1
|
Berger E, Brandes G, Kaiser O, Reifenrath J, Lenarz T, Wissel K, Durisin M. Induction of cell death by sodium hexachloroplatinate (IV) in the HEI-OC1 cell line, primary rat spiral ganglion cells and rat organ of Corti explants. PLoS One 2024; 19:e0307973. [PMID: 39058727 PMCID: PMC11280268 DOI: 10.1371/journal.pone.0307973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Although cochlear implants have become a well-established method for patients with sensory neural hearing loss, clinical results indicate that in some cases, corrosion of electrode contacts leads to high impedance that interferes with successful stimulation of the auditory nerve. As it is unclear whether corrosion products induce cell damage, we focused on cell culture models of the organ of Corti cell line (HEI-OC1), rat spiral ganglion cells (SGC) and rat organ of Corti explant (OCex) cultivated from neonatal rat cochleae to characterize the cytotoxicity of sodium hexachloroplatinate (IV) (Na2(PtCl6)). The oxidative activity in HEI-OC1 cells decreased with increasing Na2(PtCl6) concentrations between 8 and 16 ng/μl, and live cell staining with Calcein acetoxymethyl/Ethidium homodimer III revealed an increasing number of cells with disrupted membranes. Ultrastructural evidence of mitophagy followed by necroptosis was detected. Additionally, exposure of the SGC to 15-35 ng/μl Na2(PtCl6) dose-dependently reduced neuronal survival and neuritogenesis, as determined by neurofilament antigen staining. In parallel, staining glial cells and fibroblasts with specific antibodies confirmed the dose-dependent induction of cell death by Na2(PtCl6). Exposure of the OCex to 25-45 ng/μl Na2(PtCl6) resulted in severe concentration-dependent hair cell loss. Our data show for the first time that Na2(PtCl6) induces cell death in a concentration-dependent manner in inner ear cell types and tissues.
Collapse
Affiliation(s)
- Elisabeth Berger
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Gudrun Brandes
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | - Odett Kaiser
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Janin Reifenrath
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- Clinic for Orthopaedic Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Kirsten Wissel
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
| | - Martin Durisin
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Hannover, Germany
- University Clinic of Otolaryngology, Head and Neck Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Ding D, Manohar S, Kador PF, Salvi R. Multifunctional redox modulator prevents blast-induced loss of cochlear and vestibular hair cells and auditory spiral ganglion neurons. Sci Rep 2024; 14:15296. [PMID: 38961203 PMCID: PMC11222375 DOI: 10.1038/s41598-024-66406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Blast wave exposure, a leading cause of hearing loss and balance dysfunction among military personnel, arises primarily from direct mechanical damage to the mechanosensory hair cells and supporting structures or indirectly through excessive oxidative stress. We previously reported that HK-2, an orally active, multifunctional redox modulator (MFRM), was highly effective in reducing both hearing loss and hair cells loss in rats exposed to a moderate intensity workday noise that likely damages the cochlea primarily from oxidative stress versus direct mechanical trauma. To determine if HK-2 could also protect cochlear and vestibular cells from damage caused primarily from direct blast-induced mechanical trauma versus oxidative stress, we exposed rats to six blasts of 186 dB peak SPL. The rats were divided into four groups: (B) blast alone, (BEP) blast plus earplugs, (BHK-2) blast plus HK-2 and (BEPHK-2) blast plus earplugs plus HK-2. HK-2 was orally administered at 50 mg/kg/d from 7-days before to 30-day after the blast exposure. Cochlear and vestibular tissues were harvested 60-d post-exposure and evaluated for loss of outer hair cells (OHC), inner hair cells (IHC), auditory nerve fibers (ANF), spiral ganglion neurons (SGN) and vestibular hair cells in the saccule, utricle and semicircular canals. In the untreated blast-exposed group (B), massive losses occurred to OHC, IHC, ANF, SGN and only the vestibular hair cells in the striola region of the saccule. In contrast, rats treated with HK-2 (BHK-2) sustained significantly less OHC (67%) and IHC (57%) loss compared to the B group. OHC and IHC losses were smallest in the BEPHK-2 group, but not significantly different from the BEP group indicating lack of protective synergy between EP and HK-2. There was no loss of ANF, SGN or saccular hair cells in the BHK-2, BEP and BEPHK-2 groups. Thus, HK-2 not only significantly reduced OHC and IHC damage, but completely prevented loss of ANF, SGN and saccule hair cells. The powerful protective effects of this oral MFRM make HK-2 an extremely promising candidate for human clinical trials.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | | | | | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
3
|
Gill NB, Dowker-Key PD, Hedrick M, Bettaieb A. Unveiling the Role of Oxidative Stress in Cochlear Hair Cell Death: Prospective Phytochemical Therapeutics against Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4272. [PMID: 38673858 PMCID: PMC11050722 DOI: 10.3390/ijms25084272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing loss represents a multifaceted and pervasive challenge that deeply impacts various aspects of an individual's life, spanning psychological, emotional, social, and economic realms. Understanding the molecular underpinnings that orchestrate hearing loss remains paramount in the quest for effective therapeutic strategies. This review aims to expound upon the physiological, biochemical, and molecular aspects of hearing loss, with a specific focus on its correlation with diabetes. Within this context, phytochemicals have surfaced as prospective contenders in the pursuit of potential adjuvant therapies. These compounds exhibit noteworthy antioxidant and anti-inflammatory properties, which hold the potential to counteract the detrimental effects induced by oxidative stress and inflammation-prominent contributors to hearing impairment. Furthermore, this review offers an up-to-date exploration of the diverse molecular pathways modulated by these compounds. However, the dynamic landscape of their efficacy warrants recognition as an ongoing investigative topic, inherently contingent upon specific experimental models. Ultimately, to ascertain the genuine potential of phytochemicals as agents in hearing loss treatment, a comprehensive grasp of the molecular mechanisms at play, coupled with rigorous clinical investigations, stands as an imperative quest.
Collapse
Affiliation(s)
- Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Mark Hedrick
- Department of Audiology & Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN 37996-0240, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| |
Collapse
|
4
|
Castañeda R, Natarajan S, Jeong SY, Hong BN, Kang TH. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery? JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:409-428. [PMID: 30439402 DOI: 10.1016/j.jep.2018.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Traditional Oriental Medicine (TOM), the development of hearing pathologies is related to an inadequate nourishment of the ears by the kidney and other organs involved in regulation of bodily fluids and nutrients. Several herbal species have historically been prescribed for promoting the production of bodily fluids or as antiaging agents to treat deficiencies in hearing. AIM OF REVIEW The prevalence of hearing loss has been increasing in the last decade and is projected to grow considerably in the coming years. Recently, several herbal-derived products prescribed in TOM have demonstrated a therapeutic potential for acquired sensorineural hearing loss and tinnitus. Therefore, the aims of this review are to provide a comprehensive overview of the current known efficacy of the herbs used in TOM for preventing different forms of acquired sensorineural hearing loss and tinnitus, and associate the traditional principle with the demonstrated pharmacological mechanisms to establish a solid foundation for directing future research. METHODS The present review collected the literature related to herbs used in TOM or related compounds on hearing from Chinese, Korean, and Japanese herbal classics; library catalogs; and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct). RESULTS This review shows that approximately 25 herbal species and 40 active compounds prescribed in TOM for hearing loss and tinnitus have shown in vitro or in vivo beneficial effects for acquired sensorineural hearing loss produced by noise, aging, ototoxic drugs or diabetes. The inner ear is highly vulnerable to ischemia and oxidative damage, where several TOM agents have revealed a direct effect on the auditory system by normalizing the blood supply to the cochlea and increasing the antioxidant defense in sensory hair cells. These strategies have shown a positive impact on maintaining the inner ear potential, sustaining the production of endolymph, reducing the accumulation of toxic and inflammatory substances, preventing sensory cell death and preserving sensory transmission. There are still several herbal species with demonstrated therapeutic efficacy whose mechanisms have not been deeply studied and others that have been traditionally used in hearing loss but have not been tested experimentally. In clinical studies, Ginkgo biloba, Panax ginseng, and Astragalus propinquus have demonstrated to improve hearing thresholds in patients with sensorineural hearing loss and alleviated the symptoms of tinnitus. However, some of these clinical studies have been limited by small sample sizes, lack of an adequate control group or contradictory results. CONCLUSIONS Current therapeutic strategies have proven that the goal of the traditional oriental medicine principle of increasing bodily fluids is a relevant approach for reducing the development of hearing loss by improving microcirculation in the blood-labyrinth barrier and increasing cochlear blood flow. The potential benefits of TOM agents expand to a multi-target approach on different auditory structures of the inner ear related to increased cochlear blood flow, antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, more research is required, given the evidence is very limited in terms of the mechanism of action at the preclinical in vivo level and the scarce number of clinical studies published.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Sathishkumar Natarajan
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Seo Yule Jeong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Bin Na Hong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea.
| | - Tong Ho Kang
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| |
Collapse
|
5
|
Abstract
Hearing loss is present in millions of people worldwide. Current treatment for patients with severe to profound hearing loss consists of cochlear implantation. Providing the cochlear nerve is intact, patients generally benefit greatly from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. Ongoing research in cell transplantation and gene therapy promises to lead to new developments that will improve the function of cochlear implants. Translation of these experimental approaches is presently at an early stage. This review focuses on the application of biological therapies in severe hearing loss and discusses some of the barriers to translating basic scientific research into clinical reality. We emphasize the application of these novel therapies to cochlear implantation.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
6
|
Abstract
OBJECTIVE To critically review and evaluate the proposed mechanisms and documented results of the therapeutics currently in active clinical drug trials for the treatment of sensorineural hearing loss. DATA SOURCES US National Institutes of Health (NIH) Clinical Trials registry, MEDLINE/PubMed. STUDY SELECTION & DATA EXTRACTION A review of the NIH Clinical Trials registry identified candidate hearing loss therapies, and supporting publications were acquired from MEDLINE/PubMed. Proof-of-concept, therapeutic mechanisms, and clinical outcomes were critically appraised. DATA SYNTHESIS Twenty-two active clinical drug trials registered in the United States were identified, and six potentially therapeutic molecules were reviewed. Of the six molecules reviewed, four comprised mechanisms pertaining to mitigating oxidative stress pathways that presumably lead to inner ear cell death. One remaining therapy sought to manipulate the cell death cascade, and the last remaining therapy was a novel cell replacement therapy approach to introduce a transcription factor that promotes hair cell regeneration. CONCLUSION A common theme in recent clinical trials registered in the United States appears to be the targeting of cell death pathways and influence of oxidant stressors on cochlear sensory neuroepithelium. In addition, a virus-delivered cell replacement therapy would be the first of its kind should it prove safe and efficacious. Significant challenges for bringing these bench-to-bedside therapies to market remain. It is never assured that results in non-human animal models translate to effective therapies in the setting of human biology. Moreover, as additional processes are described in association with hearing loss, such as an immune response and loss of synaptic contacts, additional pathways for targeting become available.
Collapse
Affiliation(s)
- Matthew G. Crowson
- Division of Head & Neck Surgery & Communication Sciences, Department of Surgery, Duke University Medical Center, Durham, NC USA
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head & Neck Surgery, Anatomy and Neurobiology and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Debara Tucci
- Division of Head & Neck Surgery & Communication Sciences, Department of Surgery, Duke University Medical Center, Durham, NC USA
| |
Collapse
|
7
|
Roemer A, Staecker H, Sasse S, Lenarz T, Warnecke A. [Biological therapies in otology. German version]. HNO 2017; 65:571-585. [PMID: 28204850 DOI: 10.1007/s00106-016-0304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Millions of people worldwide suffer from hearing loss. Current treatment for patients with severe to profound hearing loss consists of cochlear implants. Providing the cochlear nerve is intact, patients generally benefit enormously from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. New therapeutic concepts based on cell transplantation and gene therapy are developing rapidly, at least in the research sector. Compared to the wealth of basic research available in this area, translation of these new experimental approaches into clinical application is presently at a very early stage. The current review focuses on translatable treatment concepts and discusses the barriers that need to be overcome in order to translate basic scientific research into clinical reality. Furthermore, the first examples of clinical application of biological therapies in severe hearing loss are presented, particularly in connection with cochlear implants.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| |
Collapse
|
8
|
Ostrovsky S, Hahnewald S, Kiran R, Mistrik P, Hessler R, Tscherter A, Senn P, Kang J, Kim J, Roccio M, Lellouche JP. Conductive hybrid carbon nanotube (CNT)–polythiophene coatings for innovative auditory neuron-multi-electrode array interfacing. RSC Adv 2016. [DOI: 10.1039/c5ra27642j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Surface modification of platinum electrodes to improve neuron-electrode interface and electrode conductive properties in cochlear implants.
Collapse
|
9
|
Ihler F, Pelz S, Coors M, Matthias C, Canis M. Application of a TNF-alpha-inhibitor into the scala tympany after cochlear electrode insertion trauma in guinea pigs: preliminary audiologic results. Int J Audiol 2015; 53:810-6. [PMID: 25311100 DOI: 10.3109/14992027.2014.938369] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Cochlear implantation trauma causes both macroscopic and inflammatory trauma. The aim of the present study was to evaluate the effectiveness of the TNF-alpha inhibitor etanercept applied after cochlear implantation trauma on the preservation of acoustic hearing. DESIGN Guinea pigs were randomly assigned to three groups receiving cochlear implantation trauma by cochleostomy. In one group, the site was sealed by bone cement with no further treatment. A second group was additionally implanted with an osmotic minipump delivering artificial perilymph into the scala tympani for seven days. In the third group, etanercept 1 mg/ml was added to artificial perilymph. Hearing was assessed by auditory brainstem responses at 2, 4, 6, and 8 kHz prior to and after surgery and on days 3, 5, 7, 14, 28. STUDY SAMPLE Fifteen healthy guinea pigs. RESULTS The trauma led to threshold shifts from 50.3 dB ± 16.3 dB to 68.0 dB ± 19.3 dB. Hearing thresholds were significantly lower in etanercept-treated animals compared to controls on day 28 at 8 kHz and from day 3 onwards at 4 and 2 kHz (p < 0.01; two-way RM ANOVA / Bonferroni t-test). CONCLUSION The application of etanercept led to preservation of acoustic hearing after cochlear implantation trauma.
Collapse
Affiliation(s)
- Friedrich Ihler
- * Department of Otorhinolaryngology, University Medical Center Göttingen , Germany
| | | | | | | | | |
Collapse
|
10
|
Hearing preservation in cochlear implant surgery. Int J Otolaryngol 2014; 2014:468515. [PMID: 25276136 PMCID: PMC4167950 DOI: 10.1155/2014/468515] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022] Open
Abstract
In the past, it was thought that hearing loss patients with residual low-frequency hearing would not be good candidates for cochlear implantation since insertion was expected to induce inner ear trauma. Recent advances in electrode design and surgical techniques have made the preservation of residual low-frequency hearing achievable and desirable. The importance of preserving residual low-frequency hearing cannot be underestimated in light of the added benefit of hearing in noisy atmospheres and in music quality. The concept of electrical and acoustic stimulation involves electrically stimulating the nonfunctional, high-frequency region of the cochlea with a cochlear implant and applying a hearing aid in the low-frequency range. The principle of preserving low-frequency hearing by a “soft surgery” cochlear implantation could also be useful to the population of children who might profit from regenerative hair cell therapy in the future.
Main aspects of low-frequency hearing preservation surgery are discussed in this review: its brief history, electrode design, principles and advantages of electric-acoustic stimulation, surgical technique, and further implications of this new treatment possibility for hearing impaired patients.
Collapse
|
11
|
Lin Z, Shi L, Lu J, Li J, Hu H, Zuo C, Tang W, Lu Y, Bao A, Xu L. Effects of curcumin on glucose metabolism in the brains of rats subjected to chronic unpredictable stress: a 18 F-FDG micro-PET study. Altern Ther Health Med 2013; 14:202. [PMID: 23914948 PMCID: PMC3751057 DOI: 10.1186/1472-6882-13-202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/26/2013] [Indexed: 01/28/2023]
Abstract
Background Chronic unpredictable stress (CUS) can cause behavioral and physiological abnormalities that are important to the prediction of symptoms of depression that may be associated with cerebral glucose metabolic abnormalities. Curcumin showed potential antidepressant effects, but whether or not it can reverse cerebral functional abnormalities and so ameliorate depression remains unknown. Methods To investigate the effects of curcumin on brain activity in CUS rats, rats were subjected to 3 weeks of CUS and then treated with curcumin orally at a dose of 40 mg/kg/day for one month. 18 F fluorodeoxyglucose (18 F-FDG)-micro positron emission tomography (micro-PET) neuroimaging was used to detect changes in cerebral metabolism. Body weight, sucrose preference, and open field tests were used to record depressive behaviors during CUS and after curcumin treatment. Results Three weeks of CUS significantly decreased body weight, sucrose preference, sucrose consumption, total distance travelling, and the number of rearing events. It also induced metabolic alterations in several parts of the brain, showing increased glucose metabolism in the right hemisphere. After curcumin treatment for one month, sucrose preference, sucrose consumption, total distance travelling, and the number of rearing events returned to normal levels. Curcumin treatment also induced strong deactivation of the left primary auditory cortex and activation of amygdalohippocampal cortex. Conclusion Curcumin was found to ameliorate the abnormalities in the behavior and brain glucose metabolism caused by CUS, which may account for its antidepressive effects.
Collapse
|
12
|
Staecker H, Rodgers B. Developments in delivery of medications for inner ear disease. Expert Opin Drug Deliv 2013; 10:639-50. [PMID: 23560526 DOI: 10.1517/17425247.2013.766167] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hearing loss, tinnitus and balance disturbance represent common diseases that have tremendous impact on quality of life. Despite the high incidence of inner ear disease in the general population, there are currently no dedicated pharmacologic interventions available to treat these problems. AREAS COVERED This review will focus on how treatment of inner ear disease is moving toward local delivery at the end organ level. The authors will discuss current practice, ongoing clinical trials and potential areas of development such as hair cell regeneration and neurotrophin therapy. EXPERT OPINION The inner ear is accessible through the middle ear via the oval and round windows allowing diffusion of drugs into the perilymph. With a better understanding of the physiology of the inner ear and the underlying molecular causes of inner ear disease there is great potential for the development of novel therapeutics that can be locally administered. At present, there is a rapid development of drugs to target diverse inner ear diseases that cause sensorineural hearing loss and balance dysfunction.
Collapse
Affiliation(s)
- Hinrich Staecker
- University of Kansas School of Medicine, Department of Otolaryngology Head and Neck Surgery, MS 3010, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | | |
Collapse
|
13
|
Zhang TL, Fu JL, Geng Z, Yang JJ, Sun XJ. The neuroprotective effect of losartan through inhibiting AT1/ASK1/MKK4/JNK3 pathway following cerebral I/R in rat hippocampal CA1 region. CNS Neurosci Ther 2012; 18:981-7. [PMID: 23095236 DOI: 10.1111/cns.12015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 11/27/2022] Open
Abstract
AIMS It has been well documented that angiotensin II type 1 (AT(1) ) receptor blockers (ARBs) are known to attenuate neural damage and the c-Jun N-terminal protein kinase 3 (JNK3) pathway and caspase-3 signal are involved in neuronal cell death following cerebral ischemia/reperfusion (I/R). In this study, we first showed that losartan could protect neurons against cerebral I/R-induced injury. METHODS Cerebral ischemia model was induced by four-vessel occlusion. Antisense oligodeoxynucleotides (ODNs) against AT1 receptor and losartan were used to detect whether the AT1 receptor implicated in cerebral I/R. Immunoprecipitation (IP) and immunoblotting (IB) were used to detect the interactions between β-arrestin-2 and AT1/apoptosis signal-regulating kinase 1 (ASK1)/MAP kinase kinase 4 (MKK4) signaling module following cerebral I/R. RESULTS First, losartan decreased cerebral I/R-induced neuronal death. Second, losartan depressed the β-arrestin-2-assembled AT1/ASK1/MKK4 signaling module. Third, losartan depressed the activation of c-jun, JNK3, Bcl-2, caspase-3 and the release of cytochrome c from mitochondria to cytoplasm. CONCLUSION Taken together, losartan could attenuate neural damage following the cerebral I/R via inhibiting the β-arrestin-2-assembled AT1/ASK1/MKK4 signaling module and depressing the activation of c-jun, JNK3, and caspase-3 and the release of cytochrome c.
Collapse
Affiliation(s)
- Tian-Ling Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | | | | |
Collapse
|
14
|
Abstract
OBJECTIVE AM-111, a cell-permeable peptide inhibitor of c-Jun N-terminal kinase, was investigated for its protective effects against ischemic damage of the cochlea in gerbils. METHODS Transient cochlear ischemia was introduced in animals by occluding the bilateral vertebral arteries for l5 minutes. Then, 10 μl of AM-111 at a concentration of l, 10, or 100 μM in hyaluronic acid gel formulation was applied onto the round window 30 minutes after the insult. Gel without active substance was used in a control group. Treatment effects were evaluated by auditory brainstem response (ABR) and histology of the inner ear. RESULTS In controls, transient cochlear ischemia caused a 25.0 ± 5.0 dB increase in the ABR threshold at 8 kHz and a decrease of 13.3 ± 2.3% in inner hair cells at the basal turn on Day 7. Ischemic damage was mild at 2 and 4 kHz. When the animals were treated with AM-111 at 100 μM, cochlear damage was significantly reduced: the increase in ABR threshold was 3.3 ± 2.4 dB at 8 kHz, and the inner hair cell loss was 3.1 ± 0.6% at the basal turn on Day 7. The effects of AM-111 were concentration dependent: 100 μM was more effective than 1 or 10 μM. CONCLUSION Direct application of AM-111 in gel formulation on the round window was effective in preventing acute hearing loss because of transient cochlear ischemia.
Collapse
|
15
|
Quesnel S, Nguyen Y, Campo P, Hermine O, Ribeil JA, Elmaleh M, Grayeli AB, Ferrary E, Sterkers O, Couloigner V. Protective effect of systemic administration of erythropoietin on auditory brain stem response and compound action potential thresholds in an animal model of cochlear implantation. Ann Otol Rhinol Laryngol 2012; 120:737-47. [PMID: 22224316 DOI: 10.1177/000348941112001108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES An animal model of cochlear implantation has been developed, and the hearing threshold was evaluated after different surgical procedures. The effect of perioperative systemic administration of erythropoietin on the hearing loss induced by cochlear implantation was tested. METHODS Twenty-nine guinea pigs with normal hearing underwent implantation of a 254-microm-diameter array through a cochleostomy. The effects on hearing of cochleostomy and transient and long-term array implantation (21 days) were assessed by testing of the auditory brain stem responses and compound action potentials. Eleven implanted animals received intraperitoneal administration of erythropoietin. Selected computed tomographic scans and cochlear histologic studies were performed 1 month after implantation to confirm proper placement of the array. The erythropoietin concentration at the time of surgery was assessed in samples of perilymph, cerebrospinal fluid, and blood. RESULTS The cochleostomy and transient array insertion had no effect on hearing thresholds. Long-term array implantation induced a stable decrease of hearing threshold (30 dB), a decrease that was reduced by 12 dB in erythropoietin-treated animals. The erythropoietin-treated animals had better hearing preservation at higher frequencies. Fibrosis surrounding the array was seen in both groups. CONCLUSIONS The hearing loss observed was probably due to the presence of the array in the cochlea. The intraperitoneal injection of erythropoietin improved the hearing threshold shift induced by implantation.
Collapse
Affiliation(s)
- Stéphanie Quesnel
- Inserm UMR-S867, Minimally Invasive Robot-Based Otologic Surgery, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Knipper M, Müller M, Zimmermann U. Molecular Mechanism of Tinnitus. SPRINGER HANDBOOK OF AUDITORY RESEARCH 2012. [DOI: 10.1007/978-1-4614-3728-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Quesnel S, Nguyen Y, Elmaleh M, Grayeli AB, Ferrary E, Sterkers O, Couloigner V. Effects of systemic administration of methylprednisolone on residual hearing in an animal model of cochlear implantation. Acta Otolaryngol 2011; 131:579-84. [PMID: 21190421 DOI: 10.3109/00016489.2010.541936] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Delivery of intramuscular injection of methylprednisolone around the implantation surgery improved the hearing threshold shift induced by cochlear implantation. OBJECTIVES During electroacoustic cochlear implantation surgery, the residual hearing is not preserved in about 15% of cases. In this study, we tested the effects of intramuscular administration of methylprednisolone on the hearing loss induced by cochlear implantation in a model of guinea pig cochlear implantation. METHODS Eleven guinea pigs with normal hearing were implanted with a 254 μm diameter silicone array through a cochleostomy, and the effects on hearing of longstanding array insertion (21 days) were assessed. Six of the implanted animals received intramuscular administration of methylprednisolone. Auditory brainstem response recordings were performed before and up to 21 days after the cochlear implantation. CT scans were performed in some animals 1 month after implantation. RESULTS CT scans confirmed that the array was well positioned in tested animals. From days 3 to 21, a hearing loss of about 30 dB on all frequencies was observed in the implanted nontreated group. This hearing loss remained stable during the whole follow-up period. Compared with implanted nontreated animals, the hearing threshold shift decreased by 12 dB in animals treated with methylprednisolone.
Collapse
Affiliation(s)
- Stéphanie Quesnel
- Inserm UMR-S Minimal Invasive Robot-Based Otologic Surgery, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
von Ilberg CA, Baumann U, Kiefer J, Tillein J, Adunka OF. Electric-Acoustic Stimulation of the Auditory System: A Review of the First Decade. ACTA ACUST UNITED AC 2011; 16 Suppl 2:1-30. [DOI: 10.1159/000327765] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 02/21/2011] [Indexed: 11/19/2022]
|
19
|
Gratton MA, Eleftheriadou A, Garcia J, Verduzco E, Martin GK, Lonsbury-Martin BL, Vázquez AE. Noise-induced changes in gene expression in the cochleae of mice differing in their susceptibility to noise damage. Hear Res 2010; 277:211-26. [PMID: 21187137 DOI: 10.1016/j.heares.2010.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 12/16/2010] [Accepted: 12/18/2010] [Indexed: 12/20/2022]
Abstract
The molecular mechanisms underlying the vast differences between individuals in their susceptibility to noise-induced hearing loss (NIHL) are unknown. The present study demonstrated that the effects of noise over-exposure on the expression of molecules likely to be important in the development of NIHL differ among inbred mouse strains having distinct susceptibilities to NIHL including B6 (B6.CAST) and 129 (129X1/SvJ and 129S1/SvImJ) mice. The noise-exposure protocol produced a loss of 40 dB in hearing sensitivity in susceptible B6 mice, but no loss for the two resistant 129 substrains. Analysis of gene expression in the membranous labyrinth 6 h following noise exposure revealed upregulation of transcription factors in both the susceptible and resistant strains. However, a significant induction of genes involved in cell-survival pathways such as the heat shock proteins HSP70 and HSP40, growth arrest and DNA-damage-inducible protein 45β (GADD45β), and CDK-interacting protein 1 (p21(Cip1)) was detected only in the resistant mice. Moreover, in 129 mice significant upregulation of HSP70, GADD45β, and p21(Cip1) was confirmed at the protein level. Since the functions of these proteins include roles in potent anti-apoptotic cellular pathways, their upregulation may contribute to protection from NIHL in the resistant 129 mice.
Collapse
Affiliation(s)
- Michael Anne Gratton
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Renton JP, Xu N, Clark JJ, Hansen MR. Interaction of neurotrophin signaling with Bcl-2 localized to the mitochondria and endoplasmic reticulum on spiral ganglion neuron survival and neurite growth. J Neurosci Res 2010; 88:2239-51. [PMID: 20209634 DOI: 10.1002/jnr.22381] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enhanced spiral ganglion neuron (SGN) survival and regeneration of peripheral axons following deafness will likely enhance the efficacy of cochlear implants. Overexpression of Bcl-2 prevents SGN death but inhibits neurite growth. Here we assessed the consequences of Bcl-2 targeted to either the mitochondria (GFP-Bcl-2-Maob) or the endoplasmic reticulum (ER, GFP-Bcl-2-Cb5) on cultured SGN survival and neurite growth. Transfection of wild-type GFP-Bcl-2, GFP-Bcl-2-Cb5, or GFP-Bcl-2-Maob increased SGN survival, with GFP-Bcl-2-Cb5 providing the most robust response. Paradoxically, expression of GFP-Bcl-2-Maob results in SGN death in the presence of neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF), neurotrophins that independently promote SGN survival via Trk receptors. This loss of SGNs is associated with cleavage of caspase 3 and appears to be specific for neurotrophin signaling, insofar as coexpression of constitutively active mitogen-activated kinase kinase (MEKDeltaEE) or phosphatidyl inositol-3 kinase (P110), but not other prosurvival stimuli (e.g., membrane depolarization), also results in the loss of SGNs expressing GFP-Bcl-2-Maob. MEKDeltaEE and P110 promote SGN survival, whereas P110 promotes neurite growth to a greater extent than NT-3 or MEKDeltaEE. However, wild-type GFP-Bcl-2, GFP-Bcl-2-Cb5, and GFP-Bcl-2-Maob inhibit neurite growth even in the presence of neurotrophins, MEKDeltaEE, or P110. Historically, Bcl-2 has been thought to act primarily at the mitochondria to prevent neuronal apoptosis. Nevertheless, our data show that Bcl-2 targeted to the ER is more effective at rescuing SGNs in the absence of trophic factors. Additionally, Bcl-2 targeted to the mitochondria results in SGN death in the presence of neurotrophins. (c) 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- John P Renton
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | | | | | | |
Collapse
|
21
|
Tanaka S, Tabuchi K, Hoshino T, Murashita H, Tsuji S, Hara A. Protective effects of exogenous GM-1 ganglioside on acoustic injury of the mouse cochlea. Neurosci Lett 2010; 473:237-41. [DOI: 10.1016/j.neulet.2010.02.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/16/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
|
22
|
Fishman AJ, Moreno LE, Rivera A, Richter CP. CO2laser fiber soft cochleostomy: Development of a technique using human temporal bones and a guinea pig model. Lasers Surg Med 2010; 42:245-56. [DOI: 10.1002/lsm.20902] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Yu H, Ye J, Li H, Zhang J, Jiang H, Dai C. Conditioned medium from neonatal rat olfactory ensheathing cells promotes the survival and proliferation of spiral ganglion cells. Acta Otolaryngol 2010. [DOI: 10.3109/00016480903154256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Oghalai JS, Tonini R, Rasmus J, Emery C, Manolidis S, Vrabec JT, Haymond J. Intra-operative monitoring of cochlear function during cochlear implantation. Cochlear Implants Int 2009; 10:1-18. [PMID: 18937280 DOI: 10.1002/cii.372] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this study was to determine if intra-operative auditory monitoring is feasible during cochlear implantation and whether this can be used as feedback to the surgeon to improve the preservation of residual hearing. This prospective non-randomised study was set in a paediatric tertiary referral hospital. Thirty eight consecutive paediatric patients undergoing cochlear implantation who had measurable auditory thresholds pre-operatively were divided into two cohorts. The unmonitored cohort included the first 22 patients and the monitored cohort included the last 16 patients. The main outcome measure(s) were pre-operative, intra-operative and more than one month post-operative average auditory thresholds at 500, 1000 and 2000 Hz measured using auditory steady-state response audiometry. The average pre-operative thresholds were 103.5 dB HL and 99.7 dB HL in the unmonitored and monitored cohorts, respectively. These were not statistically different (p > 0.3). In the monitored cohort, we measured auditory thresholds to assess cochlear function at multiple time points during the operation. Compared to baseline, thresholds were increased 0.7 dB after drilling the mastoidectomy and well, 0.2 dB after opening the cochlea and 4.6 dB after inserting the electrode array. One month post-operatively, the average thresholds were 114.0 dB HL in the unmonitored cohort but only 98.8 dB HL in the monitored cohort (p < 0.001). Both the use of intra-operative auditory monitoring and higher pre-operative thresholds were associated with improved preservation of residual hearing (p <or= 0.001). Intra-operative auditory monitoring is a viable tool that can provide real-time feedback to the surgeon during cochlear implant surgery. These data suggest that this can lead the surgeon to modify his or her surgical technique in ways that can improve the rate of long-term hearing preservation.
Collapse
Affiliation(s)
- John S Oghalai
- The Hearing Center at Texas Children's Hospital, Houston, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Recent advances in cochlear implant technology have focused renewed attention on the preservation of residual hearing. The focus on preservation of residual hearing is driven by the concept of electroacoustic stimulation. This option depends on the insertion of a short cochlear implant electrode into the basal region of the cochlea while preserving native function in the apical region. The desire to preserve residual hearing has led to the development of the soft-surgery cochlear implantation technique. Here, the authors evaluate its various components. Avoiding entry of blood into the cochlea and the use of hyaluronate seem to be reasonably supported, whereas the use of topical steroids is unlikely to be beneficial. The site of entry into the cochlea, the use of contoured or straight devices, and the depth of insertion are also evaluated. The authors highlight the importance of systematic recording of outcomes and surgical events.
Collapse
Affiliation(s)
- David R Friedland
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
26
|
|
27
|
Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea. Apoptosis 2008; 13:1303-21. [PMID: 18839313 DOI: 10.1007/s10495-008-0266-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To understand possible causative roles of apoptosis gene regulation in age-related hearing loss (presbycusis), apoptotic gene expression patterns in the CBA mouse cochlea of four different age and hearing loss groups were compared, using GeneChip and real-time (qPCR) microarrays. GeneChip transcriptional expression patterns of 318 apoptosis-related genes were analyzed. Thirty eight probes (35 genes) showed significant differences in expression. The significant gene families include Caspases, B-cell leukemia/lymphoma2 family, P53, Calpains, Mitogen activated protein kinase family, Jun oncogene, Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor-related and tumor necrosis factor-related genes. The GeneChip results of 31 genes were validated using the new TaqMan Low Density Array (TLDA). Eight genes showed highly correlated results with the GeneChip data. These genes are: activating transcription factor3, B-cell leukemia/lymphoma2, Bcl2-like1, caspase4 apoptosis-related cysteine protease 4, Calpain2, dual specificity phosphatase9, tumor necrosis factor receptor superfamily member12a, and Tumor necrosis factor superfamily member13b, suggesting they may play critical roles in inner ear aging.
Collapse
|
28
|
Gross J, Machulik A, Moller R, Fuchs J, Amarjargal N, Ungethüm U, Kuban RJ, Szczepek AJ, Haupt H, Mazurek B. MRNA expression of members of the IGF system in the organ of Corti, the modiolus and the stria vascularis of newborn rats. Growth Factors 2008; 26:180-91. [PMID: 19378418 DOI: 10.1080/08977190802194317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We analyzed the mRNA expression of the insulin-like growth factor (IGF) family genes and of selected downstream pathway genes using the Affymetrix microarray system and confirmatory RT-PCR in the freshly prepared organ of Corti (OC), modiolus (MOD) and stria vascularis (SV) from neonatal rats (3-5 days old) and after 24h in culture. Among the seven members of the IGF family analyzed in this paper, IGF1, IGF2 and IGF-binding protein (IGFBP2) had the highest basal expression in all regions. Preparatory stress and culture increased the expression of IGF2, IGFBP2, IGFBP3, IGFBP5, glucose transporterl (GLUT1), signal transducer, and activator of transcription3 (STAT3), phosphoinositide-3-kinase regulatory subunit (Pik3r1), Jun oncogene (c-jun) and decreased that of mitogen-activated protein kinases MAPK3 and MAPK14 in all regions. Region-specific changes were observed in OC (GLUT1), MOD (IGFBP3 and c-jun) and SV (IGF2 and IGFBP2).
Collapse
Affiliation(s)
- Johann Gross
- Molecular Biology Research Laboratory, Department of Otorhinolaryngology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shepherd RK, Coco A, Epp SB. Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss. Hear Res 2008; 242:100-9. [PMID: 18243608 PMCID: PMC2630855 DOI: 10.1016/j.heares.2007.12.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 12/05/2007] [Accepted: 12/12/2007] [Indexed: 01/14/2023]
Abstract
Exogenous neurotrophins (NTs) have been shown to rescue spiral ganglion neurons (SGNs) from degeneration following a sensorineural hearing loss (SNHL). Furthermore, chronic electrical stimulation (ES) has been shown to retard SGN degeneration in some studies but not others. Since there is evidence of even greater SGN rescue when NT administration is combined with ES, we examined whether chronic ES can maintain SGN survival long after cessation of NT delivery. Young adult guinea pigs were profoundly deafened using ototoxic drugs; five days later they were unilaterally implanted with an electrode array and drug delivery system. Brain derived neurotrophic factor (BDNF) was continuously delivered to the scala tympani over a four week period while the animal simultaneously received ES via bipolar electrodes in the basal turn (i.e., turn 1) scala tympani. One cohort (n=5) received ES for six weeks (i.e., including a two week period after the cessation of BDNF delivery; ES(6)); a second cohort (n=5) received ES for 10 weeks (i.e., a six week period following cessation of BDNF delivery; ES(10)). The cochleae were harvested for histology and SGN density determined for each cochlear turn for comparison with normal hearing controls (n=4). The withdrawal of BDNF resulted in a rapid loss of SGNs in turns 2-4 of the deafened/BDNF-treated cochleae; this was significant as early as two weeks following removal of the NT when compared with normal controls (p<0.05). Importantly, there was not a significant reduction in SGNs in turn 1 (i.e., adjacent to the electrode array) two and six weeks after NT removal, as compared with normal controls. This result suggests that chronic ES can prevent the rapid loss of SGNs that occurs after the withdrawal of exogenous NTs. Implications for the clinical delivery of NTs are discussed.
Collapse
Affiliation(s)
- Robert K Shepherd
- The Bionic Ear Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia.
| | | | | |
Collapse
|
30
|
Roehm PC, Xu N, Woodson EA, Green SH, Hansen MR. Membrane depolarization inhibits spiral ganglion neurite growth via activation of multiple types of voltage sensitive calcium channels and calpain. Mol Cell Neurosci 2007; 37:376-87. [PMID: 18055215 DOI: 10.1016/j.mcn.2007.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/17/2007] [Accepted: 10/25/2007] [Indexed: 12/23/2022] Open
Abstract
The effect of membrane electrical activity on spiral ganglion neuron (SGN) neurite growth remains unknown despite its relevance to cochlear implant technology. We demonstrate that membrane depolarization delays the initial formation and inhibits the subsequent extension of cultured SGN neurites. This inhibition depends directly on the level of depolarization with higher levels of depolarization causing retraction of existing neurites. Cultured SGNs express subunits for L-type, N-type, and P/Q type voltage-gated calcium channels (VGCCs) and removal of extracellular Ca(2+) or treatment with a combination of L-type, N-type, and P/Q-type VGCC antagonists rescues SGN neurite growth under depolarizing conditions. By measuring the fluorescence intensity of SGNs loaded with the fluorogenic calpain substrate t-butoxy carbonyl-Leu-Met-chloromethylaminocoumarin (20 microM), we demonstrate that depolarization activates calpains. Calpeptin (15 microM), a calpain inhibitor, prevents calpain activation by depolarization and rescues neurite growth in depolarized SGNs suggesting that calpain activation contributes to the inhibition of neurite growth by depolarization.
Collapse
Affiliation(s)
- Pamela C Roehm
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
31
|
Kovacic P, Somanathan R. Ototoxicity and noise trauma: electron transfer, reactive oxygen species, cell signaling, electrical effects, and protection by antioxidants: practical medical aspects. Med Hypotheses 2007; 70:914-23. [PMID: 17977665 DOI: 10.1016/j.mehy.2007.06.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/18/2007] [Indexed: 12/01/2022]
Abstract
Ototoxins are substances of various structures and classes. This review provides extensive evidence for involvement of electron transfer (ET), reactive oxygen species (ROS) and oxidative stress (OS) as a unifying theme. Successful application is made to the large majority of ototoxins, as well as noise trauma. We believe it is not coincidental that these toxins generally incorporate ET functionalities (quinone, metal complex, ArNO(2), or conjugated iminium) either per se or in metabolites, potentially giving rise to ROS by redox cycling. Some categories, e.g., peroxides and noise, appear to operate via non-ET routes in generating OS. These highly reactive entities can then inflict injury via OS upon various constituents of the ear apparatus. The theoretical framework is supported by the extensive literature on beneficial effects of antioxidants, both for toxins and noise. Involvement of cell signaling and electrical effects are discussed. This review is the first comprehensive one based on a unified mechanistic approach. Various practical medical aspects are also addressed. There is extensive documentation for beneficial effects of antioxidants whose use might be recommended clinically for prevention of ototoxicity and noise trauma. Recent research indicates that catalytic antioxidants may be more effective. In addition to ototoxicity, a widespread problem consists of ear infections by bacteria which are demonstrating increasing resistance to conventional therapies. A recent, novel approach to improved drugs involves use of agents which inhibit quorum sensors that play important roles in bacterial functioning. Prevention of ear injury by noise trauma is also discussed, along with ear therapeutics.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, CA 92182-1030, USA.
| | | |
Collapse
|
32
|
Ye Q, Tillein J, Hartmann R, Gstoettner W, Kiefer J. Application of a corticosteroid (Triamcinolon) protects inner ear function after surgical intervention. Ear Hear 2007; 28:361-9. [PMID: 17485985 DOI: 10.1097/01.aud.0000261655.30652.62] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Opening of the inner ear during stapes surgery or cochlear implantation may result in trauma to inner ear structures and possible hearing loss. The dual aim of the present study was to evaluate the effectiveness of locally applied Triamcinolon* to protect the inner ear against surgically induced trauma and to exclude possible ototoxic effects. METHODS In an animal model (guinea pig), a corticosteroid (Triamcinolon) was topically applied to the inner ear, either by extracochlear application and diffusion through the round window membrane or by direct intracochlear application via a cochleostomy. Physiological effects of the steroid were investigated by monitoring the hearing of steroid treated animals in comparison to control animals treated with Ringer solution instead of Triamcinolon. Thresholds as well as input/output functions (I/O function) of compound action potentials (CAPs) in response to auditory stimuli were determined before the cochleostomy and at specific intervals up to 4 weeks after application of Triamcinolon. RESULTS Extracochlear application of Triamcinolon induced only minor shifts of mean CAP thresholds but significantly increased mean maximal amplitudes of I/O function 14 d after application. No detrimental effects on cochlear function were noted; thus, indicating absence of ototoxicity for extracochlear application in the concentrations used. After the surgical trauma of cochleostomy, CAP thresholds increased by 12.5 dB directly after surgery and by 15.8 dB at day 3. Amplitudes of CAPs diminished. Intracochlear application of Triamcinolon resulted in significantly enhanced recovery of CAP thresholds and amplitudes of I/O function from initial loss over a period of 4 weeks. CONCLUSIONS From these results, we conclude that extracochlear topical application of Triamcinolon has no ototoxic effect in the concentrations that were used and that intracochlear application supports an increased recovery of cochlear functions after surgical trauma. Furthermore, the results indicate a protective effect of corticosteroids, partially preventing progressive loss of hearing after cochleostomy over a period of 4 weeks. Intracochlear application of Triamcinolon may be useful to prevent hearing loss after surgical intervention on the inner ear; however, clinical safety and efficacy remain to be proven in clinical studies.
Collapse
Affiliation(s)
- Qing Ye
- Clinic for Otorhinolaryngology, Head and Neck Surgery, Department of Sensory Physiology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
33
|
Hansen MR, Roehm PC, Xu N, Green SH. Overexpression of Bcl-2 or Bcl-xL prevents spiral ganglion neuron death and inhibits neurite growth. Dev Neurobiol 2007; 67:316-25. [PMID: 17443790 DOI: 10.1002/dneu.20346] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spiral ganglion neurons (SGNs) provide afferent innervation to the cochlea and rely on contact with hair cells (HCs) for their survival. Following deafferentation due to hair cell loss, SGNs gradually die. In a rat culture model, we explored the ability of prosurvival members of the Bcl-2 family of proteins to support the survival and neurite outgrowth of SGNs. We found that overexpression of either Bcl-2 or Bcl-xL significantly increases SGN survival in the absence of neurotrophic factors, establishing that the Bcl-2 pathway is sufficient for SGN cell survival and that SGN deprived of trophic support die by an apoptotic mechanism. However, in contrast to observations in central neurons and PC12 cells where Bcl-2 appears to promote neurite growth, both Bcl-2 and Bcl-xL overexpression dramatically inhibit neurite outgrowth in SGNs. This inhibition of neurite growth by Bcl-2 occurs in nearly all SGNs even in the presence of multiple neurotrophic factors implying that Bcl-2 directly inhibits neurite growth rather than simply rescuing a subpopulation of neurons incapable of extending neurites without additional stimuli. Thus, although overexpression of prosurvival members of the Bcl-2 family prevents SGN loss following trophic factor deprivation, the inhibition of neurite growth by these molecules may limit their efficacy for support of auditory nerve maintenance or regeneration following hair cell loss.
Collapse
Affiliation(s)
- Marlan R Hansen
- Department of Otolaryngology, Head, and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
34
|
Le Prell CG, Yamashita D, Minami SB, Yamasoba T, Miller JM. Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res 2007; 226:22-43. [PMID: 17141991 PMCID: PMC1995566 DOI: 10.1016/j.heares.2006.10.006] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 10/05/2006] [Accepted: 10/24/2006] [Indexed: 12/20/2022]
Abstract
Recent research has shown the essential role of reduced blood flow and free radical formation in the cochlea in noise-induced hearing loss (NIHL). The amount, distribution, and time course of free radical formation have been defined, including a clinically significant late formation 7-10 days following noise exposure, and one mechanism underlying noise-induced reduction in cochlear blood flow has finally been identified. These new insights have led to the formulation of new hypotheses regarding the molecular mechanisms of NIHL; and, from these, we have identified interventions that prevent NIHL, even with treatment onset delayed up to 3 days post-noise. It is essential to now assess the additive effects of agents intervening at different points in the cell death pathway to optimize treatment efficacy. Finding safe and effective interventions that attenuate NIHL will provide a compelling scientific rationale to justify human trials to eliminate this single major cause of acquired hearing loss.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Kresge Hearing Research Institute, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109-0506, USA.
| | | | | | | | | |
Collapse
|
35
|
Steinbach S, Lutz J. Glutamate induces apoptosis in cultured spiral ganglion explants. Biochem Biophys Res Commun 2007; 357:14-9. [PMID: 17418815 DOI: 10.1016/j.bbrc.2007.03.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Traumatic sound exposure, aminoglycoside antibiotics, cochlea ischemia or traumatic stress leads to an excessive release of glutamate from inner hair cells into the synaptic cleft. The high glutamate concentration can cause a swelling and destruction of the dendrites of spiral ganglion neurons of type I as well as a reduction in the number of neurons. This may be a cause of hearing loss. The mechanism causing the reduction of neurons is still not known. Apoptosis, also called programmed cell death, could be involved. In this study, cultured spiral ganglion explants were incubated with glutamate in high concentrations. Neurite outgrowth was determined and additionally a new method was established for studying the morphology of single spiral ganglion neurons. For the first time it was shown that glutamate induces apoptosis of spiral ganglion neurons, which could be blocked selectively by a caspase-3 inhibitor. This could offer a new therapeutic strategy for hearing disorders.
Collapse
Affiliation(s)
- Silke Steinbach
- Department of Otolaryngology-Head and Neck Surgery, Technical University of Munich, Germany.
| | | |
Collapse
|
36
|
Smith LP, Eshraghi AA, Whitley DE, van de Water TR, Balkany TJ. Induction of localized cochlear hypothermia. Acta Otolaryngol 2007; 127:228-33. [PMID: 17364357 DOI: 10.1080/00016480600794487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CONCLUSIONS Localized cochlear hypothermia was induced in a rat model, demonstrating the feasibility of modulating cochlear temperature without affecting core body temperature. OBJECTIVES Systemic hypothermia has been demonstrated to protect the rat cochlea against electrode insertion trauma-induced hearing loss. Due to potential adverse effects of systemic hypothermia, we set out to demonstrate the feasibility of inducing localized cochlear hypothermia and compared the efficacy of three cooling techniques. MATERIALS AND METHODS Twenty-four ears were prepared by sealing a temperature micro-probe into the basal turn of the cochlea. Cochleae were then cooled by cold saline irrigation of the external auditory canal (EAC) or bulla or by direct application of ice over the bulla. Cochlear temperature measurements were recorded every 30 s during the cooling period until stable. Rectal temperature was monitored continuously and maintained at 36 degrees C. RESULTS All techniques resulted in cochlear hypothermia without a concomitant change in rectal temperature. EAC irrigation (14 degrees C and 11 degrees C) decreased cochlear temperature on average by 1.1 degrees C and 1.6 degrees C, respectively. Bulla irrigation (14 degrees C and 11 degrees C) decreased cochlear temperature on average by 3.3 degrees C and 4.1 degrees C, respectively. The ice produced an average cochlear temperature decrease of 4.1 degrees C. In all cases, a cochlear temperature nadir was reached in 5-6 min with no significant differences between groups with respect to time.
Collapse
Affiliation(s)
- Lee P Smith
- Department of Otolaryngology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
37
|
Ruiz JW, Guzman J, Polak M, Eshraghi AA, Balkany TJ, Van De Water TR. Glutathione ester protects against hydroxynonenal-induced loss of auditory hair cells. Otolaryngol Head Neck Surg 2006; 135:792-7. [PMID: 17071314 DOI: 10.1016/j.otohns.2006.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Test the ability of glutathione monoethyl ester (GSH(e)) to protect auditory hair cells against the ototoxic effects of 4-hydroxy-2,3-nonenal (HNE). STUDY DESIGN AND SETTING Organ of Corti explants were either untreated or treated with one of a series of four concentrations of GSH(e) for one day, then exposed to HNE. Counts of FITC-phalloidin-labeled hair cells determined both HNE ototoxicity and GSH(e) otoprotection. RESULTS HNE was toxic to hair cells at physiologically relevant levels, eg, 400 muM, and GSH(e) provided a significant level of protection against HNE ototoxicity (P < 0.05) at all levels tested, ie, 1.16 to 9.3 mM. CONCLUSION GSH(e) protects auditory hair cells from damage and loss initiated by a naturally occurring ototoxic molecule, ie, HNE (a by-product of oxidative stress). SIGNIFICANCE Treatment with GSH(e) may be an effective therapy to protect the cochlea against the adverse effects of traumas (eg, electrode insertion) that generate oxidative stress.
Collapse
Affiliation(s)
- Jose W Ruiz
- University of Miami Ear Institute, Department of Otolaryngology, University of Miami, Leonard M. Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
38
|
Wang J, Ruel J, Ladrech S, Bonny C, van de Water TR, Puel JL. Inhibition of the c-Jun N-Terminal Kinase-Mediated Mitochondrial Cell Death Pathway Restores Auditory Function in Sound-Exposed Animals. Mol Pharmacol 2006; 71:654-66. [PMID: 17132689 DOI: 10.1124/mol.106.028936] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We tested and characterized the therapeutic value of round window membrane-delivered (RWM) d-JNKI-1 peptide (Bonny et al., 2001) against sound trauma-induced hearing loss. Morphological characteristics of sound-damaged hair cell nuclei labeled by Hoechst staining show that apoptosis is the predominant mode of cell death after sound trauma. Analysis of the events occurring after sound trauma demonstrates that c-Jun N-terminal kinase (JNK)/stress-activated protein kinase activates a mitochondrial cell death pathway (i.e., activation of Bax, release of cytochrome c, activation of procaspases, and cleavage of fodrin). Fluorescein isothiocyanate (FITC)-conjugated d-JNKI-1 peptide applied onto an intact cochlear RWM diffuses through this membrane and penetrates cochlear tissues with the exception of the stria vascularis. A time sequence of fluorescence measurements demonstrates that FITC-labeled d-JNKI-1 remains in cochlear tissues for as long as 3 weeks. In addition to blocking JNK-mediated activation of a mitochondrial cell death pathway, RWM-delivered d-JNKI-1 prevents hair cell death and development of a permanent shift in hearing threshold that is caused by sound trauma in a dose-dependent manner (EC50 = 2.05 microM). The therapeutic window for protection of the cochlea from sound trauma with RWM delivery of d-JNKI-1 extended out to 12 h after sound exposure. These results show that the mitogen-activated protein kinase/JNK signaling pathway plays a crucial role in sound trauma-initiated hair cell death. Blocking this signaling pathway with RWM delivery of d-JNKI-1 may have significant therapeutic value as a therapeutic intervention to protect the human cochlea from the effects of sound trauma.
Collapse
Affiliation(s)
- Jing Wang
- INSERM U. 583, 80 rue Augustin Fliche, 34295 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
39
|
Gstoettner WK, Helbig S, Maier N, Kiefer J, Radeloff A, Adunka OF. Ipsilateral Electric Acoustic Stimulation of the Auditory System: Results of Long-Term Hearing Preservation. Audiol Neurootol 2006; 11 Suppl 1:49-56. [PMID: 17063011 DOI: 10.1159/000095614] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 08/02/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To evaluate long-term ipsilateral hearing preservation in patients who underwent cochlear implantation for the combined electric acoustic stimulation of the auditory system. METHODS This was a prospective observational study conducted at a tertiary referral center. Twenty-three subjects were implanted with the MED-EL C40+ standard or C40+ medium electrode using an atraumatic surgical protocol via an anterior-inferior cochleostomy approach. The desired insertion depth was 18-24 mm or 360 degrees. All patients showed significant low-frequency hearing prior to surgery and monosyllabic word scores did not exceed 40% in the best aided condition. Pure-tone audiometry was performed prior to implantation and at distinct intervals after surgery. RESULTS Nine patients (39.1%) showed complete pure-tone audiometric hearing preservation (0-10 dB) over an average of 29 months. Seven subjects (30.4%) showed partial preservation of residual hearing (hearing loss 15-40 dB) until an average of 25 months. Delayed loss of residual hearing was observed in 5 cases (21.7%) and 2 patients (8.6%) completely lost residual hearing during or immediately after surgery. Freiburger Monosyllabic word understanding scores in a group of patients with complete hearing preservation increased from 13.1% preoperatively to 75% in the electric acoustic stimulation condition. CONCLUSION This study documents that complete and partial preservation of ipsilateral hearing after cochlear implantation can be achieved in about 70% of cases over an average period of 27.25 months when using 360 degrees electrode insertions.
Collapse
Affiliation(s)
- Wolfgang K Gstoettner
- Department of Otolaryngology, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Guzman J, Ruiz J, Eshraghi AA, Polak M, Garnham C, Balkany TJ, Van de Water TR. Triamcinolone acetonide protects auditory hair cells from 4-hydroxy-2,3-nonenal (HNE) ototoxicity in vitro. Acta Otolaryngol 2006; 126:685-90. [PMID: 16803705 DOI: 10.1080/00016480500492018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONCLUSION Triamcinolone acetonide crystalline suspension (e.g. Volon A) was not ototoxic to the auditory hair cells present within organ of Corti explants and protected them from an ototoxic molecule, i.e. 4-hydroxy-2,3-nonenal (HNE), that is produced within the organ of Corti as a result of oxidative stress-induced damage. OBJECTIVES To test the corticosteroid, triamcinolone acetonide, for ototoxicity and otoprotective capacity in organ of Corti explants. MATERIALS AND METHODS Organ of Corti explants excised from 4-day-old rats were the test system, HNE was the ototoxin challenge. Hair cell integrity counts were performed with fluorescent microscopy on fixed explants stained with FITC-labeled phalloidin. Statistical significance was set at p<0.05. RESULTS Triamcinolone acetonide did not affect hair cell integrity in the organ of Corti explants and it provided a high level of protection of hair cells against the ototoxic effects of a damaging level of HNE as determined by hair cell density counts.
Collapse
Affiliation(s)
- Jose Guzman
- University of Miami Ear Institute, Department of Otolaryngology, Miller School of Medicine University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Eshraghi AA, Van de Water TR. Cochlear implantation trauma and noise-induced hearing loss: Apoptosis and therapeutic strategies. ACTA ACUST UNITED AC 2006; 288:473-81. [PMID: 16550592 DOI: 10.1002/ar.a.20305] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cochlear implantation trauma and noise-induced hearing loss both involve a physical disruption of the organ of Corti and may involve several mechanisms of cell death at the molecular level, i.e., necrosis, necrosis-like programmed cell death (PCD; type 2 PCD), and apoptosis (type 1 PCD). This article reviews several promising therapeutic strategies that are currently being developed. One of these promising new strategies involves the use of a highly effective peptide inhibitor of the c-Jun N-terminal kinase cell death signal cascade (i.e., D-JNKI-1) to prevent apoptosis of injured auditory hair cells. Our recent studies showed prevention of cochlear implantation-induced hearing loss by infusing this peptide into the cochlea of guinea pigs. Another otoprotective therapy under investigation is the application of mild hypothermia to protect the cochlea from the development of a hearing loss that follows exposure to a physical trauma, e.g., electrode array insertional trauma. These forward-looking strategies have the potential of improving hearing outcomes after cochlear implantation and providing novel means of otoprotection from noise-induced trauma.
Collapse
Affiliation(s)
- Adrien A Eshraghi
- University of Miami Ear Institute, Department of Otolaryngology, University of Miami, Miller School of Medicine, Miami, Florida 33136, USA
| | | |
Collapse
|
42
|
Eshraghi AA, He J, Mou CH, Polak M, Zine A, Bonny C, Balkany TJ, Van De Water TR. D-JNKI-1 Treatment Prevents the Progression of Hearing Loss in a Model of Cochlear Implantation Trauma. Otol Neurotol 2006; 27:504-11. [PMID: 16791042 DOI: 10.1097/01.mao.0000217354.88710.13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESES 1) Hearing loss caused by electrode insertion trauma has both acute and delayed components; and 2) the delayed component of trauma-initiated hearing loss can be prevented by a direct delivery of a peptide inhibitor of the c-Jun N-terminal kinase cell death signal cascade, that is, D-JNKI-1, immediately after the electrode insertion within the cochlea. BACKGROUND Acute trauma to the macroscopic elements of the cochlea from electrode insertion is well known. The impact of trauma-induced oxidative stress within injured cochlear tissues and the efficacy of drugs (e.g., D-JNKI-1) to prevent apoptosis of damaged hair cells is not well defined. METHODS Hearing function was tested by pure-tone evoked auditory brainstem responses (ABRs) and distortion products of otoacoustic emissions (DPOAEs). D-JNKI-1 in artificial perilymph (AP) or AP alone was delivered into the scala tympani immediately after electrode trauma and for 7 days. Controls were nontreated contralateral and D-JNKI-1-treated ears without electrode insertion trauma. RESULTS There was no increase in the hearing thresholds of either the contralateral control ears or in the D-JNKI-1 without trauma animals. There was a progressive increase in ABR thresholds and decrease in DPOAE amplitudes after electrode insertion trauma in untreated and in AP-treated cochleae. Treatment with D-JNKI-1 prevented the progressive increase in ABR thresholds and decrease in DPOAE amplitudes that occur after electrode insertion trauma. CONCLUSION Hearing loss caused by cochlear implant electrode insertion trauma in guinea pigs has both acute and delayed components. The delayed component can be prevented by treating the cochlea with D-JNKI-1.
Collapse
Affiliation(s)
- Adrien A Eshraghi
- Department of Otolaryngology, University of Miami Ear Institute, Miami, Florida 33136-1015, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
D-JNKI-1 Treatment Prevents the Progression of Hearing Loss in a Model of Cochlear Implantation Trauma. Otol Neurotol 2006. [DOI: 10.1097/00129492-200606000-00012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Whitlon DS, Ketels KV, Coulson MT, Williams T, Grover M, Edpao W, Richter CP. Survival and morphology of auditory neurons in dissociated cultures of newborn mouse spiral ganglion. Neuroscience 2006; 138:653-62. [PMID: 16413120 DOI: 10.1016/j.neuroscience.2005.11.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 11/08/2005] [Accepted: 11/20/2005] [Indexed: 10/25/2022]
Abstract
We have systematically characterized neuronal survival and growth in cultures derived from newborn/postnatal day 1 mouse cochlea. Dissociated cultures of the cochlear spiral ganglion provide an experimental environment in which to examine molecular mechanisms of survival, development and physiology of auditory neurons. To relate survival to the total number of neurons present in the source tissue, three cochleas from different newborn CD-1 mice were embedded in Araldite resin and serially sectioned at 5 mum thickness. All neurons were counted. To avoid overcounting, each section served as a lookup section for the next, giving 8240+/-423 (S.D.) neurons per ganglion. Cultures maintained in the presence of adjacent non-neural tissue, brain-derived neurotrophic factor, neurotrophin 3, leukemia inhibitory factor (LIF) and 10% fetal bovine serum returned the best overall survival (30%) at 42 h post-plating. Best overall survival required the continuous presence of a serum component(s) larger than 100,000 MW. Plating efficiency (number of neurons that attach to the well after 4 h) was similar in the presence or absence of LIF. Inclusion of LIF maintained 100% survival of plated neurons over 42 h of culture; without LIF, a large fraction of the neurons did not survive. LIF appeared to maintain survival by preferentially preserving a population of bipolar neurons, while having little effect on the number of monopolar neurons. This work provides quantitative measures of survival and morphology of auditory neurons in vitro. The results support the idea that survival of spiral ganglion neurons in vivo may depend on interactions with adjacent, non-neural tissue and raise the possibility that maintenance of bipolar morphology after hair cell damage may require biochemical mechanisms in addition to those induced by neurotrophins.
Collapse
Affiliation(s)
- D S Whitlon
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Degeneration of spiral ganglion neurons following hair cell loss carries critical implications for efforts to rehabilitate severe cases of hearing loss with cochlear implants or hair cell regeneration. This review considers recently identified neurotrophic factors and therapeutic strategies which promote spiral ganglion neuron survival and neurite growth. Replacement of these factors may help preserve or regenerate the auditory nerve in patients with extensive hair cell loss. RECENT FINDINGS Spiral ganglion neurons depend on neurotrophic factors supplied by hair cells and other targets for their development and continued survival. Loss of this trophic support leads to spiral ganglion neuron death via apoptosis. Hair cells support spiral ganglion neuron survival by producing several peptide neurotrophic factors such as neurotrophin-3 and glial derived neurotrophic factor. In addition, neurotransmitter release from the hair cells drives membrane electrical activity in spiral ganglion neurons which also supports their survival. In animal models, replacement of peptide neurotrophic factors or electrical stimulation with an implanted electrode attenuates spiral ganglion neuron degeneration following deafferentation. Cell death inhibitors can also preserve spiral ganglion neuron populations. Preliminary studies show that transfer of stem cells or neurons from other ganglia are two potential strategies to replace lost spiral ganglion neurons. Inducing the regrowth of spiral ganglion neuron peripheral processes to approximate or contact cochlear implant electrodes may help optimize signaling from a diminished population of neurons. SUMMARY Recent studies of spiral ganglion neuron development and survival have identified several trophic and neuritogenic factors which protect these specialized cells from degeneration following hair cell loss. While still preliminary, such strategies show promise for future clinical applications.
Collapse
Affiliation(s)
- Pamela C Roehm
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
46
|
Albinger-Hegyi A, Hegyi I, Nagy I, Bodmer M, Schmid S, Bodmer D. Alteration of activator protein 1 DNA binding activity in gentamicin-induced hair cell degeneration. Neuroscience 2006; 137:971-80. [PMID: 16338090 DOI: 10.1016/j.neuroscience.2005.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2005] [Revised: 08/02/2005] [Accepted: 10/05/2005] [Indexed: 12/01/2022]
Abstract
Sensorineural hearing loss is often associated with damage of cochlear hair cells and/or of the neurons of the auditory pathway. This damage can result from a variety of causes, e.g. genetic disorders, aging, exposure to certain drugs such as aminoglycosides, infectious disease and intense sound overexposure. Intracellular events that mediate aspects of aminoglycoside-mediated damage to hair cells have been partially unraveled. Several independent research groups have demonstrated a crucial role of mitogen-activated protein kinase signaling in aminoglycoside-induced ototoxicity. Mitogen-activated protein kinases are important mediators of signal transduction from the cell surface to the nucleus. Jun N-terminal kinases, members of the mitogen-activated protein kinase family, are strongly activated in cell culture conditions by stress inducing stimuli, including ultraviolet light, heat shock and tumor necrosis factor; therefore they are also referred to as stress-activated protein kinases. In hair cells aminoglycoside treatment was shown to activate the Jun N-terminal kinase signaling pathway. Activation of Jun N-terminal kinase leads to phosphorylation and thereby activation of transcription factors and consequently to altered gene expression. There are many nuclear Jun N-terminal kinase substrates including c-Jun, ATF-2, and Elk-1 proteins. One of the downstream targets of Jun N-terminal kinase is the transcription factor activating protein-1. Activating protein-1 is a dimeric complex composed of members of the Fos and Jun proteins. A variety of different stimuli is known to induce activating protein-1 activity. Induction of activating protein-1 is thought to play a central role in reprogramming gene expression in response to external stimuli. In this study we have analyzed the effect of gentamicin treatment on the downstream targets of Jun N-terminal kinase. Our results demonstrate that gentamicin treatment of explants of organ of Corti results in increased activating protein-1 binding activity. The main component of these activating protein-1 complexes is the c-Fos protein. Moreover, we show that the activating protein-1 induction is transient and occurs exclusively in hair cells of rat organ of Corti explants.
Collapse
Affiliation(s)
- A Albinger-Hegyi
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Zürich, Frauenklinikstr. 24, 8091 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Several drugs that are applied directly to the inner ear are in widespread clinical use for the treatment of inner-ear disorders. Many new substances and drug delivery systems specific to the inner ear are under development and in some cases are being evaluated in animal experiments and in clinical studies. However, the pharmacokinetics of drugs in the inner ear is not well defined and the field is plagued by technical problems in obtaining pure samples of the inner-ear fluids for analysis. Nevertheless, a basic understanding of the mechanisms of drug dispersal in the inner ear has emerged, which facilitates the design and interpretation of future pharmacokinetic studies.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
48
|
Abstract
With the completion of the sequencing of the human genome, the field of medicine is undergoing a dramatic and fundamental change. The identification of our genes and the proteins they encode and the mechanisms of mutations that are pathogenic will allow us to devise revolutionary new ways to diagnose, treat and prevent the thousands of disorders that affect us. Certainly, disorders of the auditory system are no exception. Revealing the molecular mechanisms of hearing and understanding the role of each player in the intricate auditory network could enable us to employ gene- or cell-based therapy to cure or prevent hearing loss. To this end, much emphasis has been placed on the identification and characterization of genes involved in human deafness, as well as research on mouse models for deafness. Ultimately, the effect of genomics on medicine will be dramatic, providing us with the ability to cure sensory defects, a tangible goal that is now within our reach.
Collapse
Affiliation(s)
- Orna Atar
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
49
|
Eshraghi AA, Nehme O, Polak M, He J, Alonso OF, Dietrich WD, Balkany TJ, Van De Water TR. Cochlear temperature correlates with both temporalis muscle and rectal temperatures. Application for testing the otoprotective effect of hypothermia. Acta Otolaryngol 2005; 125:922-8. [PMID: 16109672 DOI: 10.1080/00016480510043918] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
CONCLUSIONS During systemic hypothermia, the internal temperature of the rat cochlea correlates best with the temporalis muscle and rectal temperatures. These positive correlations will be used in future studies to assess the efficacy of mild and moderate hypothermia to protect hearing against the progressive loss caused by electrode insertion in a clinically relevant model of cochlear implantation trauma. OBJECTIVE To monitor the internal temperature of the cochlea during induced systemic hypothermia using a reference tissue instead of an internal cochlear temperature probe. MATERIAL AND METHODS The temperatures of the cochlea, brain, temporalis muscle and rectum were determined during periods of normothermia (37 degrees C), mild (33 degrees C) and moderate (30 degrees C) hypothermia and slow rewarming in anesthetized adult Fisher rats. These values were compared using statistical analysis to establish the best correlations between the temperature of the cochlea and the temperature at the three other temperature measurement sites. RESULTS The strongest correlations with the internal temperature of the cochlea during the induction of mild-to-moderate hypothermia were obtained for the temperatures of the ipsilateral temporalis muscle and rectum.
Collapse
Affiliation(s)
- Adrien A Eshraghi
- Department of Otolaryngology, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Pau HW, Just T, Lehnhardt E, Hessel H, Behrend D. An “Endosteal Electrode” for Cochlear Implantation in Cases with Residual Hearing? Feasibility Study: Preliminary Temporal Bone Experiments. Otol Neurotol 2005; 26:448-54. [PMID: 15891648 DOI: 10.1097/01.mao.0000169779.54162.34] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Over the years, an increasing number of patients with some degree of residual hearing have received cochlear implants. In these cases, the marginal benefit provided by hearing aids alone is not sufficient; however, as experience has already shown, when hearing aids are used in combination with a cochlear implant, more benefit may be obtained. As a prerequisite, this requires that residual hair cell function must remain intact postoperatively. One of the European pioneers of cochlear implants, Ernst Lehnhardt, questioned whether residual hearing might better be preserved if the implanted electrode permits the fluid-filled inner ear space to remain intact. Subsequently, he proposed insertion of a very flat electrode array design into the extraluminal space between the spiral ligament and the bony cochlear wall (endosteum). OBJECTIVE Our study aimed to determine whether it is feasible to insert an endosteal electrode model intracochlearly but extraluminarily, anatomically, and ultimately surgically and to determine the impact on surrounding intracochlear structures. METHODS Insertion of two silicon models of an endosteal electrode were carried out in 15 human temporal bones. Histologic examination of the temporal bones after electrode insertion was performed on both fresh and fixed specimens to determine whether the desired anatomic site of insertion was achieved. In combination with light reflected and electron microscopic techniques, the extent to which the surrounding structures were impacted was also examined. RESULTS Successful insertion of the prototype silicon endosteal electrodes was performed intracochlearly and extraluminarly in 11 of the 15 temporal bone specimens, confirming the anatomic feasibility of insertion into the crevice between the spiral ligament and endosteum. CONCLUSIONS On the basis of the anatomy of the human temporal bone, insertion of an "endosteal electrode" is feasible. Subsequently, in vivo animal studies are needed to determine the physical effects of insertion of an endosteal electrode design prototype upon the functionality of the surrounding intracochlear structures and in particularly the ability to preserve hearing function.
Collapse
Affiliation(s)
- Hans Wilhelm Pau
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Rostock, Medical School, Rostock, Germany.
| | | | | | | | | |
Collapse
|