1
|
Galli M, Cortellini G, Occhipinti G, Rossini R, Romano A, Angiolillo DJ. Aspirin Hypersensitivity in Patients With Atherosclerotic Cardiovascular Disease. J Am Coll Cardiol 2024; 84:1748-1766. [PMID: 39443019 DOI: 10.1016/j.jacc.2024.05.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 10/25/2024]
Abstract
Low-dose aspirin remains the most commonly used antiplatelet agent among patients with atherosclerotic cardiovascular disease. Aspirin hypersensitivity occurs in 1% to 5% of patients and is among the most frequent causes for prohibiting the use of aspirin, posing a significant dilemma on how to manage these patients in clinical practice. Aspirin hypersensitivity is often misinterpreted and confused with aspirin intolerance, with treatment approaches being often unclear and lacking specific recommendations. Aspirin desensitization and low-dose aspirin challenge have emerged as pragmatic, effective, and safe approaches in patients with suspected or confirmed aspirin hypersensitivity who require aspirin therapy, but they are underused systematically in clinical practice. Furthermore, there is confusion over alternative antiplatelet agents to be used in these patients. The pathophysiological mechanisms and classification of aspirin hypersensitivity, as well as alternative strategies and practical algorithms to overcome the need for aspirin use in patients with atherosclerotic cardiovascular disease with suspected aspirin hypersensitivity, are discussed.
Collapse
Affiliation(s)
- Mattia Galli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Giovanni Occhipinti
- Hospital Clínic, Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Roberta Rossini
- Division of Cardiology, S. Croce and Carle Hospital, Cuneo, Italy
| | - Antonino Romano
- Oasi Research Institute -IRCCS, Troina, Italy & BIOS S.p.A. Società Benefit, Rome, Italy
| | - Dominick J Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, Florida, USA.
| |
Collapse
|
2
|
Beccacece L, Abondio P, Bini C, Pelotti S, Luiselli D. The Link between Prostanoids and Cardiovascular Diseases. Int J Mol Sci 2023; 24:ijms24044193. [PMID: 36835616 PMCID: PMC9962914 DOI: 10.3390/ijms24044193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases are the leading cause of global deaths, and many risk factors contribute to their pathogenesis. In this context, prostanoids, which derive from arachidonic acid, have attracted attention for their involvement in cardiovascular homeostasis and inflammatory processes. Prostanoids are the target of several drugs, but it has been shown that some of them increase the risk of thrombosis. Overall, many studies have shown that prostanoids are tightly associated with cardiovascular diseases and that several polymorphisms in genes involved in their synthesis and function increase the risk of developing these pathologies. In this review, we focus on molecular mechanisms linking prostanoids to cardiovascular diseases and we provide an overview of genetic polymorphisms that increase the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Livia Beccacece
- Computational Genomics Lab, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Paolo Abondio
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
- Correspondence: (L.B.); (P.A.)
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- aDNA Lab, Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| |
Collapse
|
3
|
Liang X, Wang J, Liu Y, Wei L, Tian F, Sun J, Han G, Wang Y, Ding C, Guo Z. Polymorphisms of COX/PEG2 pathway-related genes are associated with the risk of lung cancer: A case–control study in China. Int Immunopharmacol 2022; 108:108763. [DOI: 10.1016/j.intimp.2022.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 12/24/2022]
|
4
|
Ayuso P, Macías Y, Gómez-Tabales J, García-Martín E, Agúndez JAG. Molecular monitoring of patient response to painkiller drugs. Expert Rev Mol Diagn 2022; 22:545-558. [PMID: 35733288 DOI: 10.1080/14737159.2022.2093638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Non-steroidal anti-inflammatory drugs and opioids are widely prescribed for the treatment of mild to severe pain. Wide interindividual variability regarding the analgesic efficacy and adverse reactions to these drugs (ADRs) exist, although the mechanisms responsible for these ADRs are not well understood. AREAS COVERED We provide an overview of the clinical impact of variants in genes related to the pharmacokinetics and pharmacodynamics of painkillers, as well as those associated with the susceptibility to ADRs. Also, we discuss the current pharmacogenetic-guided treatment recommendations for the therapeutic use of non-steroidal anti-inflammatory drugs and opioids. EXPERT OPINION In the light of the data analyzed, common variants in genes involved in pharmacokinetics and pharmacodynamics processes may partially explain the lack of response to painkiller treatment and the occurrence of adverse drug reactions. The implementation of high-throughput sequencing technologies may help to unveil the role of rare variants as considerable contributors to explaining the interindividual variability in drug response. Furthermore, a consensus between the diverse pharmacogenetic guidelines is necessary to extend the implementation of pharmacogenetic-guided prescription in daily clinical practice. Additionally, the physiologically-based pharmacokinetics and pharmacodynamics modeling techniques may contribute to the improvement of these guidelines and facilitate clinicians drug dose adjustment.
Collapse
Affiliation(s)
- Pedro Ayuso
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL, Instituto de Salud Carlos III, Cáceres, Spain
| | - Yolanda Macías
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL, Instituto de Salud Carlos III, Cáceres, Spain
| | - Javier Gómez-Tabales
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL, Instituto de Salud Carlos III, Cáceres, Spain
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL, Instituto de Salud Carlos III, Cáceres, Spain
| | - José A G Agúndez
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL, Instituto de Salud Carlos III, Cáceres, Spain
| |
Collapse
|
5
|
Mani S, Norel X, Varret M, Bchir S, Ben Anes A, Garrouch A, Tabka Z, Longrois D, Chahed K. Polymorphisms rs2745557 in PTGS2 and rs2075797 in PTGER2 are associated with the risk of chronic obstructive pulmonary disease development in a Tunisian cohort. Prostaglandins Leukot Essent Fatty Acids 2021; 166:102252. [PMID: 33545665 DOI: 10.1016/j.plefa.2021.102252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/23/2023]
Abstract
We hypothesized that polymorphisms of genes involved in the prostaglandin pathway could be associated with COPD. In this study we explored the involvement of genetic polymorphisms in PTGS2, PTGER2 and PTGER4 genes in the development and severity of COPD and their effects on plasma concentrations of inflammatory/oxidative stress markers. We identified genotypes of PTGS2, PTGER2 and PTGER4 SNPs in a Tunisian cohort including COPD patients (n = 138) and control subjects (n = 216) using PCR-RFLP and PCR TaqMan. Pulmonary function (FEV1 and FVC) were assessed by plethsmography. PGE2, PGD2 and cytokine plasma (IL-6, IL-18, TNF-α, TGF-β) concentrations were measured using ELISA and colorimetric standard methods were used to determine oxidative stress concentrations. Genotype frequencies of rs2745557 in PTGS2 and rs2075797 in PTGER2 were different between COPD cases and controls. There was no correlation between these polymorphisms and lung function parameters. For rs2745557, the A allele frequency was higher in COPD cases than in controls. For rs2075797, carriers of the GG genotype were more frequent in the COPD group than in controls. Only rs2745557 in PTGS2 had an effect on PGD2 and cytokine plasma concentrations. PGD2 was significantly decreased in COPD patients with the GA or AA genotypes. In contrast, IL-18 and NO plasma concentrations were increased in COPD rs2745557 A allele carriers as compared to homozygous GG subjects. Our findings suggest that rs2745557 in PTGS2 and rs2075797 in PTGER2 are associated with COPD development but not with its severity.
Collapse
Affiliation(s)
- Salma Mani
- Sorbonne Paris nord University, 93430 Villetaneuse, France; INSERM, UMRS1148, CHU X.Bichat, Paris, France; Institut supérieur de biotechnologies de Monastir, University of Monastir, Tunisia; UR12ES06, Physiologie de l'exercice et physiopathologie: de l'intégré au moléculaire, Faculté de médecine de Sousse, University of Sousse, Tunisia.
| | - Xavier Norel
- Sorbonne Paris nord University, 93430 Villetaneuse, France; INSERM, UMRS1148, CHU X.Bichat, Paris, France
| | - Mathilde Varret
- INSERM, UMRS1148, CHU X.Bichat, Paris, France; Université de Paris, France
| | - Sarra Bchir
- Institut supérieur de biotechnologies de Monastir, University of Monastir, Tunisia; UR12ES06, Physiologie de l'exercice et physiopathologie: de l'intégré au moléculaire, Faculté de médecine de Sousse, University of Sousse, Tunisia
| | - Amel Ben Anes
- UR12ES06, Physiologie de l'exercice et physiopathologie: de l'intégré au moléculaire, Faculté de médecine de Sousse, University of Sousse, Tunisia
| | | | - Zouhair Tabka
- UR12ES06, Physiologie de l'exercice et physiopathologie: de l'intégré au moléculaire, Faculté de médecine de Sousse, University of Sousse, Tunisia
| | - Dan Longrois
- Sorbonne Paris nord University, 93430 Villetaneuse, France; INSERM, UMRS1148, CHU X.Bichat, Paris, France; Université de Paris, Assistance Publique-Hôpitaux de Paris,Hôpital Bichat-Claude Bernard, DMU PARABOL, Paris, France
| | - Karim Chahed
- UR12ES06, Physiologie de l'exercice et physiopathologie: de l'intégré au moléculaire, Faculté de médecine de Sousse, University of Sousse, Tunisia; Faculté des sciences de Sfax, University of Sfax, Tunisia
| |
Collapse
|
6
|
Wu PB, Qian R, Hong C, Guo YT, Yu YJ, Zhang G, Tan SY. Association between PTGER4 polymorphisms and inflammatory bowel disease risk in Caucasian: A meta-analysis. Medicine (Baltimore) 2020; 99:e19756. [PMID: 32846747 PMCID: PMC7447366 DOI: 10.1097/md.0000000000019756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The results from previous studies on association between prostaglandin E receptor 4 (PTGER4) polymorphisms and inflammatory bowel disease (IBD) risk in Caucasian were conflict. The present study aimed to investigate the genetic association by conducting a meta-analysis. METHODS Systematic literature search was conducted through Wiley Online Library, Chinese National Knowledge Infrastructure (CNKI), and PubMed databases. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to investigate the associations between rs4613763 T/C, 17234657T/G polymorphisms, and IBD risk in Caucasian. RESULTS Twenty case-control studies consisting of 18,495 Crohn disease (CD) patients and 4203 ulcerative colitis (UC) patients, as well as 26,063 controls were included in this meta-analysis. The rs4613763T/C polymorphism had obvious influence on CD, UC risk in Caucasian. However, rs17234657T/G polymorphism had obvious influence on CD but not UC in Caucasian. CONCLUSION This meta-analysis suggested that both the rs4613763 T/C, rs17234657T/G polymorphisms had obvious influence on risk of CD in Caucasian. In addition, rs4613763 T/C, polymorphism had obvious influence on risk of UC in Caucasian.
Collapse
Affiliation(s)
- Peng-Bo Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei
| | - Rao Qian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei
| | - Chai Hong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei
| | - Yi-tian Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei
| | - Yuan-jie Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei
| | - Guo Zhang
- Department of Gastroenterology, Guangxi People Hospital, Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shi-Yun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei
| |
Collapse
|
7
|
Woo SD, Luu QQ, Park HS. NSAID-Exacerbated Respiratory Disease (NERD): From Pathogenesis to Improved Care. Front Pharmacol 2020; 11:1147. [PMID: 32848759 PMCID: PMC7399220 DOI: 10.3389/fphar.2020.01147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Nonsteroidal antiinflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is characterized by moderate-to-severe asthma and a higher prevalence of chronic rhinosinusitis/nasal polyps, but is a highly heterogeneous disorder with various clinical manifestations. Two major pathogenic mechanisms are: (1) overproduction of cysteinyl leukotrienes with dysregulation of arachidonic acid metabolism and (2) increased type 2 eosinophilic inflammation affected by genetic mechanisms. Aspirin challenge is the gold standard to diagnose NERD, whereas reliable in vitro biomarkers have yet not been identified. Therapeutic approaches have been done on the basis of disease severity with the avoidance of culprit and cross-reacting NSAIDs, and when indicated, aspirin desensitization is an effective treatment option. Biologic approaches targeting Type 2 cytokines are emerging as potential therapeutic options. Here, we summarize the up-to-date evidence of pathophysiologic mechanisms and diagnosis/management approaches to the patients with NERD with its phenotypic classification.
Collapse
Affiliation(s)
- Seong-Dae Woo
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Quoc Quang Luu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
8
|
Pecak M, Korošec P, Kunej T. Multiomics Data Triangulation for Asthma Candidate Biomarkers and Precision Medicine. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:392-409. [PMID: 29927718 DOI: 10.1089/omi.2018.0036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asthma is a common complex disorder and has been subject to intensive omics research for disease susceptibility and therapeutic innovation. Candidate biomarkers of asthma and its precision treatment demand that they stand the test of multiomics data triangulation before they can be prioritized for clinical applications. We classified the biomarkers of asthma after a search of the literature and based on whether or not a given biomarker candidate is reported in multiple omics platforms and methodologies, using PubMed and Web of Science, we identified omics studies of asthma conducted on diverse platforms using keywords, such as asthma, genomics, metabolomics, and epigenomics. We extracted data about asthma candidate biomarkers from 73 articles and developed a catalog of 190 potential asthma biomarkers (167 human, 23 animal data), comprising DNA loci, transcripts, proteins, metabolites, epimutations, and noncoding RNAs. The data were sorted according to 13 omics types: genomics, epigenomics, transcriptomics, proteomics, interactomics, metabolomics, ncRNAomics, glycomics, lipidomics, environmental omics, pharmacogenomics, phenomics, and integrative omics. Importantly, we found that 10 candidate biomarkers were apparent in at least two or more omics levels, thus promising potential for further biomarker research and development and precision medicine applications. This multiomics catalog reported herein for the first time contributes to future decision-making on prioritization of biomarkers and validation efforts for precision medicine in asthma. The findings may also facilitate meta-analyses and integrative omics studies in the future.
Collapse
Affiliation(s)
- Matija Pecak
- 1 Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domzale, Slovenia
| | - Peter Korošec
- 2 Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases , Golnik, Slovenia
| | - Tanja Kunej
- 1 Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domzale, Slovenia
| |
Collapse
|
9
|
Plaza-Serón MDC, García-Martín E, Agúndez JA, Ayuso P. Hypersensitivity reactions to nonsteroidal anti-inflammatory drugs: an update on pharmacogenetics studies. Pharmacogenomics 2018; 19:1069-1086. [PMID: 30081739 DOI: 10.2217/pgs-2018-0079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs are the medications most frequently involved in hypersensitivity reactions to drugs. These can be induced by specific immunological and nonimmunological mechanisms, being the latter the most frequent. The nonimmunological mechanism is related to an imbalance of inflammatory mediators, which is aggravated by the cyclooxygenase inhibition. Genetic studies suggest that multiples genes and additional mechanisms might be involved. The proposals of this review is summarize the contribution of variations in genes involved in the arachidonic acid, inflammatory and immune pathways as well as the recent genome-wide association studies findings related to cross-intolerant nonsteroidal anti-inflammatory drugs hypersensitivity reactions. In addition, using integration of different genetic studies, we propose new target genes. This will help to understand the underlying mechanism of these reactions.
Collapse
Affiliation(s)
- María Del Carmen Plaza-Serón
- Research Laboratory-Allergy Unit, Biomedical Institute of Malaga (IBIMA), Regional University Hospital of Malaga (Carlos Haya Hospital), Avda. Hospital Civil s/n, 29009 Malaga, Spain
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Jose Augusto Agúndez
- University Institute of Molecular Pathology Biomarkers, UEx. ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Pedro Ayuso
- Infection Pharmacology Group, Department of Molecular & Clinical Pharmacology University of Liverpool, L69 3GF, Liverpool, UK
| |
Collapse
|
10
|
Abstract
Prostaglandins are synthesized through the metabolism of arachidonic acid via the cyclooxygenase pathway. There are five primary prostaglandins, PGD2, PGE2, PGF2, PGI2, and thromboxane B2, that all signal through distinct seven transmembrane, G-protein coupled receptors. The receptors through which the prostaglandins signal determines their immunologic or physiologic effects. For instance, the same prostaglandin may have opposing properties, dependent upon the signaling pathways activated. In this article, we will detail how inhibition of cyclooxygenase metabolism and regulation of prostaglandin signaling regulates allergic airway inflammation and asthma physiology. Possible prostaglandin therapeutic targets for allergic lung inflammation and asthma will also be reviewed, as informed by human studies, basic science, and animal models.
Collapse
Affiliation(s)
- R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The pathophysiology of aspirin-exacerbated respiratory disease (AERD) is not fully understood and diagnostic methods and so far, treatments for AERD have not been standardized. We summarize recent research into the pathological mechanisms of AERD, diagnostic methods, and treatments for AERD patients. RECENT FINDINGS In AERD pathophysiology, not only the reduced expression of E prostanoid 2 but also the dysfunction of its pathway could be involved. Moreover, eosinophils of AERD patients could be directly activated by aspirin to produce prostaglandin D2. Platelet activations are well known to be involved in AERD; however, plasma markers do not change during aspirin challenge tests. Additionally, novel genetic polymorphisms, such as P2RY12 and dipeptidyl peptidase 10 gene, and epigenetic predispositions of AERD were found. In AERD diagnosis, bronchial and nasal aspirin challenges have been applied in addition to oral challenge. Serum periostin has been suggested as a potential biomarker for AERD. Apart from standard pharmacological treatment and aspirin desensitization, biologics, including omalizumab and mepolizumab, as well as CRTH2 antagonists have been suggested as promising therapies for AERD treatment. SUMMARY AERD is usually associated with severe asthma phenotypes. AERD pathophysiology mainly involves the dysregulation of eicosanoid metabolisms, activations of effector cells, which could be influenced by genetic/epigenetic factors. Understanding the pathophysiology of AERD is key to improve the diagnostic methods and proper management of AERD patients.
Collapse
|
12
|
Chang HS, Park JS, Lee HS, Lyu J, Son JH, Choi IS, Shin HD, Park CS. Association analysis of ILVBL gene polymorphisms with aspirin-exacerbated respiratory disease in asthma. BMC Pulm Med 2017; 17:210. [PMID: 29246216 PMCID: PMC5732499 DOI: 10.1186/s12890-017-0556-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/07/2017] [Indexed: 12/30/2022] Open
Abstract
Background We previously reported that the ILVBL gene on chromosome 19p13.1 was associated with the risk for aspirin-exacerbated respiratory disease (AERD) and the percent decline of forced expired volume in one second (FEV1) after an oral aspirin challenge test. In this study, we confirmed the association between polymorphisms and haplotypes of the ILVBL gene and the risk for AERD and its phenotype. Methods We recruited 141 AERD and 995 aspirin-tolerant asthmatic (ATA) subjects. All study subjects underwent an oral aspirin challenge (OAC). Nine single nucleotide polymorphisms (SNPs) with minor allele frequencies above 0.05, which were present in the region from 2 kb upstream to 0.5 kb downstream of ILVBL in Asian populations, were selected and genotyped. Results In an allelic association analysis, seven of nine SNPs were significantly associated with the risk for AERD after correction for multiple comparisons. In a codominant model, the five SNPs making up block2 (rs2240299, rs7507755, rs1468198, rs2074261, and rs13301) showed significant associations with the risk for AERD (corrected P = 0.001–0.004, OR = 0.59–0.64). Rs1468198 was also significantly associated with the percent decline in FEV1 in OAC tests after correction for multiple comparisons in the codominant model (corrected P = 0.033), but the other four SNPs in hapblock2 were not. Conclusion To the best of our knowledge, this is the first report of an association between SNPs on ILVBL and AERD. SNPs on ILVBL could be promising genetic markers of this condition. Electronic supplementary material The online version of this article (10.1186/s12890-017-0556-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hun Soo Chang
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, Asan, Chungcheongnam-do, 336-745, Republic of Korea.
| | - Jong Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 1174, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do, 420-021, Republic of Korea
| | - Ho Sung Lee
- Division of Respiratory Medicine, Soonchunhyang University Chunan Hospital, Chunan-Si, Chungcheongnam-do, 336-745, Republic of Korea
| | - Jiwon Lyu
- Division of Respiratory Medicine, Soonchunhyang University Chunan Hospital, Chunan-Si, Chungcheongnam-do, 336-745, Republic of Korea
| | - Ji-Hye Son
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, Asan, Chungcheongnam-do, 336-745, Republic of Korea
| | - Inseon S Choi
- Department of Allergy, Chonnam National University Medical School and Research Institute of Medical Sciences, Gwangju, 61469, Republic of Korea
| | - Hyoung Doo Shin
- Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul, 121-742, Republic of Korea.,Department of Genetic Epidemiology, SNP Genetics, Inc., 1407 14th Floor, Woolim-rall'ey B, Gasan-dong, Geumcheon-Gu, Seoul, 153-803, Republic of Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 1174, Jung-Dong, Wonmi-Ku, Bucheon, Gyeonggi-Do, 420-021, Republic of Korea.
| |
Collapse
|
13
|
Ledford DK, Lockey RF. Aspirin or Nonsteroidal Anti-inflammatory Drug-Exacerbated Chronic Rhinosinusitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 4:590-8. [PMID: 27393773 DOI: 10.1016/j.jaip.2016.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/11/2016] [Accepted: 04/27/2016] [Indexed: 11/28/2022]
Abstract
Aspirin (ASA)-exacerbated respiratory disease (AERD) is characterized by upper airway congestion due to eosinophilic inflammation of the nasal and sinus membranes and nasal polyposis, associated with increased leukotriene production that is further accentuated by ASA or other nonsteroidal anti-inflammatory drug (NSAID) ingestion. It occurs in 5% to 10% of subjects with chronic rhinosinusitis (CRS) and in 15% to 40% of those with nasal polyposis. Although AERD with CRS is usually associated with asthma, this is not always the case. The eosinophilic airway inflammation and symptoms precede clinical reactions to ASA or other NSAIDs, but ultimately affected subjects experience worsening of symptoms with ingestion of ASA/NSAIDs. The endotypic mechanism for this worsening is related to a chronic increase in leukotriene and a decrease in prostaglandin production, particularly prostaglandin E2, that is further aggravated by the inhibition of cycloxgenase I. IgE does not likely play a role in the pathogenesis of the disease although nasal and sinus staphylococcal infection increases local IgE level and may increase total IgE and specific IgE levels. Genetic studies suggest that multiple genes may be involved, but the genetic abnormalities may differ in affected subjects from different ethnicities and candidate genes have not been confirmed in multiple studies. Genome-wide association studies have not been revealing. The phenotype is recognized by the mucosal inflammation and worsening of symptoms acutely with ASA/NSAID. There is clinical improvement with ASA desensitization followed by regular ingestion of ASA or other NSAIDs. Further understanding of this unique phenotype and endotype of CRS will likely improve the understanding of other eosinophilic airway diseases.
Collapse
Affiliation(s)
- Dennis K Ledford
- Morsani College of Medicine, University of South Florida and the James A. Haley V.A. Hospital, Tampa, Fla.
| | - Richard F Lockey
- Division of Allergy and Immunology, Joy McCann Culverhouse Chair in Allergy & Immunology, Morsani College of Medicine, University of South Florida, Tampa, Fla
| |
Collapse
|
14
|
Potential Biomarkers for NSAID-Exacerbated Respiratory Disease. Mediators Inflamm 2017; 2017:8160148. [PMID: 28852271 PMCID: PMC5568600 DOI: 10.1155/2017/8160148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
Asthma is a common chronic disease with several variant phenotypes and endotypes. NSAID-exacerbated respiratory disease (NERD) is one such endotype characterized by asthma, chronic rhinosinusitis (CRS) with nasal polyps, and hypersensitivity to aspirin/cyclooxygenase-1 inhibitors. NERD is more associated with severe asthma than other asthma phenotypes. Regarding diagnosis, aspirin challenge tests via the oral or bronchial route are a standard diagnostic method; reliable in vitro diagnostic tests are not available. Recent studies have reported various biomarkers of phenotype, diagnosis, and prognosis. In this review, we summarized the known potential biomarkers of NERD that are distinct from those of aspirin-tolerant asthma. We also provided an overview of the different NERD subgroups.
Collapse
|
15
|
Cavagnero K, Doherty TA. Cytokine and Lipid Mediator Regulation of Group 2 Innate Lymphoid Cells (ILC2s) in Human Allergic Airway Disease. ACTA ACUST UNITED AC 2017; 2. [PMID: 28959799 PMCID: PMC5614509 DOI: 10.4172/2576-3881.1000116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The recent discovery of group 2 innate lymphoid cells (ILC2s) has caused a paradigm shift in the understanding of allergic airway disease pathogenesis. Prior to the discovery of ILC2s, Th2 cells were largely thought to be the primary source of type 2 cytokines; however, activated ILC2s have since been shown to contribute significantly, and in some cases, dominantly to type 2 cytokine production. Since the discovery of ILC2s in 2010, many mediators have been shown to regulate their effector functions. Initial studies identified the epithelial derived cytokines IL-25, IL-33, and TSLP as activators of ILC2s, and recent studies have identified many additional cytokine and lipid mediators that are involved in ILC2 regulation. ILC2s and their mediators represent novel therapeutic targets for allergic airway diseases and intensive investigation is underway to better understand ILC2 biology and upstream and downstream pathways that lead to ILC2-driven airway pathology. In this review, we will focus on the cytokine and lipid mediators that regulate ILC2s in human allergic airway disease, as well as highlight newly discovered mediators of mouse ILC2s that may eventually translate to humans.
Collapse
|
16
|
Garon SL, Pavlos RK, White KD, Brown NJ, Stone CA, Phillips EJ. Pharmacogenomics of off-target adverse drug reactions. Br J Clin Pharmacol 2017; 83:1896-1911. [PMID: 28345177 DOI: 10.1111/bcp.13294] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 12/15/2022] Open
Abstract
Off-target adverse drug reactions (ADRs) are associated with significant morbidity and costs to the healthcare system, and their occurrence is not predictable based on the known pharmacological action of the drug's therapeutic effect. Off-target ADRs may or may not be associated with immunological memory, although they can manifest with a variety of shared clinical features, including maculopapular exanthema, severe cutaneous adverse reactions (SCARs), angioedema, pruritus and bronchospasm. Discovery of specific genes associated with a particular ADR phenotype is a foundational component of clinical translation into screening programmes for their prevention. In this review, genetic associations of off-target drug-induced ADRs that have a clinical phenotype suggestive of an immunologically mediated process and their mechanisms are highlighted. A significant proportion of these reactions lack immunological memory and current data are informative for these ADRs with regard to disease pathophysiology, therapeutic targets and biomarkers which may identify patients at greatest risk. Although many serious delayed immune-mediated (IM)-ADRs show strong human leukocyte antigen associations, only a small subset have successfully been implemented in screening programmes. More recently, other factors, such as drug metabolism, have been shown to contribute to the risk of the IM-ADR. In the future, pharmacogenomic targets and an understanding of how they interact with drugs to cause ADRs will be applied to drug design and preclinical testing, and this will allow selection of optimal therapy to improve patient safety.
Collapse
Affiliation(s)
- Sarah L Garon
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca K Pavlos
- Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, WA, 6150, Australia
| | - Katie D White
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Brown
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cosby A Stone
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth J Phillips
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, WA, 6150, Australia.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Khan DA. Pharmacogenomics and adverse drug reactions: Primetime and not ready for primetime tests. J Allergy Clin Immunol 2016; 138:943-955. [DOI: 10.1016/j.jaci.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 10/20/2022]
|
18
|
Cornejo-García JA, Perkins JR, Jurado-Escobar R, García-Martín E, Agúndez JA, Viguera E, Pérez-Sánchez N, Blanca-López N. Pharmacogenomics of Prostaglandin and Leukotriene Receptors. Front Pharmacol 2016; 7:316. [PMID: 27708579 PMCID: PMC5030812 DOI: 10.3389/fphar.2016.00316] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023] Open
Abstract
Individual genetic background together with environmental effects are thought to be behind many human complex diseases. A number of genetic variants, mainly single nucleotide polymorphisms (SNPs), have been shown to be associated with various pathological and inflammatory conditions, representing potential therapeutic targets. Prostaglandins (PTGs) and leukotrienes (LTs) are eicosanoids derived from arachidonic acid and related polyunsaturated fatty acids that participate in both normal homeostasis and inflammatory conditions. These bioactive lipid mediators are synthesized through two major multistep enzymatic pathways: PTGs by cyclooxygenase and LTs by 5-lipoxygenase. The main physiological effects of PTGs include vasodilation and vascular leakage (PTGE2); mast cell maturation, eosinophil recruitment, and allergic responses (PTGD2); vascular and respiratory smooth muscle contraction (PTGF2), and inhibition of platelet aggregation (PTGI2). LTB4 is mainly involved in neutrophil recruitment, vascular leakage, and epithelial barrier function, whereas cysteinyl LTs (CysLTs) (LTC4, LTD4, and LTE4) induce bronchoconstriction and neutrophil extravasation, and also participate in vascular leakage. PTGs and LTs exert their biological functions by binding to cognate receptors, which belong to the seven transmembrane, G protein-coupled receptor superfamily. SNPs in genes encoding these receptors may influence their functionality and have a role in disease susceptibility and drug treatment response. In this review we summarize SNPs in PTGs and LTs receptors and their relevance in human diseases. We also provide information on gene expression. Finally, we speculate on future directions for this topic.
Collapse
Affiliation(s)
- José A Cornejo-García
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA)Malaga, Spain; Allergy Unit, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA)Malaga, Spain
| | - James R Perkins
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | - Raquel Jurado-Escobar
- Research Laboratory, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | | | - José A Agúndez
- Department of Pharmacology, University of Extremadura Caceres, Spain
| | - Enrique Viguera
- Genetics Unit, Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga Malaga, Spain
| | - Natalia Pérez-Sánchez
- Allergy Unit, International Business Information Management Association (IBIMA)-Regional University Hospital of Malaga, University of Málaga (UMA) Malaga, Spain
| | | |
Collapse
|
19
|
Pan Y, Li S, Xie X, Li M. Association between thromboxane A2 receptor polymorphisms and asthma risk: A meta-analysis. J Asthma 2016; 53:576-82. [PMID: 27058349 DOI: 10.3109/02770903.2015.1126849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To determine whether there is an association between thromboxane A2 receptor (TBXA2R) gene polymorphisms (+924C/T and +795C/T) and asthma risk by conducting a meta-analysis. DATA SOURCES Pubmed, Embase, Chinese National Knowledge Infrastructure (CNKI) and Wanfang database were searched (updated May 1, 2015). STUDY SELECTIONS Articles evaluating the association between TBXA2R gene polymorphisms and asthma risk were selected. RESULTS A total of 7 studies on +924C/T polymorphism and 6 studies on +795C/T polymorphism were included in this meta-analysis. There was a significant association between TBXA2R +924C/T polymorphism and asthma risk in the recessive model (OR = 1.33, 95% CI = 1.01-1.75, P = 0.045). No significant association between +795C/T polymorphism and asthma risk in the overall population was demonstrated. In subgroup analyzes, significant association was observed in atopic asthma risk in the recessive model (OR = 1.43, 95% CI = 1.01-2.01, P = 0.043), but no significant association was found between TBXA2R +924C/T polymorphism and asthma risk in Asians (OR = 1.14, 95% CI = 0.80-1.63, P = 0.457). TBXA2R +795C/T polymorphism was associated with aspirin-intolerant asthma (AIA) risk when stratified by asthma subphenotype in the allelic model (OR = 1.30, 95% CI = 1.05-1.60, P = 0.014) and dominant model (OR = 1.50, 95% CI = 1.11-2.03, P = 0.008). CONCLUSION Our results suggested that TBXA2R +924C/T polymorphism is associated with asthma risk, and +795C/T polymorphism may be a risk factor for AIA. Larger-scale and well-designed studies are required to validate the association identified in the current meta-analysis.
Collapse
Affiliation(s)
- Yilin Pan
- a Department of Respiratory Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , China
| | - Shaojun Li
- a Department of Respiratory Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , China
| | - Xinming Xie
- a Department of Respiratory Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , China
| | - Manxiang Li
- a Department of Respiratory Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , China
| |
Collapse
|
20
|
Pham DL, Kim JH, Trinh THK, Park HS. What we know about nonsteroidal anti-inflammatory drug hypersensitivity. Korean J Intern Med 2016; 31:417-32. [PMID: 27030979 PMCID: PMC4855107 DOI: 10.3904/kjim.2016.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/05/2016] [Indexed: 02/07/2023] Open
Abstract
Nonsteroidal anti-inf lammatory drugs (NSAIDs) are widely prescribed for the treatment of inflammatory diseases, but their use is frequently related to hypersensitivity reactions. This review outlines our current knowledge of NSAID hypersensitivity (NHS) with regard to its pathogenic, molecular, and genetic mechanisms, as well as diagnosis and treatment. The presentation of NHS varies from a local (skin and/or airways) reaction to systemic reactions, including anaphylaxis. At the molecular level, NHS reactions can be classified as cross-reactive (mediated by cyclooxygenase inhibition) or selective (specific activation of immunoglobulin E antibodies or T cells). Genetic polymorphisms and epigenetic factors have been shown to be closely associated with NHS, and may be useful as predictive markers. To diagnose NHS, inhalation or oral challenge tests are applied, with the exclusion of any cross-reactive NSAIDs. For patients diagnosed with NHS, absolute avoidance of NSAIDs/aspirin is essential, and pharmacological treatment, including biologics, is often used to control their respiratory and cutaneous symptoms. Finally, desensitization is recommended only for selected patients with NHS. However, further research is required to develop new diagnostic methods and more effective treatments against NHS.
Collapse
Affiliation(s)
- Duy Le Pham
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, Korea
| | - Ji-Hye Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Tu Hoang Kim Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, Korea
- Correspondence to Hae-Sim Park, M.D. Department of Allergy and Clinical Immunology, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Korea Tel: +82-31-219-5150 Fax: +82-31-219-5154 E-mail:
| |
Collapse
|
21
|
Genetic basis of hypersensitivity reactions to nonsteroidal anti-inflammatory drugs. Curr Opin Allergy Clin Immunol 2016; 15:285-93. [PMID: 26110677 DOI: 10.1097/aci.0000000000000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW NSAIDs are the main triggers of hypersensitivity reactions to drugs. However, the full genetic and molecular basis of these reactions has yet to be uncovered. In this article, we have summarized research from recent years into the effects of genetic variants on the different clinical entities induced by NSAID hypersensitivity, focusing on prostaglandin and leukotriene-related genes as well as others beyond the arachidonic acid pathway. RECENT FINDINGS We introduce recent contributions of high-throughput approaches including genome-wide association studies as well as available information from epigenetics and next-generation sequencing. Finally, we give our thoughts on future directions in this field, including the scope for bioinformatics and systems biology and the need for clear patient phenotyping. SUMMARY The full genetic and molecular basis of clinical entities induced by NSAIDs hypersensitivity has yet to be uncovered, and despite commendable efforts over recent years, no clinically proven genetic markers currently exist for these disorders. It is clear that we will continue to find more about these reactions in the coming years, concurrently with improvements in technology and experimental techniques, and a precise definition of different phenotypes.
Collapse
|
22
|
|
23
|
Su YC, Gauderman WJ, Berhane K, Lewinger JP. Adaptive Set-Based Methods for Association Testing. Genet Epidemiol 2015; 40:113-22. [PMID: 26707371 DOI: 10.1002/gepi.21950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/02/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022]
Abstract
With a typical sample size of a few thousand subjects, a single genome-wide association study (GWAS) using traditional one single nucleotide polymorphism (SNP)-at-a-time methods can only detect genetic variants conferring a sizable effect on disease risk. Set-based methods, which analyze sets of SNPs jointly, can detect variants with smaller effects acting within a gene, a pathway, or other biologically relevant sets. Although self-contained set-based methods (those that test sets of variants without regard to variants not in the set) are generally more powerful than competitive set-based approaches (those that rely on comparison of variants in the set of interest with variants not in the set), there is no consensus as to which self-contained methods are best. In particular, several self-contained set tests have been proposed to directly or indirectly "adapt" to the a priori unknown proportion and distribution of effects of the truly associated SNPs in the set, which is a major determinant of their power. A popular adaptive set-based test is the adaptive rank truncated product (ARTP), which seeks the set of SNPs that yields the best-combined evidence of association. We compared the standard ARTP, several ARTP variations we introduced, and other adaptive methods in a comprehensive simulation study to evaluate their performance. We used permutations to assess significance for all the methods and thus provide a level playing field for comparison. We found the standard ARTP test to have the highest power across our simulations followed closely by the global model of random effects (GMRE) and a least absolute shrinkage and selection operator (LASSO)-based test.
Collapse
Affiliation(s)
- Yu-Chen Su
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - William James Gauderman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kiros Berhane
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Juan Pablo Lewinger
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
24
|
Beule A. Epidemiology of chronic rhinosinusitis, selected risk factors, comorbidities, and economic burden. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2015; 14:Doc11. [PMID: 26770285 PMCID: PMC4702060 DOI: 10.3205/cto000126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic rhinosinusitis (CRS) is a relevant and prevalent medical condition in Germany, Europe and the world. If analysed in detail, the prevalence of CRS shows regional and temporary variety. In this review, currently available data regarding the prevalence of CRS is therefore sorted by country and/or region, time point of data collection and the CRS-definition employed. Risk factors like smoking and gastroesophageal reflux are discussed regarding their influence on CRS prevalence. Moreover, comorbidities of CRS, like asthma, conditions of the cardiovascular system and depression are listed and their influence on CRS is discussed. Furthermore, data on CRS prevalence in special cohorts, like immunocompromised patients, are presented. To estimate the economic burden of CRS, current data e.g. from Germany and the USA are included in this review.
Collapse
Affiliation(s)
- Achim Beule
- ENT Department, University of Greifswald, Germany
| |
Collapse
|
25
|
Machado-Carvalho L, Martín M, Torres R, Gabasa M, Alobid I, Mullol J, Pujols L, Roca-Ferrer J, Picado C. Low E-prostanoid 2 receptor levels and deficient induction of the IL-1β/IL-1 type I receptor/COX-2 pathway: Vicious circle in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2015; 137:99-107.e7. [PMID: 26560040 DOI: 10.1016/j.jaci.2015.09.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND We hypothesized that the 2 reported alterations in aspirin-exacerbated respiratory disease (AERD), reduced expression/production of COX-2/prostaglandin (PG) E2 and diminished expression of E-prostanoid (EP) 2 receptor, are closely linked. OBJECTIVE We sought to determine the mechanisms involved in the altered regulation of the COX pathway in patients with AERD. METHODS Fibroblasts were obtained from nasal mucosa; samples of control subjects (NM-C, n = 8) and from nasal polyps from patients with aspirin-exacerbated respiratory disease (NP-AERD, n = 8). Expression of the autocrine loop components regulating PGE2 production and signaling, namely IL-1 type I receptor (IL-1RI), COX-2, microsomal prostaglandin E synthase 1 (mPGES-1), and EP receptors, was assessed at baseline and after stimulation with IL-1β, PGE2, and specific EP receptor agonists. RESULTS Compared with NM-C fibroblasts, basal expression levels of IL-1RI and EP2 receptor were lower in NP-AERD fibroblasts. IL-1β-induced IL-1RI, COX-2, and mPGES-1 expression levels were also lower in these cells. Levels of IL-1RI positively correlated with COX-2 and mPGES-1 expression in both NM-C and NP-AERD fibroblasts. Incubation with either exogenous PGE2 or selective EP2 agonist significantly increased expression of IL-1RI in NM-C fibroblasts and had hardly any effect on NP-AERD fibroblasts. Alterations in IL-1RI, COX-2, and mPGES-1 expression that were found in NP-AERD fibroblasts were corrected when EP2 receptor expression was normalized by transfection of NP-AERD fibroblasts. CONCLUSION Altered expression of EP2 in patients with AERD contributes to deficient induction of IL-1RI, reducing the capacity of IL-1β to increase COX-2 and mPGES-1 expression, which results in low PGE2 production. This impairment in the generation of PGE2 subsequently reduces its ability to induce IL-1RI.
Collapse
Affiliation(s)
- Liliana Machado-Carvalho
- Clinical and Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Margarita Martín
- Clinical and Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biochemistry Unit, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Rosa Torres
- Clinical and Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Pharmacology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Gabasa
- Clinical and Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Isam Alobid
- Clinical and Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Rhinology Unit & Smell Clinic, ENT Department, Hospital Clínic, Barcelona, Spain
| | - Joaquim Mullol
- Clinical and Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Rhinology Unit & Smell Clinic, ENT Department, Hospital Clínic, Barcelona, Spain
| | - Laura Pujols
- Clinical and Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Roca-Ferrer
- Clinical and Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Cesar Picado
- Clinical and Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Pneumology and Respiratory Allergy Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Kurosawa M, Yukawa T, Hozawa S, Mochizuki H. Recent advance in investigation of gene polymorphisms in Japanese patients with aspirin-exacerbated respiratory disease. Allergol Immunopathol (Madr) 2015; 43:92-100. [PMID: 25224359 DOI: 10.1016/j.aller.2014.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/05/2014] [Accepted: 06/02/2014] [Indexed: 11/26/2022]
Abstract
Aspirin-exacerbated respiratory disease (AERD) is a complex clinical syndrome characterised by severe asthmatic attack upon treatment with aspirin and/or non-steroidal anti-inflammatory drugs (NSAIDs). Genetic predisposition has been considered as a crucial determinant and candidate genes have concentrated especially on cysteinyl leukotrienes (LTs)-related genes as the inhibitory action of aspirin and NSAIDs on cyclooxygenase activity may cause overproduction of cysteinyl LTs. However, conflicting results have been reported, in parallel with replication studies in different ethnic groups. Thus, future areas of investigations need to focus on comprehensive approaches towards the discovery of other genetic biomarkers. Unfortunately, few papers have been reported about gene polymorphisms in Japanese patients with AERD. Here, we described on our recent genetic investigations on B2ADR, IL-13, IL-17A, CYP2C19, TBXA2R, CRTH2 and HSP70. This review indicates potential genetic biomarkers contributing to the early diagnosis of AERD, which may include CYP2C19 and HSP70 gene polymorphisms, and future validation studies in independent population are required to provide reassurance about our findings.
Collapse
|
27
|
Claar D, Hartert TV, Peebles RS. The role of prostaglandins in allergic lung inflammation and asthma. Expert Rev Respir Med 2014; 9:55-72. [PMID: 25541289 DOI: 10.1586/17476348.2015.992783] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostaglandins (PGs) are products of the COX pathway of arachidonic acid metabolism. There are five primary PGs, PGD₂, PGE₂, PGF₂, PGI₂ and thromboxane A₂, all of which signal through distinct seven transmembrane, G-protein coupled receptors. Some PGs may counteract the actions of others, or even the same PG may have opposing physiologic or immunologic effects, depending on the specific receptor through which it signals. In this review, we examine the effects of COX activity and the various PGs on allergic airway inflammation and physiology that is associated with asthma. We also highlight the potential therapeutic benefit of targeting PGs in allergic lung inflammation and asthma based on basic science, animal model and human studies.
Collapse
Affiliation(s)
- Dru Claar
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, T-1217 MCN Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA
| | | | | |
Collapse
|
28
|
Luschnig P, Frei R, Lang-Loidolt D, Rozsasi A, Tomazic PV, Lippe IT, Schuligoi R, Heinemann A. Altered inhibitory function of the E-type prostanoid receptor 4 in eosinophils and monocytes from aspirin-intolerant patients. Pharmacology 2014; 94:280-6. [PMID: 25531811 DOI: 10.1159/000369827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022]
Abstract
Prostaglandin (PG) E2 has been implicated in the pathogenesis of aspirin-exacerbated respiratory disease (AERD). E-type prostanoid (EP) receptor 4 is known to confer inhibitory signals to eosinophils and monocytes, amongst others. In this study, we investigated whether the responsiveness of eosinophils and monocytes to PGE2 and EP4 receptor activation is altered in AERD patients. While the expression of the EP4 receptor in eosinophils was unaltered in AERD patients, inhibition of eosinophil chemotaxis by PGE2 or the EP4 agonist CAY10598 was less pronounced in AERD patients as compared to healthy control subjects. In monocytes, we found no changes in basal or lipopolysaccharide (LPS)-stimulated PGE2 synthesis, but the response to EP4 receptor activation with respect to inhibition of LPS-induced tumor necrosis factor-α release was reduced in AERD patients, especially in the presence of aspirin (acetylsalicylic acid). Our data point towards a decreased sensitivity of inhibitory EP4 receptor that may play a role in AERD.
Collapse
Affiliation(s)
- Petra Luschnig
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Shin SW, Park BL, Chang H, Park JS, Bae DJ, Song HJ, Choi IS, Kim MK, Park HS, Kim LH, Namgoong S, Kim JO, Shin HD, Park CS. Exonic variants associated with development of aspirin exacerbated respiratory diseases. PLoS One 2014; 9:e111887. [PMID: 25372592 PMCID: PMC4221198 DOI: 10.1371/journal.pone.0111887] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/29/2014] [Indexed: 12/11/2022] Open
Abstract
Aspirin-exacerbated respiratory disease (AERD) is one phenotype of asthma, often occurring in the form of a severe and sudden attack. Due to the time-consuming nature and difficulty of oral aspirin challenge (OAC) for AERD diagnosis, non-invasive biomarkers have been sought. The aim of this study was to identify AERD-associated exonic SNPs and examine the diagnostic potential of a combination of these candidate SNPs to predict AERD. DNA from 165 AERD patients, 397 subjects with aspirin-tolerant asthma (ATA), and 398 normal controls were subjected to an Exome BeadChip assay containing 240K SNPs. 1,023 models (210-1) were generated from combinations of the top 10 SNPs, selected by the p-values in association with AERD. The area under the curve (AUC) of the receiver operating characteristic (ROC) curves was calculated for each model. SNP Function Portal and PolyPhen-2 were used to validate the functional significance of candidate SNPs. An exonic SNP, exm537513 in HLA-DPB1, showed the lowest p-value (p = 3.40×10−8) in its association with AERD risk. From the top 10 SNPs, a combination model of 7 SNPs (exm537513, exm83523, exm1884673, exm538564, exm2264237, exm396794, and exm791954) showed the best AUC of 0.75 (asymptotic p-value of 7.94×10−21), with 34% sensitivity and 93% specificity to discriminate AERD from ATA. Amino acid changes due to exm83523 in CHIA were predicted to be “probably damaging” to the structure and function of the protein, with a high score of ‘1’. A combination model of seven SNPs may provide a useful, non-invasive genetic marker combination for predicting AERD.
Collapse
Affiliation(s)
- Seung-Woo Shin
- Genome Research Center for Allergy and Respiratory Diseases, Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Byung Lae Park
- Department of Genetic Epidemiology, SNP Genetics Inc., Seoul, Republic of Korea
| | - HunSoo Chang
- Genome Research Center for Allergy and Respiratory Diseases, Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
- Department of Interdisciplinary Program in Biomedical Science Major Graduate School of Soonchunhyang University, Asan, Republic of Korea
| | - Jong Sook Park
- Genome Research Center for Allergy and Respiratory Diseases, Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Da-Jeong Bae
- Department of Interdisciplinary Program in Biomedical Science Major Graduate School of Soonchunhyang University, Asan, Republic of Korea
| | - Hyun-Ji Song
- Department of Interdisciplinary Program in Biomedical Science Major Graduate School of Soonchunhyang University, Asan, Republic of Korea
| | - Inseon S. Choi
- Department of Allergy, Chonnam National University Medical School and Research Institute of Medical Sciences, Gwangju, Republic of Korea
| | - Mi-Kyeong Kim
- Division of Allergy, Department of Internal Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hea-Sim Park
- Department of Allergy & Clinical Immunology, Ajou University Hospital, Suwoon, Republic of Korea
| | - Lyoung Hyo Kim
- Department of Genetic Epidemiology, SNP Genetics Inc., Seoul, Republic of Korea
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Suhg Namgoong
- Department of Genetic Epidemiology, SNP Genetics Inc., Seoul, Republic of Korea
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Ji On Kim
- Department of Genetic Epidemiology, SNP Genetics Inc., Seoul, Republic of Korea
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Hyoung Doo Shin
- Department of Genetic Epidemiology, SNP Genetics Inc., Seoul, Republic of Korea
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Choon-Sik Park
- Genome Research Center for Allergy and Respiratory Diseases, Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
- * E-mail: , (SWS)
| |
Collapse
|
30
|
Machado-Carvalho L, Roca-Ferrer J, Picado C. Prostaglandin E2 receptors in asthma and in chronic rhinosinusitis/nasal polyps with and without aspirin hypersensitivity. Respir Res 2014; 15:100. [PMID: 25155136 PMCID: PMC4243732 DOI: 10.1186/s12931-014-0100-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/13/2014] [Indexed: 12/25/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) and asthma frequently coexist and are always present in patients with aspirin exacerbated respiratory disease (AERD). Although the pathogenic mechanisms of this condition are still unknown, AERD may be due, at least in part, to an imbalance in eicosanoid metabolism (increased production of cysteinyl leukotrienes (CysLTs) and reduced biosynthesis of prostaglandin (PG) E2), possibly increasing and perpetuating the process of inflammation. PGE2 results from the metabolism of arachidonic acid (AA) by cyclooxygenase (COX) enzymes, and seems to play a central role in homeostasis maintenance and inflammatory response modulation in airways. Therefore, the abnormal regulation of PGE2 could contribute to the exacerbated processes observed in AERD. PGE2 exerts its actions through four G-protein-coupled receptors designated E-prostanoid (EP) receptors EP1, EP2, EP3, and EP4. Altered PGE2 production as well as differential EP receptor expression has been reported in both upper and lower airways of patients with AERD. Since the heterogeneity of these receptors is the key for the multiple biological effects of PGE2 this review focuses on the studies available to elucidate the importance of these receptors in inflammatory airway diseases.
Collapse
Affiliation(s)
- Liliana Machado-Carvalho
- Immunoal · lèrgia Respiratòria Clínica i Experimental, CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143, Barcelona, 08036, Spain.
| | | | | |
Collapse
|
31
|
Hypersensitivity Reactions to Nonsteroidal Anti-Inflammatory Drugs. Immunol Allergy Clin North Am 2014; 34:507-24, vii-viii. [DOI: 10.1016/j.iac.2014.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Cornejo-García JA, Jagemann LR, Blanca-López N, Doña I, Flores C, Guéant-Rodríguez RM, Torres MJ, Fernández J, Laguna JJ, Rosado A, Agúndez JAG, García-Martín E, Canto G, Guéant JL, Blanca M. Genetic variants of the arachidonic acid pathway in non-steroidal anti-inflammatory drug-induced acute urticaria. Clin Exp Allergy 2013. [PMID: 23181793 DOI: 10.1111/j.1365-2222.2012.04078.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND To date, genetic studies of hypersensitivity reactions to non-steroidal anti-inflammatory drugs (NSAIDs) have been carried out mainly in aspirin-induced asthma and to a lesser extent in chronic urticaria, with no studies in patients with acute urticaria (AU), the most common entity induced by these drugs. OBJECTIVE In this work, we analysed the association of common variants of 15 relevant genes encoding both enzymes and receptors from the arachidonic acid (AA) pathway with NSAID-induced AU. METHODS Patients were recruited in several Allergy Services that are integrated into the Spanish network RIRAAF, and diagnosed of AU induced by cross-intolerance (CRI) to NSAIDs. Genotyping was carried out by TaqMan allelic discrimination assays. RESULTS A total of 486 patients with AU induced by CRI to NSAIDs and 536 unrelated controls were included in this large Spanish case-control study. Seven variants from 31 tested in six genes were associated in a discovery study population from Malaga (0.0003 ≤ p-value ≤ 0.041). A follow-up analysis in an independent sample from Madrid replicated three of the SNPs from the ALOX15 (rs7220870), PTGDR (rs8004654) and CYSLTR1 (rs320095) genes (1.055x10(-6) ≤meta-analysis p-value ≤ 0.003). CONCLUSIONS AND CLINICAL RELEVANCE Genetic variants of the AA pathway may play an important role in NSAID-induced AU. These data may help understand the mechanism underlying this disease.
Collapse
Affiliation(s)
- J A Cornejo-García
- INSERM U-954, Nutrition-Génétique et exposition aux risques environmentaux, Faculty of Medicine, University of Nancy, Vandoeuvre-les-Nancy, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Park SM, Park JS, Park HS, Park CS. Unraveling the genetic basis of aspirin hypersensitivity in asthma beyond arachidonate pathways. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2013; 5:258-76. [PMID: 24003382 PMCID: PMC3756172 DOI: 10.4168/aair.2013.5.5.258] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/06/2012] [Indexed: 12/20/2022]
Abstract
Although aspirin-exacerbated respiratory disease (AERD) has attracted a great deal of attention because of its association with severe asthma, it remains widely under-diagnosed in the asthmatic population. Oral aspirin challenge is the best method of diagnosing AERD, but this is a time-consuming procedure with serious complications in some cases. Thus, development of non-invasive methods for easy diagnosis is necessary to prevent unexpected complications of aspirin use in susceptible patients. For the past decade, many studies have attempted to elucidate the genetic variants responsible for risk of AERD. Several approaches have been applied in these genetic studies. To date, a limited number of biologically plausible candidate genes in the arachidonate and immune and inflammatory pathways have been studied. Recently, a genome-wide association study was performed. In this review, the results of these studies are summarized, and their limitations discussed. In addition to the genetic variants, changes in methylation patterns on CpG sites have recently been identified in a target tissue of aspirin hypersensitivity. Finally, perspectives on application of new genomic technologies are introduced; these will aid our understanding of the genetic pathogenesis of aspirin hypersensitivity in asthma.
Collapse
Affiliation(s)
- Se-Min Park
- Genome Research Center for Allergy and Respiratory Disease, Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | | | | | | |
Collapse
|
34
|
Glas J, Seiderer J, Czamara D, Pasciuto G, Diegelmann J, Wetzke M, Olszak T, Wolf C, Müller-Myhsok B, Balschun T, Achkar JP, Kamboh MI, Franke A, Duerr RH, Brand S. PTGER4 expression-modulating polymorphisms in the 5p13.1 region predispose to Crohn's disease and affect NF-κB and XBP1 binding sites. PLoS One 2012; 7:e52873. [PMID: 23300802 PMCID: PMC3531335 DOI: 10.1371/journal.pone.0052873] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/22/2012] [Indexed: 01/08/2023] Open
Abstract
Background Genome-wide association studies identified a PTGER4 expression-modulating region on chromosome 5p13.1 as Crohn's disease (CD) susceptibility region. The study aim was to test this association in a large cohort of patients with inflammatory bowel disease (IBD) and to elucidate genotypic and phenotypic interactions with other IBD genes. Methodology/Principal Findings A total of 7073 patients and controls were genotyped: 844 CD and 471 patients with ulcerative colitis and 1488 controls were analyzed for the single nucleotide polymorphisms (SNPs) rs4495224 and rs7720838 on chromosome 5p13.1. The study included two replication cohorts of North American (CD: n = 684; controls: n = 1440) and of German origin (CD: n = 1098; controls: n = 1048). Genotype-phenotype, epistasis and transcription factor binding analyses were performed. In the discovery cohort, an association of rs4495224 (p = 4.10×10−5; 0.76 [0.67–0.87]) and of rs7720838 (p = 6.91×10−4; 0.81 [0.71–0.91]) with susceptibility to CD was demonstrated. These associations were confirmed in both replication cohorts. In silico analysis predicted rs4495224 and rs7720838 as essential parts of binding sites for the transcription factors NF-κB and XBP1 with higher binding scores for carriers of the CD risk alleles, providing an explanation of how these SNPs might contribute to increased PTGER4 expression. There was no association of the PTGER4 SNPs with IBD phenotypes. Epistasis detected between 5p13.1 and ATG16L1 for CD susceptibility in the discovery cohort (p = 5.99×10−7 for rs7720838 and rs2241880) could not be replicated in both replication cohorts arguing against a major role of this gene-gene interaction in the susceptibility to CD. Conclusions/Significance We confirmed 5p13.1 as a major CD susceptibility locus and demonstrate by in silico analysis rs4495224 and rs7720838 as part of binding sites for NF-κB and XBP1. Further functional studies are necessary to confirm the results of our in silico analysis and to analyze if changes in PTGER4 expression modulate CD susceptibility.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Binding Sites
- Child
- Chromosomes, Human, Pair 5/genetics
- Crohn Disease/genetics
- DNA-Binding Proteins/metabolism
- Epistasis, Genetic
- Female
- Gene Expression
- Gene Frequency
- Genetic Predisposition to Disease
- Humans
- Male
- Middle Aged
- NF-kappa B/metabolism
- Polymorphism, Single Nucleotide
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Regulatory Factor X Transcription Factors
- Sequence Analysis, DNA
- Transcription Factors/metabolism
- X-Box Binding Protein 1
- Young Adult
Collapse
Affiliation(s)
- Jürgen Glas
- Department of Medicine II - Grosshadern, University of Munich, Munich, Germany
- Department of Preventive Dentistry and Periodontology, University of Munich, Munich, Germany
- Department of Human Genetics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Julia Seiderer
- Department of Medicine II - Grosshadern, University of Munich, Munich, Germany
| | | | - Giulia Pasciuto
- Department of Medicine II - Grosshadern, University of Munich, Munich, Germany
| | - Julia Diegelmann
- Department of Medicine II - Grosshadern, University of Munich, Munich, Germany
- Department of Preventive Dentistry and Periodontology, University of Munich, Munich, Germany
| | - Martin Wetzke
- Center for Pediatrics, Hannover Medical School, Hannover, Germany
| | - Torsten Olszak
- Department of Medicine II - Grosshadern, University of Munich, Munich, Germany
- Division of Gastroenterology, Brigham & Women's Hospital, Harvard Medical School, Boston, United States of America
| | | | | | - Tobias Balschun
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Jean-Paul Achkar
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - M. Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Richard H. Duerr
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stephan Brand
- Department of Medicine II - Grosshadern, University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
35
|
Narayanankutty A, Reséndiz-Hernández JM, Falfán-Valencia R, Teran LM. Biochemical pathogenesis of aspirin exacerbated respiratory disease (AERD). Clin Biochem 2012; 46:566-78. [PMID: 23246457 DOI: 10.1016/j.clinbiochem.2012.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/14/2012] [Accepted: 12/04/2012] [Indexed: 12/30/2022]
Abstract
Aspirin exacerbated respiratory disease (AERD) is a distinct clinical entity characterized by eosinophilic rhinosinusitis, asthma and often nasal polyposis. Exposure to aspirin or other nonsteroid anti-inflammatory drugs (NSAIDs) exacerbates bronchospasms with asthma and rhinitis. Disease progression suggests a skewing towards TH2 type cellular response along with moderate to severe eosinophil and mast cell infiltration. Alterations in upper and lower airway cellular milieu with abnormalities in eicosanoid metabolism and altered eicosanoid receptor expression are the key features underlying AERD pathogenesis. Dysregulation of arachidonic acid (AA) metabolism, notably reduced prostaglandin E2 (PGE2) synthesis compared to their aspirin tolerant counterpart and relatively increased PGD2 production, a TH2/eosinophil chemoattractant are reported in AERD. Underproduced PGE2 is metabolized by overexpression of 15 prostaglandin dehydrogenase (15-PGDH) to inactive products further reducing PGE2 at real time. This relives the inhibitory effect of PGE2 on 5-lipoxygenase (5-LOX) resulting in overproduction of cysteinyl leukotrienes (CysLTs). Diminished formation of CysLT antagonists called lipoxins (LXs) also augments CysLTs responsiveness. Occasional intake of NSAIDs favors even more 5-LOX product formation, further narrowing the bronchoconstrictive bottle neck, resulting in acute asthmatic exacerbations along with increased mucus production. This review focuses on abnormalities in biochemical and molecular mechanisms in eicosanoid biosynthesis, eicosanoid receptor dysregulation and associated polymorphisms with special reference to arachidonic acid metabolism in AERD.
Collapse
Affiliation(s)
- Arun Narayanankutty
- Department of Immunoallergy and Asthma, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Calzada de Tlalpan 4502, Col. Sección XVI, Delegación Tlalpan, C.P. 14080, Mexico.
| | | | | | | |
Collapse
|
36
|
Genetics of hypersensitivity to aspirin and nonsteroidal anti-inflammatory drugs. Immunol Allergy Clin North Am 2012; 33:177-94. [PMID: 23639707 DOI: 10.1016/j.iac.2012.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Various hypersensitivity reactions have been reported with aspirin and nonsteroidal anti-inflammatory drugs. Hypersensitivity can occur regardless of a chemical drug structure or its therapeutic potency. Allergic conditions include aspirin-exacerbated respiratory disease (AERD or aspirin-induced asthma), aspirin-induced urticaria/angioedema (AIU), and anaphylaxis. Several genetic studies on aspirin hypersensitivity have been performed to discover the genetic predisposition to aspirin hypersensitivity and to gain insight into the phenotypic diversity. This article updates data on the genetic mechanisms that govern AERD and AIU and summarizes recent findings on the molecular genetic mechanism of aspirin hypersensitivity.
Collapse
|
37
|
Genetic variability of prostaglandin E2 receptor subtype EP4 gene in aspirin-intolerant chronic urticaria. J Hum Genet 2012; 57:494-9. [PMID: 22695889 DOI: 10.1038/jhg.2012.55] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prostaglandin E2 receptor subtype EP4 (PTGER4) is one of the four subtypes of receptors for prostaglandin E2 (PGE2). Overproduction of cysteinyl leukotriene in mast cells may be related with suppression of PGE2 in patients with aspirin hypersensitivity. Considering the association of PTGER4 in mast cells, urticaria- and aspirin-related disease, we hypothesized the genetic variability of PTGER4 may be associated with aspirin-intolerant chronic urticaria (AICU). The case-control study was performed in 141 with AICU, 153 with aspirin-tolerant chronic urticaria (ATCU) and 174 with normal controls (NCs). PTGER4 promoter single-nucleotide polymorphism was genotyped using a primer extension method with the SNAPshot ddNTP primer extension kit. The functional variability of PTGER4 promoter polymorphism was carried out by dual-luciferase system and electrophoretic mobility shift assay (EMSA) in human mast cells (HMC-1). Furthermore, the effect of aspirin was performed for PTGER4 mRNA expression using real-time PCR, and PGE2 production was checked in HMC-1 cells using ELISA. AICU patients carrying GG genotype at -1254 G>A showed significantly higher frequency compared with NC (P=0.032). Similarly, the minor allele frequency, G allele was significantly higher in AICU compared with NC (P=0.031). In vitro functional study demonstrated that the -1254 G allele had lower luciferase activity (P<0.001) in HMC-1 cells. EMSA finding showed that PTGER4 -1254 G produced a specific band. Significantly decreased PTGER4 expression (P=0.008) and PGE2 production by aspirin exposure was confirmed in in vitro HMC cell line model (P=0.001). The PTGER4 -1254 G allele demonstrated a higher frequency in AICU patients and lower promoter activity with decreased expression of PTGER4 and contributes to the development of AICU.
Collapse
|
38
|
Stoller JZ, Demauro SB, Dagle JM, Reese J. Current Perspectives on Pathobiology of the Ductus Arteriosus. ACTA ACUST UNITED AC 2012; 8. [PMID: 23519783 DOI: 10.4172/2155-9880.s8-001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ductus arteriosus (DA) shunts blood away from the lungs during fetal life, but at birth this shunt is no longer needed and the vessel rapidly constricts. Postnatal persistence of the DA, patent ductus arteriosus (PDA), is predominantly a detrimental condition for preterm infants but is simultaneously a condition required to maintain systemic blood flow for infants born with certain severe congenital heart defects. Although PDA in preterm infants is associated with significant morbidities, there is controversy regarding whether PDA is truly causative. Despite advances in our understanding of the pathobiology of PDA, the optimal treatment strategy for PDA in preterm infants is unclear. Here we review recent studies that have continued to elucidate the fundamental mechanisms of DA development and pathogenesis.
Collapse
Affiliation(s)
- Jason Z Stoller
- Department of Pediatrics, University of Pennsylvania School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
39
|
Genetic mechanisms in aspirin-exacerbated respiratory disease. J Allergy (Cairo) 2011; 2012:794890. [PMID: 21837245 PMCID: PMC3151506 DOI: 10.1155/2012/794890] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/14/2011] [Indexed: 12/14/2022] Open
Abstract
Aspirin-exacerbated respiratory disease (AERD) refers to the development of bronchoconstriction in asthmatics following the exposure to aspirin or other nonsteroidal anti-inflammatory drugs. The key pathogenic mechanisms associated with AERD are the overproduction of cysteinyl leukotrienes (CysLTs) and increased CysLTR1 expression in the airway mucosa and decreased lipoxin and PGE2 synthesis. Genetic studies have suggested a role for variability of genes in disease susceptibility and the response to medication. Potential genetic biomarkers contributing to the AERD phenotype include HLA-DPB1, LTC4S, ALOX5, CYSLT, PGE2, TBXA2R, TBX21, MS4A2, IL10, ACE, IL13, KIF3A, SLC22A2, CEP68, PTGER, and CRTH2 and a four-locus SNP set composed of B2ADR, CCR3, CysLTR1, and FCER1B. Future areas of investigation need to focus on comprehensive approaches to identifying biomarkers for early diagnosis.
Collapse
|
40
|
Abstract
Despite remarkable advances in diagnosis and long-term management, asthma remains a serious public health concern. Newly updated expert guidelines emphasize the intra- and inter-individual variability of asthma and highlight the importance of periodic assessment of asthma control. These guidelines update recommendations for step-wise asthma treatment, address the burgeoning field of asthma diagnostics, and stress the importance of a patient and health care professional partnership, including written action plans and self monitoring. The field of asthma therapeutics is expanding rapidly, with promising new treatment options available or in development that may address some of the existing barriers to successful asthma management. These approaches simplify treatment, use combinations of agents in one delivery device that have complementary actions, or target specific pathways involved in asthma patho-physiology. Considerable activity is taking place in asthma pharmacogenetics. This review provides an overview of these new approaches to managing asthma, including their present status and future potential.
Collapse
Affiliation(s)
- William E Berger
- Allergy and Asthma Associates of Southern California Mission Viejo, CA, USA
| |
Collapse
|
41
|
Murk W, Walsh K, Hsu LI, Zhao L, Bracken MB, Dewan AT. Attempted replication of 50 reported asthma risk genes identifies a SNP in RAD50 as associated with childhood atopic asthma. Hum Hered 2011; 71:97-105. [PMID: 21734400 DOI: 10.1159/000319536] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Asthma is a childhood disease that is strongly influenced by genetic factors. We sought to replicate an association between single nucleotide polymorphisms (SNPs) of the top-ranked candidate genes and childhood atopic asthma in Perinatal Risk of Asthma in Infants of Asthmatic Mothers (PRAM) study subjects. METHODS Using data from a systematic literature search and an exploratory genome-wide association study conducted in a subset of the PRAM cohort, we followed a strict procedure to generate a ranked list of candidate genes. SNPs in the top 50 genes were genotyped in the full PRAM cohort (n = 103 cases with doc- tor-diagnosed atopic asthma at age 6, and n = 499 controls). RESULTS The literature search identified 251 prior risk genes from 469 publications. RAD50 (rs2706347) and PTPRE (rs10830196) revealed crude associations with asthma at a Bonferroni-corrected level of significance (p < 0.0011). IL4R (rs1801275), CCL5 (rs2280788), and TBXA2R (rs4523) revealed nominal significance (p < 0.05). When adjusted for race and gender, only rs2706347 in RAD50 remained significantly associated with asthma. SNPs in frequently replicated asthma risk genes, including TNF, IL13, ADAM33, TGFB1, and MS4A2, revealed no association. CONCLUSION RAD50 may be a promising candidate asthma risk gene. Lack of evidence of highly reported polymorphisms in the present study highlights the genetic heterogeneity of asthma and emphasizes the need for robust replication of candidate genes.
Collapse
Affiliation(s)
- William Murk
- Department of Epidemiology and Public Health, Yale University School of Public Health, New Haven, Conn., USA
| | | | | | | | | | | |
Collapse
|
42
|
Drug allergy: an updated practice parameter. Ann Allergy Asthma Immunol 2011; 105:259-273. [PMID: 20934625 DOI: 10.1016/j.anai.2010.08.002] [Citation(s) in RCA: 663] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/02/2010] [Indexed: 01/17/2023]
Abstract
Adverse drug reactions (ADRs) result in major health problems in the United States in both the inpatient and outpatient setting. ADRs are broadly categorized into predictable (type A and unpredictable (type B) reactions. Predictable reactions are usually dose dependent, are related to the known pharmacologic actions of the drug, and occur in otherwise healthy individuals, They are estimated to comprise approximately 80% of all ADRs. Unpredictable are generally dose independent, are unrelated to the pharmacologic actions of the drug, and occur only in susceptible individuals. Unpredictable reactions are subdivided into drug intolerance, drug idiosyncrasy, drug allergy, and pseudoallergic reactions. Both type A and B reactions may be influenced by genetic predisposition of the patient
Collapse
|
43
|
Moon HG, Tae YM, Kim YS, Gyu Jeon S, Oh SY, Song Gho Y, Zhu Z, Kim YK. Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung. Allergy 2010; 65:1093-103. [PMID: 20337611 DOI: 10.1111/j.1398-9995.2010.02352.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Allergen-specific T-cell responses orchestrate airway inflammation, which is a characteristic of asthma. Recent evidence suggests that noneosinophilic asthma can be developed by mixed Th1 and Th17 cell responses when exposed to lipopolysaccharide (LPS)-containing allergens. OBJECTIVE To evaluate the therapeutic or adverse effects of acetyl salicylic acid (ASA) on the expression of Th1-type and Th17-type inflammation induced by airway exposure to LPS-containing allergens. METHODS Th1 + Th17 asthma and Th2 asthma mouse models were generated by intranasal sensitization with ovalbumin (OVA) and LPS and intraperitoneal sensitization with OVA and alum, respectively. Therapeutic or adverse effects were evaluated after allergen challenge using pharmacologic and transgenic approaches. RESULTS Lung infiltration of eosinophils was enhanced in OVA/LPS-sensitized mice by ASA treatment, which was accompanied by the enhanced production of eotaxin. These changes were associated with the down-regulation of Th17 cell response, which was partly dependent on adenosine receptor A1 and A3 subtypes, but up-regulation of allergen-specific IL-13 production from T cells. Lung inflammation induced by LPS-containing allergen was markedly reduced in IL-13-deficient mice in the context of ASA treatment, but not without ASA. Meanwhile, adenosine levels in the lung were enhanced by ASA treatment. Moreover, lung infiltration of eosinophils induced by ASA treatment was reversed by co-treatment of a xanthine oxidase inhibitor (allopurinol). CONCLUSION These findings suggest that ASA changes Th17-type into Th2-type inflammation mainly via the adenosine and uric acid metabolic pathway in the lung.
Collapse
Affiliation(s)
- H-G Moon
- Department of Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Genetic and ethnic risk factors associated with drug hypersensitivity. Curr Opin Allergy Clin Immunol 2010; 10:280-90. [DOI: 10.1097/aci.0b013e32833b1eb3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Kim JY, Kim JH, Park TJ, Bae JS, Lee JS, Pasaje CF, Park BL, Cheong HS, Park JS, Park SW, Uh ST, Kim MK, Choi IS, Cho SH, Choi BW, Park CS, Shin HD. Positive association between aspirin-intolerant asthma and genetic polymorphisms of FSIP1: a case-case study. BMC Pulm Med 2010; 10:34. [PMID: 20513247 PMCID: PMC2896935 DOI: 10.1186/1471-2466-10-34] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 06/01/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aspirin-intolerant asthma (AIA), which is caused by non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, causes lung inflammation and reversal bronchi reduction, leading to difficulty in breathing. Aspirin is known to affect various parts inside human body, ranging from lung to spermatogenesis. FSIP1, also known as HDS10, is a recently discovered gene that encodes fibrous sheath interacting protein 1, and is regulated by amyloid beta precursor protein (APP). Recently, it has been reported that a peptide derived from APP is cleaved by alpha disintegrin and metalloproteinase 33 (ADAM33), which is an asthma susceptibility gene. It has also been known that the FSIP1 gene is expressed in airway epithelium. OBJECTIVES Aim of this study is to find out whether FSIP1 polymorphisms affect the onset of AIA in Korean population, since it is known that AIA is genetically affected by various genes. METHODS We conducted association study between 66 single nucleotide polymorphisms (SNPs) of the FSIP1 gene and AIA in total of 592 Korean subjects including 163 AIA and 429 aspirin-tolerant asthma (ATA) patients. Associations between polymorphisms of FSIP1 and AIA were analyzed with sex, smoking status, atopy, and body mass index (BMI) as covariates. RESULTS Initially, 18 SNPs and 4 haplotypes showed associations with AIA. However, after correcting the data for multiple testing, only one SNP showed an association with AIA (corrected P-value = 0.03, OR = 1.63, 95% CI = 1.23-2.16), showing increased susceptibility to AIA compared with that of ATA cases. Our findings suggest that FSIP1 gene might be a susceptibility gene for aspirin intolerance in asthmatics. CONCLUSION Although our findings did not suggest that SNPs of FSIP1 had an effect on the reversibility of lung function abnormalities in AIA patients, they did show significant evidence of association between the variants in FSIP1 and AIA occurrence among asthmatics in a Korean population.
Collapse
Affiliation(s)
- Jason Yongha Kim
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Poole EM, Hsu L, Xiao L, Kulmacz RJ, Carlson CS, Rabinovitch PS, Makar KW, Potter JD, Ulrich CM. Genetic variation in prostaglandin E2 synthesis and signaling, prostaglandin dehydrogenase, and the risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev 2010; 19:547-57. [PMID: 20086108 DOI: 10.1158/1055-9965.epi-09-0869] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Prostaglandins are important inflammatory mediators; prostaglandin E2 (PGE2) is the predominant prostaglandin in colorectal neoplasia and affects colorectal carcinogenesis. Prostaglandins are metabolites of omega-6 and omega-3 polyunsaturated fatty acids; their biosynthesis is the primary target of nonsteroidal anti-inflammatory drugs (NSAID), which reduce colorectal neoplasia risk. METHODS We investigated candidate and tagSNPs in PGE2 synthase (PGES), PGE2 receptors (EP2 and EP4), and prostaglandin dehydrogenase (PGDH) in a case-control study of adenomas (n = 483) versus polyp-free controls (n = 582) and examined interactions with NSAID use or fish intake, a source of omega-3 fatty acids. RESULTS A 30% adenoma risk reduction was observed for EP2 4950G>A (intron 1; OR(GA/AA vs. GG), 0.71; 95% confidence interval, 0.52-0.99). For the candidate polymorphism EP4 Val294Ile, increasing fish intake was associated with increased adenoma risk among those with variant genotypes, but not among those with the Val/Val genotype (P(interaction) = 0.02). An interaction with fish intake was also observed for PGES -664A>T (5' untranslated region; P(interaction) = 0.01). Decreased risk with increasing fish intake was only seen among those with the AT or TT genotypes (OR(>2 t/wk vs. <1 t/wk), 0.56; 95% confidence interval, 0.28-1.13). We also detected interactions between NSAIDs and EP2 9814C>A (intron 1) and PGDH 343C>A (intron 1). However, none of the observed associations was statistically significant after adjustment for multiple testing. We investigated potential gene-gene interactions using the Chatterjee 1 degree of freedom Tukey test and logic regression; neither method detected significant interactions. CONCLUSIONS These data provide little support for associations between adenoma risk and genetic variability related to PGE(2), yet suggest gene-environment interactions with anti-inflammatory exposures.
Collapse
Affiliation(s)
- Elizabeth M Poole
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Swinburne JE, Bogle H, Klukowska-Rötzler J, Drögemüller M, Leeb T, Temperton E, Dolf G, Gerber V. A whole-genome scan for recurrent airway obstruction in Warmblood sport horses indicates two positional candidate regions. Mamm Genome 2010; 20:504-15. [PMID: 19760324 DOI: 10.1007/s00335-009-9214-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 08/17/2009] [Indexed: 11/25/2022]
Abstract
Recurrent airway obstruction (RAO), or heaves, is a naturally occurring asthma-like disease that is related to sensitisation and exposure to mouldy hay and has a familial basis with a complex mode of inheritance. A genome-wide scanning approach using two half-sibling families was taken in order to locate the chromosome regions that contribute to the inherited component of this condition in these families. Initially, a panel of 250 microsatellite markers, which were chosen as a well-spaced, polymorphic selection covering the 31 equine autosomes, was used to genotype the two half-sibling families, which comprised in total 239 Warmblood horses. Subsequently, supplementary markers were added for a total of 315 genotyped markers. Each half-sibling family is focused around a severely RAO-affected stallion, and the phenotype of each individual was assessed for RAO and related signs, namely, breathing effort at rest, breathing effort at work, coughing, and nasal discharge, using an owner-based questionnaire. Analysis using a regression method for half-sibling family structures was performed using RAO and each of the composite clinical signs separately; two chromosome regions (on ECA13 and ECA15) showed a genome-wide significant association with RAO at P < 0.05. An additional 11 chromosome regions showed a more modest association. This is the first publication that describes the mapping of genetic loci involved in RAO. Several candidate genes are located in these regions, a number of which are interleukins. These are important signalling molecules that are intricately involved in the control of the immune response and are therefore good positional candidates.
Collapse
|
48
|
Palikhe NS, Kim JH, Park HS. Update on recent advances in the management of aspirin exacerbated respiratory disease. Yonsei Med J 2009; 50:744-50. [PMID: 20046412 PMCID: PMC2796398 DOI: 10.3349/ymj.2009.50.6.744] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Indexed: 02/02/2023] Open
Abstract
Aspirin intolerant asthma (AIA) is frequently characterized as an aspirin (ASA)-exacerbated respiratory disease (AERD). It is a clinical syndrome associated with chronic severe inflammation in the upper and lower airways resulting in chronic rhinitis, sinusitis, recurrent polyposis, and asthma. AERD generally develops secondary to abnormalities in inflammatory mediators and arachidonic acid biosynthesis expression. Upper and lower airway eosinophil infiltration is a key feature of AERD; however, the exact mechanisms of such chronic eosinophilic inflammation are not fully understood. Cysteinyl leukotriene over-production may be a key factor in the induction of eosinophilic activation. Genetic studies have suggested a role for variability of genes in disease susceptibility and response to medication. Potential genetic biomarkers contributing to the AERD phenotype include HLA-DPB1*301, LTC4S, ALOX5, CYSLT, PGE2, TBXA2R, TBX21, MS4A2, IL10 -1082A > G, ACE -262A > T, and CRTH2 -466T > C; the four-locus SNP set was composed of B2ADR 46A > G, CCR3 -520T > G, CysLTR1 -634C > T, and FCER1B -109T > C. Management of AERD is an important issue. Aspirin ingestion may result in significant morbidity and mortality, and patients must be advised regarding aspirin risk. Leukotriene receptor antagonists (LTRA) that inhibit leukotriene pathways have an established role in long-term AERD management and rhinosinusitis. Aspirin desensitization may be required for the relief of upper and lower airway symptoms in AERD patients. Future research should focus on identification of biomarkers for a comprehensive diagnostic approach.
Collapse
Affiliation(s)
- Nami Shrestha Palikhe
- Department of Allergy and Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - Joo-Hee Kim
- Department of Allergy and Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Rheumatology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
49
|
Hoeft B, Linseisen J, Beckmann L, Müller-Decker K, Canzian F, Hüsing A, Kaaks R, Vogel U, Jakobsen MU, Overvad K, Hansen RD, Knüppel S, Boeing H, Trichopoulou A, Koumantaki Y, Trichopoulos D, Berrino F, Palli D, Panico S, Tumino R, Bueno-de-Mesquita H, van Duijnhoven FJ, van Gils CH, Peeters PH, Dumeaux V, Lund E, Huerta Castaño JM, Muñoz X, Rodriguez L, Barricarte A, Manjer J, Jirström K, Van Guelpen B, Hallmans G, Spencer EA, Crowe FL, Khaw KT, Wareham N, Morois S, Boutron-Ruault MC, Clavel-Chapelon F, Chajes V, Jenab M, Boffetta P, Vineis P, Mouw T, Norat T, Riboli E, Nieters A. Polymorphisms in fatty acid metabolism-related genes are associated with colorectal cancer risk. Carcinogenesis 2009; 31:466-72. [DOI: 10.1093/carcin/bgp325] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
50
|
Leung TF, Li CY, Kong APS, Chan IHS, Ng MCY, Chan MHM, So WY, Wong GWK, Lam CWK, Chan JCN. PTGDR is not a major candidate gene for asthma and atopy in Chinese children. Pediatr Allergy Immunol 2009; 20:556-62. [PMID: 19220773 DOI: 10.1111/j.1399-3038.2008.00835.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Airway sensitization requires the expression of prostanoid DP receptor in mice. Recent studies reported that polymorphisms in the gene encoding prostanoid DP receptor (PTGDR) were associated with asthma in White people and Black people, but this association could not be replicated among Latinos and Koreans. This study investigated the association between asthma-related traits and six single nucleotide polymorphisms (SNPs) of PTGDR in Chinese children, consisted of 308 asthmatics and 368 non-allergic controls. Plasma total and aeroallergen-specific immunoglobulin E were measured by immunoassays. PTGDR SNPs were determined by multiplex SNaPshot genotyping. All polymorphic markers followed Hardy-Weinberg equilibrium except G1044A in the controls (p = 0.021). The linkage disequilibrium (LD) scores for these SNPs were moderate to high, and in particular, T-549C and C-441T were in strong LD. Significant interethnic variations in PTGDR alleles and haplotypes (up to 41%) were found in our subjects when compared with White people or Latinos. Asthma diagnosis, atopy and aeroallergen sensitization did not differ among children with different PTGDR genotypes (p > 0.15 for all). Linear regression showed weakly significant associations between T-197C and G1044A of PTGDR and spirometric variables. PTGDR haplotypes were not associated with asthma and atopy phenotypes (p > 0.09 for all). Our results do not support PTGDR to be a major candidate gene for asthma traits in Chinese children.
Collapse
Affiliation(s)
- Ting Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.
| | | | | | | | | | | | | | | | | | | |
Collapse
|