1
|
Sharma N, Chen A, Heinen L, Liu R, Dwivedi DJ, Zhou J, Lalu MM, Mendelson AA, McDonald B, Kretz CA, Fox-Robichaud AE, Liaw PC. Impact of age on the host response to sepsis in a murine model of fecal-induced peritonitis. Intensive Care Med Exp 2024; 12:28. [PMID: 38457063 PMCID: PMC10923763 DOI: 10.1186/s40635-024-00609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
INTRODUCTION Despite older adults being more vulnerable to sepsis, most preclinical research on sepsis has been conducted using young animals. This results in decreased scientific validity since age is an independent predictor of poor outcome. In this study, we explored the impact of aging on the host response to sepsis using the fecal-induced peritonitis (FIP) model developed by the National Preclinical Sepsis Platform (NPSP). METHODS C57BL/6 mice (3 or 12 months old) were injected intraperitoneally with rat fecal slurry (0.75 mg/g) or a control vehicle. To investigate the early stage of sepsis, mice were culled at 4 h, 8 h, or 12 h to investigate disease severity, immunothrombosis biomarkers, and organ injury. Mice received buprenorphine at 4 h post-FIP. A separate cohort of FIP mice were studied for 72 h (with buprenorphine given at 4 h, 12 h, and then every 12 h post-FIP and antibiotics/fluids starting at 12 h post-FIP). Organs were harvested, plasma levels of Interleukin (IL)-6, IL-10, monocyte chemoattract protein (MCP-1)/CCL2, thrombin-antithrombin (TAT) complexes, cell-free DNA (CFDNA), and ADAMTS13 activity were quantified, and bacterial loads were measured. RESULTS In the 12 h time course study, aged FIP mice demonstrated increased inflammation and injury to the lungs compared to young FIP mice. In the 72 h study, aged FIP mice exhibited a higher mortality rate (89%) compared to young FIP mice (42%) (p < 0.001). Aged FIP non-survivors also exhibited a trend towards elevated IL-6, TAT, CFDNA, CCL2, and decreased IL-10, and impaired bacterial clearance compared to young FIP non-survivors. CONCLUSION To our knowledge, this is the first study to investigate the impact of age on survival using the FIP model of sepsis. Our model includes clinically-relevant supportive therapies and inclusion of both sexes. The higher mortality rate in aged mice may reflect increased inflammation and worsened organ injury in the early stage of sepsis. We also observed trends in impaired bacterial clearance, increase in IL-6, TAT, CFDNA, CCL2, and decreased IL-10 and ADAMTS13 activity in aged septic non-survivors compared to young septic non-survivors. Our aging model may help to increase the scientific validity of preclinical research and may be useful for identifying mechanisms of age-related susceptibility to sepsis as well as age-specific treatment strategies.
Collapse
Affiliation(s)
- Neha Sharma
- Thrombosis and Atherosclerosis Research Institute (TaARI), 237 Barton St E., Room C5-107, Hamilton, ON, L8L 2X2, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Alex Chen
- McMaster University, Hamilton, ON, Canada
| | | | - Ruth Liu
- McMaster University, Hamilton, ON, Canada
| | - Dhruva J Dwivedi
- Thrombosis and Atherosclerosis Research Institute (TaARI), 237 Barton St E., Room C5-107, Hamilton, ON, L8L 2X2, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ji Zhou
- Thrombosis and Atherosclerosis Research Institute (TaARI), 237 Barton St E., Room C5-107, Hamilton, ON, L8L 2X2, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Manoj M Lalu
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Clinical Epidemiology Program, Blueprint Translational Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Anesthesiology and Pain Medicine, Department of Cellular and Molecular Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Asher A Mendelson
- Section of Critical Care Medicine, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Braedon McDonald
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Colin A Kretz
- Thrombosis and Atherosclerosis Research Institute (TaARI), 237 Barton St E., Room C5-107, Hamilton, ON, L8L 2X2, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alison E Fox-Robichaud
- Thrombosis and Atherosclerosis Research Institute (TaARI), 237 Barton St E., Room C5-107, Hamilton, ON, L8L 2X2, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Patricia C Liaw
- Thrombosis and Atherosclerosis Research Institute (TaARI), 237 Barton St E., Room C5-107, Hamilton, ON, L8L 2X2, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Jiao Y, Wai Tong CS, Rainer TH. An appraisal of studies using mouse models to assist the biomarker discovery for sepsis prognosis. Heliyon 2023; 9:e17770. [PMID: 37456011 PMCID: PMC10344760 DOI: 10.1016/j.heliyon.2023.e17770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Clinicians need reliable outcome predictors to improve the prognosis of septic patients. Mouse models are widely used in sepsis research. We aimed to review how mouse models were used to search for novel prognostic biomarkers of sepsis in order to optimize their use for future biomarker discovery. Methods We searched PubMed from 2012 to July 2022 using "((sepsis) AND (mice)) AND ((prognosis) OR (prognostic biomarker))". Results A total of 412 publications were retrieved. We selected those studies in which mouse sepsis was used to demonstrate prognostic potential of biomarker candidates and/or assist the subsequent evaluation in human sepsis for further appraisal. The most frequent models were lipopolysaccharide (LPS) injection and caecal ligation and puncture (CLP) using young male mice. Discovery technologies applied on mice include setting survival and nonsurvivable groups, detecting changes of biomarker levels and measuring physiological parameters during sepsis. None of the biomarkers achieved sufficient clinical performance for clinical use. Conclusions The number of studies and strategies using mouse models to discover prognostic biomarkers of sepsis are limited. Current mouse models need to be further optimized to better conform to human sepsis. Current biomarker platforms do not achieve predictive performance for clinical use.
Collapse
|
3
|
D’Amico R, Tomasello M, Impellizzeri D, Cordaro M, Siracusa R, Interdonato L, Abdelhameed AS, Fusco R, Calabrese V, Cuzzocrea S, Di Paola R. Mechanism of Action of Natural Compounds in Peripheral Multiorgan Dysfunction and Hippocampal Neuroinflammation Induced by Sepsis. Antioxidants (Basel) 2023; 12:antiox12030635. [PMID: 36978883 PMCID: PMC10045853 DOI: 10.3390/antiox12030635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Bacterial sepsis induces the production of excessive pro-inflammatory cytokines and oxidative stress, resulting in tissue injury and hyperinflammation. Patients recovering from sepsis have increased rates of central nervous system (CNS) morbidities, which are linked to long-term cognitive impairment, such as neurodegenerative pathologies. This paper focuses on the tissue injury and hyperinflammation observed in the acute phase of sepsis and on the development of long-term neuroinflammation associated with septicemia. Here we evaluate the effects of Coriolus versicolor administration as a novel approach to treat polymicrobial sepsis. Rats underwent cecal ligation and perforation (CLP), and Coriolus versicolor (200 mg/kg in saline) was administered daily by gavage. Survival was monitored, and tissues from vital organs that easily succumb to infection were harvested after 72 h to evaluate the histological changes. Twenty-eight days after CLP, behavioral analyses were performed, and serum and brain (hippocampus) samples were harvested at four weeks from surgery. Coriolus versicolor increased survival and reduced acute tissue injury. Indeed, it reduced the release of pro-inflammatory cytokines in the bloodstream, leading to a reduced chronic inflammation. In the hippocampus, Coriolus versicolor administration restored tight junction expressions, reduce cytokines accumulation and glia activation. It also reduced toll-like receptor 4 (TLR4) and neuronal nitric oxide synthase (nNOS) and the NLR family pyrin domain containing 3 (NLRP3) inflammasome components expression. Coriolus versicolor showed antioxidant activities, restoring glutathione (GSH) levels and catalase and superoxide dismutase (SOD) activities and reducing lipid peroxidation, nitrite and reactive oxygen species (ROS) levels. Importantly, Coriolus versicolor reduced amyloid precursor protein (APP), phosphorylated-Tau (p-Tau), pathologically phosphorylated tau (PHF1), phosphorylated tau (Ser202 and Thr205) (AT8), interferon-induced transmembrane protein 3 (IFITM3) expression, and β-amyloid accumulation induced by CLP. Indeed, Coriolus versicolor restored synaptic dysfunction and behavioral alterations. This research shows the effects of Coriolus versicolor administration on the long-term development of neuroinflammation and brain dysfunction induced by sepsis. Overall, our results demonstrated that Coriolus versicolor administration was able to counteract the degenerative process triggered by sepsis.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Mario Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 14451, Saudi Arabia
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Vererinary Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
4
|
Zhu C, Hou Z, Zhu R, Zhou B, Sun Y, Li Z, Li X, Ding R, Luan Z, Liang Y, Wang L, Ma X. Comparisons of coagulation characteristics between elderly and non-elderly patients with sepsis: A prospective study. Surgery 2023; 173:1303-1310. [PMID: 36774318 DOI: 10.1016/j.surg.2023.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/11/2022] [Accepted: 01/06/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND A blunt host defense response in older patients may contribute to different coagulation responses during sepsis. We aimed to investigate the differences in coagulation parameters between elderly and non-elderly patients with sepsis. METHODS Adult patients diagnosed with sepsis within 24 hours after admission to the intensive care unit between September 2018 and December 2020 were prospectively enrolled. Patients were categorized into the adult (18-64 years) and elderly (age ≥65 years) groups. Conventional coagulation parameters and inflammatory markers were measured on intensive care unit admission and on Days 3 and 7. Thromboelastography was performed on intensive care unit admission. The differences in the coagulation parameters between the 2 groups were evaluated. The adult and elderly patients were matched to adjust for baseline characteristics. Correlations between inflammatory markers and coagulation-related parameters were also analyzed. RESULTS Of the 567 patients, 303 (53.4%) were elderly. Compared with adult patients, elderly patients had lower prothrombin time elevation, lower fibrinogen, D-dimer, and fibrin/Fib degradation product levels, and lower proportion of disseminated intravascular coagulation on intensive care unit admission; and, they had lower dynamic platelet, lower fibrinogen, and D-dimer levels during the first week in the intensive care unit. Thromboelastography parameters were generally within the normal range, although elderly patients had lower R and K values and a higher alpha angle. Comparisons of coagulation parameters between the 2 groups revealed similar results in the matched cohort. The inflammatory markers correlated with prothrombin time, activated partial thromboplastin time, and antithrombin III. CONCLUSION Elderly patients had milder coagulation activation, accompanied by a decreased inflammatory response during sepsis, compared to non-elderly patients.
Collapse
Affiliation(s)
- Chengrui Zhu
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhenzhen Hou
- Department of Surgical Intensive Care Unit, Beijing Chaoyang Hospital Affiliated to Capital Medical University, China
| | - Ran Zhu
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Baosen Zhou
- Department of Clinical Epidemiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yini Sun
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhiliang Li
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xu Li
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Renyu Ding
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhenggang Luan
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yingjian Liang
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Liang Wang
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaochun Ma
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
5
|
Zanders L, Kny M, Hahn A, Schmidt S, Wundersitz S, Todiras M, Lahmann I, Bandyopadhyay A, Wollersheim T, Kaderali L, Luft FC, Birchmeier C, Weber-Carstens S, Fielitz J. Sepsis induces interleukin 6, gp130/JAK2/STAT3, and muscle wasting. J Cachexia Sarcopenia Muscle 2022; 13:713-727. [PMID: 34821076 PMCID: PMC8818599 DOI: 10.1002/jcsm.12867] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Sepsis and inflammation can cause intensive care unit-acquired weakness (ICUAW). Increased interleukin-6 (IL-6) plasma levels are a risk factor for ICUAW. IL-6 signalling involves the glycoprotein 130 (gp130) receptor and the JAK/STAT-pathway, but its role in sepsis-induced muscle wasting is uncertain. In a clinical observational study, we found that the IL-6 target gene, SOCS3, was increased in skeletal muscle of ICUAW patients indicative for JAK/STAT-pathway activation. We tested the hypothesis that the IL-6/gp130-pathway mediates ICUAW muscle atrophy. METHODS We sequenced RNA (RNAseq) from tibialis anterior (TA) muscle of cecal ligation and puncture-operated (CLP) and sham-operated wildtype (WT) mice. The effects of the IL-6/gp130/JAK2/STAT3-pathway were investigated by analysing the atrophy phenotype, gene expression, and protein contents of C2C12 myotubes. Mice lacking Il6st, encoding gp130, in myocytes (cKO) and WT controls, as well as mice treated with the JAK2 inhibitor AG490 or vehicle were exposed to CLP or sham surgery for 24 or 96 h. RESULTS Analyses of differentially expressed genes in RNAseq (≥2-log2-fold change, P < 0.01) revealed an activation of IL-6-signalling and JAK/STAT-signalling pathways in muscle of septic mice, which occurred after 24 h and lasted at least for 96 h during sepsis. IL-6 treatment of C2C12 myotubes induced STAT3 phosphorylation (three-fold, P < 0.01) and Socs3 mRNA expression (3.1-fold, P < 0.01) and caused myotube atrophy. Knockdown of Il6st diminished IL-6-induced STAT3 phosphorylation (-30.0%; P < 0.01), Socs3 mRNA expression, and myotube atrophy. JAK2 (- 29.0%; P < 0.01) or STAT3 inhibition (-38.7%; P < 0.05) decreased IL-6-induced Socs3 mRNA expression. Treatment with either inhibitor attenuated myotube atrophy in response to IL-6. CLP-operated septic mice showed an increased STAT3 phosphorylation and Socs3 mRNA expression in TA muscle, which was reduced in septic Il6st-cKO mice by 67.8% (P < 0.05) and 85.6% (P < 0.001), respectively. CLP caused a loss of TA muscle weight, which was attenuated in Il6st-cKO mice (WT: -22.3%, P < 0.001, cKO: -13.5%, P < 0.001; WT vs. cKO P < 0.001). While loss of Il6st resulted in a reduction of MuRF1 protein contents, Atrogin-1 remained unchanged between septic WT and cKO mice. mRNA expression of Trim63/MuRF1 and Fbxo32/Atrogin-1 were unaltered between CLP-treated WT and cKO mice. AG490 treatment reduced STAT3 phosphorylation (-22.2%, P < 0.05) and attenuated TA muscle atrophy in septic mice (29.6% relative reduction of muscle weight loss, P < 0.05). The reduction in muscle atrophy was accompanied by a reduction in Fbxo32/Atrogin-1-mRNA (-81.3%, P < 0.05) and Trim63/MuRF1-mRNA expression (-77.6%, P < 0.05) and protein content. CONCLUSIONS IL-6 via the gp130/JAK2/STAT3-pathway mediates sepsis-induced muscle atrophy possibly contributing to ICUAW.
Collapse
Affiliation(s)
- Lukas Zanders
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Melanie Kny
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alexander Hahn
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sibylle Schmidt
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sebastian Wundersitz
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Mihail Todiras
- Cardiovascular hormones, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Nicolae Testemiţanu State University of Medicine and Pharmacy, Chișinău, Moldova
| | - Ines Lahmann
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Arnab Bandyopadhyay
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Tobias Wollersheim
- Anesthesiology and operative Intensive Care Medicine, Charité Campus Virchow and Campus Mitte, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Steffen Weber-Carstens
- Anesthesiology and operative Intensive Care Medicine, Charité Campus Virchow and Campus Mitte, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany.,Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Abstract
Burns are a severe form of trauma that account for 1.1 million cases necessitating medical attention and 4500 mortalities annually in the United States alone. Importantly, the initial trauma is succeeded by extensive, prolonged physiological alterations that detrimentally impact multiple organ systems. Given the complexity of post-burn pathophysiology, in vitro experiments are insufficient to model thermal injuries. Therefore, compatible animal burn models are essential for studying burn-related phenomena. In this chapter, we discuss commonly employed small animal burn models and their comparability and applicability to human studies. In particular, we compare post-burn wound healing between the species as well as relevant hypermetabolic and inflammatory characteristics, providing a better understanding of the pros and cons of utilizing a small animal surrogate for human burns. We further provide an overview of the rodent scald burn model methodology as well as a comparison between elderly, aged and young animals, providing a guide for tailoring animal model choice based on the relevant research question.
Collapse
|
7
|
Kingren MS, Starr ME, Saito H. Divergent Sepsis Pathophysiology in Older Adults. Antioxid Redox Signal 2021; 35:1358-1375. [PMID: 34210173 PMCID: PMC8905233 DOI: 10.1089/ars.2021.0056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
Significance: Both incidence and mortality rates of sepsis significantly increase with advanced age, and the majority of sepsis patients are late middle-aged or older. With the proportion of older adults rapidly increasing in developed countries, age-dependent sepsis vulnerability is an urgent medical issue. Due to an increasing life expectancy, postsepsis complications and health care costs are expected to increase as well. Recent Advances: Older patients suffer from higher sepsis incidence and mortality rates, likely resulting from frequent comorbidities, increased coagulation, dysgylcemia, and altered immune responses. Critical Issues: Despite a large number of ongoing clinical and basic research studies, there is currently no effective therapeutic strategy targeting older patients with severe sepsis. The disparity between clinical and basic studies is a problem, and this is largely due to the use of animal models lacking clinical relevance. Although the majority of sepsis cases occur in older adults, most laboratory animals used for sepsis research are very young. Further, despite the wide use of combination fluid and antibiotic treatment in intensive care unit (ICU) patients, most animal research does not include such treatment. Future Directions: Because sepsis is a systemic disease with multiple organ dysfunction, combined therapy approaches, not those targeting single pathways or single organs, are essential. As for preclinical research, it is critical to confirm new findings using aged animal models with clinically relevant ICU-like medical treatments. Antioxid. Redox Signal. 35, 1358-1375.
Collapse
Affiliation(s)
- Meagan S. Kingren
- Aging and Critical Care Research Laboratory, Departments of University of Kentucky, Lexington, Kentucky, USA
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Marlene E. Starr
- Aging and Critical Care Research Laboratory, Departments of University of Kentucky, Lexington, Kentucky, USA
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Surgery, University of Kentucky, Lexington, Kentucky, USA
| | - Hiroshi Saito
- Aging and Critical Care Research Laboratory, Departments of University of Kentucky, Lexington, Kentucky, USA
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Surgery, University of Kentucky, Lexington, Kentucky, USA
- Physiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
8
|
Goswami DG, Walker WE. Aged IRF3-KO Mice are Protected from Sepsis. J Inflamm Res 2021; 14:5757-5767. [PMID: 34764669 PMCID: PMC8573150 DOI: 10.2147/jir.s335203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose Sepsis is a leading cause of hospital admissions and deaths. Older adults (>65 years) are particularly susceptible to sepsis and experience higher morbidity and mortality rates than younger people. We previously showed that interferon regulatory factor 3 (IRF3) contributes to sepsis pathogenesis in young mice subject to cecal ligation and puncture (CLP). In this study, we investigated if IRF3 contributes to sepsis in the context of aging. Methods Sepsis was induced in aged wild-type (WT) and IRF3-knock-out (KO) mice, using a clinically-relevant CLP-sepsis model including fluids and antibiotics. Animal survival, disease score and hypothermia were evaluated as indicators of sepsis pathogenesis. Serum cytokines and serum enzymes indicative of organ damage were also measured. Results Aged WT mice were highly susceptible to sepsis (90% mortality). In comparison, aged IRF3-KO mice were significantly protected (20% mortality). Aged IRF3-KO mice showed a lower disease score and reduced hypothermia following CLP, compared to WT mice. Serum cytokines interleukin (IL)-6, IL-12/23p40 and macrophage chemoattractant protein (MCP)-1, and creatinine kinase (CK) were lower in aged IRF3-KO septic mice compared to WT counterparts. Aged male mice were found to be more susceptible to sepsis compared to females. Female mice, however, produced higher levels of serum cytokines and CK. Conclusion These results demonstrate that IRF3 plays a detrimental role in sepsis in aged mice and highlight the impact of biological sex.
Collapse
Affiliation(s)
- Dinesh G Goswami
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Wendy E Walker
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|
9
|
Denstaedt SJ, Bustamante AC, Newstead MW, Moore BB, Standiford TJ, Zemans RL, Singer BH. Long-term survivors of murine sepsis are predisposed to enhanced LPS-induced lung injury and proinflammatory immune reprogramming. Am J Physiol Lung Cell Mol Physiol 2021; 321:L451-L465. [PMID: 34161747 DOI: 10.1152/ajplung.00123.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Millions of people who survive sepsis each year are rehospitalized and die due to late pulmonary complications. To prevent and treat these complications, biomarkers and molecular mediators must be identified. Persistent immune reprogramming in the form of immunoparalysis and impaired host defense is proposed to mediate late pulmonary complications after sepsis, particularly new pulmonary infections. However, immune reprogramming may also involve enhanced/primed responses to secondary stimuli, although their contribution to long-term sepsis complications remains understudied. We hypothesize that enhanced/primed immune responses in the lungs of sepsis survivors are associated with late pulmonary complications. To this end, we developed a murine sepsis model using cecal ligation and puncture (CLP) followed 3 wk later by administration of intranasal lipopolysaccharide to induce inflammatory lung injury. Mice surviving sepsis exhibit enhanced lung injury with increased alveolar permeability, neutrophil recruitment, and enhanced Ly6Chi monocyte Tnf expression. To determine the mediators of enhanced lung injury, we performed flow cytometry and RNA sequencing of lungs 3 wk after CLP, prior to lipopolysaccharide. Sepsis survivor mice showed expanded Ly6Chi monocytes populations and increased expression of many inflammatory genes. Of these, S100A8/A9 was also elevated in the circulation of human sepsis survivors for months after sepsis, validating our model and identifying S100A8/A9 as a potential biomarker and therapeutic target for long-term pulmonary complications after sepsis. These data provide new insight into the importance of enhanced/primed immune responses in survivors of sepsis and establish a foundation for additional investigation into the mechanisms mediating this response.
Collapse
Affiliation(s)
- Scott J Denstaedt
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Angela C Bustamante
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Michael W Newstead
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Benjamin H Singer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
10
|
Blockade Of PD-1 Attenuated Postsepsis Aspergillosis Via The Activation of IFN-γ and The Dampening of IL-10. Shock 2021; 53:514-524. [PMID: 31306346 DOI: 10.1097/shk.0000000000001392] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nosocomial aspergillosis in patients with sepsis has emerged in the past few years. Blockade of PD-1/PD-L pathway has tended to become a promising therapeutic strategy as it improved the outcome of bacterial sepsis and postsepsis secondary fungal infection. Recently, the controversial effects of PD-1 blockade on infectious diseases, including aspergillosis, have been demonstrated; therefore, the efficacy of anti-PD-1 drug still remains to be elucidated. METHODS Cecal ligation and puncture (CLP) was conducted as a mouse sepsis model. Aspergillus fumigatus spores were intravenously inoculated on day 5 post-CLP, when the immune cells succumbed to exhaustion. Amphotericin B was medicated together with or without anti-PD-1 treatment after Aspergillus infection. RESULTS Amphotericin B alone was not effective to treat the CLP-mice with secondary aspergillosis. In contrast, antifungal medication with the adjunctive anti-PD-1 treatment attenuated the fungal burdens in blood and internal organs, and improved the survival rate of the mice with secondary aspergillosis. These outcomes of PD-1 blockade were concurring with the enhanced CD86 expression on splenocytes, the augmented serum IFN-γ, and the dampened IL-10. Activated T cells from anti-PD-1-treated mice also highly increased IFN-γ and diminished IL-10 production. CONCLUSION The blockade of PD-1 on postsepsis aspergillosis presumably reinvigorated exhausted antigen-presenting cells and T cells by upregulating CD86 expression and IFN-γ production, and dampened IL-10 production, which consequently leaded to the attenuation of secondary aspergillosis. The adjunctive anti-PD-1 therapy may become a promising strategy for the advanced immunotherapy against lethal fungal infection.
Collapse
|
11
|
Rethinking animal models of sepsis - working towards improved clinical translation whilst integrating the 3Rs. Clin Sci (Lond) 2021; 134:1715-1734. [PMID: 32648582 PMCID: PMC7352061 DOI: 10.1042/cs20200679] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Sepsis is a major worldwide healthcare issue with unmet clinical need. Despite extensive animal research in this area, successful clinical translation has been largely unsuccessful. We propose one reason for this is that, sometimes, the experimental question is misdirected or unrealistic expectations are being made of the animal model. As sepsis models can lead to a rapid and substantial suffering – it is essential that we continually review experimental approaches and undertake a full harm:benefit impact assessment for each study. In some instances, this may require refinement of existing sepsis models. In other cases, it may be replacement to a different experimental system altogether, answering a mechanistic question whilst aligning with the principles of reduction, refinement and replacement (3Rs). We discuss making better use of patient data to identify potentially useful therapeutic targets which can subsequently be validated in preclinical systems. This may be achieved through greater use of construct validity models, from which mechanistic conclusions are drawn. We argue that such models could provide equally useful scientific data as face validity models, but with an improved 3Rs impact. Indeed, construct validity models may not require sepsis to be modelled, per se. We propose that approaches that could support and refine clinical translation of research findings, whilst reducing the overall welfare burden on research animals.
Collapse
|
12
|
Utiger JM, Glas M, Levis A, Prazak J, Haenggi M. Description of a rat model of polymicrobial abdominal sepsis mimicking human colon perforation. BMC Res Notes 2021; 14:14. [PMID: 33413600 PMCID: PMC7790355 DOI: 10.1186/s13104-020-05438-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/29/2020] [Indexed: 11/22/2022] Open
Abstract
Objective Standard rodent sepsis models as cecal ligation and puncture models (CLP) or cecal ligation and incision models (CLI) are frequently not suited experiments, mainly because they lack surgical repair, and they are difficult to control for severity. The colon ascendens stent peritonitis model (CASP) overcomes some of these limitations. Result Here we present our modification of the rodent CASP model, where severity of sepsis can be controlled by timing of surgical repair and treatment, and by diameter of the stent. Further, basic hemodynamic monitoring (blood pressure and heart rate) and frequent blood sampling can be achieved, which might guide further treatment.
Collapse
Affiliation(s)
- Julia M Utiger
- Department of Intensive Care Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Michael Glas
- Department of Intensive Care Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Anja Levis
- Department of Intensive Care Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Josef Prazak
- Department of Intensive Care Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Matthias Haenggi
- Department of Intensive Care Medicine, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland.
| |
Collapse
|
13
|
Abstract
The translation of preclinical results into successful clinical therapies remains a challenge in sepsis research. One reason for this lack of translation might be the discrepancy between preclinical models and the clinical reality: nonresuscitated young healthy rodents in contrast to elderly comorbid patients in an intensive care unit. We introduce the mouse intensive care unit (MICU) as a concept to address the lack of resuscitation in preclinical studies as one of the limiting issues in translational research. The MICU reflects standard procedures of the clinical intensive care unit: fluid resuscitation, lung-protective mechanical ventilation, and hemodynamic monitoring and management, all tailored to organ- and function-specific targets. Thus, the MICU gives an experimental animal the intermediate possibility of recovery and survival due to "patient" management, which is not reflected in less complex experimental scenarios, which either result in acute survival or death.
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Sandra Kress
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Michael Gröger
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
14
|
Abstract
Studying the pathophysiology of sepsis still requires animal models, and the mouse remains the most commonly used species. Here we discuss the "cecal slurry" (CS) model of polymicrobial, peritoneal sepsis and compare and contrast it to other commonly used methods. Among the different murine models of sepsis, cecal ligation and puncture (CLP), and not the CS, is often considered the "gold standard" to induce polymicrobial sepsis in laboratory animals. CLP is a well-described model involving a simple surgical procedure that closely mimics the clinical course of intra-abdominal sepsis. However, CLP may not be an option for experiments involving newborn pups, where the cecum is indistinguishable from small bowel, where differences in microbiome content may affect the experiment, or where surgical procedures/anesthesia exposure needs to be limited. An important alternative method is the CS model, involving the intraperitoneal injection of cecal contents from a donor animal into the peritoneal cavity of a recipient animal to induce polymicrobial sepsis. Furthermore, CS is an effective alternative model of intraperitoneal polymicrobial sepsis in adult mice and can now be considered the "gold standard" for experiments in neonatal mice.
Collapse
|
15
|
Can the Cecal Ligation and Puncture Model Be Repurposed To Better Inform Therapy in Human Sepsis? Infect Immun 2020; 88:IAI.00942-19. [PMID: 32571986 DOI: 10.1128/iai.00942-19] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A recent report by the National Institutes of Health on sepsis research has implied there is a trend to move away from mouse models of sepsis. The most commonly used animal model to study the pathogenesis of human sepsis is cecal ligation and puncture (CLP) in mice. The model has been the mainstay of sepsis research for decades and continues to be considered the gold standard to inform novel pathways of sepsis physiology and its therapeutic direction. As there have been many criticisms of the model, particularly regarding its relevance to human disease, how this model might be repurposed to be more reflective of the human condition begs discussion. In this piece, we compare and contrast the mouse microbiome of the CLP model to the emerging science of the microbiome of human sepsis and discuss the relevance for mice to harbor the specific pathogens present in the human microbiome during sepsis, as well as an underlying disease process to mimic the characteristics of those patients with undesirable outcomes. How to repurpose this model to incorporate these "human factors" is discussed in detail and suggestions offered.
Collapse
|
16
|
Protective function of exosomes from adipose tissue-derived mesenchymal stem cells in acute kidney injury through SIRT1 pathway. Life Sci 2020; 255:117719. [DOI: 10.1016/j.lfs.2020.117719] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
|
17
|
Neurokinin-1 Receptor Deficiency Improves Survival in Murine Polymicrobial Sepsis Through Multiple Mechanisms in Aged Mice. Shock 2020; 52:61-66. [PMID: 30095600 DOI: 10.1097/shk.0000000000001248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Substance P (SP) is a neuropeptide that contributes to a proinflammatory state by binding to the neurokinin 1 receptor (NK-1R). Limiting this interaction has been shown to attenuate the acute inflammation. Our hypothesis was that NK-1R activation would contribute to the morbidity and mortality of sepsis in a model using mice genetically deficient in the NK-1R. METHODS To investigate the role of the SP/NK-1R axis in a murine model of sepsis, cecal ligation and puncture (CLP) in NK-1R deficient and wild type (WT) aged mice was performed. Acute inflammation was assessed by measuring circulating cytokines and clinical parameters. RESULTS Deletion of the NK-1R results in improved survival following CLP (NK-1R knockout mice survival = 100% vs. WT = 14%). A reduction in the inflammatory cytokines interleukin (IL) 6, macrophage inflammatory peptide 2, and IL-1 receptor antagonist, improved hemodynamic parameters, and increased neutrophilia were present in the NK-1R-deficient mice after CLP compared with WT mice. CONCLUSIONS These data confirm the hypothesis that eliminating the SP/NK-1R interaction in a highly lethal murine model of sepsis leads to decreased morbidity and mortality through multiple mechanisms.
Collapse
|
18
|
Stortz JA, Hollen MK, Nacionales DC, Horiguchi H, Ungaro R, Dirain ML, Wang Z, Wu Q, Wu KK, Kumar A, Foster TC, Stewart BD, Ross JA, Segal M, Bihorac A, Brakenridge S, Moore FA, Wohlgemuth SE, Leeuwenburgh C, Mohr AM, Moldawer LL, Efron PA. Old Mice Demonstrate Organ Dysfunction as well as Prolonged Inflammation, Immunosuppression, and Weight Loss in a Modified Surgical Sepsis Model. Crit Care Med 2020; 47:e919-e929. [PMID: 31389840 DOI: 10.1097/ccm.0000000000003926] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Our goal was to "reverse translate" the human response to surgical sepsis into the mouse by modifying a widely adopted murine intra-abdominal sepsis model to engender a phenotype that conforms to current sepsis definitions and follows the most recent expert recommendations for animal preclinical sepsis research. Furthermore, we aimed to create a model that allows the study of aging on the long-term host response to sepsis. DESIGN Experimental study. SETTING Research laboratory. SUBJECTS Young (3-5 mo) and old (18-22 mo) C57BL/6j mice. INTERVENTIONS Mice received no intervention or were subjected to polymicrobial sepsis with cecal ligation and puncture followed by fluid resuscitation, analgesia, and antibiotics. Subsets of mice received daily chronic stress after cecal ligation and puncture for 14 days. Additionally, modifications were made to ensure that "Minimum Quality Threshold in Pre-Clinical Sepsis Studies" recommendations were followed. MEASUREMENTS AND MAIN RESULTS Old mice exhibited increased mortality following both cecal ligation and puncture and cecal ligation and puncture + daily chronic stress when compared with young mice. Old mice developed marked hepatic and/or renal dysfunction, supported by elevations in plasma aspartate aminotransferase, blood urea nitrogen, and creatinine, 8 and 24 hours following cecal ligation and puncture. Similar to human sepsis, old mice demonstrated low-grade systemic inflammation 14 days after cecal ligation and puncture + daily chronic stress and evidence of immunosuppression, as determined by increased serum concentrations of multiple pro- and anti-inflammatory cytokines and chemokines when compared with young septic mice. In addition, old mice demonstrated expansion of myeloid-derived suppressor cell populations and sustained weight loss following cecal ligation and puncture + daily chronic stress, again similar to the human condition. CONCLUSIONS The results indicate that this murine cecal ligation and puncture + daily chronic stress model of surgical sepsis in old mice adhered to current Minimum Quality Threshold in Pre-Clinical Sepsis Studies guidelines and met Sepsis-3 criteria. In addition, it effectively created a state of persistent inflammation, immunosuppression, and weight loss, thought to be a key aspect of chronic sepsis pathobiology and increasingly more prevalent after human sepsis.
Collapse
Affiliation(s)
- Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - McKenzie K Hollen
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Dina C Nacionales
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Hiroyuki Horiguchi
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Ricardo Ungaro
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Marvin L Dirain
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Zhongkai Wang
- Department of Biostatistics, University of Florida College of Medicine, Gainesville, FL
| | - Quran Wu
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Kevin K Wu
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL
| | - Ashok Kumar
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Thomas C Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL
| | - Brian D Stewart
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Julia A Ross
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Marc Segal
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Scott Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Stephanie E Wohlgemuth
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
19
|
Chew CH, Cheng LW, Huang WT, Wu YM, Lee CW, Wu MS, Chen CC. Ultrahigh packing density next generation microtube array membrane: A novel solution for absorption-based extracorporeal endotoxin removal device. J Biomed Mater Res B Appl Biomater 2020; 108:2903-2911. [PMID: 32374516 DOI: 10.1002/jbm.b.34621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
Sepsis is a deadly disease that is widely attributed to endotoxin released by gram-negative bacterial infections often plague emergency care facilities. Conventionally antibiotics and vasopressors are used to treat this disease. Recent treatment protocol shifted to a membrane to remove the offending endotoxin monomer. Despite this shift, membrane-based devices are often extremely costly, hindering accessibility to this life saving medical device. In view of this challenges, we adopted the internally developed polysulfone (PSF) microtube array membrane alternating (MTAM-A) for use in blood sepsis treatment. PSF MTAM-A were with polymyxin B (PMB) molecules immobilized were assembled into an internally developed cartridge housing and subjected to endotoxin removal models with water and blood spiked with 100 EU/ml of endotoxin as the feed solution. Samples were derived at 15, 30, 60, and 120 min and endotoxin levels were determined with limulus amebocyte lysate assay and benchmarked against the commercially available Toraymyxin device. The PSF MTAM-A with 2.3 times the surface area was successfully fabricated and with PMB molecules immobilized, and assembled into a hemoperfusion device. Dynamic endotoxin removal test revealed and overall endotoxin removal capacity of 90% and a superior endotoxin removal efficiency that was significantly higher than that of Toraymyxin (internally conducted and reported). The data suggested that PSF MTAM-A PMB membranes could potentially be applied in future hemoperfusion devices which would be significantly more efficient, compact, and affordable; potentially making such a life-saving medical device widely available to the general public.
Collapse
Affiliation(s)
- Chee Ho Chew
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,MTAMTech Corporation, Taipei, Taiwan
| | - Li-Wei Cheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wan-Ting Huang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,MTAMTech Corporation, Taipei, Taiwan
| | - Yun Ming Wu
- Graduate Institute of Nanomaterials and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chih-Wei Lee
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chien-Chung Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,PhD Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Experimental Abdominal Sepsis: Sticking to an Awkward but Still Useful Translational Model. Mediators Inflamm 2019; 2019:8971036. [PMID: 31885502 PMCID: PMC6915118 DOI: 10.1155/2019/8971036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/11/2019] [Accepted: 11/09/2019] [Indexed: 01/05/2023] Open
Abstract
Animal models are widely used to replicate human intra-abdominal infections. Different methodologies have been described and proposed in the scientific literature, including injection and surgical models. The aim of this review is to recapitulate the advantages and disadvantages of each method to help choose the most appropriate model for individual experimental purposes.
Collapse
|
21
|
Singer M. Sepsis: personalization v protocolization? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:127. [PMID: 31200753 PMCID: PMC6570629 DOI: 10.1186/s13054-019-2398-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/29/2022]
Abstract
The founding tenet of evidence-based medicine is to combine best evidence with clinical expertise. As David Sackett opined ‘Without clinical expertise, practice risks becoming tyrannised by evidence’. Rigid protocols and mandates, based on an inconclusive and low-level evidence base, cannot suit the physiological, biochemical and biological heterogeneity displayed by the individual septic patient. Indeed, clear proof of outcome benefit through adoption of an inflexible management approach is lacking and will certainly be detrimental to some. Therapy thus needs to be tailored to meet the individual patient’s needs. The same principle should be applied to clinical trials; the continued disappointments of multiple investigational strategies trialled over three decades, despite (often) a sound biological rationale, suggest a repeated methodological failure that does not account for the marked heterogeneity within the septic patient’s biological phenotype and thus marked variation in their host response. The increasing availability of rapid point-of-care diagnostics and theranostics should facilitate better patient selection and titrated optimization of the therapeutic intervention.
Collapse
Affiliation(s)
- Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK.
| |
Collapse
|
22
|
Horst K, Höfler J, Martin L, Greven J, Schürholz T, Simon TP, Marx G, Hildebrand F. Geriatric Polytrauma-Cardiovascular and Immunologic Response in a Murine Two-Hit Model of Trauma. J Surg Res 2019; 241:87-94. [PMID: 31018170 DOI: 10.1016/j.jss.2019.03.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/07/2019] [Accepted: 03/22/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND The aims of the present study were to establish a clinically relevant two-hit model with trauma/hemorrhage followed by sepsis in older mice and investigate age-dependent cardiovascular and immunologic specificities under these conditions. MATERIALS AND METHODS In aged mice (12, 18, and 24 mo old), a femur fracture followed by hemorrhage was induced. After resuscitation, animals were monitored for 72 h before sepsis was induced. Vital signs were monitored during shock. Systemic interleukin (IL)-6 levels were measured daily. Expression of sarcoplasmic or endoplasmic reticulum calcium ATPase (SERCA) and IL-6 receptor were analyzed in heart, lung, and liver tissues. RESULTS After induction of shock, mean arterial pressure decreased significantly in all groups (12 mo, P < 0.001; 18 mo, P < 0.001; 24 mo, P = 0.013). Compared with younger animals, 24-mo old mice were not able to adequately compensate for hypovolemia by an increase of heart rate (P = 0.711). Expression of SERCA2 (P = 0.002) and IL-6 receptor on myocytes (P = 0.037), lung (P = 0.005), and liver (P = 0.009) tissues were also lowest in this group. Systemic IL-6 values showed the most distinct posttraumatic response in 24-mo-old mice (P = 0.016). Survival rate decreased significantly with increased age (P = 0.005). CONCLUSIONS The increased mortality rate in older animals was associated with a limited compensatory physiological response and a more distinct immunologic reaction after trauma and sepsis. A decreased SERCA2 expression and missing feedback loops due to a reduced density of organ bound immune receptors might represent possible explanations for the observed age-dependent differences.
Collapse
Affiliation(s)
- Klemens Horst
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany.
| | - Johannes Höfler
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| | - Lukas Martin
- Department of Intensive Care and Intermediate Care, RWTH Aachen University, Aachen, Germany
| | - Johannes Greven
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| | - Tobias Schürholz
- Department of Anaesthesia and Intensive Care, University of Rostock, Rostock, Germany
| | - Tim P Simon
- Department of Intensive Care and Intermediate Care, RWTH Aachen University, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, RWTH Aachen University, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedic Trauma, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
23
|
Das P, Panda SK, Agarwal B, Behera S, Ali SM, Pulse ME, Solomkin JS, Opal SM, Bhandari V, Acharya S. Novel Chitohexaose Analog Protects Young and Aged mice from CLP Induced Polymicrobial Sepsis. Sci Rep 2019; 9:2904. [PMID: 30814582 PMCID: PMC6393422 DOI: 10.1038/s41598-019-38731-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
In Gram-negative bacterial sepsis, production of excess pro-inflammatory cytokines results in hyperinflammation and tissue injury. Anti-inflammatory cytokines such as IL-10 inhibit inflammation and enhance tissue healing. Here, we report a novel approach to treat septicemia associated with intra-abdominal infection in a murine model by delicately balancing pro- and anti-inflammatory cytokines. A novel oligosaccharide compound AVR-25 selectively binds to the TLR4 protein (IC50 = 0.15 µM) in human peripheral blood monocytes and stimulates IL-10 production. Following the cecal ligation and puncture (CLP) procedure, intravenous dosing of AVR-25 (10 mg/kg, 6-12 h post-CLP) alone and in combination with antibiotic imipenem protected both young adult (10-12 week old) and aged (16-18 month old) mice against polymicrobial infection, organ dysfunction, and death. Proinflammatory cytokines (TNF-α, MIP-1, i-NOS) were decreased significantly and restoration of tissue damage was observed in all organs. A decrease in serum C-reactive protein (CRP) and bacterial colony forming unit (CFU) confirmed improved bacterial clearance. Together, these findings demonstrate the therapeutic ability of AVR-25 to mitigate the storm of inflammation and minimize tissue injury with high potential for adjunctive therapy in intra-abdominal sepsis.
Collapse
Affiliation(s)
- Pragnya Das
- Department of Pediatrics, Division of Neonatology, Drexel University School of Medicine, Philadelphia, PA, 19102, USA
| | - Santosh K Panda
- School of Medicine, Washington University, St. Louis, MO, 63110, USA
| | | | - Sumita Behera
- AyuVis Research Inc, 1120 South Freeway, Fort Worth, TX, 76104, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Syed M Ali
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mark E Pulse
- Preclinical Service, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA
| | - Joseph S Solomkin
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Steven M Opal
- The Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Vineet Bhandari
- Department of Pediatrics, Division of Neonatology, Drexel University School of Medicine, Philadelphia, PA, 19102, USA
| | - Suchismita Acharya
- AyuVis Research Inc, 1120 South Freeway, Fort Worth, TX, 76104, USA. .,Acceleration laboratory, University of North Texas Health Science Center, Fort Worth, Texas, 76107, USA.
| |
Collapse
|
24
|
Part III: Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) for Fluid Resuscitation and Antimicrobial Therapy Endpoints. Shock 2019; 51:33-43. [DOI: 10.1097/shk.0000000000001209] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Zingarelli B, Coopersmith CM, Drechsler S, Efron P, Marshall JC, Moldawer L, Wiersinga WJ, Xiao X, Osuchowski MF, Thiemermann C. Part I: Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) for Study Design and Humane Modeling Endpoints. Shock 2019; 51:10-22. [PMID: 30106874 PMCID: PMC6296871 DOI: 10.1097/shk.0000000000001243] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preclinical animal studies are mandatory before new treatments can be tested in clinical trials. However, their use in developing new therapies for sepsis has been controversial because of limitations of the models and inconsistencies with the clinical conditions. In consideration of the revised definition for clinical sepsis and septic shock (Sepsis-3), a Wiggers-Bernard Conference was held in Vienna in May 2017 to propose standardized guidelines on preclinical sepsis modeling. The participants conducted a literature review of 260 most highly cited scientific articles on sepsis models published between 2003 and 2012. The review showed, for example, that mice were used in 79% and euthanasia criteria were defined in 9% of the studies. Part I of this report details the recommendations for study design and humane modeling endpoints that should be addressed in sepsis models. The first recommendation is that survival follow-up should reflect the clinical time course of the infectious agent used in the sepsis model. Furthermore, it is recommended that therapeutic interventions should be initiated after the septic insult replicating clinical care. To define an unbiased and reproducible association between a new treatment and outcome, a randomization and blinding of treatments as well as inclusion of all methodological details in scientific publications is essential. In all preclinical sepsis studies, the high standards of animal welfare must be implemented. Therefore, development and validation of specific criteria for monitoring pain and distress, and euthanasia of septic animals, as well as the use of analgesics are recommended. A set of four considerations is also proposed to enhance translation potential of sepsis models. Relevant biological variables and comorbidities should be included in the study design and sepsis modeling should be extended to mammalian species other than rodents. In addition, the need for source control (in case of a defined infection focus) should be considered. These recommendations and considerations are proposed as "best practices" for animal models of sepsis that should be implemented.
Collapse
Affiliation(s)
- Basilia Zingarelli
- Department of Pediatrics, Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | | | - Susanne Drechsler
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Philip Efron
- Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - John C Marshall
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Lyle Moldawer
- Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | - W Joost Wiersinga
- Division of Infectious Diseases, Center for Experimental and Molecular Medicine, The Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Xianzhong Xiao
- Xiangya School of Medicine, Central South University, Chagnsha, Hunan, China
| | - Marcin F Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Christoph Thiemermann
- The William Harvey Research Institute, Barts and London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
26
|
De Maio A. Reply to "Bacterial Proliferation May Be the Key Component of Sepsis Mortality". Infect Immun 2018; 86:e00201-18. [PMID: 30361456 PMCID: PMC6204708 DOI: 10.1128/iai.00201-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Antonio De Maio
- Division of Trauma, Critical Care, Burns and Acute Injury, Department of Surgery, School of Medicine, University of California, La Jolla, California, USA
- Center for Investigations of Health and Education Disparities, University of California, San Diego, La Jolla, California, USA
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
27
|
Laudanski K, Stentz M, DiMeglio M, Furey W, Steinberg T, Patel A. Potential Pitfalls of the Humanized Mice in Modeling Sepsis. Int J Inflam 2018; 2018:6563454. [PMID: 30245803 PMCID: PMC6139216 DOI: 10.1155/2018/6563454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 01/30/2023] Open
Abstract
Humanized mice are a state-of-the-art tool used to study several diseases, helping to close the gap between mice and human immunology. This review focuses on the potential obstacles in the analysis of immune system performance between humans and humanized mice in the context of severe acute inflammation as seen in sepsis or other critical care illnesses. The extent to which the reconstituted human immune system in mice adequately compares to the performance of the human immune system in human hosts is still an evolving question. Although certain viral and protozoan infections can be replicated in humanized mice, whether a highly complex and dynamic systemic inflammation like sepsis can be accurately represented by current humanized mouse models in a clinically translatable manner is unclear. Humanized mice are xenotransplant animals in the most general terms. Several organs (e.g., bone marrow mesenchymal cells, endothelium) cannot interact with the grafted human leukocytes effectively due to species specificity. Also the interaction between mice gut flora and the human immune system may be paradoxical. Often, grafting is performed utilizing an identical batch of stem cells in highly inbred animals which fails to account for human heterogeneity. Limiting factors include the substantial cost and restricting supply of animals. Finally, humanized mice offer an opportunity to gain knowledge of human-like conditions, requiring careful data interpretation just as in nonhumanized animals.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Stentz
- Department of Anesthesiology and Intensive Care, Emory University, Atlanta, GA 30322, USA
| | - Matthew DiMeglio
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - William Furey
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Toby Steinberg
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arpit Patel
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Abstract
OBJECTIVE Our knowledge of the molecular mechanisms of sepsis has attained exponential growth. Yet, the pillars of its care remain antibiotics, fluid resuscitation, and physiologic support of failing organ systems. The inability to bring biologic breakthroughs to the bedside is not for lack of effort. Over 60 clinical trials of novel therapies, each heavily supported by the momentum of biologic data suggesting clinical utility, have been conducted and have failed to identify benefit. This mass of "negative" clinical data abut an equally towering mound of knowledge of sepsis biology, which collectively have led investigators to ask, "what happened?" DATA SOURCES Review of published scientific literature via MEDLINE searches using key terms related to the article topics. STUDY SELECTION Original articles, review articles, and systematic reviews were considered. DATA EXTRACTION Articles were selected for inclusion based upon author consensus. DATA SYNTHESIS Here, we present a synthetic review of some of the challenges in translating experimental animal models of sepsis to the bedside. We commence with the concept that the heterogeneity in the kinetics of the sepsis response serves as an important, often underappreciated but surmountable, source of translational impedance. Upon this groundwork, we discuss distinctions between animal experimentation and clinical trial design in the elements for hypothesis testing: cohort selection, power and sample size, randomization and blinding, and timing of intervention. From this concept, we develop a contextual framework for advancing the paradigm of animal-based investigations to facilitate science that transitions from molecule to medicine. CONCLUSIONS A persistent divide exists between the laboratory and clinical research arenas, which may be addressable via systematic targeting of identified translational gaps.
Collapse
Affiliation(s)
- Anthony J. Lewis
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
| | - Janet S. Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew R. Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
29
|
Gu H, Liu D, Zeng X, Peng LS, Yuan Y, Chen ZF, Zou QM, Shi Y. Aging exacerbates mortality of Acinetobacter baumannii pneumonia and reduces the efficacies of antibiotics and vaccine. Aging (Albany NY) 2018; 10:1597-1608. [PMID: 30018181 PMCID: PMC6075437 DOI: 10.18632/aging.101495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/05/2018] [Indexed: 04/08/2023]
Abstract
Pneumonia caused by Acinetobacter baumannii has become a serious threat to the elderly. However, there are no experimental studies on the relevance between aging and A. baumannii infections. Here, we established an aged pneumonia mouse model by non-invasive intratracheal inoculation with A. baumannii. Higher mortality was observed in aged mice along with increased bacterial burdens and more severe lung injury. Increased inflammatory cell infiltration and enhanced pro-inflammatory cytokines at 24 hours post infection were detected in aged mice than those in young mice. Moreover, infected aged mice had lower myeloperoxidase levels in lungs and less reactive oxygen species-positive neutrophils in bronchoalveolar lavage fluid compared with infected young mice. Reduced efficacy of imipenem/cilastatin against A. baumannii was detected in aged mice. Vaccination of formalin-fixed A. baumannii provided 100% protection in young mice, whereas the efficacy of vaccine was completely diminished in aged mice. In conclusion, aging increased susceptibility to A. baumannii infection and impaired efficacies of antibiotics and vaccine. The aged mice model of A. baumannii pneumonia is a suitable model to study the effects of aging on A. baumannii infection and assess the efficacies of antibiotics and vaccines against A. baumannii for the elderly.
Collapse
Affiliation(s)
- Hao Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Dong Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Xi Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Liu-Sheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Yue Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Zhi-Fu Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Yun Shi
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| |
Collapse
|
30
|
Busch D, Kapoor A, Rademann P, Hildebrand F, Bahrami S, Thiemermann C, Osuchowski MF. Delayed activation of PPAR-β/δ improves long-term survival in mouse sepsis: effects on organ inflammation and coagulation. Innate Immun 2018; 24:262-273. [PMID: 29697010 DOI: 10.1177/1753425918771748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of peroxisome proliferator-activated receptor (PPAR)-β/δ reduces tissue injury in murine endotoxemia. We hypothesized that the PPAR-β/δ-agonist GW0742 improves long-term outcome after sepsis caused by cecal ligation and puncture (CLP). Fifty-one CD-1 female mice underwent CLP and received either vehicle (control), GW0742 (0.03 mg/kg/injection; five post-CLP i.v. injections), GSK0660 (PPAR-β/δ-antagonist) or both and were monitored for 28 d. Another 20 CLP mice treated with GW0742 and vehicle were sacrificed 24 h post-CLP to assess coagulopathy. Compared to vehicle, survival of CLP-mice treated with GW0742 was higher by 35% at d 7 and by 50% at d 28. CLP mice treated with GW0742 had 60% higher IFN-γ but circulating monocyte chemoattractant protein-1 and chemokine ligand were lower at 48 h post-CLP. Compared to vehicle, CLP mice treated with GW0742 exhibited a 50% reduction in the circulating plasminogen activator inhibitor-1 associated with an increase in platelet number at 24 h post-CLP (but no changes occurred in anti-thrombin-III, plasminogen, fibrinogen and clotting-times). CLP mice treated with GW0742 exhibited a similar increase in most of the biochemical markers of organ injury/dysfunction (lactate dehydrogenase, alanine aminotransferase, creatine kinase, creatinine, blood urea nitrogen, and triglycerides) measured. Treatment with GW0742 consistently improved long-term survival in septic CD-1 mice by partially modulating the post-CLP systemic cytokine response and coagulation systems.
Collapse
Affiliation(s)
- Daniel Busch
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria.,2 Department of General-, Visceral-, Thoracic- and Vascular Surgery, Helios Hanseklinikum Stralsund, Germany
| | - Amar Kapoor
- 3 Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, London, UK
| | - Pia Rademann
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria.,4 Center for Experimental Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Soheyl Bahrami
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| | - Christoph Thiemermann
- 3 Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, London, UK
| | - Marcin F Osuchowski
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria
| |
Collapse
|
31
|
Wissuwa B, Heinemann SH, Bauer M, Coldewey SM. Studies into Slo1 K + channels and their ligand docosahexaenoic acid in murine sepsis to delineate off-target effects of immunonutrition. Life Sci 2018; 203:112-120. [PMID: 29684444 DOI: 10.1016/j.lfs.2018.04.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/08/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
AIMS Studies on omega-3 fatty acids, including docosahexaenoic acid (DHA), reveal diverging results: Their intake is recommended in cardiovascular disease and major surgery, while evidence argues against use in septic patients. DHA mediates its blood-pressure-lowering effect through Slo1 channels that are expressed on cardiovascular and immune cells. We hypothesised that conflicting effects of immunonutrition could be explained by the influence of omega-3 fatty acids on systemic blood pressure or immune effector cells through Slo1. MAIN METHODS The effect of DHA on blood pressure was analysed in septic wild-type (WT) mice. Septic WT and Slo1 knockout (KO) mice were compared regarding survival, clinical presentation, haematology, cytokine release and bacterial burden. Cytokine expression and release of bone marrow derived macrophages (BMDM) from WT and Slo1 KO mice was assessed in response to LPS. KEY FINDINGS The significant blood-pressure-lowering effect of DHA in healthy animals was blunted in already hypotensive septic mice. Septic Slo1 KO mice displayed moderately lower bacterial burden in blood and lungs compared with WT, which did not translate into improved survival. Slo1 KO BMDM presented lower IL-6 levels in response to LPS, an effect that was abolished in the presence of DHA. More importantly, the strong inhibitory effect of DHA on IL-6 release was also observed in Slo1 KO BMDM. SIGNIFICANCE The controversial effects of immunonutrition in sepsis are unlikely to be primarily explained by the influence of DHA on blood pressure or effects on immune response mediated through Slo1 channels.
Collapse
Affiliation(s)
- Bianka Wissuwa
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Centre for Innovation Competence Septomics, Friedrich Schiller University Jena, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Stefan H Heinemann
- Center of Molecular Biomedicine (CMB), Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Sina M Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Centre for Innovation Competence Septomics, Friedrich Schiller University Jena, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.
| |
Collapse
|
32
|
Lewis AJ, Rosengart MR. Bench-to-Bedside: A Translational Perspective on Murine Models of Sepsis. Surg Infect (Larchmt) 2018; 19:137-141. [PMID: 29394153 PMCID: PMC5815447 DOI: 10.1089/sur.2017.308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Considerable research effort has focused on the development of novel therapies for the treatment of sepsis, yet after decades of clinical trials, few significant advances have been achieved. This limitation persists despite a wealth of data yielded by basic science that has expanded our knowledge of the biology of this disease exponentially. METHOD Review of the English-language literature. RESULTS Translational researchers may address the resultant gap between the basic science laboratory and clinical research worlds. Herein, we review potential causes for the challenges of translating basic laboratory discovery into clinical benefit. CONCLUSION We propose conceptual platforms to further the development of translational sepsis research efforts.
Collapse
Affiliation(s)
- Anthony J. Lewis
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew R. Rosengart
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Mishra SK, Choudhury S. Experimental Protocol for Cecal Ligation and Puncture Model of Polymicrobial Sepsis and Assessment of Vascular Functions in Mice. Methods Mol Biol 2018; 1717:161-187. [PMID: 29468592 DOI: 10.1007/978-1-4939-7526-6_14] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sepsis is the systemic inflammatory response syndrome that occurs during infection and is exacerbated by the inappropriate immune response encountered by the affected individual. Despite extensive research, sepsis in humans is one of the biggest challenges for clinicians. The high mortality rate in sepsis is primarily due to hypoperfusion-induced multiorgan dysfunctions , resulting from a marked decrease in peripheral resistance. Vascular dysfunctions are further aggravated by sepsis-induced impairment in myocardial contractility. Circulatory failure in sepsis is characterized by refractory hypotension and vascular hyporeactivity (vasoplegia) to clinically used vasoconstrictors. To investigate the complex pathophysiology of sepsis and its associated multiple organ dysfunction, several animal models have been developed. However, cecal ligation and puncture (CLP) model of murine sepsis is still considered as 'gold standard' in sepsis research. In this protocol we have described the standard surgical procedure to induce polymicrobial sepsis by cecal ligation and puncture. Further, we have described the protocol to study the molecular mechanisms underlying vascular dysfunctions in sepsis.
Collapse
Affiliation(s)
- Santosh Kumar Mishra
- Division of Pharmacology & Toxicology, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India.
- , Bhubaneswar, Odisha, India.
| | - Soumen Choudhury
- Department of Pharmacology and Toxicology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, Uttar Pradesh, India
| |
Collapse
|
34
|
Halbach JL, Wang AW, Hawisher D, Cauvi DM, Lizardo RE, Rosas J, Reyes T, Escobedo O, Bickler SW, Coimbra R, De Maio A. Why Antibiotic Treatment Is Not Enough for Sepsis Resolution: an Evaluation in an Experimental Animal Model. Infect Immun 2017; 85:e00664-17. [PMID: 28947644 PMCID: PMC5695106 DOI: 10.1128/iai.00664-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/27/2022] Open
Abstract
Sepsis remains a major health problem at the levels of mortality, morbidity, and economic burden to the health care system, a condition that is aggravated by the development of secondary conditions such as septic shock and multiple-organ failure. Our current understanding of the etiology of human sepsis has advanced, at least in part, due to the use of experimental animal models, particularly the model of cecum ligation and puncture (CLP). Antibiotic treatment has been commonly used in this model to closely mirror the treatment of human septic patients. However, whether their use may obscure the elucidation of the cellular and molecular mechanisms involved in the septic response is questionable. The objective of the present study was to determine the effect of antibiotic treatment in the outcome of a fulminant model of CLP. Various dosing strategies were used for the administration of imipenem, which has broad-spectrum coverage of enteric bacteria. No statistically significant differences in the survival of mice were observed between the different antibiotic dosing strategies and no treatment, suggesting that live bacteria may not be the only factor inducing septic shock. To further investigate this hypothesis, mice were challenged with sterilized or unsterilized cecal contents. We found that exposure of mice to sterilized cecal contents also resulted in a high mortality rate. Therefore, it is possible that bacterial debris, apart from bacterial proliferation, triggers a septic response and contributes to mortality in this model, suggesting that additional factors are involved in the development of septic shock.
Collapse
Affiliation(s)
- Jonathan L Halbach
- Department of Surgery, Naval Medical Center San Diego, San Diego, California, USA
| | - Andrew W Wang
- Department of Surgery, Naval Medical Center San Diego, San Diego, California, USA
| | - Dennis Hawisher
- Division of Trauma, Critical Care, Burns and Acute Injury, Department of Surgery, School of Medicine, University of California, La Jolla, California, USA
| | - David M Cauvi
- Division of Trauma, Critical Care, Burns and Acute Injury, Department of Surgery, School of Medicine, University of California, La Jolla, California, USA
| | - Radhames E Lizardo
- Department of Surgery, Naval Medical Center San Diego, San Diego, California, USA
| | - Joseph Rosas
- Center for Investigations of Health and Education Disparities, University of California, San Diego, La Jolla, California, USA
| | - Tony Reyes
- Center for Investigations of Health and Education Disparities, University of California, San Diego, La Jolla, California, USA
| | - Omar Escobedo
- Center for Investigations of Health and Education Disparities, University of California, San Diego, La Jolla, California, USA
| | - Stephen W Bickler
- Division of Trauma, Critical Care, Burns and Acute Injury, Department of Surgery, School of Medicine, University of California, La Jolla, California, USA
- Division of Pediatric Surgery, Rady Children's Hospital, San Diego, California, USA
| | - Raul Coimbra
- Division of Trauma, Critical Care, Burns and Acute Injury, Department of Surgery, School of Medicine, University of California, La Jolla, California, USA
| | - Antonio De Maio
- Division of Trauma, Critical Care, Burns and Acute Injury, Department of Surgery, School of Medicine, University of California, La Jolla, California, USA
- Center for Investigations of Health and Education Disparities, University of California, San Diego, La Jolla, California, USA
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
35
|
Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2574-2583. [PMID: 28286161 PMCID: PMC5589488 DOI: 10.1016/j.bbadis.2017.03.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/16/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
The gastrointestinal tract has long been hypothesized to function as "the motor" of multiple organ dysfunction syndrome. The gastrointestinal microenvironment is comprised of a single cell layer epithelia, a local immune system, and the microbiome. These three components of the intestine together play a crucial role in maintaining homeostasis during times of health. However, the gastrointestinal microenvironment is perturbed during sepsis, resulting in pathologic changes that drive both local and distant injury. In this review, we seek to characterize the relationship between the epithelium, gastrointestinal lymphocytes, and commensal bacteria during basal and pathologic conditions and how the intestinal microenvironment may be targeted for therapeutic gain in septic patients.
Collapse
Affiliation(s)
- Katherine T Fay
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
36
|
Sequential Analysis of a Panel of Biomarkers and Pathologic Findings in a Resuscitated Rat Model of Sepsis and Recovery. Crit Care Med 2017; 45:e821-e830. [PMID: 28430696 PMCID: PMC5511729 DOI: 10.1097/ccm.0000000000002381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text. Objectives: To characterize the temporal pattern of a panel of blood and urinary biomarkers in an animal model of fecal peritonitis and recovery. Design: Prospective observational animal study. Setting: University research laboratory. Subjects: Male Wistar rats. Interventions: A fluid-resuscitated, long-term (3 d) rat model of sepsis (fecal peritonitis) and recovery was used to understand the temporal association of sepsis biomarkers in relation to systemic hemodynamics, inflammation, and renal function. At predefined time points (3, 6, 12, 24, 48, 72 hr), animals (≥ 6 per group) underwent echocardiography, blood and urine sampling, and had kidneys taken for histological analysis. Comparison was made against sham-operated controls and naïve animals. Measurements and Main Results: The systemic proinflammatory response was maximal at 6 hours, corresponding with the nadir of stroke volume. Serum creatinine peaked late (24 hr), when clinical recovery was imminent. Histological evidence of tubular injury and cell death was minimal. After a recovery period, all biomarkers returned to levels approaching those observed in sham animals. Apart from urine clusterin and interleukin-18, all other urinary biomarkers were elevated at earlier time points compared with serum creatinine. Urine neutrophil gelatinase-associated lipocalin was the most sensitive marker among those studied, rising from 3 hours. While serum creatinine fell at 12 hours, serum cystatin C increased, suggestive of decreased creatinine production. Conclusions: Novel information is reported on the temporal profile of a panel of renal biomarkers in sepsis in the context of systemic and renal inflammation and recovery. Insight into the pathophysiology of acute kidney injury is gleaned from the temporal change markers of renal injury (urine neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, calbindin), followed by a marker of cell cycle arrest (urine insulin-like growth factor-binding protein 7) and, finally, by functional markers of filtration (serum creatinine and cystatin C). These clinically relevant findings should have significant influence on future clinical testing.
Collapse
|
37
|
Stortz JA, Raymond SL, Mira JC, Moldawer LL, Mohr AM, Efron PA. Murine Models of Sepsis and Trauma: Can We Bridge the Gap? ILAR J 2017; 58:90-105. [PMID: 28444204 PMCID: PMC5886315 DOI: 10.1093/ilar/ilx007] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Sepsis and trauma are both leading causes of death in the United States and represent major public health challenges. Murine models have largely been used in sepsis and trauma research to better understand the pathophysiological changes that occur after an insult and to develop potential life-saving therapeutic agents. Mice are favorable subjects for this type of research given the variety of readily available strains including inbred, outbred, and transgenic strains. In addition, they are relatively easy to maintain and have a high fecundity. However, pharmacological therapies demonstrating promise in preclinical mouse models of sepsis and trauma often fail to demonstrate similar efficacy in human clinical trials, prompting considerable criticism surrounding the capacity of murine models to recapitulate complex human diseases like sepsis and traumatic injury. Fundamental differences between the two species include, but are not limited to, the divergence of the transcriptomic response, the mismatch of temporal response patterns, differences in both innate and adaptive immunity, and heterogeneity within the human population in comparison to the homogeneity of highly inbred mouse strains. Given the ongoing controversy, this narrative review aims to not only highlight the historical importance of the mouse as an animal research model but also highlight the current benefits and limitations of the model as it pertains to sepsis and trauma. Lastly, this review will propose future directions that may promote further use of the model.
Collapse
Affiliation(s)
- Julie A. Stortz
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Steven L. Raymond
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Juan C. Mira
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Lyle L. Moldawer
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Alicia M. Mohr
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| | - Philip A. Efron
- Julie A. Stortz, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Steven L. Raymond, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Juan C. Mira, MD, is a research fellow at the University of Florida Health Shands Hospital in Gainesville, Florida. Lyle L. Moldawer, PhD, is the Robert H. and Kathleen M. Axline Basic Science Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Alicia M. Mohr, MD, is an Associate Professor of Surgery at the University of Florida College of Medicine in Gainesville, FL. Philip A. Efron, MD, is an Associate Professor of Surgery and Anesthesiology at the University of Florida College of Medicine and Medical Director for the surgical intensive care unit at the University of Florida Health Shands Hospital, Department of Surgery, University of Florida College of Medicine, Gainesville, FL.
| |
Collapse
|
38
|
Steele AM, Starr ME, Saito H. Late Therapeutic Intervention with Antibiotics and Fluid Resuscitation Allows for a Prolonged Disease Course with High Survival in a Severe Murine Model of Sepsis. Shock 2017; 47:726-734. [PMID: 27879561 PMCID: PMC5432399 DOI: 10.1097/shk.0000000000000799] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Current animal models of sepsis often incorporate antibiotics to be consistent with clinical standards for treatment of patients in the intensive care unit. However, such experimental intervention is commonly initiated very early after infectious insult, which likely blunts the progression of systemic inflammation and downstream pathology. The objective of this study was to establish an animal model of sepsis with delayed therapeutic intervention, allowing a longer disease course and downstream pathology, but still resulting in a high survival rate. Severe lethal abdominal infection was initiated in young adult (17-18-week-old) C57BL/6 mice by cecal slurry (CS) injection. When initiated early (1- or 6-h post-CS injection), antibiotic treatment (imipenem, 1.5 mg/mouse i.p., twice/day for 5 days) rescued the majority of mice; however, few of these mice showed evidence of bacteremia, cytokinemia, or organ injury. When antibiotic treatment was delayed until late time-points (12- or 24-h post-CS injection) the majority of animals did not survive beyond 48 h. When fluid resuscitation (physiological saline, s.c.) was performed in combination with antibiotic treatment (twice daily) beginning at these late time-points, the majority of mice survived (75%) and showed bacteremia, cytokinemia, organ dysfunction, and prolonged body weight loss (<90% for 4 weeks). We recommend that this new repeated combination treatment with antibiotics and fluids resuscitation be initiated at a late time point after bacteremia becomes evident because this model more closely mimics the downstream pathological characteristics of severe clinical sepsis yet maintains a high survival rate. This model would be advantageous for studies on severe sepsis and postintensive care illness.
Collapse
Affiliation(s)
- Allison M. Steele
- Department of Physiology, University of Kentucky, Lexington, KY 40536
| | - Marlene E. Starr
- Department of Surgery, University of Kentucky, Lexington, KY 40536
| | - Hiroshi Saito
- Department of Physiology, University of Kentucky, Lexington, KY 40536
- Department of Surgery, University of Kentucky, Lexington, KY 40536
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
39
|
Steinbusch MMF, Fang Y, Milner PI, Clegg PD, Young DA, Welting TJM, Peffers MJ. Serum snoRNAs as biomarkers for joint ageing and post traumatic osteoarthritis. Sci Rep 2017; 7:43558. [PMID: 28252005 PMCID: PMC5333149 DOI: 10.1038/srep43558] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/25/2017] [Indexed: 01/29/2023] Open
Abstract
The development of effective treatments for the age-related disease osteoarthritis and the ability to predict disease progression has been hampered by the lack of biomarkers able to demonstrate the course of the disease. Profiling the expression patterns of small nucleolar RNAs (snoRNAs) in joint ageing and OA may provide diagnostic biomarkers and therapeutic targets. This study determined expression patterns of snoRNAs in joint ageing and OA and examined them as potential biomarkers. Using SnoRNASeq and real-time quantitative PCR (qRT-PCR) we demonstrate snoRNA expression levels in murine ageing and OA joints and serum for the first time. SnoRNASeq identified differential expression (DE) of 6 snoRNAs in young versus old joints and 5 snoRNAs in old sham versus old experimental osteoarthritic joints. In serum we found differential presence of 27 snoRNAs in young versus old serum and 18 snoRNAs in old sham versus old experimental osteoarthritic serum. Confirmatory qRT-PCR analysis demonstrated good correlation with SnoRNASeq findings. Profiling the expression patterns of snoRNAs is the initial step in determining their functional significance in ageing and osteoarthritis, and provides potential diagnostic biomarkers and therapeutic targets. Our results establish snoRNAs as novel markers of musculoskeletal ageing and osteoarthritis.
Collapse
Affiliation(s)
- Mandy M F Steinbusch
- Department of Orthopedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| | - Peter I Milner
- Institute of Ageing and Chronic Disease, University of Liverpool, Apex Building, 6 West Derby Street, Liverpool, L7 9TX, UK
| | - Peter D Clegg
- Institute of Ageing and Chronic Disease, University of Liverpool, Apex Building, 6 West Derby Street, Liverpool, L7 9TX, UK
| | - David A Young
- Musculoskeletal Research Group, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tim J M Welting
- Department of Orthopedic Surgery, Caphri School for Public Health and Primary Care, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Mandy J Peffers
- Institute of Ageing and Chronic Disease, University of Liverpool, Apex Building, 6 West Derby Street, Liverpool, L7 9TX, UK
| |
Collapse
|
40
|
Rodewohl A, Scholbach J, Leichsenring A, Köberle M, Lange F. Age-dependent cellular reactions of the human immune system of humanized NOD scid gamma mice on LPS stimulus. Innate Immun 2017; 23:258-275. [PMID: 28162006 DOI: 10.1177/1753425917690814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Despite sepsis being a life-threatening disease, targeted drugs that improve the therapy of affected patients are still lacking. Infants and adults differ in the maturity level of their immune system and this results in distinct reactions to Gram-negative bacteria. To study reactions of human immune cells in vivo, we used NOD scid gamma mice transplanted with human CD34+ stem cells to engraft a functional human immune system. Human cells undergo differentiation and maturation in these mice after transplantation and, accordingly, animals were divided into two groups: 8-13 wk and 15-22 wk after transplantation. Endotoxemia was induced by injecting LPS. Six h later, mice were euthanized. In both groups, LPS stimulation induced a decrease of CD14+ monocytes in peripheral blood, an up-regulation of activation markers on different cell subsets such as myeloid dendritic cells, and a release of the human cytokines TNF-α, IL-6 and IL-10. However, significant differences were detected with regard to the amounts of released cytokines, and 8-13-wk-old mice produced more IL-6, while PTX3 was mainly released by 15-22-wk-old animals. Thus, here we provide a potential model for preclinical research of sepsis in infants and adults.
Collapse
Affiliation(s)
- Anja Rodewohl
- 1 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,2 Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Johanna Scholbach
- 1 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,3 Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Anna Leichsenring
- 1 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Margarethe Köberle
- 1 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,2 Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Franziska Lange
- 1 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
41
|
With mouse age comes wisdom: A review and suggestions of relevant mouse models for age-related conditions. Mech Ageing Dev 2016; 160:54-68. [DOI: 10.1016/j.mad.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/07/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022]
|
42
|
Mice Survival and Plasmatic Cytokine Secretion in a "Two Hit" Model of Sepsis Depend on Intratracheal Pseudomonas Aeruginosa Bacterial Load. PLoS One 2016; 11:e0162109. [PMID: 27574993 PMCID: PMC5004855 DOI: 10.1371/journal.pone.0162109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/17/2016] [Indexed: 11/28/2022] Open
Abstract
Sepsis is characterized by pro- and anti-inflammatory responses following infection. While inflammation is responsible for widespread organ damage, anti-inflammatory mediators lead to immunoparalysis increasing susceptibility to secondary infections (nosocomial pneumonia). We aimed to investigate the impact of bacterial load on survival and cytokine release in a two-hit murine (C57BL/6J) model of CLP followed by P. aeruginosa pneumonia. Plasmatic TNFα, IL-6, IL-10, sTNFr I and II were quantified until 13 days. At D5, splenocytes were processed for immunological assays or mice were intratracheally instilled with Pseudomonas aeruginosa (5.106, 2.107 and 108 CFU) to evaluate survival and cytokines production. TNFα, sTNFrs, IL-6 and IL-10 increased 2h post CLP. TNFα and sTNFrs declined respectively one and two days later. In CLP mice, IL-6 and IL-10 remained high for the whole experiment, as compared to Sham. At D5, for CLP mice, whereas total T cells population (CD3+) decreased, Treg fraction (CD4+/CD25+) increased. In parallel, T cells proliferation and LPS-stimulated splenocytes ability to release TNFα decreased. At D13, survival was 100% after 5.106 CFU, 50% for CLP mice after 2.107 CFU and 0% for CLP and Sham after 108 CFU. After instillation, IL-10 and IL-6 increased and appeared to be dose and time dependent. Pseudomonas was detected in all CLP and Sham’s lungs; in spleen and liver only in CLP at 2.107 CFU, and in CLP and Sham at 108 CFU. We demonstrated that post-CLP immunosuppression followed by Pseudomonas aeruginosa lung instillation increases mortality reactivates cytokines secretion and is associated with systemic dissemination in septic mice depending on bacterial load.
Collapse
|
43
|
Affiliation(s)
- Anthony J. Lewis
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christopher W. Seymour
- The Clinical Research, Investigation, and Systems Modeling of Acute illness (CRISMA) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew R. Rosengart
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- The Clinical Research, Investigation, and Systems Modeling of Acute illness (CRISMA) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
44
|
Ruiz S, Vardon-Bounes F, Merlet-Dupuy V, Conil JM, Buléon M, Fourcade O, Tack I, Minville V. Sepsis modeling in mice: ligation length is a major severity factor in cecal ligation and puncture. Intensive Care Med Exp 2016; 4:22. [PMID: 27430881 PMCID: PMC4949182 DOI: 10.1186/s40635-016-0096-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023] Open
Abstract
Background The cecal ligation and puncture (CLP) model, a gold standard in sepsis research, is associated with an important variability in mortality. While the number of punctures and needle size is well described in CLP animal studies, the length of cecal ligation is often not. The relationship between cecal ligation and survival in mice is briefly reported in the literature; therefore, we devised an investigation in mice of the consequences of three standardized cecal ligation lengths on mortality and the severity of the ensued sepsis. Methods Male C57BL/6J mice underwent standardized CLP. The cecum was ligated at 5, 20, or 100 % of its total length and further perforated by a single 20-G puncture. Mortality was analyzed. We assessed blood lactate, serum creatinine levels, and serum cytokines (TNF-α, IL-1β, IL-6, and IL-10) after procedure in a control group and in ligated mice. Results Mortality was directly related to ligation length: median survival was 24 h for the “100 %” group and 44 h for the “20 %” group. Blood lactate increased proportionally with the ligation length. At 6 h post-procedure, pro-inflammatory cytokines significantly increased in the ligated group with significantly higher serum levels of IL-6 in the 100 % group compared to the other ligated groups. The 20 % group exhibited the characteristics of septic shock with hypotension below 65 mmHg, pro-inflammatory balance, organ dysfunction, and hyperlactatemia. Conclusions Cecal ligation length appears to be a major limiting factor in the mouse CLP model. Thus, this experimental model should be performed with high consistency in future protocol designs.
Collapse
Affiliation(s)
- Stéphanie Ruiz
- Department of Anesthesiology and Intensive Care, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse, Cedex 9, France. .,Inserm/UPS UMR 1048 - I2MC, Equipe 3, Toulouse, France.
| | - Fanny Vardon-Bounes
- Department of Anesthesiology and Intensive Care, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse, Cedex 9, France.,Inserm/UPS UMR 1048 - I2MC, Equipe 3, Toulouse, France
| | - Virginie Merlet-Dupuy
- Department of Anesthesiology and Intensive Care, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse, Cedex 9, France
| | - Jean-Marie Conil
- Department of Anesthesiology and Intensive Care, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse, Cedex 9, France
| | - Marie Buléon
- Inserm/UPS UMR 1048 - I2MC, Equipe 12, Toulouse, France
| | - Olivier Fourcade
- Department of Anesthesiology and Intensive Care, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse, Cedex 9, France.,EA 4564 - MATN - Laboratoire de Modélisation de l'Agression Tissulaire et de la Nociception Toulouse, Institut Louis Bugnard (IFR 150), Toulouse, France
| | - Ivan Tack
- Inserm/UPS UMR 1048 - I2MC, Equipe 12, Toulouse, France.,Department of Physiology, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse Cedex 9, France
| | - Vincent Minville
- Department of Anesthesiology and Intensive Care, Rangueil Hospital, University Hospital of Toulouse, 1 Avenue du Professeur Jean Poulhès TSA 50032, 31059, Toulouse, Cedex 9, France.,Inserm/UPS UMR 1048 - I2MC, Equipe 3, Toulouse, France
| |
Collapse
|
45
|
Seethala RR, Blackney K, Hou P, Kaafarani HMA, Yeh DD, Aisiku I, Tainter C, deMoya M, King D, Lee J. The Association of Age With Short-Term and Long-Term Mortality in Adults Admitted to the Intensive Care Unit. J Intensive Care Med 2016; 32:554-558. [PMID: 27402394 DOI: 10.1177/0885066616658230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Based on the current literature, it is unclear whether advanced age itself leads to higher mortality in critically ill patients or whether it is due to the greater number of comorbidities in the elderly patients. We hypothesized that increasing age would increase the odds of short-term and long-term mortality after adjusting for baseline comorbidities in intensive care unit (ICU) patients. METHODS We performed a retrospective cohort study of 57 160 adults admitted to any ICU over 5 years at 2 academic tertiary care centers. Patients were divided into age-groups, 18 to 39, 40 to 59, 60 to 79, and ≥80. The primary outcomes were 30-day and 365-day mortality. Results were analyzed with multivariate logistic regression adjusting for demographics and the Elixhauser-van Walraven Comorbidity Index. RESULTS The adjusted 30-day mortality odds ratios (ORs) were 1.39 (95% confidence interval [CI]: 1.21-1.60), 2.00 (95% CI: 1.75-2.28), and 3.33 (95% CI: 2.90-3.82) for age-groups 40 to 59, 60 to 79, and ≥80, respectively, using the age-group 18 to 39 as the reference. The adjusted 365-day mortality ORs were 1.46 (95% CI: 1.32-1.61), 2.10 (95% CI: 1.91-2.31), and 2.96 (95% CI: 2.67-3.27). CONCLUSION In critically ill patients, increasing age is associated with higher odds of short-term and long-term death after correcting for existing comorbidities.
Collapse
Affiliation(s)
- Raghu R Seethala
- 1 Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,2 Surgical Intensive Care Unit, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin Blackney
- 3 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Hou
- 1 Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,2 Surgical Intensive Care Unit, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haytham M A Kaafarani
- 4 The Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Dante Yeh
- 4 The Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Imoigele Aisiku
- 1 Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,5 Medical Intensive Care Unit, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Tainter
- 6 Department of Emergency Medicine, UC San Diego Health System, UC San Diego School of Medicine, San Diego, CA, USA.,7 Division of Critical Care, Department of Anesthesiology, UC San Diego Health System, UC San Diego School of Medicine, San Diego, CA, USA
| | - Marc deMoya
- 4 The Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David King
- 4 The Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jarone Lee
- 4 The Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,8 Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
|
47
|
Efron PA, Mohr AM, Moore FA, Moldawer LL. The future of murine sepsis and trauma research models. J Leukoc Biol 2015; 98:945-52. [PMID: 26034205 PMCID: PMC4661039 DOI: 10.1189/jlb.5mr0315-127r] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/24/2015] [Accepted: 05/06/2015] [Indexed: 12/23/2022] Open
Abstract
Recent comparisons of the murine and human transcriptome in health and disease have called into question the appropriateness of the use of murine models for human sepsis and trauma research. More specifically, researchers have debated the suitability of mouse models of severe inflammation that is intended for eventual translation to human patients. This mini-review outlines this recent research, as well as specifically defines the arguments for and against murine models of sepsis and trauma research based on these transcriptional studies. In addition, we review newer advancements in murine models of infection and injury and define what we envision as an evolving but viable future for murine studies of sepsis and trauma.
Collapse
Affiliation(s)
- Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
48
|
Favero M, Ramonda R, Goldring MB, Goldring SR, Punzi L. Early knee osteoarthritis. RMD Open 2015; 1:e000062. [PMID: 26557380 PMCID: PMC4632144 DOI: 10.1136/rmdopen-2015-000062] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/30/2015] [Accepted: 06/14/2015] [Indexed: 12/13/2022] Open
Abstract
Concepts regarding osteoarthritis, the most common joint disease, have dramatically changed in the past decade thanks to the development of new imaging techniques and the widespread use of arthroscopy that permits direct visualisation of intra-articular tissues and structure. MRI and ultrasound allow the early detection of pre-radiographic structural changes not only in the peri-articular bone but also in the cartilage, menisci, synovial membrane, ligaments and fat pad. The significance of MRI findings such as cartilage defects, bone marrow lesions, synovial inflammation/effusions and meniscal tears in patients without radiographic signs of osteoarthritis is not fully understood. Nevertheless, early joint tissue changes are associated with symptoms and, in some cases, with progression of disease. In this short review, we discuss the emerging concept of early osteoarthritis localised to the knee based on recently updated knowledge. We highlight the need for a new definition of early osteoarthritis that will permit the identification of patients at high risk of osteoarthritis progression and to initiate early treatment interventions.
Collapse
Affiliation(s)
- Marta Favero
- Rheumatology Unit, Department of Medicine-DIMED , University Hospital of Padova , Padova , Italy ; Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES , Rizzoli Orthopedic Research Institute , Bologna , Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine-DIMED , University Hospital of Padova , Padova , Italy
| | - Mary B Goldring
- Research Division , Hospital for Special Surgery and Weill Cornell Medical College , New York, New York , USA
| | - Steven R Goldring
- Research Division , Hospital for Special Surgery and Weill Cornell Medical College , New York, New York , USA
| | - Leonardo Punzi
- Rheumatology Unit, Department of Medicine-DIMED , University Hospital of Padova , Padova , Italy
| |
Collapse
|
49
|
Septic Shock in Advanced Age: Transcriptome Analysis Reveals Altered Molecular Signatures in Neutrophil Granulocytes. PLoS One 2015; 10:e0128341. [PMID: 26047321 PMCID: PMC4457834 DOI: 10.1371/journal.pone.0128341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/26/2015] [Indexed: 01/08/2023] Open
Abstract
Sepsis is one of the highest causes of mortality in hospitalized people and a common complication in both surgical and clinical patients admitted to hospital for non-infectious reasons. Sepsis is especially common in older people and its incidence is likely to increase substantially as a population ages. Despite its increased prevalence and mortality in older people, immune responses in the elderly during septic shock appear similar to that in younger patients. The purpose of this study was to conduct a genome-wide gene expression analysis of circulating neutrophils from old and young septic patients to better understand how aged individuals respond to severe infectious insult. We detected several genes whose expression could be used to differentiate immune responses of the elderly from those of young people, including genes related to oxidative phosphorylation, mitochondrial dysfunction and TGF-β signaling, among others. Our results identify major molecular pathways that are particularly affected in the elderly during sepsis, which might have a pivotal role in worsening clinical outcomes compared with young people with sepsis.
Collapse
|
50
|
Botez G, Piraino G, Hake PW, Ledford JR, O'Connor M, Cook JA, Zingarelli B. Age-dependent therapeutic effects of liver X receptor-α activation in murine polymicrobial sepsis. Innate Immun 2015; 21:609-18. [PMID: 25956304 PMCID: PMC4509881 DOI: 10.1177/1753425915569367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/05/2015] [Indexed: 12/29/2022] Open
Abstract
The severity of sepsis is significantly affected by advanced age; however, age-dependent molecular mechanisms of this susceptibility are unknown. Nuclear liver X receptor-α (LXRα) is a regulator of lipid metabolism with associated anti-inflammatory properties. Here, we investigated the role of LXRα in age-dependent lung injury and outcome of sepsis. Male C57BL/6, LXRα-deficient (LXRα−/−) and wild type (WT) (LXRα+/+) mice of different ages were subjected to sepsis by cecal ligation and puncture (CLP). In pharmacological studies, treatment with the LXRα ligand T0901317 reduced lung neutrophil infiltration in C57BL/6 mice aged from 1 to 8 mo when compared with vehicle-treated animals subjected to CLP. The LXRα ligand improved survival in young mice (2–3 mo old) but did not affect survival or neutrophil infiltration in mature adult mice (11–13 mo old). Immunoblotting revealed an age-dependent decrease of lung LXRα levels. Young LXRα−/− mice (2–3 mo old) exhibited earlier mortality than age-matched WT mice after CLP. Lung damage and neutrophil infiltration, lung activation of the pro-inflammatory NF-κB and plasma IL-6 levels were higher in LXRα−/− mice 18 h after CLP compared with LXRα+/+ mice. This study suggests that the anti-inflammatory properties of LXRα in sepsis are age-dependent and severely compromised in mature adult animals.
Collapse
Affiliation(s)
- Gabriela Botez
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Giovanna Piraino
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Paul W Hake
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - John R Ledford
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Michael O'Connor
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - James A Cook
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|