1
|
Li L, Al‐Jallad H, Sun A, Georgiopoulos M, Bokhari R, Ouellet J, Jarzem P, Cherif H, Haglund L. The proteomic landscape of extracellular vesicles derived from human intervertebral disc cells. JOR Spine 2024; 7:e70007. [PMID: 39507593 PMCID: PMC11538033 DOI: 10.1002/jsp2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
Background Extracellular vesicles (EVs) function as biomarkers and are crucial in cell communication and regulation, with therapeutic potential for intervertebral disc (IVD)-related low back pain (LBP). EV cargo is often affected by tissue health, which may affect the therapeutic potential. There is currently limited knowledge of how the cargo of IVD cell-derived EVs varies with tissue health and how differences in proteomic profile affect the predicted biological functions. Methods Our study purified EVs from human IVD cell conditioned media by size-exclusion chromatography. Nanoparticle tracking analysis was conducted to measure EV size and concentration. Transmission electron microscopy and Western blot were performed to examine EV structure and markers. Tandem mass tag-mass spectrometry was conducted to determine protein cargo. Results Most EVs were exosomes and intermediate microvesicles with an increasing amount linked to disease progression. Of the proteins detected, 88.6% were shared across the non-degenerate, mildly-degenerate, and degenerate samples. GO and KEGG analyses revealed that cargo from the mildly-degenerate samples was the most distinct, with the proteins in high abundance strongly associated with extracellular matrix (ECM) organization and structure. Shared proteins, highly expressed in the non-degenerate and degenerate samples, showed strong associations with cell adhesion, ECM-receptor interaction, and vesicle-mediated transport, respectively. Conclusions Our findings indicate that EVs from IVD cells from tissue with different degrees of degeneration share a majority of the cargo proteins. However, the level of expression differs with degeneration grade. Cargo from the mildly-degenerate samples exhibits the most differences. A better understanding of changes in EV cargo in the degenerative process may provide novel information related to molecular mechanisms underlying IVD degeneration and suggest new potential treatment modalities for IVD-related LBP.
Collapse
Affiliation(s)
- Li Li
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | | | - Aiwei Sun
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealQuebecCanada
| | - Miltiadis Georgiopoulos
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
| | - Rakan Bokhari
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- Department of Surgery, Division of NeurosurgeryFaculty of Medicine, King Abdulaziz UniversityJeddahSaudi Arabia
| | - Jean Ouellet
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| | - Peter Jarzem
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
| | - Hosni Cherif
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Lisbet Haglund
- Department of Surgery, Division of OrthopaedicsMcGill UniversityMontrealQuebecCanada
- The McGill Scoliosis and Spine Group, McGill University Health CentreMontrealQuebecCanada
- The Orthopaedic Research Laboratory, Research Institute of the McGill University Health CentreMontrealQuebecCanada
- Shriners Hospital for ChildrenMontrealQuebecCanada
| |
Collapse
|
2
|
Lee CY, Wu MH, Huang TJ, Wang PY, Wu ATH. Hypertrophic Ligamentum Flavum in Lumbar Spine Stenosis Is Associated With the Increased Expression of Secreted Protein Acidic and Rich in Cysteine. Global Spine J 2024; 14:1248-1256. [PMID: 36355427 PMCID: PMC11289542 DOI: 10.1177/21925682221138766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
STUDY DESIGN Basic research. OBJECTIVES Secreted protein acidic and rich in cysteine (SPARC) is a critical pro-fibrotic mediator. This study aims to characterize the role of SPARC in hypertrophic ligamentum flavum (LF) and fibrosis. METHODS Hypertrophic LF samples were obtained from 8 patients with L4/5 lumbar spinal stenosis (LSS) during the decompressive laminectomy. Non-hypertrophic LF from age- and sex-matched 8 patients with L4/5 lumbar disc herniation was selected as control. An in vitro model of fibrosis in human LF cells was established by interleukin 6 (IL-6) to assess SPARC expression. RESULTS Hypertrophic LF samples had higher fibrosis scores than control samples by Masson's trichrome staining (3.6 vs. 1.3, P < .001). Hypertrophic LF samples had significantly more positive staining for collagen and SPARC. Collagen III (Col3), α smooth muscle actin (α-SMA), and SPARC mRNA expression levels were significantly higher in hypertrophic LF samples than in control samples by qPCR. SPARC expression and fibrotic and inflammatory makers (collagen I, Col3, IL-6, interleukin 1β) were significantly upregulated in IL-6 stimulation of normal LF in vitro. CONCLUSION SPARC was detected in human LF and significantly upregulated in the clinical samples of hypertrophic LF compared to their normal counterparts. We also demonstrated an increased level of SPARC in an in vitro fibrosis model of LF. Thus, SPARC could be a crucial biomarker for the pathogenesis of hypertrophic LF and a therapeutic target for LSS.
Collapse
Affiliation(s)
- Ching-Yu Lee
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University
| | - Meng-Huang Wu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Jen Huang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Yao Wang
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, Taiwan
| | - Alexander T. H Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
3
|
He Y, Liu S, Lin H, Ding F, Shao Z, Xiong L. Roles of organokines in intervertebral disc homeostasis and degeneration. Front Endocrinol (Lausanne) 2024; 15:1340625. [PMID: 38532900 PMCID: PMC10963452 DOI: 10.3389/fendo.2024.1340625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
The intervertebral disc is not isolated from other tissues. Recently, abundant research has linked intervertebral disc homeostasis and degeneration to various systemic diseases, including obesity, metabolic syndrome, and diabetes. Organokines are a group of diverse factors named for the tissue of origin, including adipokines, osteokines, myokines, cardiokines, gastrointestinal hormones, and hepatokines. Through endocrine, paracrine, and autocrine mechanisms, organokines modulate energy homeostasis, oxidative stress, and metabolic balance in various tissues to mediate cross-organ communication. These molecules are involved in the regulation of cellular behavior, inflammation, and matrix metabolism under physiological and pathological conditions. In this review, we aimed to summarize the impact of organokines on disc homeostasis and degeneration and the underlying signaling mechanism. We focused on the regulatory mechanisms of organokines to provide a basis for the development of early diagnostic and therapeutic strategies for disc degeneration.
Collapse
Affiliation(s)
- Yuxin He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Ding
- Department of Orthopaedics, JingMen Central Hospital, Jingmen, China
- Hubei Minzu University, Enshi, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Ruffilli A, Neri S, Manzetti M, Barile F, Viroli G, Traversari M, Assirelli E, Vita F, Geraci G, Faldini C. Epigenetic Factors Related to Low Back Pain: A Systematic Review of the Current Literature. Int J Mol Sci 2023; 24:ijms24031854. [PMID: 36768184 PMCID: PMC9915125 DOI: 10.3390/ijms24031854] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Low back pain (LBP) is one of the most common causes of pain and disability. At present, treatment and interventions for acute and chronic low back pain often fail to provide sufficient levels of pain relief, and full functional restoration can be challenging. Considering the significant socio-economic burden and risk-to-benefit ratio of medical and surgical intervention in low back pain patients, the identification of reliable biomarkers such as epigenetic factors associated with low back pain could be useful in clinical practice. The aim of this study was to review the available literature regarding the epigenetic factors associated with low back pain. This review was carried out in accordance with Preferential Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The search was carried out in October 2022. Only peer-reviewed articles were considered for inclusion. Fourteen studies were included and showed promising results in terms of reliable markers. Epigenetic markers for LBP have the potential to significantly modify disease management. Most recent evidence suggests that epigenetics is a more promising field for the identification of factors associated with LBP, offering a rationale for further investigation in this field with the long-term goal of finding epigenetic biomarkers that could constitute biological targets for disease management and treatment.
Collapse
Affiliation(s)
- Alberto Ruffilli
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
- Correspondence: ; Tel.: +39-(05)-16366807
| | - Marco Manzetti
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Francesca Barile
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Giovanni Viroli
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Matteo Traversari
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Elisa Assirelli
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Fabio Vita
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Giuseppe Geraci
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| | - Cesare Faldini
- Department of Biomedical and Neuromotor Science—DIBINEM, 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Giulio Cesare Pupilli 1, 40136 Bologna, Italy
| |
Collapse
|
5
|
Hong JY, Kim H, Jeon WJ, Lee J, Yeo C, Lee YJ, Ha IH. Epigenetic Changes within the Annulus Fibrosus by DNA Methylation in Rat Intervertebral Disc Degeneration Model. Cells 2022; 11:cells11223547. [PMID: 36428977 PMCID: PMC9688069 DOI: 10.3390/cells11223547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is an age-dependent progressive spinal disease that causes chronic back or neck pain. Although aging has long been presented as the main risk factor, the exact cause is not fully known. DNA methylation is associated with chronic pain, suggesting that epigenetic modulation may ameliorate disc degeneration. We examined histological changes in the DNA methylation within the discs and their association with pain-related transient receptor potential vanilloid subtype 1 (TrpV1) expression in rats subjected to IDD. Epigenetic markers (5-hydroxymethylcytosine (5hmC), 5-methylcytosine (5Mc)), DNA methyltransferases (DNMTs), and Ten-eleven translocations (Tets) were analyzed using immunohistochemistry, real-time PCR, and DNA dot-blot following IDD. Results revealed high 5mC levels in the annulus fibrosus (AF) region within the disc after IDD and an association with TrpV1 expression. DNMT1 is mainly involved in 5mC conversion in degenerated discs. However, 5hmC levels did not differ between groups. A degenerated disc can lead to locomotor defects as assessed by ladder and tail suspension tests, no pain signals in the von Frey test, upregulated matrix metalloproteinase-3, and downregulated aggrecan levels within the disc. Thus, we found that the DNA methylation status in the AF region of the disc was mainly changed after IDD and associated with aberrant TrpV1 expression in degenerated discs.
Collapse
|
6
|
Chen S, Shi G, Zeng J, Li PH, Peng Y, Ding Z, Cao HQ, Zheng R, Wang W. MiR-1260b protects against LPS-induced degenerative changes in nucleus pulposus cells through targeting TCF7L2. Hum Cell 2022; 35:779-791. [PMID: 35165858 DOI: 10.1007/s13577-021-00655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/26/2021] [Indexed: 11/04/2022]
Abstract
Nucleus pulposus (NP) cells play a critical role in maintaining intervertebral disc integrity through producing the components of extracellular matrix (ECM). NP cell dysfunction, including senescence and hyper-apoptosis, has been regarded as critical events during intervertebral disc degeneration development. In the present study, we found that Transcription Factor 7-Like 2 (TCF7L2) was overexpressed within degenerative intervertebral disc tissue samples, and TCF7L2 silencing improved lipopolysaccharide (LPS)-induced repression on NP cell proliferation, ECM synthesis, and LPS-induced NP cell senescence. miR-1260b directly targeted TCF7L2 and inhibited TCF7L2 expression. miR-1260b overexpression improved LPS-induced degenerative changes in NP cells; more importantly, TCF7L2 overexpression significantly reversed the effects of miR-1260b overexpression on LPS-stimulated degenerative changes within NP cells. For the first time, we demonstrated the function of the miR-1260b/TCF7L2 axis on the phenotypic maintenance of chondrocyte-like NP cells and ECM synthesis by NP cells under LPS stimulation.
Collapse
Affiliation(s)
- Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Guixia Shi
- Department of Internal Medicine, Changsha Health Vocational Collage, Changsha, 410100, Hunan, China
| | - Jin Zeng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ping Huang Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Yi Peng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Zhiyu Ding
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Hong Qing Cao
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ruping Zheng
- School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
7
|
Exercise attenuates low back pain and alters epigenetic regulation in intervertebral discs in a mouse model. Spine J 2021; 21:1938-1949. [PMID: 34116218 DOI: 10.1016/j.spinee.2021.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Chronic low back pain (LBP) is a multifactorial disorder with complex underlying mechanisms, including associations with intervertebral disc (IVD) degeneration in some individuals. It has been demonstrated that epigenetic processes are involved in the pathology of IVD degeneration. Epigenetics refers to several mechanisms, including DNA methylation, that have the ability to change gene expression without inducing any change in the underlying DNA sequence. DNA methylation can alter the entire state of a tissue for an extended period of time and thus could potentially be harnessed for long-term pain relief. Lifestyle factors, such as physical activity, have a strong influence on epigenetic regulation. Exercise is a commonly prescribed treatment for chronic LBP, and sex-specific epigenetic adaptations in response to endurance exercise have been reported. However, whether exercise interventions that attenuate LBP are associated with epigenetic alterations in degenerating IVDs has not been evaluated. PURPOSE We hypothesize that the therapeutic efficacy of physical activity is mediated, at least in part, at the epigenetic level. The purpose of this study was to use the SPARC-null mouse model of LBP associated with IVD degeneration to clarify (1) if IVD degeneration is associated with altered expression of epigenetic regulatory genes in the IVDs, (2) if epigenetic regulatory machinery is sensitive to therapeutic environmental intervention, and (3) if there are sex-specific differences in (1) and/or (2). STUDY DESIGN Eight-month-old male and female SPARC-null and age-matched control (WT) mice (n=108) were assigned to exercise (n=56) or sedentary (n=52) groups. Deletion of SPARC is associated with progressive IVD degeneration and behavioral signs of LBP. The exercise group received a circular plastic home cage running wheel on which they could run freely. The sedentary group received an identical wheel secured in place to prevent rotation. After 6 months, the results obtained in each group were compared. METHODS After 6 months of exercise, LBP-related behavioral indices were determined, and global DNA methylation (5-methylcytosine) and epigenetic regulatory gene mRNA expression in IVDs were assessed. This project was supported by the Canadian Institutes for Health Research. The authors have no conflicts of interest. RESULTS Lumbar IVDs from WT sedentary and SPARC-null sedentary mice had similar levels of global DNA methylation (%5-mC) and comparable mRNA expression of epigenetic regulatory genes (Dnmt1,3a,b, Mecp2, Mbd2a,b, Tet1-3) in both sexes. Exercise attenuated LBP-related behaviors, decreased global DNA methylation in both WT (p<.05) and SPARC-null mice (p<.01) and reduced mRNA expression of Mecp2 in SPARC-null mice (p<.05). Sex-specific effects of exercise on expression of mRNA were also observed. CONCLUSIONS Exercise alleviates LBP in a mouse model. This may be mediated, in part, by changes in the epigenetic regulatory machinery in degenerating IVDs. Epigenetic alterations due to a lifestyle change could have a long-lasting therapeutic impact by changing tissue homeostasis in IVDs. CLINICAL SIGNIFICANCE This study confirmed the therapeutic benefits of exercise on LBP and suggests that exercise results in sex-specific alterations in epigenetic regulation in IVDs. Elucidating the effects of exercise on epigenetic regulation may enable the discovery of novel gene targets or new strategies to improve the treatment of chronic LBP.
Collapse
|
8
|
The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. Int J Mol Sci 2021. [DOI: 10.3390/ijms22094917
expr 996488947 + 961598850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.
Collapse
|
9
|
Calió M, Gantenbein B, Egli M, Poveda L, Ille F. The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. Int J Mol Sci 2021; 22:ijms22094917. [PMID: 34066404 PMCID: PMC8124861 DOI: 10.3390/ijms22094917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.
Collapse
Affiliation(s)
- Martina Calió
- Tissue Engineering for Orthopaedics & Mechanobiology (TOM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.C.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology (TOM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.C.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Marcel Egli
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
| | - Lucy Poveda
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology, University of Zurich, 8057 Zurich, Switzerland;
| | - Fabian Ille
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
- Correspondence: ; Tel.: +41-41-349-36-15
| |
Collapse
|
10
|
Xu WL, Zhao Y. Comprehensive analysis of lumbar disc degeneration and autophagy-related candidate genes, pathways, and targeting drugs. J Orthop Surg Res 2021; 16:252. [PMID: 33849578 PMCID: PMC8043061 DOI: 10.1186/s13018-021-02417-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
Background Lumbar disc degeneration (LDD) is an essential pathological mechanism related to low back pain. Current research on spinal surgery focused on the sophisticated mechanisms involved in LDD, and autophagy was regarded as an essential factor in the pathogenesis. Objectives Our research aimed to apply a bioinformatics approach to select some candidate genes and signaling pathways in relationship with autophagy and LDD and to figure out potential agents targeting autophagy- and LDD-related genes. Materials and methods Text mining was used to find autophagy- and LDD-related genes. The DAVID program was applied in Gene Ontology and pathway analysis after selecting these genes. Several important gene modules were obtained by establishing a network of protein-protein interaction and a functional enrichment analysis. Finally, the selected genes were searched in the drug database to find the agents that target LDD- and autophagy-related genes. Results There were 72 genes related to “autophagy” and “LDD.” Three significant gene modules (22 genes) were selected by using gene enrichment analysis, which represented 4 signaling pathways targeted by 32 kinds of drugs approved by the Food and Drug Administration (FDA). The interactions between drugs and the genes were also identified. Conclusion To conclude, a method was proposed in our research to find candidate genes, pathways, and drugs which were involved in autophagy and LDD. We discovered 22 genes, 4 pathways, and 32 potential agents, which provided a theoretical basis and new direction for clinical and basic research on LDD.
Collapse
Affiliation(s)
- Wei-Long Xu
- Inner Mongolia Medical University, Hohhot, 010000, China
| | - Yan Zhao
- Department of Thoracolumbar Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China.
| |
Collapse
|
11
|
Xie C, Ma H, Shi Y, Li J, Wu H, Wang B, Shao Z, Huang C, Chen J, Sun L, Zhou Y, Tian N, Wu Y, Gao W, Wu A, Wang X, Zhang X. Cardamonin protects nucleus pulposus cells against IL-1β-induced inflammation and catabolism via Nrf2/NF-κB axis. Food Funct 2021; 12:2703-2714. [PMID: 33666626 DOI: 10.1039/d0fo03353g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intervertebral disc degeneration (IVDD) is one of the major causes of low back pain, but effective therapies are still lacking because of its complicated pathology. It has been demonstrated that increased levels of interleukin-1β (IL-1β) may promote the development of IVDD. Cardamonin (CAR) is a chalcone extracted from Alpinia katsumadai and other plants. It exhibits an anti-inflammatory effect in multiple diseases. In the present study, we investigated the protective effects of CAR on rat nucleus pulposus (NP) cells under IL-1β stimulation in vitro and in a puncture-induced rat IVDD model in vivo. We explored the CAR treatment's inhibition of the expression of inflammatory factors such as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), nitric oxide (NO), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in rat NP cells. Moreover, the up-regulation of matrix metalloproteinase-13 (MMP-13) and thrombospondin motifs 5 (ADAMTS-5) and the degradation of aggrecan and collagen II induced by IL-1β were reversed by CAR. Mechanistically, we demonstrated that CAR inhibited nuclear factor kappa B (NF-κB) signaling by activating the nuclear factor erythroid-derived 2-like 2 (Nrf2) in IL-1β-induced rat NP cells. Furthermore, the protective effect of CAR was shown in the IVDD model through persistent intragastric administration. Taken together, our results revealed that CAR could activate the Nrf2/HO-1 signaling axis and be a novel agent for IVDD therapy.
Collapse
Affiliation(s)
- Chenglong Xie
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Whittal MC, Molladavoodi S, Zwambag DP, Millecamps M, Stone LS, Gregory DE. Mechanical Consequence of Induced Intervertebral Disc Degeneration in the SPARC-Null Mouse. J Biomech Eng 2021; 143:024501. [PMID: 32734296 DOI: 10.1115/1.4047995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Indexed: 11/08/2022]
Abstract
Intervertebral disc (IVD) degeneration is associated with low back pain (LBP) and accompanied by mechanical changes to the spine. Secreted protein acidic and rich in cysteine (SPARC) is a protein that contributes to the functioning and maintenance of the extracellular matrix. SPARC-null mice display accelerated IVD degeneration and pain-associated behaviors. This study examined if SPARC-null mice also display altered spine mechanics as compared to wild-type (WT) mice. Lumbar spines from SPARC-null (n = 36) and WT (n = 18) mice aged 14-25 months were subjected to cyclic axial tension and compression to determine neutral zone (NZ) length and stiffness. Three separate mechanical tests were completed for each spine to determine the effect of the number of IVDs tested in series (one versus two versus three IVDs). SPARC-null spine NZs were both stiffer (p < 0.001) and smaller in length (p < 0.001) than WT spines. There was an effect of the number of IVDs tested in series for NZ length but not NZ stiffness when collapsed across condition (SPARC-null and WT). Correlation analysis revealed a weak negative correlation (r = -0.24) between age and NZ length in SPARC-null mice and a weak positive correlation (r = 0.30) between age and NZ stiffness in WT mice. In conclusion, SPARC-null mice had stiffer and smaller NZs than WT mice, regardless of the number of IVDs in series being tested. The increased stiffness of these IVDs likely influences mobility at these spinal joints thereby potentially contributing to low back pain.
Collapse
Affiliation(s)
- Mitchel C Whittal
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Avenue W, Waterloo, ON N2 L 3C5, Canada
| | - Sara Molladavoodi
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Avenue W, Waterloo, ON N2 L 3C5, Canada
| | - Derek P Zwambag
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Avenue W, Waterloo, ON N2 L 3C5, Canada
| | - Magali Millecamps
- Faculty of Dentistry, McGill University, 845 Sherbrooke Street West, Montréal, QC H3A 0G4, Canada
| | - Laura S Stone
- Faculty of Dentistry, McGill University, 845 Sherbrooke Street West, Montréal, QC H3A 0G4, Canada
| | - Diane E Gregory
- Department of Kinesiology and Physical Education/Department of Health Sciences, Wilfrid Laurier University, 75 University Avenue W, Waterloo, ON N2 L 3C5, Canada
| |
Collapse
|
13
|
Lyu FJ, Cui H, Pan H, MC Cheung K, Cao X, Iatridis JC, Zheng Z. Painful intervertebral disc degeneration and inflammation: from laboratory evidence to clinical interventions. Bone Res 2021; 9:7. [PMID: 33514693 PMCID: PMC7846842 DOI: 10.1038/s41413-020-00125-x] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Low back pain (LBP), as a leading cause of disability, is a common musculoskeletal disorder that results in major social and economic burdens. Recent research has identified inflammation and related signaling pathways as important factors in the onset and progression of disc degeneration, a significant contributor to LBP. Inflammatory mediators also play an indispensable role in discogenic LBP. The suppression of LBP is a primary goal of clinical practice but has not received enough attention in disc research studies. Here, an overview of the advances in inflammation-related pain in disc degeneration is provided, with a discussion on the role of inflammation in IVD degeneration and pain induction. Puncture models, mechanical models, and spontaneous models as the main animal models to study painful disc degeneration are discussed, and the underlying signaling pathways are summarized. Furthermore, potential drug candidates, either under laboratory investigation or undergoing clinical trials, to suppress discogenic LBP by eliminating inflammation are explored. We hope to attract more research interest to address inflammation and pain in IDD and contribute to promoting more translational research.
Collapse
Affiliation(s)
- Feng-Juan Lyu
- grid.79703.3a0000 0004 1764 3838School of Medicine, South China University of Technology, Guangzhou, China
| | - Haowen Cui
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hehai Pan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XBreast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kenneth MC Cheung
- grid.194645.b0000000121742757Department of Orthopedics & Traumatology, The University of Hong Kong, Hong Kong, SAR China
| | - Xu Cao
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, MD USA
| | - James C. Iatridis
- grid.59734.3c0000 0001 0670 2351Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Zhaomin Zheng
- grid.12981.330000 0001 2360 039XDepartment of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,grid.12981.330000 0001 2360 039XPain Research Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Larson CM, Wilcox GL, Fairbanks CA. The Study of Pain in Rats and Mice. Comp Med 2019; 69:555-570. [PMID: 31822322 PMCID: PMC6935695 DOI: 10.30802/aalas-cm-19-000062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Pain is a clinical syndrome arising from a variety of etiologies in a heterogeneous population, which makes successfully treating the individual patient difficult. Organizations and governments recognize the need for tailored and specific therapies, which drives pain research. This review summarizes the different types of pain assessments currently being used and the various rodent models that have been developed to recapitulate the human pain condition.
Collapse
Affiliation(s)
- Christina M Larson
- Comparative and Molecular Biosciences, University of Minnesota College of Veterinary Medicine, St Paul, Minnesota
| | - George L Wilcox
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Departments of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota;,
| |
Collapse
|
15
|
Krock E, Millecamps M, Anderson KM, Srivastava A, Reihsen TE, Hari P, Sun YR, Jang SH, Wilcox GL, Belani KG, Beebe DS, Ouellet J, Pinto MR, Kehl LJ, Haglund L, Stone LS. Interleukin-8 as a therapeutic target for chronic low back pain: Upregulation in human cerebrospinal fluid and pre-clinical validation with chronic reparixin in the SPARC-null mouse model. EBioMedicine 2019; 43:487-500. [PMID: 31047862 PMCID: PMC6558025 DOI: 10.1016/j.ebiom.2019.04.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/22/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background Low back pain (LBP) is the leading global cause of disability and is associated with intervertebral disc degeneration (DD) in some individuals. However, many adults have DD without LBP. Understanding why DD is painful in some and not others may unmask novel therapies for chronic LBP. The objectives of this study were to a) identify factors in human cerebrospinal fluid (CSF) associated with chronic LBP and b) examine their therapeutic utility in a proof-of-concept pre-clinical study. Methods Pain-free human subjects without DD, pain-free human subjects with DD, and patients with chronic LBP linked to DD were recruited and lumbar MRIs, pain and disability levels were obtained. CSF was collected and analyzed by multiplex cytokine assay. Interleukin-8 (IL-8) expression was confirmed by ELISA in CSF and in intervertebral discs. The SPARC-null mouse model of progressive, age-dependent DD and chronic LBP was used for pre-clinical validation. Male SPARC-null and control mice received systemic Reparixin, a CXCR1/2 (receptors for IL-8 and murine analogues) inhibitor, for 8 weeks. Behavioral signs of axial discomfort and radiating pain were assessed. Following completion of the study, discs were excised and cultured, and conditioned media was evaluated with a protein array. Findings IL-8 was elevated in CSF of chronic LBP patients with DD compared to pain-free subjects with or without DD. Chronic inhibition with reparixin alleviated low back pain behaviors and attenuated disc inflammation in SPARC-null mice. Interpretation These studies suggest that the IL-8 signaling pathway is a viable therapy for chronic LBP. Fund Supported by NIH, MMF, CIHR and FRQS.
Collapse
Affiliation(s)
- Emerson Krock
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; McGill Scoliosis and Spine Research Group, McGill University, Montreal, Quebec H3A 1G1, Canada; Faculty of Medicine, Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Quebec H3A 1G1, Canada.
| | - Magali Millecamps
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; McGill Scoliosis and Spine Research Group, McGill University, Montreal, Quebec H3A 1G1, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada.
| | - Kathleen M Anderson
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Akanksha Srivastava
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada.
| | - Troy E Reihsen
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Pawan Hari
- Department of Epidemiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Yue Ran Sun
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada.
| | - Seon Ho Jang
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada.
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Kumar G Belani
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - David S Beebe
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jean Ouellet
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; McGill Scoliosis and Spine Research Group, McGill University, Montreal, Quebec H3A 1G1, Canada; Faculty of Medicine, Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Quebec H3A 1G1, Canada; Shriner's Hospital for Children, 1003 Decarie Blvd, Montreal, Quebec H4A 0A9, Canada
| | | | - Lois J Kehl
- Minnesota Head & Neck Pain Clinic, St. Paul, MN 55114, USA.
| | - Lisbet Haglund
- McGill Scoliosis and Spine Research Group, McGill University, Montreal, Quebec H3A 1G1, Canada; Faculty of Medicine, Department of Surgery, Orthopaedic Research Lab, McGill University, Montreal, Quebec H3A 1G1, Canada; Shriner's Hospital for Children, 1003 Decarie Blvd, Montreal, Quebec H4A 0A9, Canada.
| | - Laura S Stone
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 0G1, Canada; McGill Scoliosis and Spine Research Group, McGill University, Montreal, Quebec H3A 1G1, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec H3A 1G1, Canada; Faculty of Medicine, Anesthesia Research Unit, Montreal, Montreal, Quebec H3A 1G1, Canada; Faculty of Medicine, Department of Pharmacology and Therapeutics, Montreal, Quebec H3A 1G1, Canada.
| |
Collapse
|
16
|
Li Z, Li X, Chen C, Li S, Shen J, Tse G, Chan MTV, Wu WKK. Long non-coding RNAs in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif 2018; 51:e12483. [PMID: 30039593 PMCID: PMC6528936 DOI: 10.1111/cpr.12483] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/15/2018] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the major cause of low back pain which incurs a significant public-health and economic burden. The aetiology of IDD is complex, with developmental, genetic, biomechanical and biochemical factors contributing to the disease development. Deregulated phenotypes of nucleus pulposus cells, including aberrant differentiation, apoptosis, proliferation and extracellular matrix deposition, are involved in the initiation and progression of IDD. Non-coding RNAs, including long non-coding RNAs (lncRNAs), have recently been identified as important regulators of gene expression. Research into their roles in IDD has been very active over the past 5 years. Our review summarizes current research regarding the roles of deregulated lncRNAs (eg, RP11-296A18.3, TUG1, HCG18) in modulating nucleus pulposus cell functions in IDD. These exciting findings suggest that specific modulation of lncRNAs or their downstream signalling pathways might be an attractive approach for developing novel therapeutics for IDD.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xingye Li
- Department of Orthopedic SurgeryBeijing Jishuitan HospitalFourth Clinical College of Peking UniversityJishuitan Orthopaedic College of Tsinghua UniversityBeijingChina
| | - Chong Chen
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shugang Li
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianxiong Shen
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Gary Tse
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongChina
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | - Matthew T. V. Chan
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | - William K. K. Wu
- Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
- Department of Anaesthesia and Intensive Care and State Key Laboratory of Digestive DiseasesThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
17
|
Shi C, Qiu S, Riester SM, Das V, Zhu B, Wallace AA, van Wijnen AJ, Mwale F, Iatridis JC, Sakai D, Votta-Velis G, Yuan W, Im HJ. Animal models for studying the etiology and treatment of low back pain. J Orthop Res 2018; 36:1305-1312. [PMID: 28921656 PMCID: PMC6287742 DOI: 10.1002/jor.23741] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/13/2017] [Indexed: 02/04/2023]
Abstract
Chronic low back pain is a major cause of disability and health care costs. Effective treatments are inadequate for many patients. Animal models are essential to further understanding of the pain mechanism and testing potential therapies. Currently, a number of preclinical models have been developed attempting to mimic aspects of clinical conditions that contribute to low back pain (LBP). This review focused on describing these animal models and the main behavioral tests for assessing pain in each model. Animal models of LBP can be divided into the following five categories: Discogenic LBP, radicular back pain, facet joint osteoarthritis back pain, muscle-induced LBP, and spontaneous occurring LBP models. These models are important not only for enhancing our knowledge of how LBP is generated, but also for the development of novel therapeutic regimens to treat LBP in patients. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1305-1312, 2018.
Collapse
Affiliation(s)
- Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital,
Second Military Medical University of China, Shanghai, China
| | - Sujun Qiu
- Department of Orthopedic Surgery, Zhujiang Hospital,
Southern Medical University, Guangzhou, China
| | - Scott M. Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester,
Minnesota
| | - Vaskar Das
- Department of Biochemistry, Rush University Medical Center,
Chicago, Illinois
| | - Bingqian Zhu
- Departments of Biobehavioral Health Science, University of
Illinois at Chicago (UIC), Chicago, Illinois
| | | | | | - Fackson Mwale
- Department of Surgery, McGill University and Orthopaedic
Research Laboratory, Lady Davis Institute for Medical Research, SMBD-Jewish General
Hospital, Montreal, Canada
| | - James C. Iatridis
- Leni & Peter May Department of Orthopaedics, Icahn
School of Medicine at Mount Sinai, New York, New York
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School
of Medicine, Kanagawa, Japan
| | - Gina Votta-Velis
- Department of Anesthesiology, University of Illinois at
Chicago (UIC), Chicago, Illinois,,Jesse Brown Veterans Affairs Medical Center (JBVAMC) at
Chicago, Chicago, Illinois
| | - Wen Yuan
- Department of Orthopedic Surgery, Changzheng Hospital,
Second Military Medical University of China, Shanghai, China
| | - Hee-Jeong Im
- Jesse Brown Veterans Affairs Medical Center (JBVAMC) at
Chicago, Chicago, Illinois,,Department of Bioengineering, University of Illinois at
Chicago (UIC), Chicago, Illinois
| |
Collapse
|
18
|
Hecht JT, Sage EH. Retention of the Matricellular Protein SPARC in the Endoplasmic Reticulum of Chondrocytes from Patients with Pseudoachondroplasia. J Histochem Cytochem 2016; 54:269-74. [PMID: 16286662 DOI: 10.1369/jhc.5c6834.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pseudoachondroplasia (PSACH) is an autosomal dominant disease characterized by dwarfism, morphological irregularities of long bones and hips, and early-onset osteoarthritis. This disease has been attributed to mutations in a structural protein of the cartilage extracellular matrix (ECM), cartilage oligomeric matrix protein (COMP), which result in its selective retention in the chondrocyte rough endoplasmic reticulum (ER). Accumulation of excessive amounts of mutated COMP might reflect a defect in protein trafficking by PSACH chondrocytes. Here we identify the matricellular protein SPARC as a component of this trafficking deficit. SPARC was localized to the hypertrophic chondrocytes in the normal human tibial growth plate and in cultured control cartilage nodules. In contrast, concentrated intracellular depots of SPARC were identified in nodules cultured from three PSACH patients with mutations in COMP. The accumulated SPARC was coincident with COMP and with protein disulfide isomerase, a resident chaperone of the rough ER, whereas SPARC and COMP were not coincident in the ECM of control or PSACH nodules. SPARC-null mice develop severe osteopenia and degenerative intervertebral disc disease, and exhibit attenuation of collagenous ECM. The retention of SPARC in the ER of chondrocytes producing mutant COMP indicates a new intracellular function for SPARC in the trafficking/secretion of cartilage ECM.
Collapse
Affiliation(s)
- Jacqueline T Hecht
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, Texas, USA
| | | |
Collapse
|
19
|
Bedore J, Quesnel K, Quinonez D, Séguin CA, Leask A. Targeting the annulus fibrosus of the intervertebral disc: Col1a2-Cre(ER)T mice show specific activity of Cre recombinase in the outer annulus fibrosus. J Cell Commun Signal 2016; 10:137-42. [PMID: 27173473 DOI: 10.1007/s12079-016-0329-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a major underlying contributor to back pain-the single leading cause of disability worldwide. However, we possess a limited understanding of the etiology underlying IVD degeneration. To date, there are a limited number of mouse models that have been used to target proteins in specific compartments of the IVD to explore their functions in disc development, homeostasis and disease. Furthermore, the majority of reports exploring the composition and function of the outer encapsulating annulus fibrosus (AF) of the IVD have considered it as one tissue, without considering the numerous structural and functional differences existing between the inner and outer AF. In addition, no mouse models have yet been reported that enable specific targeting of genes within the outer AF. In the current report, we discuss these issues and demonstrate the localized activity of Cre recombinase in the IVD of Col1a2-Cre(ER)T;ROSA26mTmG mice possessing a tamoxifen-dependent Cre recombinase driven by a Cola2 promoter and distal enhancer and the mTmG fluorescent reporter. Following tamoxifen injection of 3-week-old Col1a2-Cre(ER)T;ROSA26mTmG mice, we show Cre activity specifically in the outer AF of the IVD, as indicated by expression of the GFP reporter. Thus, Col1a2-Cre(ER)T;ROSA26mTmG mice may prove to be a valuable tool in delineating the function of proteins in this unique compartment of the IVD, and in further exploring the compositional differences between the inner and outer AF in disc homeostasis, aging and disease.
Collapse
Affiliation(s)
- Jake Bedore
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Katherine Quesnel
- Department of Dentistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Diana Quinonez
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Andrew Leask
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada.
- Department of Dentistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
20
|
Millecamps M, Czerminski JT, Mathieu AP, Stone LS. Behavioral signs of axial low back pain and motor impairment correlate with the severity of intervertebral disc degeneration in a mouse model. Spine J 2015; 15:2524-37. [PMID: 26334234 DOI: 10.1016/j.spinee.2015.08.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/29/2015] [Accepted: 08/22/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Chronic low back pain is debilitating and difficult to treat. Depending on the etiology, responses to treatments vary widely. Although chronic low back pain is frequently related to intervertebral disc degeneration, the relationship between disc degeneration severity and clinical symptoms are still poorly understood. In humans, studies investigating the relationship between disc degeneration severity and low back pain are limited by the difficulty of obtaining disc samples from well-characterized patients and pain-free controls. We have previously described the secreted protein, acidic, rich in cysteine (SPARC)-null mouse model of chronic low back pain. SPARC is a matricellular protein involved in regulating the assembly and composition of extracellular matrix. The SPARC-null mice develop age-dependent disc degeneration of increasing severity accompanied by behavioral signs suggestive of axial low back pain, radiating leg pain, and motor impairment. The existence of this model allows for examination of the relationships between clinical symptoms in vivo and pathological signs of disc degeneration ex vivo. PURPOSE The goal of this study was to explore the relationship between behavioral signs of pain and the severity of lumbar disc degeneration using the SPARC-null mouse model of disc degeneration-related low back pain. STUDY DESIGN This study used a cross-sectional, multiple-cohort behavioral and histological study of disc degeneration and behavioral symptoms in a mouse model of low back pain associated with disc degeneration. METHODS SPARC-null and wild-type control mice ranging from 6 to 78 weeks of age were used in this study. The severity of disc degeneration was determined by ex vivo analysis of the lumbar spine using colorimetric histological staining and a scoring system adapted from the Pfirrmann scale. Behavioral signs of axial low back pain, radiating leg pain, and motor impairment were quantified as tolerance to axial stretching in the grip force assay, hypersensitivity to cold or mechanical stimuli on the hindpaw (acetone and von Frey tests), and latency to fall in the rotarod assay, respectively. RESULTS The SPARC-null mice exhibited decreased tolerance to axial stretching, hindpaw cold hypersensitivity, and motor impairment compared with age-matched control mice. The severity of disc degeneration increased with age in both SPARC-null and control mice and by 78 weeks of age, the same proportion of lumbar discs were abnormal in SPARC-null and control mice. However, the degree of degeneration was more severe in the SPARC-null mice. In both SPARC-null and control mice, tolerance to axial stretching but not hindpaw cold sensitivity correlated with disc degeneration severity. Motor impairment correlated with degeneration severity in the SPARC-null mice only. CONCLUSIONS These data suggest that internal disc disruption contributes to axial low back pain and motor impairment but not to radiating leg pain. These results have implications for the optimization of mechanism-based treatments strategies.
Collapse
Affiliation(s)
- Magali Millecamps
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, Quebec, Canada H3A 1G1; Alan Edwards Centre for Research on Pain, McGill University, 740 Dr. Penfield Ave, Suite 3200, Montreal, Quebec, Canada H3G 0G1
| | - Jan T Czerminski
- Alan Edwards Centre for Research on Pain, McGill University, 740 Dr. Penfield Ave, Suite 3200, Montreal, Quebec, Canada H3G 0G1
| | - Axel P Mathieu
- Brain Imaging Centre, Douglas Mental Health University Institute, 6875 Blvd Lasalle, Montreal, Quebec, Canada H4H 1R3
| | - Laura S Stone
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, Quebec, Canada H3A 1G1; Alan Edwards Centre for Research on Pain, McGill University, 740 Dr. Penfield Ave, Suite 3200, Montreal, Quebec, Canada H3G 0G1; McGill Scoliosis & Spine Research Group, McGill University, 1650 Cedar Ave, Office B5-158.4, Montreal, Quebec, Canada H3G1A4; Integrated Program in Neuroscience, McGill University, 3801University Street, Room 141, Montreal Neurological Institute, Montreal, Quebec, Canada H3A 2B4; Department of Anesthesiology, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, 12th Floor, Montreal, Quebec, Canada H3G 1Y6; Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, Quebec, Canada H3G 1Y6.
| |
Collapse
|
21
|
Szyf M. Prospects for the development of epigenetic drugs for CNS conditions. Nat Rev Drug Discov 2015; 14:461-74. [DOI: 10.1038/nrd4580] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
ISSLS Prize winner: Increased innervation and sensory nervous system plasticity in a mouse model of low back pain due to intervertebral disc degeneration. Spine (Phila Pa 1976) 2014; 39:1345-54. [PMID: 24718079 DOI: 10.1097/brs.0000000000000334] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistochemical and behavioral study using the SPARC (secreted protein, acidic, rich in cysteine)-null mouse model of low back pain (LBP) associated with accelerated intervertebral disc (IVD) degeneration. OBJECTIVE To determine if behavioral signs of LBP in SPARC-null mice are accompanied by sensory nervous system plasticity. SUMMARY OF BACKGROUND DATA IVD pathology is a significant contributor to chronic LBP. In humans and rodents, decreased expression of SPARC is associated with IVD degeneration. We previously reported that SPARC-null mice exhibit age-dependent behavioral signs of chronic axial LBP and radiating leg pain. METHODS SPARC-null and age-matched control young, middle-aged, and old mice (1.5, 6, and 24 mo of age, respectively) were evaluated. Cutaneous hind paw sensitivity to cold, heat, and mechanical stimuli were evaluated as measures of radiating pain. The grip force and tail suspension assays were performed to evaluate axial LBP. Motor impairment was assessed using an accelerating rotarod. IVD innervation was identified by immunohistochemistry targeting the nerve fiber marker PGP9.5 and the sensory neuropeptide calcitonin gene-related peptide (CGRP). Sensory nervous system plasticity was evaluated by quantification of CGRP- and neuropeptide-Y-immunoreactivity (-ir) in dorsal root ganglia neurons and CGRP-ir, GFAP-ir (astrocyte marker), and Iba-1-ir (microglia marker) in the spinal cord. RESULTS SPARC-null mice developed hypersensitivity to cold, axial discomfort, age-dependent motor impairment, age-dependent increases in sensory innervation in and around the IVDs, age-dependent upregulation of CGRP and neuropeptide-Y in dorsal root ganglia, and age-dependent upregulation of CGRP, microglia, and astrocytes in the spinal cord dorsal horn. CONCLUSION Increased innervation of degenerating IVDs by sensory nerve fibers and the neuroplasticity in sensory neurons and spinal cord could contribute to the underlying pathobiology of chronic discogenic LBP. LEVEL OF EVIDENCE N/A.
Collapse
|
23
|
Targeting the extracellular matrix: Matricellular proteins regulate cell–extracellular matrix communication within distinct niches of the intervertebral disc. Matrix Biol 2014; 37:124-30. [DOI: 10.1016/j.matbio.2014.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 01/01/2023]
|
24
|
Zhang W, Li X, Shang X, Zhao Q, Hu Y, Xu X, He R, Duan L, Zhang F. Gene expression analysis in response to osmotic stimuli in the intervertebral disc with DNA microarray. Eur J Med Res 2013; 18:62. [PMID: 24369767 PMCID: PMC3911967 DOI: 10.1186/2047-783x-18-62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/06/2013] [Indexed: 12/02/2022] Open
Abstract
Background Intervertebral disc (IVD) cells experience a broad range of physicochemical stimuli under physiologic conditions, including alterations in their osmotic environment. At present, the molecular mechanisms underlying osmotic regulation in IVD cells are poorly understood. This study aims to screen genes affected by changes in osmotic pressure in cells of subjects aged 29 to 63 years old, with top-scoring pair (TSP) method. Methods Gene expression data set GSE1648 was downloaded from Gene Expression Omnibus database, including four hyper-osmotic stimuli samples, four iso-osmotic stimuli samples, and three hypo-osmotic stimuli samples. A novel, simple method, referred to as the TSP, was used in this study. Through this method, there was no need to perform data normalization and transformation before data analysis. Results A total of five pairs of genes ((CYP2A6, FNTB), (PRPF8, TARDBP), (RPS5, OAZ1), (SLC25A3, NPM1) and (CBX3, SRSF9)) were selected based on the TSP method. We inferred that all these genes might play important roles in response to osmotic stimuli and age in IVD cells. Additionally, hyper-osmotic and iso-osmotic stimuli conditions were adverse factors for IVD cells. Conclusions We anticipate that our results will provide new thoughts and methods for the study of IVD disease.
Collapse
Affiliation(s)
| | - Xu Li
- Department of Orthopaedics, Anhui Provincial Hospital, No, 17, Road Lujiang, Hefei 230001, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Morphine and clonidine synergize to ameliorate low back pain in mice. PAIN RESEARCH AND TREATMENT 2012; 2012:150842. [PMID: 22577543 PMCID: PMC3347752 DOI: 10.1155/2012/150842] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/28/2012] [Accepted: 02/04/2012] [Indexed: 01/06/2023]
Abstract
Chronic low back pain (LBP) is a debilitating condition associated with signs of axial and radiating pain. In humans with chronic LBP, opioids are often prescribed with varying outcomes and a multitude of side effects. Combination therapies, in which multiple pharmacological agents synergize to ameliorate pain without similar potentiation of adverse reactions, may be useful in improving therapeutic outcome in these patients.
The SPARC-null mouse model of low back pain due to disc degeneration was used to assess the effects of opioid (morphine) and α2-adrenergic agonist (clonidine) coadministration on measures of axial and radiating pain. The results indicate that systemic morphine and clonidine, coadministered at a fixed dose of 100 : 1 (morphine : clonidine), show a synergistic interaction in reversing signs of axial LBP, in addition to improving the therapeutic window for radiating LBP. Furthermore, these improvements were observed in the absence of synergy in assays of motor function which are indicative of side effects such as sedation and motor incoordination. These data show that the addition of low-dose systemic clonidine improves therapeutic outcome in measures of both axial and radiating pain. Combination therapy could be of enormous benefit to patients suffering from chronic LBP.
Collapse
|
26
|
Millecamps M, Tajerian M, Naso L, Sage HE, Stone LS. Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice. Pain 2012; 153:1167-1179. [PMID: 22414871 DOI: 10.1016/j.pain.2012.01.027] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 12/09/2011] [Accepted: 01/26/2012] [Indexed: 01/20/2023]
Abstract
Chronic low back pain (LBP) is a complex, multifactorial disorder with unclear underlying mechanisms. In humans and rodents, decreased expression of secreted protein acidic rich in cysteine (SPARC) is associated with intervertebral disc (IVD) degeneration and signs of LBP. The current study investigates the hypothesis that IVD degeneration is a risk factor for chronic LBP. SPARC-null and age-matched control mice ranging from 6 to 78 weeks of age were evaluated in this study. X-ray and histologic analysis revealed reduced IVD height, increased wedging, and signs of degeneration (bulging and herniation). Cutaneous sensitivity to cold, heat, and mechanical stimuli were used as measures of referred (low back and tail) and radiating pain (hind paw). Region specificity was assessed by measuring icilin- and capsaicin-evoked behaviour after subcutaneous injection into the hind paw or upper lip. Axial discomfort was measured by the tail suspension and grip force assays. Motor impairment was determined by the accelerating rotarod. Physical function was evaluated by voluntary activity after axial strain or during ambulation with forced lateral flexion. SPARC-null mice developed (1) region-specific, age-dependent hypersensitivity to cold, icilin, and capsaicin (hind paw only), (2) axial discomfort, (3) motor impairment, and (4) reduced physical function. Morphine (6 mg/kg, i.p.) reduced cutaneous sensitivity and alleviated axial discomfort in SPARC-null mice. Ageing SPARC-null mice mirror many aspects of the complex and challenging nature of LBP in humans and incorporate both anatomic and functional components of the disease. The current study supports the hypothesis that IVD degeneration is a risk factor for chronic LBP.
Collapse
Affiliation(s)
- Magali Millecamps
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada McGill Scoliosis and Spine Research Group, McGill University, Montreal, Quebec, Canada Faculty of Dentistry, McGill University, Montreal, Quebec, Canada Hope Heart Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA Department of Anesthesiology, McGill University, Montreal, Quebec, Canada Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
27
|
Progress for low back pain. Pain 2012; 153:1139. [PMID: 22370271 DOI: 10.1016/j.pain.2012.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 02/09/2012] [Accepted: 02/09/2012] [Indexed: 11/23/2022]
|
28
|
Tajerian M, Alvarado S, Millecamps M, Dashwood T, Anderson KM, Haglund L, Ouellet J, Szyf M, Stone LS. DNA methylation of SPARC and chronic low back pain. Mol Pain 2011; 7:65. [PMID: 21867537 PMCID: PMC3182907 DOI: 10.1186/1744-8069-7-65] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/25/2011] [Indexed: 12/21/2022] Open
Abstract
Background The extracellular matrix protein SPARC (Secreted Protein, Acidic, Rich in Cysteine) has been linked to degeneration of the intervertebral discs and chronic low back pain (LBP). In humans, SPARC protein expression is decreased as a function of age and disc degeneration. In mice, inactivation of the SPARC gene results in the development of accelerated age-dependent disc degeneration concurrent with age-dependent behavioral signs of chronic LBP. DNA methylation is the covalent modification of DNA by addition of methyl moieties to cytosines in DNA. DNA methylation plays an important role in programming of gene expression, including in the dynamic regulation of changes in gene expression in response to aging and environmental signals. We tested the hypothesis that DNA methylation down-regulates SPARC expression in chronic LBP in pre-clinical models and in patients with chronic LBP. Results Our data shows that aging mice develop anatomical and behavioral signs of disc degeneration and back pain, decreased SPARC expression and increased methylation of the SPARC promoter. In parallel, we show that human subjects with back pain exhibit signs of disc degeneration and increased methylation of the SPARC promoter. Methylation of either the human or mouse SPARC promoter silences its activity in transient transfection assays. Conclusions This study provides the first evidence that DNA methylation of a single gene plays a role in chronic pain in humans and animal models. This has important implications for understanding the mechanisms involved in chronic pain and for pain therapy.
Collapse
Affiliation(s)
- Maral Tajerian
- Alan Edwards Centre for Research on Pain, McGill University, 740 Dr, Penfield Avenue, Montreal, Quebec, H3A 1A4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
STUDY DESIGN Secreted Protein, Acidic, and Rich in Cysteine (SPARC)-null mice were examined for behavioral signs of chronic low back and/or radicular pain. OBJECTIVE to assess SPARC-null mice as an animal model of chronic low back and/or radicular pain caused by degenerative disc disease. SUMMARY OF BACKGROUND DATA degeneration of intervertebral discs is a major cause of chronic low back and adicular pain in humans. Inactivation of the SPARC gene in mice results in premature intervertebral disc degeneration. The effect of disc degeneration on behavioral measures of chronic pain has not been evaluated in this model. METHODS cohorts of young and old (3 and 6-12 months, respectively) SPARC-null and wild-type control mice were screened for behavioral indices of low back and/or radiating pain. Sensitivity to mechanical, cold and heat stimuli, locomotor impairment, and movement-evoked hypersensitivity were determined. Animals were challenged with 3 analgesic agents with different mechanisms: morphine, dexamethasone, and gabapentin. RESULTS SPARC-null mice showed signs of movement-evoked discomfort as early as 3 months of age. Hypersensitivity to cold stimuli on both the lower back and hindpaws developed with increasing age. SPARC-null mice had normal sensitivity to tactile and heat stimuli, and locomotor skills were not impaired. The hypersensitivity to cold was reversed by morphine, but not by dexamethasone or gabapentin. CONCLUSION SPARC-null mice display behavioral signs consistent with chronic low back and radicular pain that we attribute to intervertebral disc degeneration. We hypothesize that the SPARC-null mouse is useful as a model of chronic back pain due to degenerative disc disease.
Collapse
|
30
|
Gruber HE, Ingram JA, Hanley EN. Immunolocalization of MMP-19 in the human intervertebral disc: implications for disc aging and degeneration. Biotech Histochem 2009; 80:157-62. [PMID: 16298901 DOI: 10.1080/10520290500387607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Matrix metalloproteinases (MMPs) degrade components of the extracellular matrix of the disc, but the presence of MMP-19 has not been explored. In other tissues, MMP-19 is known to act in proteolysis of the insulin-like growth factor (IGF) binding protein-3, thereby exposing this protein to make it available to influence cell behavior. MMP-19 also has been shown to inhibit capillary-like formation and thus play a role in the avascular nature of the disc. Using immunohistochemistry, normal discs from six subjects aged newborn through 10 years and 20 disc specimens from control donors or surgical patients aged 15-76 (mean age 40.2 years) were examined for immunolocalization of MMP-19; six Thompson grade I discs, five Thompson grade II, eight Thompson grade III, five Thompson grade IV, and one Thompson grade V discs were analyzed. The results indicate that in discs from young subjects, MMP-19 was uniformly localized in the outer annulus. In discs from adult donors and surgical patients, outer and inner annulus cells only occasionally showed MMP-19 localization. The greatest expression of MMP-19 was observed in young discs, and little expression was seen in older or degenerating discs. Because MMP-19 has been shown to regulate IGF-mediated proliferation in other tissues, its decline in the aging/degenerating disc may contribute to the age-related decrease in disc cell numbers.
Collapse
Affiliation(s)
- H E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, North Carolina 28232, USA.
| | | | | |
Collapse
|
31
|
Kalichman L, Hunter DJ. The genetics of intervertebral disc degeneration.Associated genes. Joint Bone Spine 2008; 75:388-96. [DOI: 10.1016/j.jbspin.2007.11.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 11/21/2007] [Indexed: 12/23/2022]
|
32
|
Gruber HE, Norton HJ, Sun Y, Hanley EN. Crystal deposits in the human intervertebral disc: implications for disc degeneration. Spine J 2007; 7:444-50. [PMID: 17630142 DOI: 10.1016/j.spinee.2006.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/11/2006] [Accepted: 08/17/2006] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Although crystal deposition in cartilage and synovial fluid has received much attention, crystal formation and the role that crystal deposits play are virtually unexplored in the intervertebral disc. In articular cartilage matrix, crystal deposits are associated with altered extracellular matrix (ECM) and cell phenotypic features, but crystal deposition in the human intervertebral disc has received much less attention. PURPOSE To determine the incidence of crystal deposits in the annulus and to evaluate associated disc cell and ECM features. STUDY DESIGN/SETTING Human intervertebral disc annulus tissue was obtained in a prospective study of the presence of crystals in the disc ECM. Human Subjects Institutional Review Board approved experimental studies. PATIENT SAMPLE Two hundred eight sequential disc specimens were submitted from surgical disc procedures performed on individuals with herniated discs, degenerative disc disease, or recurrent disc herniation. During this same time period, three disc specimens were received from nonsurgical donors and added to the study population. OUTCOME MEASURES Histologic features with special attention to crystal deposition. METHODS Specimens were processed undecalcified and examined for the histologic presence of crystal deposits and ECM features around the crystals. RESULTS The proportion of specimens containing crystals was determined to be 14.7%; crystals displayed varying sizes, morphology, and polarized light birefringence features. Pyrophosphate crystals were most common, but oxalate-like crystals were also present. ECM in crystal regions showed previously recognized alterations. CONCLUSIONS This study shows that the incidence of crystal deposits in discs is approximately 15% and is thus a relatively common occurrence. These data are important because masses of crystals not only disrupt disc ECM but may also accelerate preexisting degenerative changes via an elevation in matrix metalloproteinases (as previously recognized in cartilage). Because failure of the structural integrity of the disc can result in annular tears and subsequent disc herniation, the mechanisms of crystal formation and the relationship between crystals and disc degeneration merit further investigations.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Orthopedic Research Biology, Carolinas Medical Center, Charlotte, NC 28232, USA.
| | | | | | | |
Collapse
|
33
|
Gruber HE, Ingram JA, Hanley EN. Cellular immunohistochemical localization of the matricellular protein myocilin in the intervertebral disc. Biotech Histochem 2007; 81:119-24. [PMID: 17129994 DOI: 10.1080/10520290600988239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Myocilin is a 55-57-kDa protein that is a member of the olfactomedin protein family. It is expressed in the cornea, sclera and trabecular network of the eye, myelinated peripheral nerves, heart, skeletal muscle, trachea and other tissues. Myocilin binds to a domain of fibronectin, type IV collagen and laminen in the trabecular meshwork of the eye, and its expression is influenced by transforming growth factor beta. Because these extracellular matrix components also are common in the intervertebral disc, the objective of our study was to determine whether the matricellular protein myocilin could be detected in the human or sand rat intervertebral disc using immunohistochemistry and to assess its localization. We investigated 16 specimens of human disc tissue and discs from six sand rats. Three human disc cell cultures grown in three-dimensional culture also were evaluated. Immunocytochemical annulus analysis showed the presence of myocilin within the disc cell cytoplasm in some, but not all, cells. Extracellular matrix in both the human and sand rat disc was negative for myocilin localization. Myocilin is believed to play a role in cell-cell adhesion and/or signaling. Myocilin may have such functions within the disc cell population in a manner similar to tenascin, SPARC and thrombospondin, which are other matricellular proteins recently shown to be present in the disc.
Collapse
Affiliation(s)
- H E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC 28232, USA.
| | | | | |
Collapse
|
34
|
Gruber HE, Ingram JA, Hanley EN. Immunolocalization of thrombospondin in the human and sand rat intervertebral disc. Spine (Phila Pa 1976) 2006; 31:2556-61. [PMID: 17047544 DOI: 10.1097/01.brs.0000241117.31510.e3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Human intervertebral disc tissue from the anulus was obtained in a prospective study investigating the presence of the matricellular protein thrombospondin (TSP) in human and sand rat discs. Studies were approved by the authors' Human Subjects Institutional Review Board and Institutional Animal Care and Use Committee. OBJECTIVES To determine whether TSP could be detected in the human or sand rat disc with immunohistochemistry, and to assess its localization. SUMMARY OF BACKGROUND DATA The role of the matricellular proteins in maintenance of disc health and extracellular matrix remodeling is as yet poorly understood. SPARC and tenascin have previously been shown to be present in the human disc. TSP has a well-recognized antiangiogenic activity in vivo and in vitro. METHODS Sixteen specimens of human disc tissue and discs from 7 sand rats were assessed for immunohistochemical localization of TSP. Three human disc cell cultures grown in three-dimensional culture were also evaluated. RESULTS.: Strong immunoreactivity was present in the outer anulus of both human and sand rat discs. Inner anulus showed lesser localization. In clusters, both immuno-positive and -negative cells were present. Similar patterns of localization were seen in the sand rat specimens. Human disc cells in three-dimensional culture produced abundant TSP. CONCLUSIONS The biologic basis for the avascular adult human disc does not appear to have been explored. Since TSP has recognized antiangiogenic effects both in vitro and in vivo, we suggest that the strong immunolocalization of TSP in the outer anulus indicates a role for TSP in the avascular status of the adult human and sand rat disc.
Collapse
Affiliation(s)
- Helen E Gruber
- Orthopaedic Research Biology, Cannon Research Center, 3rd floor, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA.
| | | | | |
Collapse
|
35
|
Wang YJ, Shi Q, Lu WW, Cheung KCM, Darowish M, Li TF, Dong YF, Zhou CJ, Zhou Q, Hu ZJ, Liu M, Bian Q, Li CG, Luk KDK, Leong JCY. Cervical intervertebral disc degeneration induced by unbalanced dynamic and static forces: a novel in vivo rat model. Spine (Phila Pa 1976) 2006; 31:1532-8. [PMID: 16778684 DOI: 10.1097/01.brs.0000222019.84095.23] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Establishment of a novel in vivo animal model of cervical spondylosis. OBJECTIVE To investigate apoptotic, degenerative, and inflammatory changes occurring in the cervical intervertebral discs of rats. SUMMARY OF BACKGROUND DATA Cervical degeneration occurs as the result of imbalance of both static and dynamic spinal stabilizers. The disc degeneration that occurs is characterized by increased local inflammation and increased apoptosis of intervertebral disc cells. METHODS By excising the paraspinal musculature and posterior cervical spinal ligaments of rats, both static and dynamic cervical stabilizers were disrupted. The resultant biomechanical imbalance resulted in biochemical and histologic changes, which were characterized by light microscopy, electron microscopy, immunostaining, enzyme-linked immunosorbent assay, polymerase chain reaction, and in situ hybridization. RESULTS Histologic analysis showed characteristic degenerative changes of the intervertebral discs and vertebral endplates following surgery. Ultrastructural examination revealed apoptotic changes, which were verified by immunostaining. Instability also resulted in significant up-regulation of inflammatory factors, as shown by enzyme-linked immunosorbent assay, polymerase chain reaction, and in situ hybridization. CONCLUSIONS By creating static and dynamic posterior instability of the cervical spine, this novel model of cervical spondylosis results in rapid intervertebral disc degeneration characterized by increased apoptosis and local inflammation, such as that seen clinically.
Collapse
Affiliation(s)
- Yong-Jun Wang
- Institute of Spine, ShangHai University of Traditional Chinese Medicine. Shanghai, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Omlor GW, Lorenz H, Engelleiter K, Richter W, Carstens C, Kroeber MW, Guehring T. Changes in gene expression and protein distribution at different stages of mechanically induced disc degeneration--an in vivo study on the New Zealand white rabbit. J Orthop Res 2006; 24:385-92. [PMID: 16479572 DOI: 10.1002/jor.20055] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of the study was to improve the biological understanding of degenerative disc disease using a rabbit model in which different stages of disc degeneration are induced by variation of the duration of loading with an external compression-device applying 2.4 MPa. Gene expression and protein distribution were analyzed in controls and after 1, 28, and 56 days of hyperphysiologic loading. To evaluate extracellular matrix genes, quantitative real-time reverse-transcriptase polymerase chain reaction was applied for collagen I, collagen II, biglycan, decorin, fibromodulin, fibronectin, aggrecan, and osteonectin. As representatives of catabolic, anticatabolic, and anabolic factors, matrix metalloproteinase-13 (MMP-13), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), and bone morphogenetic protein-2 (BMP-2) were chosen. To evaluate protein distribution, immunohistochemistry was performed for collagen I, collagen II, and BMP-2/4. Matrix gene expression was characterized by two major developments: collagen I and II, biglycan, and decorin showed early elevation followed by later downregulation to control levels, whereas fibromodulin, fibronectin, aggrecan, and osteonectin showed continuous upregulation or remained at similar levels. Induction of MMP-13 gene expression was found in degenerated discs. TIMP-1 and BMP-2 were elevated immediately after hyperphysiologic loading and presented highest levels in the 56-day group. Immunohistochemistry showed less collagen II and BMP-2/4 positive cells after compression. In conclusion, elevated matrix gene expression represents an early cellular response to hyperphysiologic loading. As degeneration progresses, some matrix genes increase upregulation, whereas others start downregulation. Continuous upregulation of catabolic, anticatabolic, and anabolic factors indicates their important role in the degeneration process.
Collapse
Affiliation(s)
- Georg W Omlor
- Department of Orthopaedic Surgery, University of Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Gruber HE, Hoelscher GL, Leslie K, Ingram JA, Hanley EN. Three-dimensional culture of human disc cells within agarose or a collagen sponge: assessment of proteoglycan production. Biomaterials 2005; 27:371-6. [PMID: 16098581 DOI: 10.1016/j.biomaterials.2005.06.032] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
The objective of the present study was to assess proteoglycan production by human intervertebral disc cells cultured in vitro in selected cell carriers. Based on previous studies which evaluated disc cells seeded into collagen sponge, collagen gel, agarose, alginate or fibrin gel three-dimensional (3D) cell carriers, collagen sponge and agarose were found to provide superior microenvironments for formation of extracellular matrix (ECM). A standardized test design was used to evaluate ECM formed after 14 days of culture using the 1,9-dimethylmethylene blue (DMB) assay to assess sulfated glycosaminoglycan (S-GAG) production. Although agarose culture showed higher S-GAG levels compared to collagen sponge (2.94+/-2.20 (19) microg/ml S-GAG (mean+/-S.D. (n)) vs. 0.94+/-0.77 (22), respectively, p=0.0003), this is off-set by the significantly lower proliferation rate associated with culture of disc cells in agarose.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Cannon Building, 3rd floor, P.O. Box 32861, Charlotte, NC 28232, USA.
| | | | | | | | | |
Collapse
|
38
|
Gruber HE, Sage EH, Norton HJ, Funk S, Ingram J, Hanley EN. Targeted deletion of the SPARC gene accelerates disc degeneration in the aging mouse. J Histochem Cytochem 2005; 53:1131-8. [PMID: 15879573 DOI: 10.1369/jhc.5a6687.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SPARC (secreted protein, acidic, and rich in cysteine) is a matricellular protein that is present in the intervertebral disc; in man, levels of SPARC decrease with aging and degeneration. In this study, we asked whether targeted deletion of SPARC in the mouse influenced disc morphology. SPARC-null and wild-type (WT) mice were studied at 0.3-21 months of age. Radiologic examination of spines from 2-month-old SPARC-null mice revealed wedging, endplate calcification, and sclerosis, features absent in age-matched WT spines. Discs from 3-month-old SPARC-null mice had a greater number of annulus cells than those of WT animals (1884.6 +/- 397.9 [mean +/- SD] vs 1500.2 +/- 188.2, p=0.031). By 19 months discs from SPARC-null mice contained fewer cells than WT counterparts (1383.6 +/- 363.3 vs 1466.8 +/- 148.0, p=0.033). Histology of midsagittal spines showed herniations of lower lumbar discs of SPARC-null mice ages 14-19 months; in contrast, no herniations were seen in WT age-matched animals. Ultrastructural studies showed uniform collagen fibril diameters in the WT annulus, whereas in SPARC-null disc fibrils were of variable size with irregular margins. Consistent with the connective tissue deficits observed in other tissues of SPARC-null mice, our findings support a fundamental role for SPARC in the production, assembly, or maintenance of the disc extracellular matrix.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC 28232, USA.
| | | | | | | | | | | |
Collapse
|