1
|
Cunningham KC, Smith DR, Villageliú DN, Ellis CM, Ramer-Tait AE, Price JD, Wyatt TA, Knoell DL, Samuelson MM, Molina PE, Welsh DA, Samuelson DR. Human Alcohol-Microbiota Mice have Increased Susceptibility to Bacterial Pneumonia. Cells 2023; 12:2267. [PMID: 37759490 PMCID: PMC10526526 DOI: 10.3390/cells12182267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Preclinical studies have shown that chronic alcohol abuse leads to alterations in the gastrointestinal microbiota that are associated with behavior changes, physiological alterations, and immunological effects. However, such studies have been limited in their ability to evaluate the direct effects of alcohol-associated dysbiosis. To address this, we developed a humanized alcohol-microbiota mouse model to systematically evaluate the immunological effects of chronic alcohol abuse mediated by intestinal dysbiosis. Germ-free mice were colonized with human fecal microbiota from individuals with high and low Alcohol Use Disorders Identification Test (AUDIT) scores and bred to produce human alcohol-associated microbiota or human control-microbiota F1 progenies. F1 offspring colonized with fecal microbiota from individuals with high AUDIT scores had increased susceptibility to Klebsiella pneumoniae and Streptococcus pneumoniae pneumonia, as determined by increased mortality rates, pulmonary bacterial burden, and post-infection lung damage. These findings highlight the importance of considering both the direct effects of alcohol and alcohol-induced dysbiosis when investigating the mechanisms behind alcohol-related disorders and treatment strategies.
Collapse
Affiliation(s)
- Kelly C. Cunningham
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Deandra R. Smith
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daniel N. Villageliú
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christi M. Ellis
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jeffrey D. Price
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Todd A. Wyatt
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68198, USA
| | - Daren L. Knoell
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mystera M. Samuelson
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Animal Behavior Core, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - David A. Welsh
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Derrick R. Samuelson
- Department of Internal Medicine-Pulmonary Division, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
2
|
Zingg SW, Schuster R, Joseph B, Caldwell CC, Lentsch AB, Goodman MD, Pritts TA. Storage with ethanol attenuates the red blood cell storage lesion. Surgery 2022; 172:1829-1836. [PMID: 36109200 PMCID: PMC10979325 DOI: 10.1016/j.surg.2022.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Current management of hemorrhagic shock relies on control of surgical bleeding along with resuscitation with packed red blood cells and plasma in a 1-to-1 ratio. Transfusion, however, is not without consequence as red blood cells develop a series of biochemical and physical changes during storage termed "the red blood cell storage lesion." Previous data has suggested that ethanol may stabilize the red blood cell membrane, resulting in improved deformability. We hypothesized that storage of packed red blood cells with ethanol would alter the red blood cell storage lesion. METHODS Mice underwent donation and storage of red blood cells with standard storage conditions in AS-3 alone or ethanol at concentrations of 0.07%, 0.14%, and 0.28%. The red blood cell storage lesion parameters of microvesicles, Band-3, free hemoglobin, annexin V, and erythrocyte osmotic fragility were measured and compared. In additional experiments, the mice underwent hemorrhage and resuscitation with stored packed red blood cells to further evaluate the in vivo inflammatory impact. RESULTS Red blood cells stored with ethanol demonstrated decreased microvesicle accumulation and Band-3 levels. There were no differences in phosphatidylserine or cell-free hemoglobin levels. After hemorrhage and resuscitation with packed red blood cells stored with 0.07% ethanol, mice demonstrated decreased serum levels of interleukin-6, macrophage inflammatory protein-1α, keratinocyte chemokine, and tumor necrosis factor α compared to those mice receiving packed red blood cells stored with additive solution-3. CONCLUSION Storage of murine red blood cells with low-dose ethanol results in decreased red blood cell storage lesion severity. Resuscitation with packed red blood cells stored with 0.07% ethanol also resulted in a decreased systemic inflammatory response in a murine model of hemorrhage.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael D Goodman
- Department of Surgery, University of Cincinnati, OH. https://twitter.com/Mdgoodmanmd
| | | |
Collapse
|
3
|
Anti-inflammatory Effects of Alcohol Are Associated with JNK-STAT3 Downregulation in an In Vitro Inflammation Model in HepG2 Cells. DISEASE MARKERS 2021; 2021:6622701. [PMID: 33791043 PMCID: PMC7997757 DOI: 10.1155/2021/6622701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/18/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
Background In several preclinical and in vitro models of acute inflammation, alcohol (ethanol, EtOH) has been described as an immunomodulatory agent. Similarly, in different pathologies, clinical observations have confirmed either pro- or anti-inflammatory effects of EtOH. The liver plays an important role in immunity and alcohol metabolism; therefore, we analysed dose- and time-dependent effects of EtOH on the inflammatory response of human liver cells in an in vitro model of acute inflammation. Methods HepG2 cells were stimulated with IL-1β and subsequently exposed to EtOH in a low or high dose (85 mM, LoD or 170 mM, HiD) for 1 h (acute exposure) or 72 h (prolonged exposure). IL-6 and TNF-α release was determined by ELISA. Cell viability, adhesion of isolated neutrophils to HepG2 monolayers, their ICAM-1 expression, and the activation of stress-induced protein kinase/c-Jun N-terminal kinase (SAPK/JNK) or signal transducer and activator of transcription 3 (STAT3) were analysed. Results In this experimental design, EtOH did not markedly change the cell viability. Acute and prolonged exposure to EtOH significantly reduced dose-independent IL-1β-induced IL-6 and TNF-α release, as well as adhesion capacity to pretreated HepG2 cells. Acute exposure to EtOH significantly decreased the percentage of ICAM-1-expressing cells. IL-1β stimulation notably increased the activation of SAPK/JNK. However, low-dose EtOH exposure reduced this activation considerably, in contradiction to high-dose EtOH exposure. Acute exposure to LoD EtOH significantly diminished the IL-1β-induced STAT3 activation, whereas an acute exposure of cells to either HiD EtOH or in a prolonged setting showed no effects on STAT3 activation. Conclusion EtOH exerts anti-inflammatory potential in this in vitro model of hepatic inflammation. These effects are associated with the reduced activation of JNK/STAT3 by EtOH, particularly in the condition of acute exposure to low-dose EtOH.
Collapse
|
4
|
Samuelson DR, Siggins RW, Ruan S, Amedee AM, Sun J, Zhu QK, Marasco WA, Taylor CM, Luo M, Welsh DA, Shellito JE. Alcohol consumption increases susceptibility to pneumococcal pneumonia in a humanized murine HIV model mediated by intestinal dysbiosis. Alcohol 2019; 80:33-43. [PMID: 30213614 PMCID: PMC6449221 DOI: 10.1016/j.alcohol.2018.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023]
Abstract
Alcohol use in persons living with HIV (PLWH) worsens the severity of bacterial pneumonia. However, the exact mechanism(s) by which this occurs remain ill-defined. We hypothesized that alcohol in the setting of HIV infection decreases Streptococcus pneumoniae clearance from the lung through mechanisms mediated by the gut microbiota. Humanized BLT (bone marrow, liver, thymus) mice were infected with 1 × 104 TCID50 of HIV (BAL and JRCSF strains) via intraperitoneal (i.p.) injection. One week post-HIV infection, animals were switched to a Lieber-DeCarli 5% ethanol diet or an isocaloric control diet for 10 days. Alcohol-fed animals were also given two binges of 2 g/kg ethanol on days 5 and 10. Feces were also collected, banked, and the community structures were analyzed. Mice were then infected with 1 × 105 CFU (colony-forming units) of S. pneumoniae and were sacrificed 48 h later. HIV-infected mice had viral loads of ∼2 × 104 copies/mL of blood 1 week post-infection, and exhibited an ∼57% decrease in the number of circulating CD4+ T cells at the time of sacrifice. Fecal microbial community structure was significantly different in each of the feeding groups, as well as with HIV infection. Alcohol-fed mice had a significantly higher burden of S. pneumoniae 48 h post-infection, regardless of HIV status. In follow-up experiments, female C57BL/6 mice were treated with a cocktail of antibiotics daily for 2 weeks and recolonized by gavage with intestinal microbiota from HIV+ ethanol-fed, HIV+ pair-fed, HIV- ethanol-fed, or HIV- pair-fed mice. Recolonized mice were then infected with S. pneumoniae and were sacrificed 48 h later. The intestinal microbiota from alcohol-fed mice (regardless of HIV status) significantly impaired clearance of S. pneumoniae. Collectively, these data indicate that alcohol feeding, as well as alcohol-associated intestinal dysbiosis, compromise pulmonary host defenses against pneumococcal pneumonia. Determining whether HIV infection acts synergistically with alcohol use in impairing pulmonary host defenses will require additional study.
Collapse
Affiliation(s)
- Derrick R Samuelson
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Robert W Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Sanbao Ruan
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Angela M Amedee
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jiusong Sun
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School Boston, MA, United States
| | - Quan Karen Zhu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School Boston, MA, United States
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School Boston, MA, United States
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - David A Welsh
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States; Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Judd E Shellito
- Department of Internal Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States; Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.
| |
Collapse
|
5
|
Hedström AK, Hössjer O, Klareskog L, Alfredsson L. Interplay between alcohol, smoking and HLA genes in RA aetiology. RMD Open 2019; 5:e000893. [PMID: 31168412 PMCID: PMC6525609 DOI: 10.1136/rmdopen-2019-000893] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/12/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
Objectives The relationship between alcohol consumption and risk for rheumatoid arthritis (RA) is incompletely understood. We aimed to determine the influence of alcohol on anticitrullinated protein antibody (ACPA) positive and ACPA-negative RA and investigate potential interactions between alcohol consumption, smoking and the presence of human leucocyte antigen (HLA)-DRB1-shared epitope (SE). Methods A Swedish population-based case–control study with incident cases of RA was used (3353 cases, 2836 matched controls). Subjects with different HLA-DRB1-SE status, smoking and alcohol consumption were compared regarding risk of ACPA-positive and ACPA-negative RA, by calculating OR with 95% CI employing logistic regression. Interaction on the additive scale between alcohol, HLA-DRB1-SE and smoking was estimated by calculating the attributable proportion (AP) due to interaction. Results Compared with non-drinking, low and moderate alcohol consumption was dose dependently associated with a reduced risk of ACPA-positive and ACPA-negative RA. Independent of smoking habits, non-drinking and the presence of HLA-DRB1-SE interacted to increase the risk of ACPA-positive RA. Among HLA-DRB1-SE positive subjects, there was also a significant interaction between non-drinking and smoking with regard to risk for ACPA-positive RA. A three-way interaction was observed between alcohol, smoking and HLA-DRB1-SE with regard to risk for ACPA-positive RA (AP 0.7, 95% CI 0.6 to 0.8) that remained significant when the influence from the two-way interactions was removed (AP 0.4, 95% CI 0.2 to 0.6). Conclusions Our findings emphasize the need to investigate complex interactions between several environmental and genetic factors in order to better understand the etiology of RA. Whereas of great interest in an aetiological perspective, the finding of a protective role of alcohol on risk for RA must, however, be interpreted with caution in a clinical and public health perspective.
Collapse
Affiliation(s)
- Anna Karin Hedström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Instititute of Environmental Medicine, Karolinska Institutet, Stockhom, Sweden
| | - Ola Hössjer
- Department of Mathematics, Stockholm university, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Instititute of Environmental Medicine, Karolinska Institutet, Stockhom, Sweden
| |
Collapse
|
6
|
Franz N, Dieteren S, Köhler K, Mörs K, Sturm R, Marzi I, Perl M, Relja B, Wagner N. Alcohol Binge Reduces Systemic Leukocyte Activation and Pulmonary PMN Infiltration After Blunt Chest Trauma and Hemorrhagic Shock. Inflammation 2018; 42:690-701. [DOI: 10.1007/s10753-018-0927-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Samuelson DR, Shellito JE, Maffei VJ, Tague ED, Campagna SR, Blanchard EE, Luo M, Taylor CM, Ronis MJJ, Molina PE, Welsh DA. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae. PLoS Pathog 2017; 13:e1006426. [PMID: 28604843 PMCID: PMC5481032 DOI: 10.1371/journal.ppat.1006426] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/22/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol consumption perturbs the normal intestinal microbial communities (dysbiosis). To investigate the relationship between alcohol-mediated dysbiosis and pulmonary host defense we developed a fecal adoptive transfer model, which allows us to investigate the impact of alcohol-induced gut dysbiosis on host immune response to an infectious challenge at a distal organ, independent of prevailing alcohol use. Male C57BL/6 mice were treated with a cocktail of antibiotics (ampicillin, gentamicin, neomycin, vancomycin, and metronidazole) via daily gavage for two weeks. A separate group of animals was fed a chronic alcohol (or isocaloric dextrose pair-fed controls) liquid diet for 10 days. Microbiota-depleted mice were recolonized with intestinal microbiota from alcohol-fed or pair-fed (control) animals. Following recolonization groups of mice were sacrificed prior to and 48 hrs. post respiratory infection with Klebsiella pneumoniae. Klebsiella lung burden, lung immunology and inflammation, as well as intestinal immunology, inflammation, and barrier damage were examined. Results showed that alcohol-associated susceptibility to K. pneumoniae is, in part, mediated by gut dysbiosis, as alcohol-naïve animals recolonized with a microbiota isolated from alcohol-fed mice had an increased respiratory burden of K. pneumoniae compared to mice recolonized with a control microbiota. The increased susceptibility in alcohol-dysbiosis recolonized animals was associated with an increase in pulmonary inflammatory cytokines, and a decrease in the number of CD4+ and CD8+ T-cells in the lung following Klebsiella infection but an increase in T-cell counts in the intestinal tract following Klebsiella infection, suggesting intestinal T-cell sequestration as a factor in impaired lung host defense. Mice recolonized with an alcohol-dysbiotic microbiota also had increased intestinal damage as measured by increased levels of serum intestinal fatty acid binding protein. Collectively, these results suggest that alterations in the intestinal immune response as a consequence of alcohol-induced dysbiosis contribute to increased host susceptibility to Klebsiella pneumonia.
Collapse
Affiliation(s)
- Derrick R. Samuelson
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- * E-mail:
| | - Judd E. Shellito
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Vincent J. Maffei
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Eric D. Tague
- The Department of Chemistry, The University of Tennessee Knoxville, Knoxville, TN, United States of America
| | - Shawn R. Campagna
- The Department of Chemistry, The University of Tennessee Knoxville, Knoxville, TN, United States of America
| | - Eugene E. Blanchard
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Christopher M. Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Martin J. J. Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - David A. Welsh
- Department of Medicine, Section of Pulmonary/Critical Care & Allergy/Immunology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| |
Collapse
|
8
|
Gerald CL, Romberger DJ, DeVasure JM, Khazanchi R, Nordgren TM, Heires AJ, Sisson JH, Wyatt TA. Alcohol Decreases Organic Dust-Stimulated Airway Epithelial TNF-Alpha Through a Nitric Oxide and Protein Kinase-Mediated Inhibition of TACE. Alcohol Clin Exp Res 2016; 40:273-83. [PMID: 26842246 DOI: 10.1111/acer.12967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Farm workers in rural areas consume more alcohol than those who reside in urban areas. Occupational exposures such as agricultural work can pose hazards on the respiratory system. It is established that hog barn dust induces inflammation in the airway, including the release of cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IL-8. We have shown that alcohol alters airway epithelial innate defense through changes in both nitric oxide (NO) and cAMP-dependent protein kinase A (PKA). Simultaneous exposure to hog barn dust and alcohol decreases inflammatory mediators, TNF-α, IL-6, and IL-8, in mice. Previously, mice exposed to both alcohol and hog barn dust showed a depleted amount of lymphocytes compared to mice exposed only to hog barn dust. Weakening of the innate immune response could lead to enhanced susceptibility to disease. In addition, mice that were co-exposed to hog barn dust and alcohol also experienced increased mortality. METHODS Because we recently demonstrated that PKA activation inhibits the TNF-α sheddase, TNF-α-converting enzyme (TACE), we hypothesized that an alcohol-mediated PKA pathway blocks TACE activity and prevents the normative inflammatory response to hog barn dust exposure. To delineate these effects, we used PKA pathway inhibitors (adenylyl cyclase [AC], cAMP, and PKA) to modulate the effects of alcohol on dust-stimulated TNF-α release in the bronchial epithelial cell line, BEAS-2B. Alcohol pretreatment blocked TACE activity and TNF-α release in hog barn dust-treated cells. RESULTS Alcohol continued to block hog barn dust-mediated TNF-α release in the presence of the particulate AC inhibitor, SQ22,536. The soluble adenylyl cyclase inhibitor, KH7, however, significantly increased the inflammatory response to hog barn dust. phosphodiesterase 4 inhibitors significantly elevated cAMP and enhanced alcohol-mediated inhibition of dust-stimulated TNF-α release. In addition, the NO synthase inhibitor, l-NMMA, also reversed the alcohol-blocking effect on dust-stimulated TNF-α. CONCLUSIONS These data suggest that alcohol requires a soluble cyclase-generated cAMP-PKA pathway that is dependent upon the action of NO to inhibit TACE and TNF-α release. These findings support our observations that alcohol functions through a dual NO and PKA pathway in bronchial epithelial cells.
Collapse
Affiliation(s)
- Carresse L Gerald
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Debra J Romberger
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska.,Department of Veterans Affairs Medical Center, VA Nebraska-Western Iowa Health Care System Research Service, Omaha, Nebraska
| | - Jane M DeVasure
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Rohan Khazanchi
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Tara M Nordgren
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Art J Heires
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Joseph H Sisson
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Todd A Wyatt
- Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska.,Department of Veterans Affairs Medical Center, VA Nebraska-Western Iowa Health Care System Research Service, Omaha, Nebraska.,Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
9
|
Pavón FJ, Marco EM, Vázquez M, Sánchez L, Rivera P, Gavito A, Mela V, Alén F, Decara J, Suárez J, Giné E, López-Moreno JA, Chowen J, Rodríguez-de-Fonseca F, Serrano A, Viveros MP. Effects of Adolescent Intermittent Alcohol Exposure on the Expression of Endocannabinoid Signaling-Related Proteins in the Spleen of Young Adult Rats. PLoS One 2016; 11:e0163752. [PMID: 27662369 PMCID: PMC5035052 DOI: 10.1371/journal.pone.0163752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022] Open
Abstract
Intermittent alcohol exposure is a common pattern of alcohol consumption among adolescents and alcohol is known to modulate the expression of the endocannabinoid system (ECS), which is involved in metabolism and inflammation. However, it is unknown whether this pattern may have short-term consequences on the ECS in the spleen. To address this question, we examined the plasma concentrations of metabolic and inflammatory signals and the splenic ECS in early adult rats exposed to alcohol during adolescence. A 4-day drinking in the dark (DID) procedure for 4 weeks was used as a model of intermittent forced-alcohol administration (20%, v/v) in female and male Wistar rats, which were sacrificed 2 weeks after the last DID session. First, there was no liver damage or alterations in plasma metabolic parameters. However, certain plasma inflammatory signals were altered according to sex and alcohol exposition. Whereas fractalkine [chemokine (C-X3-C motif) ligand 1] was only affected by sex with lower concentration in male rats, there was an interaction between sex and alcohol exposure in the TNF-α and interleukin-6 concentrations and only female rats displayed changes. Regarding the mRNA and protein expression of the ECS, the receptors and endocannabinoid-synthesizing enzymes were found to be altered with area-specific expression patterns in the spleen. Overall, whereas the expression of the cannabinoid receptor CB1 and the nuclear peroxisome proliferator-activated receptor PPARα were lower in alcohol-exposed rats compared to control rats, the CB2 expression was higher. Additionally, the N-acyl-phosphatidylethanolamine-specific phospholipase D expression was high in female alcohol-exposed rats and low in male alcohol-exposed rats. In conclusion, intermittent alcohol consumption during adolescence may be sufficient to induce short-term changes in the expression of splenic endocannabinoid signaling-related proteins and plasma pro-inflammatory cytokines in young adult rats with a strong sexual dimorphism. The potential impact of these alterations in early adulthood remains to be elucidated.
Collapse
Affiliation(s)
- Francisco Javier Pavón
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Eva María Marco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Mariam Vázquez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Laura Sánchez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Ana Gavito
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Virginia Mela
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Francisco Alén
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Elena Giné
- Departamento de Biología Celular, Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | | | - Julie Chowen
- Servicio de Pediatría y Endocrinología Pediátrica, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Rodríguez-de-Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
- * E-mail: (ASC); (MPV)
| | - María Paz Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
- * E-mail: (ASC); (MPV)
| |
Collapse
|
10
|
Massey VL, Poole LG, Siow DL, Torres E, Warner NL, Schmidt RH, Ritzenthaler JD, Roman J, Arteel GE. Chronic Alcohol Exposure Enhances Lipopolysaccharide-Induced Lung Injury in Mice: Potential Role of Systemic Tumor Necrosis Factor-Alpha. Alcohol Clin Exp Res 2015; 39:1978-88. [PMID: 26380957 DOI: 10.1111/acer.12855] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/29/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND It is well known that liver and lung injury can occur simultaneously during severe inflammation (e.g., multiple organ failure). However, whether these are parallel or interdependent (i.e., liver-lung axis) mechanisms is unclear. Previous studies have shown that chronic ethanol (EtOH) consumption greatly increases mortality in the setting of sepsis-induced acute lung injury (ALI). The potential contribution of subclinical liver disease in driving this effect of EtOH on the lung remains unknown. Therefore, the purpose of this study was to characterize the impact of chronic EtOH exposure on concomitant liver and lung injury. METHODS Male mice were exposed to EtOH-containing Lieber-DeCarli diet or pair-fed control diet for 6 weeks. Some animals were administered lipopolysaccharide (LPS) 4 or 24 hours prior to sacrifice to mimic sepsis-induced ALI. Some animals received the tumor necrosis factor-alpha (TNF-α)-blocking drug, etanercept, for the duration of alcohol exposure. The expression of cytokine mRNA in lung and liver tissue was determined by quantitative PCR. Cytokine levels in the bronchoalveolar lavage fluid and plasma were determined by Luminex assay. RESULTS As expected, the combination of EtOH and LPS caused liver injury, as indicated by significantly increased levels of the transaminases alanine aminotransferase/aspartate aminotransferase in the plasma and by changes in liver histology. In the lung, EtOH preexposure enhanced pulmonary inflammation and alveolar hemorrhage caused by LPS. These changes corresponded with unique alterations in the expression of pro-inflammatory cytokines in the liver (i.e., TNF-α) and lung (i.e., macrophage inflammatory protein-2 [MIP-2], keratinocyte chemoattractant [KC]). Systemic depletion of TNF-α (etanercept) blunted injury and the increase in MIP-2 and KC caused by the combination of EtOH and LPS in the lung. CONCLUSIONS Chronic EtOH preexposure enhanced both liver and lung injury caused by LPS. Enhanced organ injury corresponded with unique changes in the pro-inflammatory cytokine expression profiles in the liver and the lung.
Collapse
Affiliation(s)
- Veronica L Massey
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky.,University of Louisville Alcohol Research Center, Louisville, Kentucky
| | - Lauren G Poole
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky.,University of Louisville Alcohol Research Center, Louisville, Kentucky
| | - Deanna L Siow
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky.,University of Louisville Alcohol Research Center, Louisville, Kentucky
| | - Edilson Torres
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - Nikole L Warner
- Department of Micriobiology and Immunology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - Robin H Schmidt
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky.,University of Louisville Alcohol Research Center, Louisville, Kentucky
| | - Jeffrey D Ritzenthaler
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - Jesse Roman
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - Gavin E Arteel
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky.,University of Louisville Alcohol Research Center, Louisville, Kentucky
| |
Collapse
|
11
|
RELJA BORNA, OMID NINA, SCHAIBLE ALEXANDER, PERL MARIO, MEIER SIMON, OPPERMANN ELSIE, LEHNERT MARK, MARZI INGO. Pre- or post-treatment with ethanol and ethyl pyruvate results in distinct anti-inflammatory responses of human lung epithelial cells triggered by interleukin-6. Mol Med Rep 2015; 12:2991-8. [DOI: 10.3892/mmr.2015.3764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
|
12
|
Ethanol impairs mucosal immunity against Streptococcus pneumoniae infection by disrupting interleukin 17 gene expression. Infect Immun 2015; 83:2082-8. [PMID: 25754201 DOI: 10.1128/iai.02869-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/21/2015] [Indexed: 12/31/2022] Open
Abstract
Acute ethanol intoxication suppresses the host immune responses against Streptococcus pneumoniae. As interleukin 17 (IL-17) is a critical cytokine in host defense against extracellular pathogens, including S. pneumoniae, we hypothesized that ethanol impairs mucosal immunity against this pathogen by disrupting IL-17 production or IL-17 receptor (IL-17R) signaling. A chronic ethanol feeding model in simian immunodeficiency virus (SIV)-infected rhesus macaques and acute ethanol intoxication in a murine model were used. Transcriptome analysis of bronchial brushes in the nonhuman primate model showed downregulation of the expression of IL-17-regulated chemokines in ethanol-fed animals, a finding also replicated in the murine model. Surprisingly, recombinant CXCL1 and CXCL5 but not IL-17 or IL-23 plus IL-1β rescued bacterial burden in the ethanol group to control levels. Taken together, the results of this study suggest that ethanol impairs IL-17-mediated chemokine production in the lung. Thus, exogenous luminal restoration of IL-17-related chemokines, CXCL1 and CXCL5, improves host defenses against S. pneumoniae.
Collapse
|
13
|
Decreased inflammatory responses of human lung epithelial cells after ethanol exposure are mimicked by ethyl pyruvate. Mediators Inflamm 2014; 2014:781519. [PMID: 25530684 PMCID: PMC4233669 DOI: 10.1155/2014/781519] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/27/2014] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose. Leukocyte migration into alveolar space plays a critical role in pulmonary inflammation resulting in lung injury. Acute ethanol (EtOH) exposure exerts anti-inflammatory effects. The clinical use of EtOH is critical due to its side effects. Here, we compared effects of EtOH and ethyl pyruvate (EtP) on neutrophil adhesion and activation of cultured alveolar epithelial cells (A549). Experimental Approach. Time course and dose-dependent release of interleukin- (IL-) 6 and IL-8 from A549 were measured after pretreatment of A549 with EtP (2.5–10 mM), sodium pyruvate (NaP, 10 mM), or EtOH (85–170 mM), and subsequent lipopolysaccharide or IL-1beta stimulation. Neutrophil adhesion to pretreated and stimulated A549 monolayers and CD54 surface expression were determined. Key Results. Treating A549 with EtOH or EtP reduced substantially the cytokine-induced release of IL-8 and IL-6. EtOH and EtP (but not NaP) reduced the adhesion of neutrophils to monolayers in a dose- and time-dependent fashion. CD54 expression on A549 decreased after EtOH or EtP treatment before IL-1beta stimulation. Conclusions and Implications. EtP reduces secretory and adhesive potential of lung epithelial cells under inflammatory conditions. These findings suggest EtP as a potential treatment alternative that mimics the anti-inflammatory effects of EtOH in early inflammatory response in lungs.
Collapse
|
14
|
Brinkworth JF, Barreiro LB. The contribution of natural selection to present-day susceptibility to chronic inflammatory and autoimmune disease. Curr Opin Immunol 2014; 31:66-78. [PMID: 25458997 DOI: 10.1016/j.coi.2014.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022]
Abstract
Chronic inflammatory and autoimmune diseases have been the focus of many genome-wide association studies (GWAS) because they represent a significant cause of illness and morbidity, and many are heritable. Almost a decade of GWAS studies suggests that the pathological inflammation associated with these diseases is controlled by a limited number of networked immune system genes. Chronic inflammatory and autoimmune diseases are enigmatic from an evolutionary perspective because they exert a negative affect on reproductive fitness. The persistence of these conditions may be partially explained by the important roles the implicated immune genes play in pathogen defense and other functions thought to be under strong natural selection in humans. The evolutionary reasons for chronic inflammatory and autoimmune disease persistence and uneven distribution across populations are the focus of this review.
Collapse
Affiliation(s)
- Jessica F Brinkworth
- Sainte-Justine Hospital Research Centre, Montréal, Quebec H3T 1C5, Canada; Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Luis B Barreiro
- Sainte-Justine Hospital Research Centre, Montréal, Quebec H3T 1C5, Canada; Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada.
| |
Collapse
|
15
|
Grau I, Ardanuy C, Calatayud L, Schulze MH, Liñares J, Pallares R. Smoking and alcohol abuse are the most preventable risk factors for invasive pneumonia and other pneumococcal infections. Int J Infect Dis 2014; 25:59-64. [DOI: 10.1016/j.ijid.2013.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/18/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022] Open
|
16
|
Molina PE, Bagby GJ, Nelson S. Biomedical consequences of alcohol use disorders in the HIV-infected host. Curr HIV Res 2014; 12:265-75. [PMID: 25053365 PMCID: PMC4222574 DOI: 10.2174/1570162x12666140721121849] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Alcohol abuse is the most common and costly form of drug abuse in the United States. It is well known that alcohol abuse contributes to risky behaviors associated with greater incidence of human immunodeficiency virus (HIV) infections. As HIV has become a more chronic disease since the introduction of antiretroviral therapy, it is expected that alcohol use disorders will have an adverse effect on the health of HIV-infected patients. The biomedical consequences of acute and chronic alcohol abuse are multisystemic. Based on what is currently known of the comorbid and pathophysiological conditions resulting from HIV infection in people with alcohol use disorders, chronic alcohol abuse appears to alter the virus infectivity, the immune response of the host, and the progression of disease and tissue injury, with specific impact on disease progression. The combined insult of alcohol abuse and HIV affects organ systems, including the central nervous system, the immune system, the liver, heart, and lungs, and the musculoskeletal system. Here we outline the major pathological consequences of alcohol abuse in the HIV-infected individual, emphasizing its impact on immunomodulation, erosion of lean body mass associated with AIDS wasting, and lipodystrophy. We conclude that interventions focused on reducing or avoiding alcohol abuse are likely to be important in decreasing morbidity and improving outcomes in people living with HIV/AIDS.
Collapse
Affiliation(s)
| | | | - Steve Nelson
- LSUHSC Physiology, 1901 Perdido St., New Orleans, LA 70112, USA.
| |
Collapse
|
17
|
Abstract
Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system.
Collapse
Affiliation(s)
- Nadia Rachdaoui
- Nadia Rachdaoui, Ph.D., Rutgers Endocrine Research Program. Department of Animal Sciences Rutgers University, 67 Poultry Farm Lane, New Brunswick, NJ 08901,
| | - Dipak K. Sarkar
- Dipak K. Sarkar, Ph.D., D. Phil., Rutgers Endocrine Research Program. Department of Animal Sciences, Rutgers University, 67 Poultry Farm Lane, New Brunswick, NJ 08901,
| |
Collapse
|
18
|
Raju SV, Painter RG, Bagby GJ, Nelson S, Wang G. Response of Differentiated Human Airway Epithelia to Alcohol Exposure and Klebsiella Pneumoniae Challenge. Med Sci (Basel) 2013; 1:2-19. [PMID: 25485141 PMCID: PMC4255281 DOI: 10.3390/medsci1010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Alcohol abuse has been associated with increased susceptibility to pulmonary infection. It is not fully defined how alcohol contributes to the host defense compromise. Here primary human airway epithelial cells were cultured at an air-liquid interface to form a differentiated and polarized epithelium. This unique culture model allowed us to closely mimic lung infection in the context of alcohol abuse by basolateral alcohol exposure and apical live bacterial challenge. Application of clinically relevant concentrations of alcohol for 24 hours did not significantly alter epithelial integrity or barrier function. When apically challenged with viable Klebsiella pneumoniae, the cultured epithelia had an enhanced tightness which was unaffected by alcohol. Further, alcohol enhanced apical bacterial growth, but not bacterial binding to the cells. The cultured epithelium in the absence of any treatment or stimulation had a base-level IL-6 and IL-8 secretion. Apical bacterial challenge significantly elevated the basolateral secretion of inflammatory cytokines including IL-2, IL-4, IL-6, IL-8, IFN-γ, GM-CSF, and TNF-α. However, alcohol suppressed the observed cytokine burst in response to infection. Addition of adenosine receptor agonists negated the suppression of IL-6 and TNF-α. Thus, acute alcohol alters the epithelial cytokine response to infection, which can be partially mitigated by adenosine receptor agonists.
Collapse
Affiliation(s)
- Sammeta V. Raju
- Comprehensive Alcohol Research Center, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Richard G. Painter
- Comprehensive Alcohol Research Center, Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Gregory J. Bagby
- Comprehensive Alcohol Research Center, Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Steve Nelson
- Comprehensive Alcohol Research Center, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Guoshun Wang
- Comprehensive Alcohol Research Center, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Comprehensive Alcohol Research Center, Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Comprehensive Alcohol Research Center, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
19
|
Kaphalia L, Calhoun WJ. Alcoholic lung injury: metabolic, biochemical and immunological aspects. Toxicol Lett 2013; 222:171-9. [PMID: 23892124 DOI: 10.1016/j.toxlet.2013.07.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023]
Abstract
Chronic alcohol abuse is a systemic disorder and a risk factor for acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). A significant amount of ingested alcohol reaches airway passages in the lungs and can be metabolized via oxidative and non-oxidative pathways. About 90% of the ingested alcohol is metabolized via hepatic alcohol dehydrogenase (ADH)-catalyzed oxidative pathway. Alcohol can also be metabolized by cytochrome P450 2E1 (CYP2E1), particularly during chronic alcohol abuse. Both the oxidative pathways, however, are associated with oxidative stress due to the formation of acetaldehyde and/or reactive oxygen species (ROS). Alcohol ingestion is also known to cause endoplasmic reticulum (ER) stress, which can be mediated by oxidative and/or non-oxidative metabolites of ethanol. An acute as well as chronic alcohol ingestions impair protective antioxidants, oxidize reduced glutathione (GSH, cellular antioxidant against ROS and oxidative stress), and suppress innate and adaptive immunity in the lungs. Oxidative stress and suppressed immunity in the lungs of chronic alcohol abusers collectively are considered to be major risk factors for infection and development of pneumonia, and such diseases as ARDS and COPD. Prior human and experimental studies attempted to identify common mechanisms by which alcohol abuse directly causes toxicity to alveolar epithelium and respiratory tract, particularly lungs. In this review, the metabolic basis of lung injury, oxidative and ER stress and immunosuppression in experimental models and alcoholic patients, as well as potential immunomodulatory therapeutic strategies for improving host defenses against alcohol-induced pulmonary infections are discussed.
Collapse
Affiliation(s)
- Lata Kaphalia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | | |
Collapse
|
20
|
Acute ethanol administration inhibits Toll-like receptor 4 signaling pathway in rat intestinal epithelia. Alcohol 2013; 47:231-9. [PMID: 23428594 DOI: 10.1016/j.alcohol.2013.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 01/17/2013] [Accepted: 01/19/2013] [Indexed: 12/24/2022]
Abstract
Excess alcohol intake, as in binge drinking, increases susceptibility to microbial pathogens. Alcohol impairs macrophage function by suppression of the Toll-like receptor 4 (TLR4) pathway. This study investigated the effects of acute ethanol intake on the TLR4 pathway in rat intestinal epithelia, which usually encounters luminal antigens at first and participates in the development of intestinal immunity. Twenty Wistar rats were randomly assigned to an ethanol group given ethanol as a 25% (v/v) solution in water at 7.5 g/kg, or a control group given saline, by oral gavage daily for 3 days. The epithelial histology and ultrastructure, the intestinal microflora, peripheral and portal venous plasma lipopolysaccharide (LPS) levels, and somatostatin (SST) levels in the peripheral plasma and small intestine were evaluated. Somatostatin receptor 2 (SSTR2), TLR4, TANK binding kinase-1 (TBK1), activated nuclear factor-κB (NF-κB), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in the intestinal mucosa were assayed. LPS responsiveness with or without SST pretreatment was assayed in vitro by quantification of TLR4, TBK1, activated NF-κB, IFN-γ and TNF-α in isolated intestinal epithelia. Mucosal damage was observed in the ethanol group by light and electron microscopy. Escherichia coli cultures were unchanged in rat intestine of the ethanol group compared with controls, but lactobacilli cultures were reduced (p < 0.05). LPS levels increased in peripheral and portal venous plasma (p < 0.05), but mucosal TLR4, TBK1, nuclear NF-κB, IFN-γ and TNF-α were unchanged in the ethanol group. LPS treatment in vitro up-regulated the level of TLR4, TBK1 and nuclear NF-κB as well as the production of IFN-γ and TNF-α in isolated intestinal epithelia in the control (p < 0.05), but not the ethanol group. The stimulatory effects of LPS on intestinal epithelia isolated from the control group were significantly inhibited by SST pretreatment (p < 0.05). The peripheral plasma and intestinal levels of SST and the mucosal expression of SSTR2 in the ethanol group were significantly higher than in the control group (p < 0.05). These findings suggest the hyposensitivity of intestinal epithelial TLR4 to LPS induced by acute alcohol abuse probably through ethanol per se and ethanol-enhanced intestinal mucosal SST pathway may be a novel mechanism for increased susceptibility to intestinal pathogens.
Collapse
|
21
|
Relja B, Henrich D, Wetzel G, Sander AL, Jakob H, Maraslioglu M, Marzi I, Lehnert M. Effects of acute ethanol gavage on intestinal integrity after hemorrhage/resuscitation. Scand J Gastroenterol 2013; 48:448-58. [PMID: 23517294 DOI: 10.3109/00365521.2013.772228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND In hemorrhagic shock with subsequent resuscitation (H/R), increased pro-inflammatory changes contribute to tissue injury and mortality in rodent models. Ethanol (EtOH) is assumed to modulate the inflammatory response and the subsequent organ injury after H/R. Therefore, we determined the contribution of acute ethanol gavage on intestinal inflammation and injury as well as survival after H/R in rats. METHODS Fourteen hours before H/R, female LEWIS rats were gavaged with single dose of EtOH or saline (5 g/kg, 30% EtOH, H/R_EtOH group or H/R_ctrl group). Then, rats were hemorrhaged to a mean arterial blood pressure of 30 ± 2 mmHg for 60 min and resuscitated. Control groups underwent surgical procedures and gavage without H/R (sham_ctrl group and sham_EtOH group). Tissue was harvested 2 h after resuscitation. Mortality was assessed 72 h after H/R. RESULTS Ethanol gavage increased survival after H/R from 20% to 80%, but amplified plasma alanineaminotransferase (ALT) release compared to saline gavage (2847 ± 406 vs. 1159 ± 200 IU/L, p < 0.05). Intestinal mucosal damage index, intestinal permeability, ileal myeloperoxidase levels as indicators of polymorphonuclear leukocyte (PMNL) infiltration and systemic IL-6 levels as well as ileal IL-6 and TNF gene expressions after H/R were reduced and partly restored after ethanol gavage when compared to the saline gavaged group after H/R. CONCLUSIONS Taken together, we propose that acute ethanol gavage prior to H/R 1) did not enhance intestinal mucosa injury after H/R and 2) suppressed the H/R-induced inflammatory response. Both findings seem to contribute to the ethanol-induced survival benefit after H/R in our model.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gacouin A, Roussel M, Gros A, Sauvadet E, Uhel F, Chimot L, Marque S, Camus C, Fest T, Le Tulzo Y. Chronic alcohol exposure, infection, extended circulating white blood cells differentiated by flow cytometry and neutrophil CD64 expression: a prospective, descriptive study of critically ill medical patients. Ann Intensive Care 2012; 2:50. [PMID: 23272900 PMCID: PMC3539872 DOI: 10.1186/2110-5820-2-50] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/14/2012] [Indexed: 11/29/2022] Open
Abstract
Background A history of prolonged and excessive consumption of alcohol increases the risk for infections. The goal of this study was to investigate circulating white blood cells (WBC) differentiated by flow cytometry and neutrophil CD64 expression in excessive alcohol drinkers versus abstinent or moderate drinkers, and in those with or without infection, in medical patients admitted to the intensive care unit (ICU). Methods All patients admitted between September 2009 and March 2010 with an ICU-stay of 3 days or more were eligible for inclusion. Upon admission, hematological exams were conducted by flow cytometry. Results Overall, 281 adult were included, with 37% identified as at-risk drinkers. The only significant difference found in circulating WBC between at-risk and not-at-risk drinkers was a lower number of B lymphocytes in at-risk drinkers (P = 0.002). Four groups of patients were defined: not-at-risk drinkers with no infection (n = 66); not-at-risk drinkers with infection (n = 112); at-risk drinkers with no infection (n = 53); and at-risk drinkers with infection (n = 50). Whilst the presence of infection significantly reduced levels of noncytotoxic and cytotoxic T lymphocytes and significantly increased levels of CD16– monocytes in not-at-risk drinkers, with variation related to infection severity, infection had no effect on any of the variables assessed in at-risk drinkers. Post-hoc comparisons showed that B-lymphocyte, noncytotoxic, and cytotoxic T lymphocyte and CD16– counts in at-risk drinkers were similar to those in not-at-risk drinkers with infection and significantly lower than those in not-at-risk drinkers without infection. Neutrophil CD64 index varied significantly between groups, with variations related to infection, not previous alcohol consumption. Conclusions These results show that chronic alcohol exposure has an impact on the immune response to infection in critically ill medical patients. The absence of significant variations in circulating WBC seen in at-risk drinkers according to the severity of infection is suggestive of altered immune response.
Collapse
Affiliation(s)
- Arnaud Gacouin
- CHU Rennes, Maladies Infectieuses et Réanimation Médicale, Rennes, F-35033, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bergström U, Jacobsson LTH, Nilsson JÅ, Wirfält E, Turesson C. Smoking, low formal level of education, alcohol consumption, and the risk of rheumatoid arthritis. Scand J Rheumatol 2012; 42:123-30. [PMID: 23126587 DOI: 10.3109/03009742.2012.723744] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Suggested predictors of rheumatoid arthritis (RA) include environmental exposure, such as smoking. Our purpose was to investigate potential predictors of RA in a nested case-control study based on a prospective cohort. METHOD Between 1991 and 1996, 30,447 persons were included in the Malmö Diet and Cancer Study (MDCS). Individuals who developed RA after inclusion up to 31 December 2004 were identified by linking the database to different registers. Four controls were selected for every case. Data on lifestyle factors were collected in the MDCS. RESULTS We identified 172 incident cases of RA [36 men/136 women, mean age at diagnosis 63 years, 69% rheumatoid factor (RF) positive, median time from inclusion to diagnosis 5 (range 1-13) years]. In bivariate analyses, baseline smoking [odds ratio (OR) 2.02, 95% confidence interval (CI) 1.31-3.12] and a low level of formal education (i.e. ≤ 8 years; OR 2.42, 95% CI 1.18-4.93 vs. University degree) predicted subsequent development of RA. Infrequent baseline alcohol consumption was a predictor of RA (OR 3.47, 95% CI 1.91-6.30) compared to recent use (within the past month), and individuals with moderate baseline alcohol consumption (3.5-15.2 g/day vs. < 3.5 g/day) tended to have a reduced risk of RA (OR 0.48, 95% CI 0.22-1.05) in multivariate analyses, adjusted for smoking and level of education. CONCLUSIONS Smoking and a low level of formal education were found to be independent predictors of RA. Moderate alcohol consumption may also be associated with a reduced risk.
Collapse
Affiliation(s)
- U Bergström
- Section of Rheumatology, Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | | | | | | | | |
Collapse
|
24
|
Barros FR, Castro-Faria-Neto HC, Castro CL, Aguiar Nemer AS, Rocha EMS, Silva Fonseca VA. Effects of chronic ethanol consumption in experimental sepsis. Alcohol Alcohol 2012; 47:677-82. [PMID: 22805349 DOI: 10.1093/alcalc/ags081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIMS To evaluate the effects of chronic ethanol consumption on the development and the pathophysiology of sepsis, using an experimental model of polymicrobial peritonitis by feces i.p. injection. METHODS Forty-day-old male Wistar rats were divided into groups for two experiments: A and B. Experiment A was performed for determination of mortality rates, while experiment B was designed for biochemical analysis and measurement of cytokines before and after sepsis. In both the experiments, treated animals were exposed to a 10% ethanol solution as the single drinking source for 4 weeks, while untreated animals were exposed to tap water over the same period. Food was provided ad libitum. After this period, the animals underwent i.p. fecal injection for induction of sepsis. RESULTS Experiment A showed that higher doses of ethanol resulted in early mortality from sepsis that was correlated with the alcohol consumption (high dose = 85.7%, low dose = 14.3%, P = 0.027). In experiment B, cytokine analysis demonstrated important changes resulting from sepsis, which were further affected by ethanol exposure. In addition, glucose and creatinine levels decreased and increased, respectively, after sepsis, but a significant change occurred only in the ethanol group (P < 0.003 glucose, P < 0.01 creatinine). The levels of pro-inflammatory cytokines, interleukin-6 and tumor necrosis factor-α, increased after sepsis, but were less evident after ethanol exposure. CONCLUSION These differences may be the result of either early mortality or an increase in the severity of the septic process. Taking into account the high mortality rate and the extreme severity of sepsis after alcohol consumption, often encouraged by advertising, a caution should be given to patients with severe infections and a history of alcohol abuse.
Collapse
Affiliation(s)
- F R Barros
- Programa de Pós Graduação em Patologia, UFF, Niterói, RJ Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Bala S, Tang A, Catalano D, Petrasek J, Taha O, Kodys K, Szabo G. Induction of Bcl-3 by acute binge alcohol results in toll-like receptor 4/LPS tolerance. J Leukoc Biol 2012; 92:611-20. [PMID: 22782967 DOI: 10.1189/jlb.0112050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Acute alcohol binge results in immunosuppression and impaired production of proinflammatory cytokines, including TNF-α. TNF-α production is induced by LPS, a TLR4 ligand, and is tightly regulated at various levels of the signaling cascade, including the NF-κB transcription factor. Here, we hypothesized that acute alcohol induces TLR4/LPS tolerance via Bcl-3, a nuclear protein and member of the NF-κB family. We found that acute alcohol pretreatment resulted in the same attenuating effect as LPS pretreatment on TLR4-induced TNF-α production in human monocytes and murine RAW 264.7 macrophages. Acute alcohol-induced Bcl-3 expression and IP studies revealed increased association of Bcl-3 with NF-κB p50 homodimers in alcohol-treated macrophages and in mice. ChIP assays revealed increased occupancy of Bcl-3 and p50 at the promoter region of TNF-α in alcohol-pretreated cells. To confirm that the Bcl-3-p50 complex regulates transcription/production of TNF-α during acute alcohol exposure, we inhibited Bcl-3 expression using a targeted siRNA. Bcl-3 knockdown prevented the alcohol-induced inhibition of TNF-α mRNA and protein production. In a mouse model of binge alcohol, an increase in Bcl-3 and a concomitant decrease in TNF-α but no change in IL-10 production were found in mice that received alcohol followed by LPS challenge. In summary, our novel data suggest that acute alcohol treatment in vitro and in vivo induces molecular signatures of TLR4/LPS tolerance through the induction of Bcl-3, a negative regulator of TNF-α transcription via its association with NF-κB p50/p50 dimers.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Patterson CM, Morrison RL, D'Souza A, Teng XS, Happel KI. Inhaled fluticasone propionate impairs pulmonary clearance of Klebsiella pneumoniae in mice. Respir Res 2012; 13:40. [PMID: 22651370 PMCID: PMC3426464 DOI: 10.1186/1465-9921-13-40] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/31/2012] [Indexed: 11/11/2022] Open
Abstract
Background Recent trials demonstrate increased pneumonia risk in chronic obstructive pulmonary disease patients treated with the inhaled corticosteroid (ICS) fluticasone propionate (FP). There is limited work describing FP effects on host defenses against bacterial pneumonia. Methods C57BL/6 mice received daily, nose-only exposure to nebulized FP or vehicle for 8 days, followed by pulmonary challenge with Klebsiella pneumoniae. Bacterial burden, phagocytosis, leukocyte recruitment, cytokine expression, nitric oxide release, and survival were measured. Results Inhaled FP increased bacterial burden in lungs and blood 48 h after infection but affected neither in vivo phagocytosis of bacteria by alveolar macrophages (AM) nor alveolar neutrophil recruitment. AM from FP-treated mice showed impaired expression of infection induced TNF-alpha, IP-10 (CXCL-10), and interleukin 6 (IL-6), and AM also showed a trend towards impaired intracellular pathogen control following in vivo infection. In vitro FP treatment resulted in a dose-dependent impairment of cytokine expression by AM. Furthermore, infection-induced nitric oxide (but not hydrogen peroxide) production was impaired by FP in vivo and in vitro. FP decreased survival in this model. Conclusions Exposure to inhaled FP impairs pulmonary clearance of K. pneumoniae in mice, an effect associated with greater systemic bacteremia and death. Decreased AM cytokine and nitric oxide expression parallel the failure to control infection. These results support the study of ICS effects on human pulmonary host defenses.
Collapse
Affiliation(s)
- Craig M Patterson
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
27
|
Karlson EW, Deane K. Environmental and gene-environment interactions and risk of rheumatoid arthritis. Rheum Dis Clin North Am 2012; 38:405-26. [PMID: 22819092 DOI: 10.1016/j.rdc.2012.04.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiple environmental factors including hormones, dietary factors, infections, and exposure to tobacco smoke, as well as gene-environment interactions, have been associated with increased risk for rheumatoid arthritis (RA). The growing understanding of the prolonged period before the first onset of symptoms of RA suggests that these environmental and genetic factors are likely acting to drive the development of RA-related autoimmunity long before the appearance of the first joint symptoms and clinical findings that are characteristic of RA. This article reviews these factors and interactions, especially those that have been investigated in a prospective fashion before the symptomatic onset of RA.
Collapse
Affiliation(s)
- Elizabeth W Karlson
- Section of Clinical Sciences, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|
28
|
Relja B, Höhn C, Bormann F, Seyboth K, Henrich D, Marzi I, Lehnert M. Acute alcohol intoxication reduces mortality, inflammatory responses and hepatic injury after haemorrhage and resuscitation in vivo. Br J Pharmacol 2012; 165:1188-99. [PMID: 21790532 DOI: 10.1111/j.1476-5381.2011.01595.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Haemorrhagic shock and resuscitation (H/R) induces hepatic injury, strong inflammatory changes and death. Alcohol intoxication is assumed to worsen pathophysiological derangements after H/R. Here, we studied the effects of acute alcohol intoxication on survival, liver injury and inflammation after H/R, in rats. EXPERIMENTAL APPROACH Rats were given a single oral dose of ethanol (5 g·kg(-1) , 30%) or saline (control), 12 h before they were haemorrhaged for 60 min and resuscitated (H/R). Sham groups received the same procedures without H/R. Measurements were made 2, 24 and 72 h after resuscitation. Survival was assessed 72 h after H/R. KEY RESULTS Ethanol increased survival after H/R three-fold and also induced fatty changes in the liver. H/R-induced liver injury was amplified by ethanol at 2 h but inhibited 24 h after H/R. Elevated serum IL-6 levels as well as hepatic IL-6 and TNF-α gene expression 2 h after H/R were reduced by ethanol. Ethanol enhanced serum IL-1β at 2 h, but did not affect increased hepatic IL-1β expression at 72 h after H/R. Local inflammatory markers, hepatic infiltration with polymorphonuclear leukocytes and intercellular adhesion molecule 1 expression decreased after ethanol compared with saline, following H/R. Ethanol reduced H/R-induced IκBα activation 2 h after H/R, and NF-κB-dependent gene expression of MMP9. CONCLUSIONS AND IMPLICATIONS Ethanol reduced H/R-induced mortality at 72 h, accompanied by a suppression of proinflammatory changes after H/R in ethanol-treated animals. Binge-like ethanol exposure modulated the inflammatory response after H/R, an effect that was associated with NF-κB activity.
Collapse
Affiliation(s)
- B Relja
- Department of Trauma Surgery, Johann Wolfgang Goethe-University Frankfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
Acute ethanol gavage attenuates hemorrhage/resuscitation-induced hepatic oxidative stress in rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:983427. [PMID: 22550557 PMCID: PMC3328156 DOI: 10.1155/2012/983427] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 01/13/2023]
Abstract
Acute ethanol intoxication increases the production of reactive oxygen species (ROS). Hemorrhagic shock with subsequent resuscitation (H/R) also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.). Then, rats were hemorrhaged to a mean arterial blood pressure of 30 ± 2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.). Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE) and nitrosative (3-nitrotyrosine, 3-NT) stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.
Collapse
|
30
|
Bhatty M, Pruett SB, Swiatlo E, Nanduri B. Alcohol abuse and Streptococcus pneumoniae infections: consideration of virulence factors and impaired immune responses. Alcohol 2011; 45:523-39. [PMID: 21827928 DOI: 10.1016/j.alcohol.2011.02.305] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/26/2011] [Accepted: 02/16/2011] [Indexed: 01/01/2023]
Abstract
Alcohol is the most frequently abused substance in the world. Both acute and chronic alcohol consumption have diverse and well-documented effects on the human immune system, leading to increased susceptibility to infections like bacterial pneumonia. Streptococcus pneumoniae is the most common bacterial etiology of community-acquired pneumonia worldwide. The frequency and severity of pneumococcal infections in individuals with a history of alcohol abuse is much higher than the general population. Despite this obvious epidemiological relevance, very few experimental studies have focused on the interaction of pneumococci with the immune system of a host acutely or chronically exposed to alcohol. Understanding these host-pathogen interactions is imperative for designing effective prophylactic and therapeutic interventions for such populations. Recent advances in pneumococcal research have greatly improved our understanding of pneumococcal pathogenesis and virulence mechanisms. Additionally, a large body of data is available on the effect of alcohol on the physiology of the lungs and the innate and adaptive immune system of the host. The purpose of this review is to integrate the available knowledge in these diverse areas of for a better understanding of the how the compromised immune system derived from alcohol exposure responds to pneumococcal infections.
Collapse
Affiliation(s)
- Minny Bhatty
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, MS 39762, USA
| | | | | | | |
Collapse
|
31
|
Lu B, Solomon DH, Costenbader KH, Keenan BT, Chibnik LB, Karlson EW. Alcohol consumption and markers of inflammation in women with preclinical rheumatoid arthritis. ACTA ACUST UNITED AC 2011; 62:3554-9. [PMID: 20827783 DOI: 10.1002/art.27739] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To examine the association between alcohol consumption and markers of inflammation in preclinical rheumatoid arthritis (RA). METHODS We studied 174 incident RA cases with stored blood collected 1-16 years prior to RA symptoms (preclinical RA), from the Nurses' Health Study. Alcohol intake was measured using a detailed food frequency questionnaire administered every 4 years, prior to blood collection. Plasma was tested for biomarkers of inflammation, including high-sensitivity C-reactive protein (hsCRP), anti-cyclic citrullinated peptide (anti-CCP) antibodies, interleukin-6 (IL-6), and soluble tumor necrosis factor receptor II (sTNFRII). Generalized additive models were used to identify structure in the relationship between each biomarker and cumulative average alcohol intake. Then general linear models were used for multivariable adjusted analyses with appropriate polynomial terms of alcohol consumption. RESULTS After controlling for age at blood collection, smoking, parity and duration of breastfeeding, menopausal status, oral contraceptive use, body mass index, and the time between blood collection and RA onset, we found that the daily alcohol consumption showed a U-shaped association with IL-6 levels in RA patients, prior to symptoms. We also found an inverse relationship between alcohol intake and sTNFRII levels, but no associations with hsCRP or anti-CCP levels. CONCLUSION These results demonstrate an association between alcohol consumption and markers of inflammation, including IL-6 and sTNFRII, in RA patients, prior to the occurrence of symptoms.
Collapse
Affiliation(s)
- Bing Lu
- Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Role of TLR4 in ethanol effects on innate and adaptive immune responses in peritoneal macrophages. Immunol Cell Biol 2011; 89:716-27. [DOI: 10.1038/icb.2010.163] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Gomez M, Raju SV, Viswanathan A, Painter RG, Bonvillain R, Byrne P, Nguyen DH, Bagby GJ, Kolls JK, Nelson S, Wang G. Ethanol upregulates glucocorticoid-induced leucine zipper expression and modulates cellular inflammatory responses in lung epithelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:5715-22. [PMID: 20382889 PMCID: PMC2901557 DOI: 10.4049/jimmunol.0903521] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alcohol abuse is associated with immunosuppressive and infectious sequelae. Particularly, alcoholics are more susceptible to pulmonary infections. In this report, gene transcriptional profiles of primary human airway epithelial cells exposed to varying doses of alcohol (0, 50, and 100 mM) were obtained. Comparison of gene transcription levels in 0 mM alcohol treatments with those in 50 mM alcohol treatments resulted in 2 genes being upregulated and 16 genes downregulated by at least 2-fold. Moreover, 0 mM and 100 mM alcohol exposure led to the upregulation of 14 genes and downregulation of 157 genes. Among the upregulated genes, glucocorticoid-induced leucine zipper (GILZ) responded to alcohol in a dose-dependent manner. Moreover, GILZ protein levels also correlated with this transcriptional pattern. Lentiviral expression of GILZ small interfering RNA in human airway epithelial cells diminished the alcohol-induced upregulation, confirming that GILZ is indeed an alcohol-responsive gene. Gene silencing of GILZ in A549 cells resulted in secretion of significantly higher amounts of inflammatory cytokines in response to IL-1beta stimulation. The GILZ-silenced cells were more resistant to alcohol-mediated suppression of cytokine secretion. Further data demonstrated that the glucocorticoid receptor is involved in the regulation of GILZ by alcohol. Because GILZ is a key glucocorticoid-responsive factor mediating the anti-inflammatory and immunosuppressive actions of steroids, we propose that similar signaling pathways may play a role in the anti-inflammatory and immunosuppressive effects of alcohol.
Collapse
Affiliation(s)
- Marla Gomez
- Alcohol Research Center and Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Sammeta V. Raju
- Alcohol Research Center and Gene Therapy Program, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anand Viswanathan
- Alcohol Research Center and Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Richard G. Painter
- Alcohol Research Center and Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ryan Bonvillain
- Alcohol Research Center and Gene Therapy Program, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patrick Byrne
- Alcohol Research Center and Gene Therapy Program, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Doan H. Nguyen
- Alcohol Research Center and Gene Therapy Program, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Gregory J. Bagby
- Alcohol Research Center and Gene Therapy Program, Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jay K. Kolls
- Alcohol Research Center and Gene Therapy Program, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Steve Nelson
- Alcohol Research Center and Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Guoshun Wang
- Alcohol Research Center and Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Alcohol Research Center and Gene Therapy Program, Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
34
|
Pathoanatomy and clinical correlates of the immunoinflammatory response following orthopaedic trauma. J Am Acad Orthop Surg 2009; 17:255-65. [PMID: 19307674 PMCID: PMC2675552 DOI: 10.5435/00124635-200904000-00006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The natural inflammatory response to major trauma may be associated with the development of a systemic inflammatory state, remote multiorgan failure, and death. Although a controlled inflammatory response is beneficial, an exaggerated response can cause serious adverse systemic effects. Early identification of high-risk patients, based on inflammatory markers and genomic predisposition, should help direct intervention in terms of surgical stabilization and biologic response modification. Currently, two markers of immune reactivity, interleukin-6 and human leukocyte antigen-DR class II molecules, appear to have the most potential for regular use in predicting the clinical course and outcome in trauma patients; however, the ability to measure markers of inflammation is still limited at many hospitals. With improving technology and increasing research interest, understanding of the significance of the immunoinflammatory response system in injured patients will continue to evolve.
Collapse
|
35
|
Antigen-presenting cells under the influence of alcohol. Trends Immunol 2008; 30:13-22. [PMID: 19059005 DOI: 10.1016/j.it.2008.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 12/16/2022]
Abstract
The negative influence of alcohol (ethanol) and its metabolites on innate and adaptive immunity is well-recognized. Much attention has recently been focused on the impact of acute and chronic alcohol exposure on antigen-presenting cells (APC). In particular, insights have been gained into how the properties of human blood monocytes and rodent macrophages are influenced by alcohol in vitro and in vivo. Here, we review the impact of alcohol on various aspects of APC function and the underlying mechanisms, including its effects on intracellular signaling events. We also discuss new information regarding the influence of alcohol on various APC populations in the liver, a primary site of alcohol metabolism.
Collapse
|
36
|
Parthasarathy NJ, Kumar RS, Devi RS. Effect of Methanol Intoxication on Rat Neutrophil Functions. J Immunotoxicol 2008; 2:115-21. [DOI: 10.1080/15476910500187425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
37
|
Norkina O, Dolganiuc A, Catalano D, Kodys K, Mandrekar P, Syed A, Efros M, Szabo G. Acute alcohol intake induces SOCS1 and SOCS3 and inhibits cytokine-induced STAT1 and STAT3 signaling in human monocytes. Alcohol Clin Exp Res 2008; 32:1565-73. [PMID: 18616672 DOI: 10.1111/j.1530-0277.2008.00726.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acute alcohol consumption is associated with induction of immuno-inhibitory cytokines and down-regulation of pro-inflammatory responses to various pathogens. We previously reported that alcohol activates janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling leading to IL-10 induction. The JAK-STAT pathway also activates its own negative regulators, suppressors of cytokine signaling (SOCS) 1 and SOCS3. SOCS proteins are inducible inhibitors that negatively regulate STAT3/STAT1 signaling pathways induced by cytokines, IL-6 or IFNs. Here we aimed to explore the effect of acute alcohol on induction of SOCS1/SOCS3 and regulation of STAT3/STAT1 pathways induced by IL-6 or IFNs in human monocytes. METHODS Blood samples from normal volunteers were collected before and 24 hours after consumption of 2 ml vodka/kg body weight. For in vitro experiments human monocytes were pretreated with ethanol (EtOH) followed by stimulation with cytokines; proteins were analyzed by Western blot, nuclear protein binding to DNA by EMSA, and RNA by real time PCR. RESULTS Acute in vivo or in vitro alcohol treatment increased both SOCS1 and SOCS3 RNA expression in monocytes. Alcohol treatment resulted in increased STAT3 and STAT1 DNA binding capacity. Activation of both STAT1 and STAT3 has been shown to induce SOCS1/3. We hypothesized that induction of SOCS proteins by alcohol in turn may lead to modulation of cytokine signaling through STAT1 and STAT3. Indeed, we observed significant down-regulation of IL-6-, IFNalpha- and IFNgamma-induced STAT1 DNA binding as well as inhibition of IL-6- and IFNgamma-induced STAT3 when alcohol was added to monocytes 3 hours prior to the cytokine stimulation. Consistent with inhibition of IL-6-induced STAT3 DNA binding in alcohol-pretreated cells, the levels of IL-6-dependent genes, MCP-1 and ICAM-1, was reduced after IL-6 stimulation. Similar to EtOH alone, combined EtOH+IL-6 simulation resulted in increased expression of both SOCS3 and SOCS1 genes. CONCLUSION While acute alcohol treatment alone activates STAT1/3 signaling pathways and induces SOCS3 and SOCS1 levels in monocytes, alcohol also leads to down-regulation of IL-6-, IFNalpha-, and IFNgamma-induced signaling via STAT1/STAT3 pathways, likely through excessive SOCS activation.
Collapse
Affiliation(s)
- Oxana Norkina
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Källberg H, Jacobsen S, Bengtsson C, Pedersen M, Padyukov L, Garred P, Frisch M, Karlson EW, Klareskog L, Alfredsson L. Alcohol consumption is associated with decreased risk of rheumatoid arthritis: results from two Scandinavian case-control studies. Ann Rheum Dis 2008; 68:222-7. [PMID: 18535114 DOI: 10.1136/ard.2007.086314] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To determine the association between risk of rheumatoid arthritis (RA) and alcohol consumption in combination with smoking and HLA-DRB1 shared epitope (SE). METHODS Data from two independent case-control studies of RA, the Swedish EIRA (1204 cases and 871 controls) and the Danish CACORA (444 cases and 533 controls), were used to estimate ORs of developing RA for different amounts of alcohol consumed. RESULTS Alcohol consumption was significantly more common in controls (p<0.05) and dose-dependently associated with reduced risk of RA (p for trend <0.001) in both studies. Among alcohol consumers, the quarter with the highest consumption had a decreased risk of RA of the order of 40-50% compared with the half with the lowest consumption (EIRA, OR = 0.5 (95% CI 0.4 to 0.6); CACORA, OR = 0.6 (95% CI 0.4 to 0.9)). For the subset of RA that is seropositive for antibodies to citrullinated peptide antigens, alcohol consumption reduced the risk most in smokers carrying HLA-DRB1 SE alleles. CONCLUSIONS The observed inverse association between alcohol intake and risk of RA and the recent demonstration of a preventive effect of alcohol in experimental arthritis indicate that alcohol may protect against RA. This highlights the potential role of lifestyle in determining the risk of developing RA, and emphasises the advice to stop smoking, but not necessarily to abstain from alcohol in order to diminish risk of RA. The evidence of potential RA prevention should prompt additional studies on how this can be achieved.
Collapse
Affiliation(s)
- H Källberg
- Institute of Environmental Medicine, Box 210, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Goral J, Karavitis J, Kovacs EJ. Exposure-dependent effects of ethanol on the innate immune system. Alcohol 2008; 42:237-47. [PMID: 18411007 DOI: 10.1016/j.alcohol.2008.02.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/22/2008] [Accepted: 02/22/2008] [Indexed: 12/14/2022]
Abstract
Extensive evidence indicates that ethanol (alcohol) has immunomodulatory properties. Many of its effects on innate immune response are dose dependent, with acute or moderate use associated with attenuated inflammatory responses, and heavy ethanol consumption linked with augmentation of inflammation. Ethanol may modify innate immunity via functional alterations of the cells of the innate immune system. Mounting evidence indicates that ethanol can diversely affect antigen recognition and intracellular signaling events, which include activation of mitogen activated protein kinases, and NFkappaB, mediated by Toll-like receptors, leading to altered inflammatory responses. The mechanism(s) underlying these changes may involve dose-dependent effects of ethanol on the fluidity of cell membrane, resulting in interference with the timely assembly or disassembly of lipid rafts. Ethanol could also modify cell activation by specific interactions with cell membrane molecules.
Collapse
Affiliation(s)
- Joanna Goral
- Department of Anatomy, Midwestern University, Downers Grove, IL, USA
| | | | | |
Collapse
|
40
|
Waldschmidt TJ, Cook RT, Kovacs EJ. Alcohol and inflammation and immune responses: summary of the 2006 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2008; 42:137-42. [PMID: 18358993 DOI: 10.1016/j.alcohol.2007.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Accepted: 11/29/2007] [Indexed: 01/08/2023]
Abstract
The 11th annual meeting of the Alcohol and Immunology Research Interest Group was held at Loyola University Medical Center, Maywood, Illinois on November 17, 2006. The Alcohol and Immunology Research Interest Group meeting is held annually to exchange new findings and ideas that arise from ongoing research examining the effects of alcohol intake on the immune system. The event consisted of five sessions, two of which featured plenary talks from invited speakers, two with oral presentations from selected abstracts, and a final poster session. Participants presented new data on a variety of topics including the effects of ethanol on key cells of the immune system (neutrophils, dendritic cells, NK cells), B cell responses, the capacity to clear infectious agents, and the barrier functions of skin, lung, and intestine.
Collapse
|
41
|
Masaki F, Isao T, Hiroshi I, Seiji H, Eisuke S. A case of severe smoke inhalation injury without cutaneous burn required massive fluid for resuscitation. Burns 2007; 33:670-1. [PMID: 17222977 DOI: 10.1016/j.burns.2006.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Accepted: 07/29/2006] [Indexed: 10/23/2022]
Affiliation(s)
- Fujioka Masaki
- Department of Plastic and Reconstructive Surgery, National Nagasaki Medical Center, 1001-1 Kubara 2, Ohmura city 856-8562, Japan.
| | | | | | | | | |
Collapse
|
42
|
D'Souza El-Guindy NB, de Villiers WJ, Doherty DE. Acute alcohol intake impairs lung inflammation by changing pro- and anti-inflammatory mediator balance. Alcohol 2007; 41:335-45. [PMID: 17889310 PMCID: PMC2075099 DOI: 10.1016/j.alcohol.2007.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/05/2007] [Accepted: 07/06/2007] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that alcohol (ethanol [EtOH]) intoxication impairs lung immunity by affecting cytokines pivotal to the inflammatory process. The objective of this study was to test the hypothesis that acute alcohol intoxication impairs lung innate immunity by downregulating the expression of proinflammatory mediators while simultaneously upregulating anti-inflammatory mediators. EtOH was administered to the mice 0.5h prior to an intratracheal injection of Escherichia coli lipopolysaccharide (LPS). The animals were killed either 4 or 24h after LPS to recover plasma, lungs, and bronchoalveolar lavage fluid. Lung inflammatory cytokines tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1beta), IL-6, macrophage inhibitory factor (MIF), IL-10, TGF-beta, and receptors for TNF-alpha, IL-1beta, IL-6, and TGF-beta as well as glycoprotein (gp)130 and corticosterone (CS) levels were evaluated at mRNA and protein level. While the mRNA expression and the soluble TNF-Rp55 levels were significantly upregulated by EtOH, LPS-induced TNF-alpha activity, TNF-Rp55 mRNA expression, and soluble TNF-Rp55 levels were significantly suppressed. The LPS-induced expression of IL-1beta, IL-6, MIF, gp130, and receptors IL-1RI, IL-1RII, and IL-6Ralpha were also significantly impaired by EtOH. EtOH increased significantly the basal IL-10 activity at 3h, which continued to remain elevated even at 24h. The EtOH effect on IL-10 activity persisted even in LPS-challenged mice. EtOH and LPS augmented lung CS levels independently of each other. EtOH suppressed upregulation of TGF-beta1 mRNA expression by LPS and blocked completely LPS-induced TGF-beta1 secretion. In conclusion, the data suggest that the suppression of acute lung inflammation by EtOH intoxication is largely due to impairment by EtOH of proinflammatory cytokine signaling at the levels of cytokine expression and secretion as well as receptor expression and soluble receptor activity. The augmentation by EtOH of anti-inflammatory mediators' secretion most likely shifts the cytokine balance in the anti-inflammatory direction.
Collapse
Affiliation(s)
- Nympha B D'Souza El-Guindy
- Department of Internal Medicine, Division of Digestive Diseases, A.B. Chandler Medical Center, University of Kentucky, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
43
|
Greiffenstein P, Mathis KW, Stouwe CV, Molina PE. Alcohol binge before trauma/hemorrhage impairs integrity of host defense mechanisms during recovery. Alcohol Clin Exp Res 2007; 31:704-15. [PMID: 17374050 DOI: 10.1111/j.1530-0277.2007.00355.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Alcohol abuse, both chronic and acute, is a known modulator of immune function and is associated with increased incidence of traumatic injury. Previously, we demonstrated that acute alcohol intoxication before hemorrhagic shock impairs hemodynamic and neuroendocrine counterregulation, suppresses early lung proinflammatory cytokine expression, and increases mortality from infection during recovery. In the present study, we examined the impact of a 3-day alcohol binge on host responses during trauma/hemorrhage (T x Hem) and following overnight recovery. METHODS Chronically catheterized, adult male Sprague-Dawley rats were administered an intragastric bolus of alcohol (5 g/kg; 30% w/v) or isocaloric dextrose solution for 3 consecutive days, followed by a 2.5 g/kg dose on day 4 before undergoing full-thickness muscle-crush and fixed pressure (approximately 40 mmHg) hemorrhage and fluid resuscitation (2.4 x total blood volume removed). RESULTS Alcohol-binge produced a 16% decrease in basal mean arterial blood pressure (MABP), reduced the total blood loss required to reach and to sustain MABP of 40 mmHg, markedly blunted the increase in circulating epinephrine and norepinephrine (20-fold and 3-fold, respectively) levels, and increased immediate mortality from T x Hem. Consistent with our previous reports, significant up-regulation in lung and spleen tumor necrosis factor (TNF)-alpha and interleukin (IL)-1alpha expression was observed immediately following T x Hem and fluid resuscitation. Only the T x Hem-induced increase in lung TNF-alpha was prevented by binge alcohol administration. Following overnight recovery, significant lipopolysaccharide (LPS)-stimulated release of TNF-alpha, IL-1alpha, IL-6, and IL-10 was observed in cells isolated from blood and the alveolar and pleural compartments from all experimental groups. While T x Hem did not prevent LPS-induced release of TNF-alpha, IL-1alpha, IL-6, or IL-10 at 6 or 24 hours, alcohol binge suppressed TNF-alpha, IL-1 and IL-6 release, without altering IL-10 response in cells isolated from blood and pleural compartment. No significant modulation of alveolar macrophage response was observed following alcohol binge and T x Hem. CONCLUSIONS These results indicate that a 3-day alcohol binge results in hemodynamic instability associated with attenuated neuroendocrine activation and increased mortality during T x Hem as well as sustained suppression of the proinflammatory cytokine response of blood and pleural-derived cells to a "second-hit" inflammatory challenge. As a result, we speculate that the net shift toward an anti-inflammatory state may contribute to enhanced susceptibility to infection during the recovery period.
Collapse
Affiliation(s)
- Patrick Greiffenstein
- Department of Physiology and Alcohol Research Center, LSU Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
44
|
Zhang P, Zhong Q, Bagby GJ, Nelson S. Alcohol intoxication inhibits pulmonary S100A8 and S100A9 expression in rats challenged with intratracheal lipopolysaccharide. Alcohol Clin Exp Res 2007; 31:113-21. [PMID: 17207109 DOI: 10.1111/j.1530-0277.2006.00269.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alcohol is known to inhibit the recruitment of polymorphonuclear leukocytes (PMNs) into tissue sites including the lung. During infection and inflammation, recruited neutrophils (PMNs) release S100 proteins that function to promote the recruitment of additional phagocytes. METHODS AND RESULTS This study investigated the effects of alcohol intoxication on S100 protein production in the lung in response to lipopolysaccharide (LPS). Animals were administered alcohol (5.5 g/kg) or saline 30 minutes before intratracheal challenge with LPS (100 microg/rat). Alcohol suppressed PMN recruitment into the lung following intratracheal LPS, which was associated with an inhibition of increase in S100A8 levels in both the bronchoalveolar lavage (BAL) fluid and lysates of cells recovered by BAL at 90 minutes and 4 hours post-LPS challenge. S100A8 and S100A9 mRNA expression in cells recovered by BAL was significantly up-regulated at both 90 minutes and 4 hours after the LPS challenge, and alcohol also suppressed this response. In addition, intratracheal LPS caused a transient increase in S100A8 mRNA expression in circulating leukocytes at 90 minutes after the challenge. Similarly, this LPS-induced up-regulation of S100A8 mRNA expression was inhibited in rats intoxicated with alcohol. CONCLUSION These data show that alcohol inhibits the S100 protein response in the lung, which may serve as a mechanism underlying alcohol-induced suppression of PMN recruitment into the terminal airways during pulmonary infection.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Medicine, Section of Pulmonary/CCM, Alcohol Research Center, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
45
|
Joshi PC, Guidot DM. The alcoholic lung: epidemiology, pathophysiology, and potential therapies. Am J Physiol Lung Cell Mol Physiol 2007; 292:L813-23. [PMID: 17220370 DOI: 10.1152/ajplung.00348.2006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Epidemiological evidence gathered only in the past decade reveals that alcohol abuse independently increases the risk of developing the acute respiratory distress syndrome by as much as three- to fourfold. Experimental models and clinical studies are beginning to elucidate the mechanisms underlying this previously unrecognized association and are revealing for the first time that chronic alcohol abuse causes discrete changes, particularly within the alveolar epithelium, that render the lung susceptible to acute edematous injury in response to sepsis, trauma, and other inflammatory insults. Recent studies in relevant animal models as well as in human subjects are identifying common mechanisms by which alcohol abuse targets both the alveolar epithelium and the alveolar macrophage, such that the risks for acute lung injury and pulmonary infections are inextricably linked. Specifically, chronic alcohol ingestion decreases the levels of the antioxidant glutathione within the alveolar space by as much as 80-90%, and, as a consequence, impairs alveolar epithelial surfactant production and barrier integrity, decreases alveolar macrophage function, and renders the lung susceptible to oxidant-mediated injury. These changes are often subclinical and may not manifest as detectable lung impairment until challenged by an acute insult such as sepsis or trauma. However, even otherwise healthy alcoholics have evidence of severe oxidant stress in the alveolar space that correlates with alveolar epithelial and macrophage dysfunction. This review focuses on the epidemiology and the pathophysiology of alcohol-induced lung dysfunction and discusses potential new treatments suggested by recent experimental findings.
Collapse
Affiliation(s)
- Pratibha C Joshi
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia GA 30033, USA.
| | | |
Collapse
|
46
|
Dolganiuc A, Bakis G, Kodys K, Mandrekar P, Szabo G. Acute ethanol treatment modulates Toll-like receptor-4 association with lipid rafts. Alcohol Clin Exp Res 2006; 30:76-85. [PMID: 16433734 DOI: 10.1111/j.1530-0277.2006.00003.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alcohol, a substance that is most frequently abused, suppresses innate immune responses to microbial pathogens. The host senses pathogens via Toll-like receptors (TLRs). Recent studies indicate that alcohol affects TLR signaling. METHODS Here, we hypothesized that acute alcohol treatment may interfere with early steps of membrane-associated TLR2 and TLR4 signaling at the level of lipid rafts. Human monocytes and Chinese hamster ovary (CHO) cells, transfected with human TLR2, TLR4, or CD14, were stimulated with peptidoglycan (PGN, TLR2 ligand) or lipopolysaccharide (LPS, TLR4 ligand) with or without alcohol (50 mM) and analyzed for cytokine production (enzyme-linked immunosorbent assay), nuclear factor-kappaB (NF-kappaB) activation (electrophoretic mobility shift assay), membrane fluidity (fluorescent pyrene eximer formation), and partition of cellular membrane into cholesterol-rich, detergent-resistant domains (DRMs; Western blot). RESULTS We determined that both TLR2 and TLR4 were located outside the rafts; flotillin, a DRM marker, was resident in the rafts, while CD14 was equally distributed in and outside the rafts in a steady-state condition. PGN forced TLR2 to migrate into DRMs. Engagement of TLR4 and CD14 with LPS induced their migration into the rafts. Alcohol prevented TLR4 partitioning; however, it did not affect TLR2 migration into the rafts. Furthermore, alcohol downregulated TLR4-induced, but not TLR2-induced, NF-kappaB activation and cytokine production in monocytes. We found that alcohol increased membrane fluidity and depleted cellular cholesterol in CHO cells without affecting cell viability. CONCLUSIONS These data demonstrate for the first time that alcohol disturbs TLR4 and CD14 association with lipid rafts. We propose that alcohol-induced effects on lipid rafts may contribute to modulation of TLR4-CD14-triggered early cellular responses.
Collapse
Affiliation(s)
- Angela Dolganiuc
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324, USA
| | | | | | | | | |
Collapse
|
47
|
Reutershan J, Morris MA, Burcin TL, Smith DF, Chang D, Saprito MS, Ley K. Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung. J Clin Invest 2006; 116:695-702. [PMID: 16485040 PMCID: PMC1366502 DOI: 10.1172/jci27009] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 12/13/2005] [Indexed: 01/11/2023] Open
Abstract
In models of acute lung injury, CXC chemokine receptor 2 (CXCR2) mediates migration of polymorphonuclear leukocytes (PMNs) into the lung. Since CXCR2 ligands, including CXCL1 and CXCL2/3, are chemotactic for PMNs, CXCR2 is thought to recruit PMNs by inducing chemotactic migration. In a model of PMN recruitment to the lung, aerosolized bacterial LPS inhalation induced PMN recruitment to the lung in wild-type mice, but not in littermate CXCR2-/- mice. Surprisingly, lethally irradiated wild-type mice reconstituted with CXCR2-/- BM still showed about 50% PMN recruitment into bronchoalveolar lavage fluid and into lung interstitium, but CXCR2-/- mice reconstituted with CXCR2-/- BM showed no PMN recruitment. Conversely, CXCR2-/- mice reconstituted with wild-type BM showed a surprisingly large defect in PMN recruitment, inconsistent with a role of CXCR2 on PMNs alone. Cell culture, immunohistochemistry, flow cytometry, and real-time RT-PCR were used to show expression of CXCR2 on pulmonary endothelial and bronchial epithelial cells. The LPS-induced increase in lung microvascular permeability as measured by Evans blue extravasation required CXCR2 on nonhematopoietic cells. Our data revealed what we believe to be a previously unrecognized role of endothelial and epithelial CXCR2 in LPS-induced PMN recruitment and lung injury.
Collapse
MESH Headings
- Animals
- Bronchoalveolar Lavage Fluid/cytology
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Immunohistochemistry
- Lipopolysaccharides/toxicity
- Lung/blood supply
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neutrophil Infiltration/genetics
- Neutrophil Infiltration/immunology
- RNA, Messenger/metabolism
- Radiation Chimera
- Receptors, Interleukin-8B/deficiency
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/physiology
- Respiratory Mucosa/immunology
- Respiratory Mucosa/metabolism
- Respiratory Mucosa/pathology
Collapse
Affiliation(s)
- Jörg Reutershan
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908-1394, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Waldschmidt TJ, Cook RT, Kovacs EJ. Alcohol and inflammation and immune responses: summary of the 2005 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol 2006; 38:121-5. [PMID: 16839859 DOI: 10.1016/j.alcohol.2006.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 05/04/2006] [Accepted: 05/05/2006] [Indexed: 01/13/2023]
Abstract
The 10th annual meeting of the Alcohol and Immunology Research Interest Group (AIRIG) was held at Loyola University Medical Center, Maywood, Illinois on November 18, 2005. The AIRIG meeting was held to exchange new findings and ideas regarding the profound suppressive effects of alcohol exposure on the immune system. The event consisted of five sessions, two of which featured plenary talks from invited speakers, two with oral presentations from selected abstracts, and a final poster session. Participants presented a range of novel information focused on ethanol-induced effects on innate and adaptive immunity after either acute or chronic exposure. In particular, participants offered insights into the negative effects of ethanol on the innate processes of adhesion, migration, inflammation, wound repair, and bone remodeling. Presentations also focused on the means by which ethanol disrupts activation of macrophages and dendritic cells (DC), especially stimulation mediated by Toll-like receptor ligands. Additional talks provided new data on the means by which ethanol suppresses adaptive immunity, with an emphasis on DC-mediated activation of T cells, effector T cell activity, and T cell-driven B cell responses.
Collapse
Affiliation(s)
- Thomas J Waldschmidt
- Department of Pathology, The University of Iowa, Carver College of Medicine, 1038 ML, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
49
|
Quinton LJ, Nelson S, Zhang P, Happel KI, Gamble L, Bagby GJ. Effects of systemic and local CXC chemokine administration on the ethanol-induced suppression of pulmonary neutrophil recruitment. Alcohol Clin Exp Res 2006; 29:1198-205. [PMID: 16046875 DOI: 10.1097/01.alc.0000171927.66130.aa] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acute alcohol intoxication impairs the neutrophil response to intrapulmonary infection, resulting in impaired host defense and increased patient morbidity and mortality. We recently showed that intratracheal (IT) chemokine administration promotes pulmonary neutrophil migration in rats and that this process is enhanced by systemic administration of the Glu-Leu-Arg (ELR+) and CXC chemokine cytokine-induced neutrophil chemoattractant (CINC). Here we hypothesized that exogenous chemokine administration would mitigate the suppressive effect of alcohol on neutrophil recruitment into the lung. METHODS Macrophage inflammatory protein-2 (MIP-2), a rat ELR+ CXC chemokine, or live Klebsiella pneumoniae (K. pneumoniae) was administered it to induce alveolar neutrophil migration in the absence or presence of acute ethanol intoxication. Depending on the experimental protocol, rats received either intravenous (IV) CINC or IT chemokines (CINC and MIP-2) 20 min after it MIP-2 or K. pneumoniae. Rats were euthanized 90 min or four hr after the first IT injection for sample collection. RESULTS Neutrophil counts were significantly elevated in bronchoalveolar lavage fluid (BALF) of rats receiving IT MIP-2 compared with vehicle-treated rats, and this response was significantly decreased in animals pretreated with ethanol. CINC IV enhanced the neutrophil response to IT MIP-2 in both the absence and presence of acute ethanol intoxication. In rats challenged with K. pneumoniae, ethanol pretreatment significantly reduced BALF levels of CINC and MIP-2, suppressed alveolar neutrophil recruitment, and decreased whole-lung myeloperoxidase activity. CINC IV did not alter BALF neutrophil counts in the absence or presence of ethanol administration 4 hr after IT K. pneumoniae. Alternatively, IT chemokine instillation partially restored BALF neutrophil recruitment but not whole-lung myeloperoxidase activity in ethanol-treated rats. CONCLUSIONS Ethanol significantly inhibits the pulmonary inflammatory responses to both MIP-2 and K. pneumoniae. Exogenous chemokine administration may be a useful means to enhance host defenses in the ethanol-intoxicated host, although the results of this study also indicate that ethanol intoxication can impair neutrophil recruitment, independent of its effects on local chemotactic gradients.
Collapse
Affiliation(s)
- Lee J Quinton
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
50
|
Kamat PP, Slutsky A, Zhang H, Bechara RI, Brown LAS, Garcia RC, Joshi PC, Kershaw CD, Guidot DM. Mechanical ventilation exacerbates alveolar macrophage dysfunction in the lungs of ethanol-fed rats. Alcohol Clin Exp Res 2006; 29:1457-65. [PMID: 16131854 DOI: 10.1097/01.alc.0000175010.25558.8c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Patients with alcohol abuse have a two- to three-fold increased risk of acute lung injury and respiratory failure after sepsis or trauma but are also at increased risk of nosocomial pneumonia. Mechanical ventilation exacerbates lung injury during critical illnesses. In this study we tested whether mechanical ventilation of the alcoholic lung promotes on balance a proinflammatory phenotype favoring ventilator-induced lung injury or an immunosuppressive phenotype favoring ventilator-associated pneumonia. METHODS Lungs from rats fed an isocaloric diet with or without ethanol (six weeks) were isolated and ventilated ex vivo with a low-volume (protective) or high-volume (injurious) strategy for two hours with or without prior endotoxemia (two hours). In other experiments, rats were subjected to high-volume ventilation in vivo. Airway levels of the proinflammatory cytokines tumor necrosis factor-alpha, macrophage inflammatory protein-2, and interleukin-1beta were determined after mechanical ventilation ex vivo and compared with edematous lung injury after high-volume ventilation in vivo. In parallel, alveolar macrophage phagocytosis of bacteria and secretion of interleukin-12 during ventilation ex vivo and endotoxin-stimulated alveolar macrophage phagocytosis and tumor necrosis factor-alpha secretion in vitro were determined. RESULTS Ethanol ingestion suppressed the proinflammatory response to injurious mechanical ventilation and did not increase experimental ventilator-induced lung injury. In parallel, ethanol ingestion blunted the innate immune response of alveolar macrophages during injurious ventilation ex vivo and after endotoxin stimulation in vitro. CONCLUSIONS Ethanol ingestion dampens ventilator-induced inflammation but exacerbates macrophage immune dysfunction. These findings could explain at least in part why alcoholic patients are at increased risk of ventilator-associated pneumonia.
Collapse
Affiliation(s)
- Pradip P Kamat
- Atlanta Veterans Administration Medical Center and the Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|