pathway involving miR-491-5p-SLIT3 was discovered, which may have a role in the development of villous capillaries. Conclusion Villus morphology, capillary number, and miRNA/mRNA expression profiles in villous tissues were aberrant in EP placentas. Specifically, SLIT3, which is regulated by miR-491-5p, may contribute to the regulation of villous angiogenesis and was established as a putative predictor of chorionic villus development, providing a basis for future research.
Collapse
Affiliation(s)
- Qian Zhu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xiaoya Zhao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Duo Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Wei Xia
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Jian Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| |
Collapse
|
45
|
Integrated Transcriptomic and Metabolomics Analysis of the Root Responses of Orchardgrass to Submergence Stress. Int J Mol Sci 2023; 24:ijms24032089. [PMID: 36768412 PMCID: PMC9916531 DOI: 10.3390/ijms24032089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Submergence stress can severely affect plant growth. Orchardgrass (Dactylis glomerata L.) is an important forage grass, and the molecular mechanisms of orchardgrass to submergence stress are not well understood. The roots of the flood-tolerant cultivar "Dian Bei" were harvested at 0 h, 8 h and 24 h of submergence stress. The combined transcriptomic and metabolomic analyses showed that β-alanine metabolism, flavonoid biosynthesis, and biosynthesis of amino acid pathways were significantly enriched at 8 h and 24 h of submergence stress and were more pronounced at 24 h. Most of the flavonoid biosynthesis-related genes were down-regulated for the synthesis of metabolites such as naringenin, apigenin, naringin, neohesperidin, naringenin chalcone, and liquiritigenin in response to submergence stress. Metabolites such as phenylalanine, tyrosine, and tryptophan were up-regulated under stress. The predominant response of flavonoid and amino acids biosynthesis to submergence stress suggests an important role of these pathways in the submergence tolerance of orchardgrass.
Collapse
|
46
|
Genome-Wide Identification of DUF668 Gene Family and Expression Analysis under Drought and Salt Stresses in Sweet Potato [ Ipomoea batatas (L.) Lam]. Genes (Basel) 2023; 14:genes14010217. [PMID: 36672958 PMCID: PMC9858669 DOI: 10.3390/genes14010217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The domain of unknown function 668 (DUF668) is a gene family that plays a vital role in responses to adversity coercion stresses in plant. However, the function of the DUF668 gene family is not fully understood in sweet potato. In this study, bioinformatics methods were used to analyze the number, physicochemical properties, evolution, structure, and promoter cis-acting elements of the IbDUF668 family genes, and RNA-seq and qRT-PCR were performed to detect gene expression and their regulation under hormonal and abiotic stress. A total of 14 IbDUF668 proteins were identified in sweet potato, distributed on nine chromosomes. By phylogenetic analysis, IbDUF668 proteins can be divided into two subfamilies. Transcriptome expression profiling revealed that many genes from DUF668 in sweet potato showed specificity and differential expression under cold, heat, drought, salt and hormones (ABA, GA3 and IAA). Four genes (IbDUF668-6, 7, 11 and 13) of sweet potato were significantly upregulated by qRT-PCR under ABA, drought and NaCl stress. Results suggest that the DUF668 gene family is involved in drought and salt tolerance in sweet potato, and it will further provide the basic information of DUF668 gene mechanisms in plants.
Collapse
|
47
|
Genome-Wide Analysis of the Mads-Box Transcription Factor Family in Solanum melongena. Int J Mol Sci 2023; 24:ijms24010826. [PMID: 36614267 PMCID: PMC9821028 DOI: 10.3390/ijms24010826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
The MADS-box transcription factors are known to be involved in several aspects of plant growth and development, especially in floral organ specification. However, little is known in eggplant. Here, 120 eggplant MADS-box genes were identified and categorized into type II (MIKCC and MIKC*) and type I (Mα, Mβ, and Mγ) subfamilies based on phylogenetic relationships. The exon number in type II SmMADS-box genes was greater than that in type I SmMADS-box genes, and the K-box domain was unique to type II MADS-box TFs. Gene duplication analysis revealed that segmental duplications were the sole contributor to the expansion of type II genes. Cis-elements of MYB binding sites related to flavonoid biosynthesis were identified in three SmMADS-box promoters. Flower tissue-specific expression profiles showed that 46, 44, 38, and 40 MADS-box genes were expressed in the stamens, stigmas, petals, and pedicels, respectively. In the flowers of SmMYB113-overexpression transgenic plants, the expression levels of 3 SmMADS-box genes were co-regulated in different tissues with the same pattern. Correlation and protein interaction predictive analysis revealed six SmMADS-box genes that might be involved in the SmMYB113-regulated anthocyanin biosynthesis pathway. This study will aid future studies aimed at functionally characterizing important members of the MADS-box gene family.
Collapse
|
48
|
Wang X, Song Q, Guo H, Liu Y, Brestic M, Yang X. StICE1 enhances plant cold tolerance by directly upregulating StLTI6A expression. PLANT CELL REPORTS 2023; 42:197-210. [PMID: 36371722 DOI: 10.1007/s00299-022-02949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Under cold conditions, StICE1 enhances plant cold tolerance by upregulating StLTI6A expression to maintain the cell membrane stability. Cold stress affects potato plants growth and development, crop productivity and quality. The ICE-CBF-COR regulatory cascade is the well-known pathway in response to cold stress in plants. ICE1, as a MYC-like bHLH transcription factor, can regulate the expressions of CBFs. However, whether ICE1 could regulate other genes still need to be explored. Our results showed that overexpressing ICE1 from potato in Arabidopsis thaliana could enhance plant cold tolerance. Under cold stress, overexpressed StICE1 in plants improved the stability of cell membrane, enhanced scavenging capacity of reactive oxygen species and increased expression levels of CBFs and COR genes. Furthermore, StICE1 could bind to the promoter of StLTI6A gene, which could maintain the stability of the cell membrane, to upregulate StLTI6A expression under cold conditions. Our findings revealed that StICE1 could directly regulate StLTI6A, CBF and COR genes expression to response to cold stress.
Collapse
Affiliation(s)
- Xipan Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Qiping Song
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Hao Guo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Xinghong Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
49
|
Ao Q, Wen LL, Yu TH, Ma YZ, Mao XY, Ao TR, Javed R, Ten H, Matsuno A. Sequential expression of miR-221-3p and miR-338-3p in Schwann cells as a therapeutic strategy to promote nerve regeneration and functional recovery. Neural Regen Res 2023; 18:671-682. [DOI: 10.4103/1673-5374.350214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
50
|
Dietary silver nanoparticles as immunostimulant on rohu ( Labeo rohita): Effects on the growth, cellular ultrastructure, immune-gene expression, and survival against Aeromonas hydrophila. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 4:100080. [PMID: 36624883 PMCID: PMC9823159 DOI: 10.1016/j.fsirep.2022.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The current study aimed at assessing the immunostimulatory properties of silver nanoparticles (AgNPs) on Labeo rohita, and understanding how it affects the growth, cellular ultrastructure, the expression level of immune genes, and infection risk from Aeromonas hydrophila. Fish (avg wt: 30.1±3.26 g) were fed diets with four separate AgNP inclusion levels (0 µgKg-1 [basic diet, T1], 10 µgKg-1 [T2], 15 µgKg-1 [T3], and 20 µgKg-1 [T4]) for 56 days. After the feeding trial, growth, histological, immunological parameters, and protective immune response against A. hydrophila were assessed. The fish in the treatment groups including T1(control), the T3 growth indices, such as specific growth rate (7.56±0.26) and percent weight gain (231.05±3.21), was statistically higher (P < 0.05). In the immunological and oxidative parameters, levels of SOD and catalase decreased in correlation with a rise in the inclusion doses of AgNP in the liver, and a reduction in catalase values was recorded in the gill. With the addition of AgNP, the NBT value was decreased in the gill, and T3 had a considerably larger (P<0.05) value in the liver (0.493±0.02). The kidney of the L. rohita fed AgNP (0 and20 µgKg-1 AgNP) showed expansion through Bowman's gaps, severing of glomeruli with haemorrhage, as well as atrophic spots between its gaps. The liver showed fibrosis, karyolysis, and the removal of the hepatocytes wall. The gill, liver, kidney, and muscle of fish-fed diets supplemented with AgNP, showed that interleukin-8 (IL-8), and cyclooxygenase-2 (COX-2), were up-regulated. Expression was considerably higher in T3 compared with the control. However, the control group that wasn't given AgNP supplemented diet had increased levels of TGF-beta. Additionally, fish on the T3 diet showed much greater post-challenge survival rates (90%). These findings strongly suggest that dietary inclusion of AgNP (at 10 and 15 µgKg-1 feed) enhances growth, health, and protective immune response against A. hydrophila.
Collapse
|