1
|
Fazna A, Hagerman RJ. Prevalence of fragile X syndrome in South Asia, and importance of diagnosis. MEDICAL REVIEW (2021) 2025; 5:164-173. [PMID: 40224363 PMCID: PMC11987505 DOI: 10.1515/mr-2024-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 04/15/2025]
Abstract
Fragile X syndrome (FXS) is a genetic disorder caused by a mutation in the FMR1 gene on the X chromosome, leading to a range of developmental and intellectual disabilities. FXS is characterized by intellectual disability, behavior challenges, and distinct physical features such as an elongated face, large ears, and hyperflexible joints; FXS remains the most common inherited cause of intellectual disability. Behavioral manifestations often include attention deficits, hyperactivity, anxiety, and features of autism spectrum disorder. The prevalence of FXS in the South Asian population is not well-documented, but existing studies suggest it may be comparable to global prevalence rates, which are approximately 1 in 4,000 males and 1 in 8,000 females. Accurate diagnosis of FXS in South Asians is crucial due to the implications for early intervention and treatment, which can significantly improve the quality of life and developmental outcomes for affected individuals. Early diagnosis also facilitates genetic counselling and family planning, helping to reduce the risk of recurrence in families. Increased awareness and screening in South Asian communities are essential to address the diagnostic gap and ensure timely support for individuals with FXS or disorders associated with the premutation of FMR1.
Collapse
Affiliation(s)
- Aminath Fazna
- Indira Gandhi Memorial Hospital, Male, Maldives
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA
| | - Randi Jenssen Hagerman
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
2
|
Hnoonual A, Kaewfai S, Limwongse C, Limprasert P. Prevalence and implications of fragile X premutation screening in Thailand. Sci Rep 2024; 14:26257. [PMID: 39482338 PMCID: PMC11527874 DOI: 10.1038/s41598-024-77762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
The fragile X premutation is a public health concern worldwide. Implementing a comprehensive screening program for FMR1 premutation alleles could empower individuals and families with information, supporting informed health decisions and potentially reducing the incidence of fragile X syndrome (FXS). This study aimed to determine the prevalence of FMR1 premutations in the Thai population. We screened 369 female blood donors and 449 males with tremor and/or ataxia who tested negative for spinocerebellar ataxia (SCA) types 1, 2, and 3 for FMR1 CGG repeat expansions. Among the female blood donors, 0.27% (1/369) had a premutation allele, and 1.08% (4/369) had intermediate alleles. One female with a premutation carrier had 89 CGG repeats with one AGG interruption. In the male cohort, no premutations or full mutations were found; however, intermediate alleles were identified in 0.67% (3/449) of the males. This study provides the evidence of fragile X premutation screening in the Thai population. These findings contribute to the understanding of FMR1 premutation prevalence in Thailand and should encourage wider discussions on the feasibility for a national fragile X carrier screening program in Thailand to reduce the burden of fragile X-associated disorders.
Collapse
Affiliation(s)
- Areerat Hnoonual
- Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
- Genomic Medicine Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sunita Kaewfai
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Chanin Limwongse
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornprot Limprasert
- Division of Molecular Pathology, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
- Genomic Medicine Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
3
|
Quilichini J, Perol S, Cuisset L, Grotto S, Fouveaut C, Barbot JC, Verebi C, Jordan P, Héron D, Molina-Gomes D, Pipiras E, Grynberg M, Catteau-Jonard S, Touraine P, Christin-Maître S, Plu-Bureau G, El Khattabi L, Bienvenu T. Stratification of the risk of ovarian dysfunction by studying the complexity of intermediate and premutation alleles of the FMR1 gene. Am J Med Genet A 2024; 194:e63479. [PMID: 37987117 DOI: 10.1002/ajmg.a.63479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
FMR1 premutation female carriers are at risk of developing premature/primary ovarian insufficiency (POI) with an incomplete penetrance. In this study, we determined the CGG repeat size among 1095 women with diminished ovarian reserve (DOR) / POI and characterized the CGG/AGG substructure in 44 women carrying an abnormal FMR1 repeat expansion number, compared to a group of 25 pregnant women carrying an abnormal FMR1 CGG repeat size. Allelic complexity scores of the FMR1 gene were calculated and compared between the two groups. In the DOR/POI cohort, 2.1% of women presented with an intermediate repeat size and 1.9% with a premutation. Our results suggest that the risk of POI is highest in the mid-range of CGG repeats. We observed that the allelic score is significantly higher in POI women compared to the pregnant women group (p-value = 0.02). We suggest that a high allelic score due to more than 2 AGG interspersions in the context of an intermediate number of repetitions could favor POI. Larger studies are still needed to evaluate the relevance of this new tool for the determination of the individual risk of developing POI in women with abnormal number of CGG repeats.
Collapse
Affiliation(s)
- Juliette Quilichini
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| | - Sandrine Perol
- Unité de gynécologie médicale, APHP. Centre Université Paris Cité, Hôpital Cochin Port-Royal, Paris, France
| | - Laurence Cuisset
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| | - Sarah Grotto
- Maternité Port-Royal, APHP. Centre Université Paris Cité, Hôpital Cochin, Paris, France
| | - Corinne Fouveaut
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| | - Jean Claude Barbot
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| | - Camille Verebi
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| | - Pénélope Jordan
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| | - Delphine Héron
- Département de Génétique, APHP. Sorbonne Université, Hôpital La Pitié-Salpêtrière, Paris, France
| | - Denise Molina-Gomes
- Service de Biologie de la reproduction, Cytogénétique et Génétique Médicale, CHI Poissy-Saint Germain, Poissy, France
| | - Eva Pipiras
- Unité fonctionnelle de Médecine génomique et génétique clinique, APHP. Université Sorbonne Paris Nord, Hôpital Jean Verdier, Bondy, France
| | - Michael Grynberg
- Gynécologie médicale et médecine de la reproduction, Hôpital Jean Verdier, Bondy, France
| | | | - Philippe Touraine
- Département d'Endocrinologie et médecine de la reproduction, APHP. Sorbonne Université, Pitié-Salpêtrière Hospital, Center for Rare Endocrine and Gynecological Disorders, Paris, France
| | - Sophie Christin-Maître
- Service d'endocrinologie, diabétologie et médecine de la reproduction, APHP. Sorbonne Université, Paris, France
| | - Geneviève Plu-Bureau
- Unité de gynécologie médicale, APHP. Centre Université Paris Cité, Hôpital Cochin Port-Royal, Paris, France
| | - Laila El Khattabi
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
- Institut Cochin, INSERM U1016, team « From gametes to birth », Paris, France
| | - Thierry Bienvenu
- Service de Médecine Génomique des maladies de système et d'organe, APHP. Centre Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Annear DJ, Kooy RF. Unravelling the link between neurodevelopmental disorders and short tandem CGG-repeat expansions. Emerg Top Life Sci 2023; 7:265-275. [PMID: 37768318 PMCID: PMC10754333 DOI: 10.1042/etls20230021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Neurodevelopmental disorders (NDDs) encompass a diverse group of disorders characterised by impaired cognitive abilities and developmental challenges. Short tandem repeats (STRs), repetitive DNA sequences found throughout the human genome, have emerged as potential contributors to NDDs. Specifically, the CGG trinucleotide repeat has been implicated in a wide range of NDDs, including Fragile X Syndrome (FXS), the most common inherited form of intellectual disability and autism. This review focuses on CGG STR expansions associated with NDDs and their impact on gene expression through repeat expansion-mediated epigenetic silencing. We explore the molecular mechanisms underlying CGG-repeat expansion and the resulting epigenetic modifications, such as DNA hypermethylation and gene silencing. Additionally, we discuss the involvement of other CGG STRs in neurodevelopmental diseases. Several examples, including FMR1, AFF2, AFF3, XYLT1, FRA10AC1, CBL, and DIP2B, highlight the complex relationship between CGG STR expansions and NDDs. Furthermore, recent advancements in this field are highlighted, shedding light on potential future research directions. Understanding the role of STRs, particularly CGG-repeats, in NDDs has the potential to uncover novel diagnostic and therapeutic strategies for these challenging disorders.
Collapse
Affiliation(s)
- Dale J Annear
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Chen SC, Zhou XY, Li SY, Zhao MM, Huang HF, Jia J, Xu CM. Carrier burden of over 300 diseases in Han Chinese identified by expanded carrier testing of 300 couples using assisted reproductive technology. J Assist Reprod Genet 2023; 40:2157-2173. [PMID: 37450097 PMCID: PMC10440320 DOI: 10.1007/s10815-023-02876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Expanded carrier screening (ECS) has become a common practice for identifying carriers of monogenic diseases. However, existing large gene panels are not well-tailored to Chinese populations. In this study, ECS testing for pathogenic variants of both single-nucleotide variants (SNVs) and copy number variants (CNVs) in 330 genes implicated in 342 autosomal recessive (AR) or X-linked diseases was carried out. We assessed the differences in allele frequencies specific to the Chinese population who have used assisted reproductive technology (ART) and the important genes to screen for in this population. METHODOLOGY A total of 300 heterosexual couples were screened by our ECS panel using next-generation sequencing. A customed bioinformatic algorithm was used to analyze SNVs and CNVs. Guidelines from the American College of Medical Genetics and Genomics and the Association for Molecular Pathology were adapted for variant interpretation. Pathogenic or likely pathogenic (P/LP) SNVs located in high homology regions/deletions and duplications of one or more exons in length were independently verified with other methods. RESULTS 64.83% of the patients were identified to be carriers of at least one of 342 hereditary conditions. We identified 622 P/LP variants, 4.18% of which were flagged as CNVs. The rate of at-risk couples was 3%. A total of 149 AR diseases accounted for 64.05% of the cumulative carrier rate, and 48 diseases had a carrier rate above 1/200 in the test. CONCLUSION An expanded screening of inherited diseases by incorporating different variant types, especially CNVs, has the potential to reduce the occurrence of severe monogenic diseases in the offspring of patients using ART in China.
Collapse
Affiliation(s)
- Song-Chang Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, 566 Fangxie Road, Huangpu District, Shanghai, 200001, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xuan-You Zhou
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, 566 Fangxie Road, Huangpu District, Shanghai, 200001, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shu-Yuan Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ming-Min Zhao
- Fujungenetics Biotechnology Co., Ltd., No. 70 of Tongchuan Road, Putuo District, Shanghai, 200333, China
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, 566 Fangxie Road, Huangpu District, Shanghai, 200001, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Jia Jia
- Fujungenetics Biotechnology Co., Ltd., No. 70 of Tongchuan Road, Putuo District, Shanghai, 200333, China.
| | - Chen-Ming Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, 566 Fangxie Road, Huangpu District, Shanghai, 200001, China.
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
6
|
Papadopoulou E, Pepe G, Konitsiotis S, Chondrogiorgi M, Grigoriadis N, Kimiskidis VK, Tsivgoulis G, Mitsikostas DD, Chroni E, Domouzoglou E, Tsaousis G, Nasioulas G. The evolution of comprehensive genetic analysis in neurology: Implications for precision medicine. J Neurol Sci 2023; 447:120609. [PMID: 36905813 DOI: 10.1016/j.jns.2023.120609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Technological advancements have facilitated the availability of reliable and thorough genetic analysis in many medical fields, including neurology. In this review, we focus on the importance of selecting the appropriate genetic test to aid in the accurate identification of disease utilizing currently employed technologies for analyzing monogenic neurological disorders. Moreover, the applicability of comprehensive analysis via NGS for various genetically heterogeneous neurological disorders is reviewed, revealing its efficiency in clarifying a frequently cloudy diagnostic picture and delivering a conclusive and solid diagnosis that is essential for the proper management of the patient. The feasibility and effectiveness of medical genetics in neurology require interdisciplinary cooperation among several medical specialties and geneticists, to select and perform the most relevant test according to each patient's medical history, using the most appropriate technological tools. The prerequisites for a comprehensive genetic analysis are discussed, highlighting the utility of appropriate gene selection, variant annotation, and classification. Moreover, genetic counseling and interdisciplinary collaboration could improve diagnostic yield further. Additionally, a sub-analysis is conducted on the 1,502,769 variation records with submitted interpretations in the Clinical Variation (ClinVar) database, with a focus on neurology-related genes, to clarify the value of suitable variant categorization. Finally, we review the current applications of genetic analysis in the diagnosis and personalized management of neurological patients and the advances in the research and scientific knowledge of hereditary neurological disorders that are evolving the utility of genetic analysis towards the individualization of the treatment strategy.
Collapse
Affiliation(s)
| | - Georgia Pepe
- GeneKor Medical SA, Spaton 52, Gerakas 15344, Greece
| | - Spiridon Konitsiotis
- Department of Neurology, University of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | - Maria Chondrogiorgi
- Department of Neurology, University of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | - Nikolaos Grigoriadis
- Second Department of Neurology, "AHEPA" University Hospital, Aristotle University of Thessaloniki, St. Kiriakidis 1, Thessaloniki 54636, Greece
| | - Vasilios K Kimiskidis
- First Department of Neurology, "AHEPA" University hospital, Aristotle University of Thessaloniki, St. Kiriakidis 1, Thessaloniki 54636, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, "Attikon" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimos D Mitsikostas
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Rio-Patras, Greece
| | - Eleni Domouzoglou
- Department of Pediatrics, University Hospital of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | | | | |
Collapse
|
7
|
Carter MT, Srour M, Au PYB, Buhas D, Dyack S, Eaton A, Inbar-Feigenberg M, Howley H, Kawamura A, Lewis SME, McCready E, Nelson TN, Vallance H. Genetic and metabolic investigations for neurodevelopmental disorders: position statement of the Canadian College of Medical Geneticists (CCMG). J Med Genet 2023; 60:523-532. [PMID: 36822643 DOI: 10.1136/jmg-2022-108962] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE AND SCOPE The aim of this position statement is to provide recommendations for clinicians regarding the use of genetic and metabolic investigations for patients with neurodevelopmental disorders (NDDs), specifically, patients with global developmental delay (GDD), intellectual disability (ID) and/or autism spectrum disorder (ASD). This document also provides guidance for primary care and non-genetics specialists caring for these patients while awaiting consultation with a clinical geneticist or metabolic specialist. METHODS OF STATEMENT DEVELOPMENT A multidisciplinary group reviewed existing literature and guidelines on the use of genetic and metabolic investigations for the diagnosis of NDDs and synthesised the evidence to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and to the Canadian Pediatric Society (Mental Health and Developmental Disabilities Committee); following incorporation of feedback, it was approved by the CCMG Board of Directors on 1 September 2022. RESULTS AND CONCLUSIONS Chromosomal microarray is recommended as a first-tier test for patients with GDD, ID or ASD. Fragile X testing should also be done as a first-tier test when there are suggestive clinical features or family history. Metabolic investigations should be done if there are clinical features suggestive of an inherited metabolic disease, while the patient awaits consultation with a metabolic physician. Exome sequencing or a comprehensive gene panel is recommended as a second-tier test for patients with GDD or ID. Genetic testing is not recommended for patients with NDDs in the absence of GDD, ID or ASD, unless accompanied by clinical features suggestive of a syndromic aetiology or inherited metabolic disease.
Collapse
Affiliation(s)
| | - Myriam Srour
- Division of Neurology, McGill University Health Centre, Montreal, Québec, Canada
- Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Ping-Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sarah Dyack
- Division of Medical Genetics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Alison Eaton
- Department of Medical Genetics, Stollery Children's Hospital, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michal Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Heather Howley
- Office of Research Services, CHEO Research Institute, Ottawa, Ontario, Canada
| | - Anne Kawamura
- Division of Developmental Pediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Mental Health and Developmental Disability Committee, Canadian Pediatric Society, Ottawa, ON, Canada
- Canadian Paediatric Society, Toronto, Ontario, Canada
| | - Suzanne M E Lewis
- Department of Medical Genetics, BC Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, McMaster University, Hamilton, ON, Canada, Hamilton, Ontario, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, ON, Canada
| | - Tanya N Nelson
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hilary Vallance
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Shahid R, Yasin M, Rehman ZU, Jadoon H, Tahir H, Meraj N, Khan N, Zubair M, Zulfiqar I, Nowshid M, Azeem A, Jabeen M, Hameed A, Saleha S. Maternal FMR1 alleles expansion in newborns during transmission: a prospective cohort study. Pediatr Res 2023; 93:720-724. [PMID: 35681093 DOI: 10.1038/s41390-022-02128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/05/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The CGG repeats in the 5' untranslated region of the fragile X mental retardation 1 gene (FMR1) gene shows increased instability upon maternal transmission. Maternal FMR1 intermediate (45-54 repeats) and premutation (PM: 55-<200 repeats) alleles usually expand to full mutation (>200 repeats) alleles in offspring and consequently, cause fragile X syndrome (FXS) in them. METHODS In a prospective cohort study, Pakistani pregnant women in prenatal care were first screened for FMR1 expanded alleles. In the follow-up, pregnancy outcomes in women carrying FMR1 expanded alleles were recorded and their newborn offspring were also screened for FXS. RESULTS In a total of 1950 pregnant women, 89 (4.6%) were detected carriers for FMR1 expanded alleles; however, rates of detection of expanded alleles were found significantly high in women with a history of FXS. In addition, miscarriages and birth of affected newborns with FXS were significantly more common in women carrying large size PM alleles and had a history of FXS (P = 0.0494 and P = 0.0494, respectively). CONCLUSIONS The current study provides the first evidence of screening Pakistani pregnant women for FMR1 expanded alleles in prenatal care. Moreover, the miscarriage was also detected as a clinical predictor for FXS. IMPACT Offspring would have a higher risk of developing FXS due to maternal FMR1 alleles expansions during transmission. This is the first prospective cohort study in Pakistan for finding FMR1 allelic status of pregnant women and their newborn offspring in follow-up. The robust offspring risk for FXS estimated in this study may be valuable information for genetic counseling of women carriers for FMR1 expanded alleles. The family history and miscarriage were detected as effective indicators for FXS carrier screening in Pakistani women.
Collapse
Affiliation(s)
- Rabia Shahid
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Zia Ur Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Humaira Jadoon
- Department of Obstetrics & Gynecology, Ayub Medical Institute, Abbottabad, 22010, Khyber Pakhtunkhwa, Pakistan
| | - Haleema Tahir
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Neelam Meraj
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Maria Zubair
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Irba Zulfiqar
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Maha Nowshid
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Musarrat Jabeen
- Department of Obstetrics and Gynecology, Liaqat Memorial Hospital, KIMS, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Hameed
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 44000, Pakistan
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
9
|
Ryan NM, Heron EA. Evidence for parent-of-origin effects in autism spectrum disorder: a narrative review. J Appl Genet 2023; 64:303-317. [PMID: 36710277 PMCID: PMC10076404 DOI: 10.1007/s13353-022-00742-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 01/31/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of early-onset neurodevelopmental disorders known to be highly heritable with a complex genetic architecture. Abnormal brain developmental trajectories that impact synaptic functioning, excitation-inhibition balance and brain connectivity are now understood to play a central role in ASD. Ongoing efforts to identify the genetic underpinnings still prove challenging, in part due to phenotypic and genetic heterogeneity.This review focuses on parent-of-origin effects (POEs), where the phenotypic effect of an allele depends on its parental origin. POEs include genomic imprinting, transgenerational effects, mitochondrial DNA, sex chromosomes and mutational transmission bias. The motivation for investigating these mechanisms in ASD has been driven by their known impacts on early brain development and brain functioning, in particular for the most well-documented POE, genomic imprinting. Moreover, imprinting is implicated in syndromes such as Angelman and Prader-Willi, which frequently share comorbid symptoms with ASD. In addition to other regions in the genome, this comprehensive review highlights the 15q11-q13 and 7q chromosomal regions as well as the mitochondrial DNA as harbouring the majority of currently identified POEs in ASD.
Collapse
Affiliation(s)
- Niamh M Ryan
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Elizabeth A Heron
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
Saini A, Varshney A, Saini A, Mani I. Insight into epigenetics and human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:1-21. [PMID: 37019588 DOI: 10.1016/bs.pmbts.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The most eminent research of the 21st century whirls around the epigenetic and the variability of DNA sequences in humans. The reciprocity between the epigenetic changes and the exogenous factors drives an influence on the inheritance biology and gene expression both inter-generationally and trans-generationally. Chromatin level modifications like DNA methylation, histone modifications or changes in transcripts functions either at transcription level or translational level pave the way for certain diseases or cancer in humans. The ability of epigenetics to explain the processes of various diseases has been demonstrated by recent epigenetic studies. Multidisciplinary therapeutic strategies were developed in order to analyse how epigenetic elements interact with different disease pathways. In this chapter we summarize how an organism may be predisposed to certain diseases by exposure to environmental variables such as chemicals, medications, stress, or infections during particular, vulnerable phases of life, and the epigenetic component may influence some of the diseases in humans.
Collapse
|
11
|
Movaghar A, Page D, Brilliant M, Mailick M. Advancing artificial intelligence-assisted pre-screening for fragile X syndrome. BMC Med Inform Decis Mak 2022; 22:152. [PMID: 35689224 PMCID: PMC9185893 DOI: 10.1186/s12911-022-01896-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism, is significantly underdiagnosed in the general population. Diagnosing FXS is challenging due to the heterogeneity of the condition, subtle physical characteristics at the time of birth and similarity of phenotypes to other conditions. The medical complexity of FXS underscores an urgent need to develop more efficient and effective screening methods to identify individuals with FXS. In this study, we evaluate the effectiveness of using artificial intelligence (AI) and electronic health records (EHRs) to accelerate FXS diagnosis. METHODS The EHRs of 2.1 million patients served by the University of Wisconsin Health System (UW Health) were the main data source for this retrospective study. UW Health includes patients from south central Wisconsin, with approximately 33 years (1988-2021) of digitized health data. We identified all participants who received a code for FXS in the form of International Classification of Diseases (ICD), Ninth or Tenth Revision (ICD9 = 759.83, ICD10 = Q99.2). Only individuals who received the FXS code on at least two occasions ("Rule of 2") were classified as clinically diagnosed cases. To ensure the availability of sufficient data prior to clinical diagnosis to test the model, only individuals who were diagnosed after age 10 were included in the analysis. A supervised random forest classifier was used to create an AI-assisted pre-screening tool to identify cases with FXS, 5 years earlier than the time of clinical diagnosis based on their medical records. The area under receiver operating characteristic curve (AUROC) was reported. The AUROC shows the level of success in identification of cases and controls (AUROC = 1 represents perfect classification). RESULTS 52 individuals were identified as target cases and matched with 5200 controls. AI-assisted pre-screening tool successfully identified cases with FXS, 5 years earlier than the time of clinical diagnosis with an AUROC of 0.717. A separate model trained and tested on UW Health cases achieved the AUROC of 0.798. CONCLUSIONS This result shows the potential utility of our tool in accelerating FXS diagnosis in real clinical settings. Earlier diagnosis can lead to more timely intervention and access to services with the goal of improving patients' health outcomes.
Collapse
Affiliation(s)
- Arezoo Movaghar
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA.
| | - David Page
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Murray Brilliant
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - Marsha Mailick
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| |
Collapse
|
12
|
Meraj N, Yasin M, Rehman ZU, Tahir H, Jadoon H, Khan N, Shahid R, Zubair M, Zulfiqar I, Jabeen M, Neelam S, Hameed A, Saleha S. Fragile X premutation carrier screening in Pakistani preconception women in primary care consultation. BMC Womens Health 2022; 22:57. [PMID: 35246105 PMCID: PMC8895653 DOI: 10.1186/s12905-022-01632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Women of reproductive age who carry fragile X premutation (PM) alleles have 56 to 200 CGG repeats in the 5'-untranslated region of FMR1 gene are at increased risk for producing children with intellectual disabilities (ID) or autism spectrum disorders (ASD) due to expansion of PM alleles to full mutation alleles (> 200 repeats) during maternal transmission. METHODS In present study fragile X PM carrier screening was performed in total 808 women who were consulting primary health care centers for preconception care in Khyber Pakhtunkhwa region of Pakistan between April, 2018 and December, 2020. Polymerase chain reaction (PCR) was performed for detection of PM carrier women and the CGG repeats number was confirmed by Southern blotting and capillary electrophoresis. RESULTS The prevalence rate for PM carriers among preconception women was found to be 0.7% that was contributed by 0.5% women in risk group (RG1) with family history of ID and 0.2% in risk group 2 (RG2) with family history of ASD. PM carrier women had at least one affected child or sibling. In addition, the preconception women with FMR1 PM alleles were found to be at increased risk for primary ovary insufficiency (RG1: P = 0.0265, RG2: P = 0.0389), postpartum depression (RG1: P = 0.0240, RG2: P = 0.0501) and neuropsychiatric disorders (RG1: P = 0.0389, RG2: P = 0.0432). CONCLUSIONS Current study provides first evidence of fragile X PM carrier screening in Pakistani preconception women in primary care consultation. Findings of current study may help to improve preconception care and to reduce burden of fragile X associated disorders in our population.
Collapse
Affiliation(s)
- Neelam Meraj
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Zia Ur Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Haleema Tahir
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Humaira Jadoon
- Department of Obstetrics and Gynecology, Ayub Medical Institute, Abbottabad, 22010, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Rabia Shahid
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Maria Zubair
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Irba Zulfiqar
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Musarrat Jabeen
- Department of Obstetrics and Gynecology, Liaqat Memorial Hospital, KIMS, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shahzadi Neelam
- Department of Obstetrics and Gynecology, Qazi Ahmed Medical Complex, Nowshera, 24100, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Hameed
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, 44000, Pakistan
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
13
|
Addressing Reproductive Healthcare Disparities through Equitable Carrier Screening: Medical Racism and Genetic Discrimination in United States’ History Highlights the Needs for Change in Obstetrical Genetics Care. SOCIETIES 2022. [DOI: 10.3390/soc12020033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Carrier screening, a nearly half-century old practice, aims to provide individuals and couples with information about their risk of having children with serious genetic conditions. Traditionally, the conditions for which individuals were offered screening depended on their self-reported race or ethnicity and which conditions were seen commonly in that population. This process has led to disparities and inequities in care as the multi-racial population in the U.S. has grown exponentially, yet databases used to determine clinical practice guidelines are made up of primarily White cohorts. Technological advancements now allow for pan-ethnic expanded carrier screening (ECS), which screens for many conditions regardless of self-reported race or ethnicity. ECS presents a unique opportunity to promote equitable genetic testing practices in reproductive medicine. However, this goal can only be achieved if we acknowledge and appreciate the innumerable inequities evidenced in reproductive medicine and other socio-legal practices in the United States, and if we intentionally work in concert with healthcare providers, policy makers, advocates, and community health champions to reduce current and future reproductive health disparities. Herein, we provide a brief review of the way that US medical racism and genetic discrimination has shaped the current landscape of carrier screening.
Collapse
|
14
|
Schmitt LM, Dominick KC, Liu R, Pedapati EV, Ethridge LE, Smith E, Sweeney JA, Erickson CA. Evidence for Three Subgroups of Female FMR1 Premutation Carriers Defined by Distinct Neuropsychiatric Features: A Pilot Study. Front Integr Neurosci 2022; 15:797546. [PMID: 35046780 PMCID: PMC8763356 DOI: 10.3389/fnint.2021.797546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023] Open
Abstract
Over 200 Cytosine-guanine-guanine (CGG) trinucleotide repeats in the 5' untranslated region of the Fragile X mental retardation 1 (FMR1) gene results in a "full mutation," clinically Fragile X Syndrome (FXS), whereas 55 - 200 repeats result in a "premutation." FMR1 premutation carriers (PMC) are at an increased risk for a range of psychiatric, neurocognitive, and physical conditions. Few studies have examined the variable expression of neuropsychiatric features in female PMCs, and whether heterogeneous presentation among female PMCs may reflect differential presentation of features in unique subgroups. In the current pilot study, we examined 41 female PMCs (ages 17-78 years) and 15 age-, sex-, and IQ-matched typically developing controls (TDC) across a battery of self-report, eye tracking, expressive language, neurocognitive, and resting state EEG measures to determine the feasibility of identifying discrete clusters. Secondly, we sought to identify the key features that distinguished these clusters of female PMCs. We found a three cluster solution using k-means clustering. Cluster 1 represented a psychiatric feature group (27% of our sample); cluster 2 represented a group with executive dysfunction and elevated high frequency neural oscillatory activity (32%); and cluster 3 represented a relatively unaffected group (41%). Our findings indicate the feasibility of using a data-driven approach to identify naturally occurring clusters in female PMCs using a multi-method assessment battery. CGG repeat count and its association with neuropsychiatric features differ across clusters. Together, our findings provide important insight into potential diverging pathophysiological mechanisms and risk factors for each female PMC cluster, which may ultimately help provide novel and individualized targets for treatment options.
Collapse
Affiliation(s)
- Lauren M. Schmitt
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Kelli C. Dominick
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Rui Liu
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ernest V. Pedapati
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Lauren E. Ethridge
- Department of Psychology, University of Oklahoma, Norman, OK, United States
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Elizabeth Smith
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - John A. Sweeney
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Craig A. Erickson
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
15
|
FAZELI Z, GHADERIAN SMH, NAJMABADI H, OMRANI MD. Understanding the Molecular Basis of Fragile X Syndrome Using Differentiated Mesenchymal Stem Cells. IRANIAN JOURNAL OF CHILD NEUROLOGY 2022; 16:85-95. [PMID: 35222660 PMCID: PMC8753000 DOI: 10.22037/ijcn.v15i4.22070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 02/21/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Fragile X syndrome (FXS) has been known as the most common cause of inherited intellectual disability and autism. This disease results from the loss of fragile X mental retardation protein expression due to the expansion of CGG repeats located on the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. MATERIALS & METHODS In the present study, the peripheral blood-mesenchymal stem cells (PB-MSCs) of two female full mutation carriers were differentiated into neuronal cells by the suppression of bone morphogenesis pathway signaling. Then, the expression of genes adjacent to CGG repeats expansion, including SLIT and NTRK-like protein 2 (SLITRK2), SLIT and NTRK-like protein 4 (SLITRK4), methyl CpG binding protein 2 (MECP2), and gamma-aminobutyric acid receptor subunit alpha-3 (GABRA3), were evaluated in these cells using SYBR Green real-time polymerase chain reaction. RESULTS The obtained results indicated that the expression of SLITRK2 and SLITRK4 were upregulated and downregulated in the neuron-like cells differentiated from the PB-MSCs of females with FMR1 full mutation, compared to that of the normal females, respectively. Furthermore, the expression of MECP2 and GABRA3 genes were observed to be related to the phenotypic differences observed in the female FMR1 full mutation carriers. CONCLUSION The observed association of expression of genes located upstream of the FMR1 gene with phenotypic differences in the female carriers could increase the understanding of novel therapeutic targets for patients with mild symptoms of FXS and the patients affected by other FMR1-related disorders.
Collapse
Affiliation(s)
- Zahra FAZELI
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hossein NAJMABADI
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mir Davood OMRANI
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Hnoonual A, Jankittunpaiboon C, Limprasert P. Screening for FMR1 CGG Repeat Expansion in Thai Patients with Autism Spectrum Disorder. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4359308. [PMID: 34926684 PMCID: PMC8674057 DOI: 10.1155/2021/4359308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/07/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) is a complex disorder with a heterogeneous etiology. Fragile X syndrome (FXS) is recognized as the most common single gene mutation associated with ASD. FXS patients show some autistic behaviors and may be difficult to distinguish at a young age from autistic children. However, there have been no published reports on the prevalence of FXS in ASD patients in Thailand. In this study, we present a pilot study to analyze the CGG repeat sizes of the FMR1 gene in Thai autistic patients. We screened 202 unrelated Thai patients (168 males and 34 females) with nonsyndromic ASD and 212 normal controls using standard FXS molecular diagnosis techniques. The distributions of FMR1 CGG repeat sizes in the ASD and normal control groups were similar, with the two most common alleles having 29 and 30 CGG repeats, followed by an allele with 36 CGG repeats. No FMR1 full mutations or premutations were found in either ASD individuals or the normal controls. Interestingly, three ASD male patients with high normal CGG and intermediate CGG repeats (44, 46, and 53 CGG repeats) were identified, indicating that the prevalence of FMR1 intermediate alleles in Thai ASD patients was approximately 1% while these alleles were absent in the normal male controls. Our study indicates that CGG repeat expansions of the FMR1 gene may not be a common genetic cause of nonsyndromic ASD in Thai patients. However, further studies for mutations other than the CGG expansion in the FMR1 gene are required to get a better information on FXS prevalence in Thai ASD patients.
Collapse
Affiliation(s)
- Areerat Hnoonual
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | | | - Pornprot Limprasert
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Faculty of Medicine, Siam University, Bangkok 10160, Thailand
| |
Collapse
|
17
|
Walsh MB, Charen K, Shubeck L, McConkie-Rosell A, Ali N, Bellcross C, Sherman SL. Men with an FMR1 premutation and their health education needs. J Genet Couns 2021; 30:1156-1167. [PMID: 33788978 PMCID: PMC8363520 DOI: 10.1002/jgc4.1399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Abstract
Men who carry an FMR1 premutation are at-risk to develop a late-onset neurodegenerative disorder called fragile X-Associated Ataxia/Tremor syndrome (FXTAS). However, little is known about their health informational needs. This qualitative study is the first to describe diagnostic experiences and identify specific health information needs of male premutation carriers. In-depth qualitative interviews were conducted by phone with ten men who carry an FMR1 premutation. Interviews were analyzed using direct content analysis. Saturation was assessed through use of the Comparative Method for Themes Saturation in qualitative interviews (CoMeTS). Five themes were identified: diagnosis experience, sources of health information, desired health information, barriers to obtaining health information, and facilitators to desired health information. Participants desired information about inheritance, symptoms, expectations for disease, and actions available to slow progression. Facilitators to obtaining health information included healthcare provider knowledge, positive experiences with providers, beneficial family dynamics, participating in research, and access to experts. Barriers to obtaining health information included lack of personal knowledge, lack of healthcare provider knowledge, negative experiences with providers, and uncertainty. Addressing the educational needs of men with/at-risk for FXTAS could improve the quality of life of men who carry a fragile X premutation.
Collapse
Affiliation(s)
- Matthew B Walsh
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Krista Charen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Lisa Shubeck
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Nadia Ali
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cecelia Bellcross
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephanie L Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
18
|
Vafaeie F, Alerasool M, Kaseb Mojaver N, Mojarrad M. Fragile X Syndrome in a Female With Homozygous Full-Mutation Alleles of the FMR1 Gene. Cureus 2021; 13:e16340. [PMID: 34395123 PMCID: PMC8357243 DOI: 10.7759/cureus.16340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 11/05/2022] Open
Abstract
Fragile X syndrome (FXS) has been reported as the leading cause of mental retardation (MR) that predominantly involves males compared to females. An over-expansion of CGG repeats in the 5' untranslated region of the FMR1 gene plays the primary role in this disease. In this study, we encountered a homozygote female patient affected by FMR1 expansion mutation. Surprisingly, she had inherited her full-mutated alleles from two different ancestors. This condition is an extremely rare case of FXS. After accurate genetic counseling, family members were referred to the laboratory for genetic testing. Karyotype with two X chromosomes was the finding after the G-banding study of the proband. Molecular analysis indicated that she was a female with full-mutated or pre-mutated alleles on both of her X chromosomes. It is a rare phenomenon that we detected in this patient. We have concluded that a combination of allele instability during oogenesis and inheritance of two alleles are the leading cause of MR in the presented case.
Collapse
Affiliation(s)
- Farzane Vafaeie
- Medical Genetics Laboratory, Genetic Foundation of Khorasan Razavi, Mashhad, IRN
| | - Masoome Alerasool
- Medical Genetics Laboratory, Genetic Foundation of Khorasan Razavi, Mashhad, IRN.,Department of Medical Genetics, Mashhad University of Medical Sciences, Mashhad, IRN
| | - Nasrin Kaseb Mojaver
- Medical Genetics Laboratory, Genetic Foundation of Khorasan Razavi, Mashhad, IRN
| | - Majid Mojarrad
- Medical Genetics Laboratory, Genetic Foundation of Khorasan Razavi, Mashhad, IRN.,Department of Medical Genetics, Mashhad University of Medical Sciences, Mashhad, IRN.,Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IRN
| |
Collapse
|
19
|
Laboratory testing for fragile X, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:799-812. [PMID: 33795824 DOI: 10.1038/s41436-021-01115-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/08/2022] Open
Abstract
Molecular genetic testing of the FMR1 gene is commonly performed in clinical laboratories. Pathogenic variants in the FMR1 gene are associated with fragile X syndrome, fragile X-associated tremor ataxia syndrome (FXTAS), and fragile X-associated primary ovarian insufficiency (FXPOI). This document provides updated information regarding FMR1 pathogenic variants, including prevalence, genotype-phenotype correlations, and variant nomenclature. Methodological considerations are provided for Southern blot analysis and polymerase chain reaction (PCR) amplification of FMR1, including triplet repeat-primed and methylation-specific PCR.The American College of Medical Genetics and Genomics (ACMG) Laboratory Quality Assurance Committee has the mission of maintaining high technical standards for the performance and interpretation of genetic tests. In part, this is accomplished by the publication of the document ACMG Technical Standards for Clinical Genetics Laboratories, which is now maintained online ( http://www.acmg.net ). This subcommittee also reviews the outcome of national proficiency testing in the genetics area and may choose to focus on specific diseases or methodologies in response to those results. Accordingly, the subcommittee selected fragile X syndrome to be the first topic in a series of supplemental sections, recognizing that it is one of the most frequently ordered genetic tests and that it has many alternative methods with different strengths and weaknesses. This document is the fourth update to the original standards and guidelines for fragile X testing that were published in 2001, with revisions in 2005 and 2013, respectively.This versionClarifies the clinical features associated with different FMRI variants (Section 2.3)Discusses important reporting considerations (Section 3.3.1.3)Provides updates on technology (Section 4.1).
Collapse
|
20
|
Berry-Kravis E, Zhou L, Jackson J, Tassone F. Diagnostic profile of the AmplideX Fragile X Dx and Carrier Screen Kit for diagnosis and screening of fragile X syndrome and other FMR1-related disorders. Expert Rev Mol Diagn 2021; 21:255-267. [PMID: 33666525 DOI: 10.1080/14737159.2021.1899812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: In 2009, a novel, CGG repeat primed FMR1 PCR assay was designed with primers flanking the triplet repeat region, as well as a third chimeric primer complementary to the (CGG)n repeat, that was capable of amplifying alleles throughout the repeat range. This assay for the first time allowed consistent detection of large full mutation alleles with PCR, resolution of heterozygosity in females and mapping of AGG interspersions.Areas Covered: The AmplideX Fragile X Dx and Carrier Screen Kit (Asuragen, Inc.) represents a refined assay that underwent validation with sensitivity analyses for FDA approval. Single-site precision, analytical sensitivity and specificity, limit of detection and diagnostic performance were assessed in comparison to reference methods at three independent sites. Single-site precision across all genotype categories showed 100% agreement at 20 ng input across multiple operators, days, instruments and kit lots. Compared to Southern Blot analysis, the overall percent agreement was over 98% for all expanded alleles.Expert Opinion: Limitations include no methylation assessment and hard to see full mutation peaks in some mosaic samples, but overall the assay is considered a highly accurate and time-efficient assay for FMR1 allele size determination.
Collapse
Affiliation(s)
- Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.,Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Lili Zhou
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.,Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Jonathan Jackson
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, USA.,MIND Institute, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
21
|
Carter MT, Cloutier M, Tsampalieros A, Webster R. Genetic and metabolic investigations for individuals with neurodevelopmental disorders: A survey of Canadian geneticists' practices. Am J Med Genet A 2021; 185:1757-1766. [PMID: 33720531 DOI: 10.1002/ajmg.a.62167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/15/2021] [Accepted: 02/26/2021] [Indexed: 11/06/2022]
Abstract
Neurodevelopmental disorders (NDDs) are genetically heterogeneous. There are many possible etiological investigations for NDDs, and a lack of clear and current guidelines for such testing. Here we characterize the practices of genetic and metabolic physicians in Canada as it pertains to etiological investigation of patients with NDDs, by means of an online questionnaire. The survey response rate was 30% (n = 46). The most commonly ordered first-line tests for patients with non-syndromic NDDs are chromosomal microarray (98%) and Fragile X testing (85%). The most commonly ordered second-line test for non-syndromic NDDs is a multi-gene panel (78%) or exome sequencing (29%). Biochemical screening is ordered as a first line test by 33% of respondents, second line by 31%, and rarely or never by 36% of respondents. Those respondents with metabolics fellowship training were more likely to order biochemical screening than those without. The number of years of clinical experience generally did not affect the types of tests ordered. For patients with NDDs, test-ordering practice among Canadian clinical geneticists is highly variable, in particular with respect to biochemical screening and use of next-generation sequencing technologies. Evidence-based guidelines should be developed to facilitate best practices in Canada.
Collapse
|
22
|
Abstract
Neurodevelopmental disorders are the most prevalent chronic medical conditions encountered in pediatric primary care. In addition to identifying appropriate descriptive diagnoses and guiding families to evidence-based treatments and supports, comprehensive care for individuals with neurodevelopmental disorders includes a search for an underlying etiologic diagnosis, primarily through a genetic evaluation. Identification of an underlying genetic etiology can inform prognosis, clarify recurrence risk, shape clinical management, and direct patients and families to condition-specific resources and supports. Here we review the utility of genetic testing in patients with neurodevelopmental disorders and describe the three major testing modalities and their yields - chromosomal microarray, exome sequencing (with/without copy number variant calling), and FMR1 CGG repeat analysis for fragile X syndrome. Given the diagnostic yield of genetic testing and the potential for clinical and personal utility, there is consensus that genetic testing should be offered to all patients with global developmental delay, intellectual disability, and/or autism spectrum disorder. Despite this recommendation, data suggest that a minority of children with autism spectrum disorder and intellectual disability have undergone genetic testing. To address this gap in care, we describe a structured but flexible approach to facilitate integration of genetic testing into clinical practice across pediatric specialties and discuss future considerations for genetic testing in neurodevelopmental disorders to prepare pediatric providers to care for patients with such diagnoses today and tomorrow.
Collapse
Affiliation(s)
- Juliann M. Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, United States
| | | |
Collapse
|
23
|
Tassanakijpanich N, Hagerman RJ, Worachotekamjorn J. Fragile X premutation and associated health conditions: A review. Clin Genet 2021; 99:751-760. [PMID: 33443313 DOI: 10.1111/cge.13924] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
Fragile X syndrome (FXS) is the most common single gene disorder, which causes autism and intellectual disability. The fragile X mental retardation 1 (FMR1) gene is silenced when cytosine-guanine-guanine (CGG) triplet repeats exceed 200, which is the full mutation that causes FXS. Carriers of FXS have a CGG repeat between 55 and 200, which is defined as a premutation and transcription of the gene is overactive with high levels of the FMR1 mRNA. Most carriers of the premutation have normal levels of fragile X mental retardation protein (FMRP) and a normal intelligence, but in the upper range of the premutation (120-200) the FMRP level may be lower than normal. The clinical problems associated with the premutation are caused by the RNA toxicity associated with increased FMR1 mRNA levels, although for some mildly lowered FMRP can cause problems associated with FXS. The RNA toxicity causes various health problems in the carriers including but not limited to fragile X-associated tremor/ataxia syndrome, fragile X-associated primary ovarian insufficiency, and fragile X-associated neuropsychiatric disorders. Since some individuals with neuropsychiatric problems do not meet the severity for a diagnosis of a "disorder" then the condition can be labeled as fragile X premutation associated condition (FXPAC). Physicians must be able to recognize these health problems in the carriers and provide appropriate management.
Collapse
Affiliation(s)
| | - Randi J Hagerman
- UC Davis MIND Institute, UC Davis Health, Sacramento, California, USA.,Department of Pediatrics, University of California, Davis, School of Medicine, Sacramento, California, USA
| | | |
Collapse
|
24
|
Malecki C, Hambly BD, Jeremy RW, Robertson EN. The RNA-binding fragile-X mental retardation protein and its role beyond the brain. Biophys Rev 2020; 12:903-916. [PMID: 32654068 DOI: 10.1007/s12551-020-00730-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
It is well-established that variations of a CGG repeat expansion in the gene FMR1, which encodes the fragile-X mental retardation protein (FMRP), cause the neurocognitive disorder, fragile-X syndrome (FXS). However, multiple observations suggest a general and complex regulatory role of FMRP in processes outside the brain: (1) FMRP is ubiquitously expressed in the body, suggesting it functions in multiple organ systems; (2) patients with FXS can exhibit a physical phenotype that is consistent with an underlying abnormality in connective tissue; (3) different CGG repeat expansion lengths in FMR1 result in different clinical outcomes due to different pathogenic mechanisms; (4) the function of FMRP as an RNA-binding protein suggests it has a general regulatory role. This review details the complex nature of FMRP and the different CGG repeat expansion lengths and the evidence supporting the essential role of the protein in a variety of biological and pathological processes.
Collapse
Affiliation(s)
- Cassandra Malecki
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.
| | - Brett D Hambly
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia
| | - Richmond W Jeremy
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Elizabeth N Robertson
- Discipline of Pathology and Bosch Institute, The University of Sydney, Level 4 West, Charles Perkins Centre D17, Sydney, NSW, 2006, Australia.,Cardiology Department, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
25
|
Subramaniam K, Prasad HK. An Unusual Case of Fragile X Associated Primary Ovarian Insufficiency. Indian J Endocrinol Metab 2020; 24:373-374. [PMID: 33088763 PMCID: PMC7540829 DOI: 10.4103/ijem.ijem_290_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/06/2020] [Indexed: 12/02/2022] Open
Affiliation(s)
| | - Hemanth K. Prasad
- Scientific Applications and Support, Neuberg Anand Reference Laboratory, Bangalore, Karnataka, India
| |
Collapse
|
26
|
Kreiman BL, Boles RG. State of the Art of Genetic Testing for Patients With Autism: A Practical Guide for Clinicians. Semin Pediatr Neurol 2020; 34:100804. [PMID: 32446438 DOI: 10.1016/j.spen.2020.100804] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The explosion in knowledge, technology, and clinical capabilities regarding genetics and genetic testing has expanded greatly in recent years, and these gains have rapidly been applied to individuals with autism spectrum disorder (ASD). However, most clinicians are unaware or confused in regards to whom to test, what tests to order, and how testing might alter management and improve outcomes. This review will address these issues. Research shows that ASD is highly genetic, and while monogenic cases are common, most patients have multiple genes interacting in disease pathogenesis. However, as genetics dictates disease risk, not outcomes, this does not exclude environmental factors. Clinically actionable genetics test results can be found across the phenotypically-heterogeneous ASD spectrum; thus recommendations are to test everyone. As ASD is also highly genetically heterogeneous, testing should address a wide range of variant types, including both large (historically detected by microarray) and small (detected by sequencing), at least across all genes (exome). Additional specialized testing important in ASD diagnostics includes fragile X, mitochondrial DNA, and pharmacogenetics; the latter often informative for which drug to order, at which dose. Recently, whole genome sequencing has emerged as a favorite since all of the above testing, and more, can be performed at a lower total cost than individual test orders. Trio (child plus parents) sequencing is often indicated, especially in more "severe" cases in order to find new (de novo) variants not present in either parent. Additionally, Angelman syndrome testing should be considered in appropriate cases. Current testing provides a precise diagnosis in many cases with ASD. Beyond diagnosis, genetic testing can oftentimes help elucidate potentially treatable risk factors that predispose the individual patient to develop disease. In this clinician's experience (RGB), this information leads to improved outcomes in as many as one-half of cases. Clinical improvement can occur in common associated ASD symptoms (attention, behavior, and anxiety) and/or in general systemtic symptoms (nausea, fatigue, pain), as demonstrated in brief case reports. Practical guidance is provided regarding assisting clinicians to choose the appropriate test(s) and laboratory, as well as how to get testing paid for. Recent cost reductions now allow for most families to benefit from genetic testing.
Collapse
Affiliation(s)
- Bracha L Kreiman
- The Center for Neurological and Neurodevelopmental Health, Voorhees, NJ; Molecular and Mitochondrial Medicine, Pasadena, CA
| | - Richard G Boles
- The Center for Neurological and Neurodevelopmental Health, Voorhees, NJ; Molecular and Mitochondrial Medicine, Pasadena, CA.
| |
Collapse
|
27
|
Lorenzi D, Fernández C, Bilinski M, Fabbro M, Galain M, Menazzi S, Miguens M, Perassi PN, Fulco MF, Kopelman S, Fiszbajn G, Nodar F, Papier S. First custom next-generation sequencing infertility panel in Latin America: design and first results. JBRA Assist Reprod 2020; 24:104-114. [PMID: 32155011 PMCID: PMC7169920 DOI: 10.5935/1518-0557.20190065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective To present the development of the first custom gene panel for the diagnosis of male and female infertility in Latin America. Methods We developed a next-generation sequencing (NGS) panel that assesses genes associated with infertility. The panel targeted exons and their flanking regions. Selected introns in the CFTR gene were also included. The FMR1 gene and Y chromosome microdeletions were analyzed with other recommended methodologies. An in-house developed bioinformatic pipeline was applied for the interpretation of the results. Clear infertility phenotypes, idiopathic infertility, and samples with known pathogenic variants were evaluated. Results A total of 75 genes were selected based on female (primary ovarian insufficiency, risk of ovarian hyperstimulation syndrome, recurrent pregnancy loss, oocyte maturation defects, and embryo development arrest) and male conditions (azoospermia, severe oligospermia, asthenozoospermia, and teratozoospermia). The panel designed was used to assess 25 DNA samples. Two of the variants found were classified as pathogenic and enable the diagnosis of a woman with secondary amenorrhea and a man with oligoasthenoteratozoospermia. Targeted NGS assay metrics resulted in a mean of 180X coverage, with more than 98% of the bases covered ≥20X. Conclusion Our custom gene sequencing panel designed for the diagnosis of male and female infertility caused by genetic defects revealed the underlying genetic cause of some cases of infertility. The panel will allow us to develop more precise approaches in assisted reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mariana Miguens
- Centro de Estudios en Genética y Reproducción (CEGYR). Buenos Aires, Argentina
| | | | | | - Susana Kopelman
- Centro de Estudios en Genética y Reproducción (CEGYR). Buenos Aires, Argentina
| | | | - Florencia Nodar
- Novagen. Buenos Aires, Argentina.,Centro de Estudios en Genética y Reproducción (CEGYR). Buenos Aires, Argentina
| | - Sergio Papier
- Novagen. Buenos Aires, Argentina.,Centro de Estudios en Genética y Reproducción (CEGYR). Buenos Aires, Argentina
| |
Collapse
|
28
|
Budisteanu M, Jurca C, Papuc SM, Focsa I, Riga D, Riga S, Jurca A, Arghir A. Treatment of Epilepsy Associated with Common Chromosomal Developmental Diseases. Open Life Sci 2020; 15:21-29. [PMID: 33987468 PMCID: PMC8114617 DOI: 10.1515/biol-2020-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/22/2019] [Indexed: 11/15/2022] Open
Abstract
Chromosomal diseases are heterogeneous conditions with complex phenotypes, which include also epileptic seizures. Each chromosomal syndrome has a range of specific characteristics regarding the type of seizures, EEG findings and specific response to antiepileptic drugs, significant in the context of the respective genetic etiology. Therefore, it is very important to know these particularities, in order to avoid an exacerbation of seizures or some side effects. In this paper we will present a review of the epileptic seizures and antiepileptic treatment in some of the most common chromosomal syndromes.
Collapse
Affiliation(s)
- Magdalena Budisteanu
- Prof. Dr. Alexandru Obregia” Clinical Hospital of Psychiatry, BucharestRomania
- ”Victor Babes“ National Institute of Pathology, BucharestRomania
- ”Titu Maiorescu” University – Faculty of Medicine, BucharestRomania
| | - Claudia Jurca
- University of Oradea, Faculty of Medicine and Pharmacy, Preclinical Department, OradeaRomania
| | | | - Ina Focsa
- ”Carol Davila” University of Pharmacy and Medicine, BucharestRomania
| | - Dan Riga
- Prof. Dr. Alexandru Obregia” Clinical Hospital of Psychiatry, BucharestRomania
| | - Sorin Riga
- Prof. Dr. Alexandru Obregia” Clinical Hospital of Psychiatry, BucharestRomania
| | - Alexandru Jurca
- University of Oradea, Faculty of Medicine and Pharmacy, Preclinical Department, OradeaRomania
| | - Aurora Arghir
- ”Victor Babes“ National Institute of Pathology, BucharestRomania
- ”Carol Davila” University of Pharmacy and Medicine, BucharestRomania
| |
Collapse
|
29
|
Cascade Testing for Fragile X Syndrome in a Rural Setting in Cameroon (Sub-Saharan Africa). Genes (Basel) 2020; 11:genes11020136. [PMID: 32012997 PMCID: PMC7074341 DOI: 10.3390/genes11020136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 11/17/2022] Open
Abstract
Fragile X Syndrome (FXS), an X-linked dominant monogenic condition, is the main genetic cause of intellectual disability (ID) and autism spectrum disorder (ASD). FXS is associated with an expansion of CGG repeat sequence in the Fragile X Mental Retardation gene 1 (FMR1) on chromosome X. Following a neuropediatric assessment of two male siblings who presented with signs of FXS that was confirmed with molecular testing, we provided cascade counselling and testing to the extended family. A total of 46 individuals were tested for FXS; among them, 58.70% (n = 27) were females. The mean age was 9.4 (±5) years for children and 45.9 (±15.9) years for adults. Pedigree analysis suggested that the founder of these families was likely a normal transmitting male. Four out of 19 males with clinical ID were confirmed to have a full mutation for FXS, while 14/27 females had a pathologic CGG expansion (>56 CGG repeats) on one of their X chromosomes. Two women with premature menopause were confirmed of being carriers of premutation (91 and 101 CGG repeats). We also identified maternal alleles (91 and 126 CGG repeats) which expanded to a full mutation in their offspring (>200 CGG repeats). This study is a rare report on FXS from Africa and illustrates the case scenario of implementing genetic medicine for a neurogenetic condition in a rural setting.
Collapse
|
30
|
Huang J, Zhang W, Liu Y, Liu Y, Wang J, Jiang H. Association between the FMR1 CGG repeat lengths and the severity of idiopathic primary ovarian insufficiency: a meta analysis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3116-3122. [PMID: 31352801 DOI: 10.1080/21691401.2019.1645153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim: Reports on the association of the CGG repeat length in the FMR1 gene with the severity of idiopathic POI are inconclusive. Therefore, a meta analysis was performed to investigate the relationship between the expansion of repeat CGG and idiopathic POI risk. Methods: Up to January 2019, 18 case-control or cohort studies involving 3394 idiopathic POI patients and 8461 controls were included for meta analysis. Results: Thirteen studies, including 2047 cases and 6912 controls, met our criteria for the assessment of the premutation and intermediate repeat length in patients with overt POI. Compared with controls, FMR1 gene premutation is significantly associated with overt POI (OR = 8.13; 95% CI: 4.35-15.19; p < .00001), whereas there was no significant correlation between intermediate repeat length and overt POI (OR = 0.86; 95% CI: 0.62-1.18; p = .34). Seven studies, representing 1347 patients and 1948 controls, were eligible for evaluation of the premutation and intermediate repeat length in occult POI. The association between premutation and occult POI was significant (p < .00001), with a pooled fixed effects OR of 11.32 (4.45-28.80), and no significant correlation of intermediate size to occult POI was found in the case-control comparison (OR = 1.00; 95% CI: 0.68-1.47; p = .98). Conclusion: There is a close association between premutation of the FMR1 gene and increased susceptibility to idiopathic POI of each stage and no correlation between intermediate repeat length of the FMR1 gene and the severity of idiopathic POI.
Collapse
Affiliation(s)
- Jing Huang
- a Reproductive Medicine Center, Clinical College of People's Liberation Army, Anhui Medical University , Hefei , China.,b Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army , Hefei , China
| | - Wenxiang Zhang
- c Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University , Hefei , China
| | - Yingchun Liu
- b Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army , Hefei , China
| | - Ying Liu
- b Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army , Hefei , China
| | - Jing Wang
- b Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army , Hefei , China
| | - Hong Jiang
- a Reproductive Medicine Center, Clinical College of People's Liberation Army, Anhui Medical University , Hefei , China.,b Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army , Hefei , China
| |
Collapse
|
31
|
Jiao XF, Li HL, Cheng L, Zhang C, Yang CS, Han J, Yi QS, Chen Z, Zeng LN, Zhang LL. Methodological quality of clinical practice guidelines for genetic testing in children: A systematic assessment using the appraisal of guidelines for research and evaluation II instrument. Medicine (Baltimore) 2019; 98:e18521. [PMID: 31876744 PMCID: PMC6946213 DOI: 10.1097/md.0000000000018521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Genetic testing of children is faced with numerous problems. High-quality clinical practice guidelines (CPGs) are needed to ensure its safe, and appropriate use. This study aimed to systematically identify the current CPGs for genetic testing in children, and to assess the methodological quality of these CPGs.We searched 6 databases, 3 guideline clearinghouses, and 9 web sites of relevant academic agencies from inception to February 2019. CPGs focused on genetic testing in children were included. Four reviewers independently appraised the quality of the eligible CPGs using the appraisal of guidelines for research, and evaluation (AGREE) II instrument.Seventeen CPGs meeting our inclusion criteria were included. Among them, 16 CPGs were focused on the genetic diagnosis/evaluation of diseases, while only 1 CPG was focused on pharmacogenetics. The median domain scores from highest to lowest were: scope and purpose 80.56% (range: 56.95%-87.50%), clarity of presentation 72.22% (range: 45.83%-88.89%), stakeholder involvement 45.83% (range: 27.78%-55.56%), applicability 31.25% (range: 19.79%-54.17%), rigor of development 21.88%, (range: 13.02%-71.88%), and editorial independence 18.75% (range: 0%-83.33%). According to the overall quality, 6 (35%) CPGs were "not recommended," 8 (47%) CPGs were "recommended with modifications," and only 3 (18%) CPGs were "recommended." The clinical topics of the "recommended" CPGs were warfarin, familial Mediterranean fever, and pediatric pulmonary arterial hypertension.The quality of CPGs for genetic testing in children was generally low, and variable across different CPGs and different AGREE II domains. In future guideline development, more attention should be paid to the aspects of stakeholder involvement, rigor of development, applicability, and editorial independence. Not only will guideline users benefit from our results when determining whether to adopt related CPGs to guide genetic testing in children, but guideline developers could also take into account our results to improve the quality of future CPGs.
Collapse
Affiliation(s)
- Xue-Feng Jiao
- Department of Pharmacy
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
- West China School of Medicine, Sichuan University, Sichuan, China
| | - Hai-Long Li
- Department of Pharmacy
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | | | - Chuan Zhang
- Department of Pharmacy
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Chun-Song Yang
- Department of Pharmacy
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Jonathan Han
- College of Arts and Sciences, Cornell University, Ithaca, NY
| | - Qiu-Sha Yi
- Department of Pharmacy
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
- West China School of Medicine, Sichuan University, Sichuan, China
| | - Zhe Chen
- Department of Pharmacy
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Li-Nan Zeng
- Department of Pharmacy
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| | - Ling-Li Zhang
- Department of Pharmacy
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| |
Collapse
|
32
|
Johansen Taber K, Lim-Harashima J, Naemi H, Goldberg J. Fragile X syndrome carrier screening accompanied by genetic consultation has clinical utility in populations beyond those recommended by guidelines. Mol Genet Genomic Med 2019; 7:e1024. [PMID: 31694075 PMCID: PMC6900367 DOI: 10.1002/mgg3.1024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/30/2019] [Accepted: 10/01/2019] [Indexed: 01/12/2023] Open
Abstract
Background Fragile X syndrome (FXS) is the most common inherited form of intellectual disability. Many providers offer preconception or prenatal FXS carrier screening. However, guidelines recommend screening only for those with a family history or undergoing fertility evaluation. Wider screening has been resisted because of concerns about patient understanding of FXS‐associated inheritance patterns and phenotypes. Additionally, the clinical utility has been questioned. Methods We addressed these concerns by analyzing reproductive decision‐making and pregnancy management informed by post‐test genetic consultation among 122 FMR1 premutation carriers identified by expanded carrier screening. Results Sixty‐three percent of those screened met guidelines screening criteria; the remaining 37% did not. Ninety‐eight percent had undergone post‐test genetic consultation. Of respondents screened preconceptionally, 74% reported planning or pursuing actions to reduce the risk of an affected pregnancy; the extent to which couples planned/pursued these actions was not significantly different between those meeting either screening criterion (76%) versus those meeting neither criterion (55%). Of respondents screened prenatally, 41% pursued prenatal diagnostic testing; the extent to which couples pursued prenatal diagnosis was not significantly different between those who met either screening criterion (37%) versus those who met neither criterion (31%). Conclusion These results support the expansion of FXS screening criteria in guidelines.
Collapse
Affiliation(s)
| | | | | | - Jim Goldberg
- Myriad Women's Health, South San Francisco, CA, USA
| |
Collapse
|
33
|
Hughes KR, Hogan AL, Roberts JE, Klusek J. Gesture Frequency and Function in Infants With Fragile X Syndrome and Infant Siblings of Children With Autism Spectrum Disorder. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:2386-2399. [PMID: 31251678 PMCID: PMC6808356 DOI: 10.1044/2019_jslhr-l-17-0491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/22/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Purpose Infant siblings of children with autism spectrum disorder (ASIBs) and infants with fragile X syndrome (FXS) are both at risk for developing autism spectrum disorder (ASD) and communication disorders; however, very few studies have examined 1 of the earliest forms of intentional communication in infants from these groups: gestures. This study examined the frequency and function of gesture use across 12-month-old infant ASIBs, infants with FXS, and low-risk controls. Method Participants included 23 ASIBs who did not later meet diagnostic criteria for ASD, 18 infants with FXS, and 21 low-risk controls. Gestures were coded from a semistructured play-based interaction. Results Overall, infants with FXS displayed fewer gestures than low-risk infants, whereas ASIBs did not differ from the FXS or low-risk groups in overall gesture frequency. In terms of the communicative function of the gestures used, the FXS and ASIB groups displayed significantly fewer social interaction gestures than the low-risk controls, with large effect sizes. Conclusion This study contributes to scant knowledge of early communication phenotypes of infant ASIBs who do not meet criteria for ASD and infants with FXS. Results indicated that gesture function, not frequency, best discriminated at-risk infants from low-risk infants at 12 months of age. Findings have implications for the clinical evaluation and treatment of infants at high risk for ASD and communication disorders.
Collapse
Affiliation(s)
- K. R. Hughes
- Department of Psychological, Health, & Learning Sciences, University of Houston, TX
- Department of Psychology, University of South Carolina, Columbia
| | - Abigail L. Hogan
- Department of Psychology, University of South Carolina, Columbia
| | - Jane E. Roberts
- Department of Psychology, University of South Carolina, Columbia
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia
| |
Collapse
|
34
|
Miranda-Furtado CL, Luchiari HR, Chielli Pedroso DC, Kogure GS, Caetano LC, Santana BA, Santana VP, Benetti-Pinto CL, Reis FM, Maciel MA, Ferriani RA, Ramos ES, Calado RT, Dos Reis RM. Skewed X-chromosome inactivation and shorter telomeres associate with idiopathic premature ovarian insufficiency. Fertil Steril 2019; 110:476-485.e1. [PMID: 30098699 DOI: 10.1016/j.fertnstert.2018.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/26/2018] [Accepted: 04/12/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To analyze whether telomere length, X-chromosome inactivation (XCI), and androgen receptor (AR) GAG polymorphism are related to idiopathic premature ovarian insufficiency (POI). DESIGN Case-control study. SETTING University hospital. PATIENT(S) A total of 121 women, including 46 nonsyndromic POI and 75 controls. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Age, weight, height, body mass index (BMI), systolic and diastolic arterial pressure, E2, androstenedione, T, and C-reactive protein were assessed. Telomere length was estimated by quantitative real-time polymerase chain reaction, XCI was measured using the Human Androgen Receptor and X-linked retinitis pigmentosa 2 (RP2) methylation assays. AR and FMR1 polymorphism was assessed by quantitative fluorescent polymerase chain reaction and sequencing. RESULT(S) Premature ovarian insufficiency women had a higher mean age, weighed less, and exhibited lower C-reactive protein, E2, and androstenedione levels. The AR polymorphism did not differ between the groups. Four patients had premutation (55-200 CGG repeats), and none displayed a full mutation in the FMR1 gene. However, patients with POI showed shorter telomere length and higher frequency of skewed XCI. Extreme skewing (≥90%) was observed in 15% of women with POI, and shorter telomeres correlated with XCI skewing in both groups. CONCLUSION(S) Skewed XCI and shortened telomere length were associated with idiopathic POI, despite no alterations in the AR and FMR1 genes. Additionally, there is a tendency for women with short telomeres to exhibit skewed XCI.
Collapse
Affiliation(s)
- Cristiana L Miranda-Furtado
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Heloise R Luchiari
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daiana C Chielli Pedroso
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gislaine S Kogure
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lisandra C Caetano
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bárbara A Santana
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Viviane P Santana
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristina L Benetti-Pinto
- Department of Gynecology and Obstetrics, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fernando M Reis
- Department of Gynecology and Obstetrics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariella A Maciel
- Department of Gynecology and Obstetrics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rui A Ferriani
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ester S Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo T Calado
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rosana M Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
35
|
FERREIRA JORGEF, BATISTA JACQUELINES, FANTIN CLEITON. Screening for FMR1 expanded alleles in patients with Autism Spectrum Disorders in Manaus, Northern Brazil. AN ACAD BRAS CIENC 2019; 91:e20180882. [DOI: 10.1590/0001-3765201920180882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/04/2018] [Indexed: 11/22/2022] Open
|
36
|
Tremblay I, Grondin S, Laberge AM, Cousineau D, Carmant L, Rowan A, Janvier A. Diagnostic and Therapeutic Misconception: Parental Expectations and Perspectives Regarding Genetic Testing for Developmental Disorders. J Autism Dev Disord 2018; 49:363-375. [DOI: 10.1007/s10803-018-3768-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Abstract
Prenatal carrier screening has expanded to include a larger number of genes and variants offered to all couples considering or with an ongoing pregnancy. Panethnic screening for cystic fibrosis and spinal muscular atrophy and screening for a limited number of conditions based on ethnicity are recommended by the American College of Obstetricians and Gynecologists. Residual risk calculations have become an obsolete part of posttest counseling when expanded carrier screening (ECS) is selected. The Perception of Uncertainties in Genome Sequencing scale offers a useful understanding of the pretest and posttest counseling concerns that should be considered as part of ECS implementation.
Collapse
Affiliation(s)
- Anthony R Gregg
- Department of Obstetrics and Gynecology, University of Florida College of Medicine, PO Box 100294, Gainesville, FL 32610-0294, USA.
| |
Collapse
|
38
|
Melancia F, Trezza V. Modelling fragile X syndrome in the laboratory setting: A behavioral perspective. Behav Brain Res 2018; 350:149-163. [DOI: 10.1016/j.bbr.2018.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
|
39
|
Haham LM, Avrahami I, Domniz N, Ries-Levavi L, Berkenstadt M, Orvieto R, Cohen Y, Elizur SE. Preimplantation genetic diagnosis versus prenatal diagnosis-decision-making among pregnant FMR1 premutation carriers. J Assist Reprod Genet 2018; 35:2071-2075. [PMID: 30136016 DOI: 10.1007/s10815-018-1293-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/16/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To detect which factors influence decision-making among pregnant FMR1 premutation carriers regarding the preferred mode of genetic diagnosis: IVF-PGT-M (in vitro fertilization with preimplantation genetic testing for monogenic gene diseases), or CVS (chorionic villus sampling), or AC (amniocentesis) after spontaneous conception. METHODS In Israel FMR1 premutation preconception genetic screening is offered, free of charge, to every woman in her reproductive years. FMR1 premutation carriers with ≥ 70 CGG repeats, or a history of FXS offspring, are offered IVF-PGT-M. This is a historical cohort study including all pregnant FMR1 premutation carriers who underwent prenatal diagnosis between the years 2011 and 2016 at a tertiary medical center. Data were collected from electronic charts and through phone interviews. RESULTS One hundred seventy-five women with high-risk pregnancies who were offered IVF-PGT-M were evaluated. In 37 pregnancies (21%), the women decided to undergo IVF-PGT-M. Using the generalized estimating equations (GEE) statistical method including seven parameters, we found that previous termination of pregnancy due to FXS and advanced woman's age were significantly associated with making the decision to undergo IVF-PGT-M. Previously failed IVF was the most significant parameter in a woman's decision not to undergo IVF-PGT-M. CONCLUSION The most dominant factor affecting the decision of FMR1 premutation carriers to choose spontaneous conception with prenatal diagnosis versus IVF-PGT-M is a previous experience of failed IVF treatments. Women whose IVF treatments failed in the past tended to try to conceive naturally and later, during the course of the pregnancy, perform CVS or AC. Conversely, women who previously experienced a termination of pregnancy (TOP) due to an affected fetus, and older women, preferred to undergo IVF-PGT-M procedures.
Collapse
Affiliation(s)
| | | | - Noam Domniz
- IVF Unit, Sheba Medical Center, Tel Hashomer, Israel
| | - Liat Ries-Levavi
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Berkenstadt
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raoul Orvieto
- IVF Unit, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yoram Cohen
- IVF Unit, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai E Elizur
- IVF Unit, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Fragile X syndrome and fragile X-associated tremor ataxia syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:377-391. [PMID: 29325626 DOI: 10.1016/b978-0-444-63233-3.00025-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fragile X-associated disorders encompass several conditions, which are caused by expansion mutations in the fragile X mental retardation 1 (FMR1) gene. Fragile X syndrome is the most common inherited etiology of intellectual disability and results from a full mutation or >200 CGG repeats in FMR1. It is associated with developmental delay, autism spectrum disorder, and seizures. Fragile X-associated tremor/ataxia syndrome is a progressive neurodegenerative disease that occurs in premutation carriers of 55-200 CGG repeats in FMR1 and is characterized by kinetic tremor, gait ataxia, parkinsonism, executive dysfunction, and neuropathy. Fragile X-associated primary ovarian insufficiency also occurs in premutation carrier women and manifests with infertility and early menopause. The diseases constituting fragile X-associated disorders differ mechanistically, due to the distinct molecular properties of premutation versus full mutations. Fragile X syndrome occurs when there is a lack of fragile X mental retardation protein (FMRP) due to FMR1 methylation and silencing. In fragile X-associated tremor ataxia syndrome, a toxic gain of function is postulated with the production of excess CGG repeat-containing FMR1 mRNA, abnormal translation of the repeat sequence leading to production of polyglycine, polyalanine, and other polypeptides and to outright deficits in translation leading to reduced FMRP at larger premutation sizes. The changes in underlying brain chemistry due to FMR1 mutations have led to therapeutic studies in these disorders, with some progress being made in fragile X syndrome. This paper also summarizes indications for testing, genetic counseling issues, and what the future holds for these disorders.
Collapse
|
41
|
Fragkos M, Bili H, Ntelios D, Tzimagiorgis G, Tarlatzis BC. Are expanded alleles of the FMR1 gene related to unexplained recurrent miscarriages? Hippokratia 2018; 22:132-136. [PMID: 31641334 PMCID: PMC6801122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND In women with recurrent miscarriages, up to 50 % of those cases remain unexplained. In this study, we evaluated the impact of Cytosine/Guanine/Guanine (CGG) trinucleotide expansions of the fragile-X mental retardation 1 (FMR1) gene in women with unexplained recurrent miscarriages. METHODS This is a prospective case-control pilot study involving 49 women with unexplained recurrent miscarriages and 49 age-matched controls with documented fertility. The case group consisted of women with a history of two or more consecutive miscarriages, in whom no known factor could be identified. The maximum age of recruitment was 40 years. We obtained blood samples that were checked, using polymerase chain reaction with electrophoresis, for the presence of expanded alleles of the FMR1 gene. We further evaluated using sequencing analysis, those women marked as positive. We set the limit at more than 40 repeats. RESULTS The repeat sizes of CGG expansion in the FMR1 gene differ significantly in the two population groups (p =0.027). We found four women in the miscarriage group and one in the control group positive for carrying premutation alleles (Odds ratio: 4.267, confidence interval: 0.459-39.629). All the positive cases involved intermediate zone carriers. We found no association between the number of abortions each woman had, and her respective CGG repeat number (p =0.255). CONCLUSIONS Many couples are desperately looking for the cause of their recurrent miscarriage suffering. The CGG expanded allele of the FMR1 gene is possibly to be blamed in some of these cases. More studies are needed to support the results of this prototype study. HIPPOKRATIA 2018, 22(3): 132-136.
Collapse
Affiliation(s)
- M Fragkos
- 1 Department of Obstetrics and Gynecology, Papageorgiou University Hospital, Thessaloniki, Greece
| | - H Bili
- 1 Department of Obstetrics and Gynecology, Papageorgiou University Hospital, Thessaloniki, Greece
| | - D Ntelios
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - G Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - B C Tarlatzis
- 1 Department of Obstetrics and Gynecology, Papageorgiou University Hospital, Thessaloniki, Greece
| |
Collapse
|
42
|
Tremblay I, Janvier A, Laberge AM. Paediatricians underuse recommended genetic tests in children with global developmental delay. Paediatr Child Health 2018; 23:e156-e162. [PMID: 30842697 DOI: 10.1093/pch/pxy033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objectives To assess paediatricians' use of genetic testing for children with global developmental delay (GDD). Study Design We developed and piloted a questionnaire assessing the use of genetic tests in children with GDD and awareness of relevant guidelines. All practicing Quebec paediatricians were contacted. Paediatricians who did not evaluate children with GDD in their practice were excluded. Descriptive and statistical analyses were performed with SPSS. Results Of the 651 paediatricians, 225 answered (34.5%) and 141 were eligible. Only 31.9% were familiar with at least one guideline about genetic tests for the investigation of children with GDD, but 93.6% had ordered genetic testing for children with GDD (Fragile X testing [92.9%], karyotype [87.2%] and chromosomal microarray [63.8%]). Based on vignettes, 20.6% of participants would order genetic tests for isolated GDD and 95.0% for GDD with dysmorphic features and microcephaly. Only 56.7% ordered Fragile X testing for a girl with GDD and a known family history of Fragile X syndrome. Use of tests for isolated GDD was increased in presence of maternal pregnancy, compared with absence of pregnancy (44.7% and 27.7%, respectively). More participants would order genetic tests for a child with GDD and fetal exposure to alcohol (69.5%) than isolated GDD (20.6%). Conclusions Even though paediatricians often order genetic testing for children with GDD, practices and knowledge regarding testing are not optimal. As new and more complex genetic tests are developed, up-to-date training about the use of genetic tests for children with GDD needs to be integrated into paediatrics residency programs and continuous medical education.
Collapse
Affiliation(s)
- Isabelle Tremblay
- Research Center, CHU Sainte-Justine, Montréal, Quebec.,Division of Psychology, CHU Sainte-Justine, Montreal, Quebec.,Unité d'éthique Clinique, CHU Sainte-Justine, Montreal, Quebec
| | - Annie Janvier
- Research Center, CHU Sainte-Justine, Montréal, Quebec.,Unité d'éthique Clinique, CHU Sainte-Justine, Montreal, Quebec.,Division of Neonatology, Unité de soins palliatifs, Unité de recherche en éthique clinique et partenariat famille, CHU Sainte-Justine, Montréal, Quebec.,Bureau de l'Éthique Clinique, Université de Montreal, Montreal, Quebec.,Department of Pediatrics, Université de Montréal, Montreal, Quebec
| | - Anne-Marie Laberge
- Research Center, CHU Sainte-Justine, Montréal, Quebec.,Department of Pediatrics, Université de Montréal, Montreal, Quebec.,Division of Medical Genetics, CHU Sainte-Justine, Montreal, Quebec
| |
Collapse
|
43
|
Owens KM, Dohany L, Holland C, DaRe J, Mann T, Settler C, Longman RE. FMR1 premutation frequency in a large, ethnically diverse population referred for carrier testing. Am J Med Genet A 2018; 176:1304-1308. [PMID: 29603880 PMCID: PMC6001625 DOI: 10.1002/ajmg.a.38692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/23/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and is caused by an expansion of cytosine‐guanine‐guanine (CGG) repeats in the FMR1 gene. Female premutation allele carriers (55–200 CGG repeats) are at risk to have an affected child. Currently, specific population‐based carrier screening for FXS is not recommended. Previous studies exploring female premutation carrier frequency have been limited by size or ethnicity. This retrospective study provides a pan‐ethnic estimate of the Fragile X premutation carrier frequency in a large, ethnically diverse population of women referred for routine carrier screening during a specified time period at Progenity, Inc. Patient ethnicity was self‐reported and categorized as: African American, Ashkenazi Jewish, Asian, Caucasian, Hispanic, Native American, Other/Mixed/Unknown, or Sephardic Jewish. FXS test results were stratified by ethnicity and repeat allele category. Total premutation carrier frequency was calculated and compared against each ethnic group. A total of 134,933 samples were included. The pan‐ethnic premutation carrier frequency was 1 in 201. Only the Asian group differed significantly from this frequency. Using the carrier frequency of 1 in 201, a conservative pan‐ethnic risk estimate for a male fetus to have FXS can be calculated as 1 in 2,412. This risk is similar to the highest ethnic‐based fetal risks for cystic fibrosis and spinal muscular atrophy, for which population‐wide screening is currently recommended. This study adds to the literature and supports further evaluation into specific population‐wide screening recommendations for FXS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ryan E Longman
- Department of Obstetrics and Gynecology, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
44
|
|
45
|
Wilson RD, De Bie I, Armour CM, Brown RN, Campagnolo C, Carroll JC, Okun N, Nelson T, Zwingerman R, Audibert F, Brock JA, Brown RN, Campagnolo C, Carroll JC, De Bie I, Johnson JA, Okun N, Pastruck M, Vallée-Pouliot K, Wilson RD, Zwingerman R, Armour C, Chitayat D, De Bie I, Fernandez S, Kim R, Lavoie J, Leonard N, Nelson T, Taylor S, Van Allen M, Van Karnebeek C. Joint SOGC-CCMG Opinion for Reproductive Genetic Carrier Screening: An Update for All Canadian Providers of Maternity and Reproductive Healthcare in the Era of Direct-to-Consumer Testing. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2018; 38:742-762.e3. [PMID: 27638987 DOI: 10.1016/j.jogc.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This guideline was written to update Canadian maternity care and reproductive healthcare providers on pre- and postconceptional reproductive carrier screening for women or couples who may be at risk of being carriers for autosomal recessive (AR), autosomal dominant (AD), or X-linked (XL) conditions, with risk of transmission to the fetus. Four previous SOGC- Canadian College of Medical Geneticists (CCMG) guidelines are updated and merged into the current document. INTENDED USERS All maternity care (most responsible health provider [MRHP]) and paediatric providers; maternity nursing; nurse practitioner; provincial maternity care administrator; medical student; and postgraduate resident year 1-7. TARGET POPULATION Fertile, sexually active females and their fertile, sexually active male partners who are either planning a pregnancy or are pregnant (preferably in the first trimester of pregnancy, but any gestational age is acceptable). OPTIONS Women and their partners will be able to obtain appropriate genetic carrier screening information and possible diagnosis of AR, AD, or XL disorders (preferably pre-conception), thereby allowing an informed choice regarding genetic carrier screening and reproductive options (e.g., prenatal diagnosis, preimplantation genetic diagnosis, egg or sperm donation, or adoption). OUTCOMES Informed reproductive decisions related to genetic carrier screening and reproductive outcomes based on family history, ethnic background, past obstetrical history, known carrier status, or genetic diagnosis. SOGC REPRODUCTIVE CARRIER SCREENING SUMMARY STATEMENT (2016): Pre-conception or prenatal education and counselling for reproductive carrier screening requires a discussion about testing within the three perinatal genetic carrier screening/diagnosis time periods, which include pre-conception, prenatal, and neonatal for conditions currently being screened for and diagnosed. This new information should be added to the standard reproductive carrier screening protocols that are already being utilized by the most responsible maternity provider through the informed consent process with the patient. (III-A; GRADE low/moderate) SOGC OVERVIEW OF RECOMMENDATIONS QUALITY AND GRADE: There was a strong observational/expert opinion (quality and grade) for the genetic carrier literature with randomized controlled trial evidence being available only for the invasive testing. Both the Canadian Task Force on Preventive Health Care quality and classification and the GRADE evidence quality and grade are provided. EVIDENCE MEDLINE; PubMed; government neonatal screening websites; key words/common reproductive genetic carrier screened diseases/previous SOGC Guidelines/medical academic societies (Society of Maternal-Fetal Medicine [SMFM]; American College of Medical Genetics and Genomics; American College of Obstetricians and Gynecologists [ACOG]; CCMG; Royal College Obstetrics and Gynaecology [RCOG] [UK]; American Society of Human Genetics [ASHG]; International Society of Prenatal Diagnosis [ISPD])/provincial neonatal screening policies and programs; search terms (carrier screening, prenatal screening, neonatal genetic/metabolic screening, cystic fibrosis (CF), thalassemia, hemoglobinopathy, hemophilia, Fragile X syndrome (FXS), spinal muscular atrophy, Ashkenazi Jewish carrier screening, genetic carrier screening protocols, AR, AD, XL). SEARCH PERIOD 10 years (June 2005-September 2015); initial search dates June 30, 2015 and September 15, 2015; completed final search January 4, 2016. Validation of articles was completed by primary authors RD Wilson and I De Bie. BENEFITS, HARMS, AND COST Benefits are to provide an evidenced based reproductive genetic carrier screening update consensus based on international opinions and publications for the use of Canadian women, who are planning a pregnancy or who are pregnant and have been identified to be at risk (personal or male partner family or reproductive history) for the transmission of a clinically significant genetic condition to their offspring with associated morbidity and/or mortality. Harm may arise from having counselling and informed testing of the carrier status of the mother, their partner, or their fetus, as well as from declining to have this counselling and informed testing or from not having the opportunity for counselling and informed testing. Costs will ensue both from the provision of opportunities for counselling and testing, as well as when no such opportunities are offered or are declined and the birth of a child with a significant inherited condition and resulting morbidity/mortality occurs; these comprise not only the health care costs to the system but also the social/financial/psychological/emotional costs to the family. These recommendations are based on expert opinion and have not been subjected to a health economics assessment and local or provincial implementation will be required. GUIDELINE UPDATE This guideline is an update of four previous joint SOGC-CCMG Genetic Screening Guidelines dated 2002, 2006, 2008, and 2008 developed by the SOGC Genetic Committee in collaboration with the CCMG Prenatal Diagnosis Committee (now Clinical Practice Committee). 2016 CARRIER SCREENING RECOMMENDATIONS.
Collapse
|
46
|
Wang XH, Song XH, Wang YL, Diao XH, Li T, Li QC, Zhang XH, Deng XH. Expanded alleles of the FMR1 gene are related to unexplained recurrent miscarriages. Biosci Rep 2017; 37:BSR20170856. [PMID: 29054962 PMCID: PMC5700269 DOI: 10.1042/bsr20170856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/09/2017] [Accepted: 10/19/2017] [Indexed: 11/24/2022] Open
Abstract
Up to 50% of recurrent miscarriage cases in women occur without an underlying etiology. In the current prospective case-control study, we determined the impact of CGG trinucleotide expansions of the fragile-X mental retardation 1 (FMR1) gene in 49 women with unexplained recurrent miscarriages. Case group consisted of women with two or more unexplained consecutive miscarriages. Blood samples were obtained and checked for the presence of expanded alleles of the FMR1 gene using PCR. Patients harboring the expanded allele, with a threshold set to 40 repeats, were further evaluated by sequencing. The number of abortions each woman had, was not associated with her respective CGG repeat number (P=0.255). The repeat sizes of CGG expansion in the FMR1 gene were significantly different in the two population groups (P=0.027). All the positive cases involved intermediate zone carriers. Hence, the CGG expanded allele of the FMR1 gene might be associated with unexplained multiple miscarriages; whether such an association is coincidental or causal can be confirmed by future studies using a larger patient cohort.
Collapse
Affiliation(s)
- Xin-hua Wang
- Department of Reproductive Medical Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
- Department of Reproductive Medicine, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Xiao-hua Song
- Department of Obstetrics and Gynecology, Binzhou People’s Hospital, Binzhou, Shandong 256610, China
| | - Yan-lin Wang
- Department of Reproductive Medicine, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Xing-hua Diao
- Department of Reproductive Medicine, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Tong Li
- Xinshijie Zhongxing Eye Hospital, Shanghai 200050, China
| | - Qing-chun Li
- Department of Reproductive Medicine, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Xiang-hui Zhang
- Department of Reproductive Medicine, Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong 256603, China
| | - Xiao-hui Deng
- Department of Reproductive Medical Center, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
47
|
Abstract
Fragile X syndrome (FXS) is the leading inherited form of intellectual disability and autism spectrum disorder, and patients can present with severe behavioural alterations, including hyperactivity, impulsivity and anxiety, in addition to poor language development and seizures. FXS is a trinucleotide repeat disorder, in which >200 repeats of the CGG motif in FMR1 leads to silencing of the gene and the consequent loss of its product, fragile X mental retardation 1 protein (FMRP). FMRP has a central role in gene expression and regulates the translation of potentially hundreds of mRNAs, many of which are involved in the development and maintenance of neuronal synaptic connections. Indeed, disturbances in neuroplasticity is a key finding in FXS animal models, and an imbalance in inhibitory and excitatory neuronal circuits is believed to underlie many of the clinical manifestations of this disorder. Our knowledge of the proteins that are regulated by FMRP is rapidly growing, and this has led to the identification of multiple targets for therapeutic intervention, some of which have already moved into clinical trials or clinical practice.
Collapse
|
48
|
Mullegama SV, Klein SD, Nguyen DC, Kim A, Signer R, Fox M, Dorrani N, Hendershot A, Mardach R, Suddath R, Dipple K, Vilain E, Wong DA, Deignan JL, D. Cederbaum S, Grody WW, Martinez-Agosto JA. Is it time to retire fragile X testing as a first-tier test for developmental delay, intellectual disability, and autism spectrum disorder? Genet Med 2017; 19:S1098-3600(21)04769-9. [DOI: 10.1038/gim.2017.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
49
|
Himes P, Kauffman TL, Muessig KR, Amendola LM, Berg JS, Dorschner MO, Gilmore M, Nickerson DA, Reiss JA, Richards CS, Rope AF, Simpson DK, Wilfond BS, Jarvik GP, Goddard KA. Genome sequencing and carrier testing: decisions on categorization and whether to disclose results of carrier testing. Genet Med 2017; 19:803-808. [PMID: 28079899 PMCID: PMC5509491 DOI: 10.1038/gim.2016.198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023] Open
Abstract
PURPOSE We investigated the use of genome sequencing for preconception carrier testing. Genome sequencing could identify one or more of thousands of X-linked or autosomal recessive conditions that could be disclosed during preconception or prenatal counseling. Therefore, a framework that helps both clinicians and patients understand the possible range of findings is needed to respect patient preferences by ensuring that information about only the desired types of genetic conditions are provided to a given patient. METHODS We categorized gene-condition pairs into groups using a previously developed taxonomy of genetic conditions. Patients could elect to receive results from these categories. A Return of Results Committee (RORC) developed inclusion and exclusion criteria for each category. RESULTS To date, the RORC has categorized 728 gene-condition pairs: 177 are categorized as life span-limiting, 406 are categorized as serious, 93 are categorized as mild, 41 are categorized as unpredictable, and 11 are categorized as adult-onset. An additional 64 gene-condition pairs were excluded from reporting to patients or put on a watch list, generally because evidence that a gene and condition were associated was limited. CONCLUSION Categorization of gene-condition pairs using our taxonomy simplifies communication regarding patient preferences for carrier information from a genomic test.Genet Med advance online publication 12 January 2017.
Collapse
Affiliation(s)
- Patricia Himes
- Department of Medical Genetics, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Tia L. Kauffman
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Kristin R. Muessig
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Laura M. Amendola
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Jonathan S. Berg
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Marian Gilmore
- Department of Medical Genetics, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Deborah A. Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jacob A. Reiss
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - C. Sue Richards
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Alan F. Rope
- Northwest Permanente, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Dana K. Simpson
- Northwest Permanente, Kaiser Permanente Northwest, Portland, Oregon, USA
| | - Benjamin S. Wilfond
- Seattle Children’s Research Institute, Treuman Katz Center for Pediatric Bioethics, Seattle, Washington, USA
| | - Gail P. Jarvik
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
50
|
Metcalfe SA, Martyn M, Ames A, Anderson V, Archibald AD, Couns GDG, Carter R, Cohen J, Cotter M, GenCouns M, Dang W, Delatycki MB, Donath S, Edwards S, Educ PGD, Couns GDG, Forbes R, Couns GDG, Gavrila M, MedSci M, Halliday J, Hickerton C, Hill M, Couns GDG, Jacobs L, Ultrasound PGD, Petrou V, Couns GDG, Plunkett L, GenCouns M, Sheffield L, Racp F, Thornton A, Couns GDG, Younie S, Econ PGDH, Emery JD. Informed decision making and psychosocial outcomes in pregnant and nonpregnant women offered population fragile X carrier screening. Genet Med 2017; 19:1346-1355. [PMID: 28661491 DOI: 10.1038/gim.2017.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/05/2017] [Indexed: 01/13/2023] Open
Abstract
PurposePopulation-based carrier screening for fragile X syndrome (FXS) is still not universally endorsed by professional organizations due to concerns around genetic counseling for complex information and potential for psychosocial harms.MethodsWe determined uptake levels, decision making, and psychosocial impact in a prospective study of pregnant and nonpregnant Australian women offered FXS carrier screening in clinical settings. Women received pretest genetic counseling, and completed questionnaires when deciding and one month later.ResultsOf 1,156 women recruited, 83.1% returned the first questionnaire with 70.6% nonpregnant and 58.8% pregnant women choosing testing (χ2=16.98, P<0.001). Overall, informed choice was high in both nonpregnant (77.4%) and pregnant (72.9%) women (χ2=0.21, P=0.644), and more tested (76.0%) than not-tested (66.7%) women (χ2=6.35, P=0.012) made an informed choice. Measures of depression, stress, and anxiety were similar to population norms for ~85% of women. Decisional conflict and regret were generally low; however, decisional uncertainty and regret were greater in pregnant than nonpregnant women, and not-tested than tested women (uncertainty: χ2=18.51, P<0.001 and χ2=43.11, P<0.001, respectively; regret: χ2=6.61, P<0.037 and χ2=35.54, P<0.001, respectively).ConclusionWe provide evidence to inform guidelines that population FXS carrier screening can be implemented with minimal psychosocial harms following appropriate information and prescreening genetic counseling.
Collapse
Affiliation(s)
- Sylvia A Metcalfe
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa Martyn
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Alice Ames
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vicki Anderson
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Alison D Archibald
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Melbourne, Victoria, Australia
| | - Grad Dip Gen Couns
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Melbourne, Victoria, Australia
| | - Rob Carter
- Faculty of Health, Deakin Health Economics, Deakin University, Melbourne, Victoria, Australia
| | - Jonathan Cohen
- Fragile X Alliance Clinic and Centre for Developmental Disability Health Victoria, Monash University, Melbourne, Victoria, Australia
| | - Megan Cotter
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Austin Health, Melbourne, Victoria, Australia
| | - M GenCouns
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Austin Health, Melbourne, Victoria, Australia
| | - William Dang
- Australian Clinical Labs (formerly Healthscope Pathology), Clayton, Victoria, Australia
| | - Martin B Delatycki
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Melbourne, Victoria, Australia
| | - Susan Donath
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Samantha Edwards
- School of Primary Aboriginal and Rural Health Care, University of Western Australia
| | - PGrad Dip Educ
- School of Primary Aboriginal and Rural Health Care, University of Western Australia
| | - Grad Dip Gen Couns
- School of Primary Aboriginal and Rural Health Care, University of Western Australia
| | - Robin Forbes
- Victorian Clinical Genetics Services, Melbourne, Victoria, Australia
| | | | - Mioara Gavrila
- Australian Clinical Labs (formerly Healthscope Pathology), Clayton, Victoria, Australia
| | - M MedSci
- Australian Clinical Labs (formerly Healthscope Pathology), Clayton, Victoria, Australia
| | - Jane Halliday
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Melissa Hill
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Great Ormond Street Hospital for Children, London, UK
| | - Grad Dip Gen Couns
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Great Ormond Street Hospital for Children, London, UK
| | - Lorilli Jacobs
- School of Primary Aboriginal and Rural Health Care, University of Western Australia
| | - PGrad Dip Ultrasound
- School of Primary Aboriginal and Rural Health Care, University of Western Australia
| | - Vicki Petrou
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | | | - Loren Plunkett
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - M GenCouns
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Leslie Sheffield
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Melbourne, Victoria, Australia.,MyDNA Life Australia, Melbourne, Victoria, Australia
| | - F Racp
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Melbourne, Victoria, Australia.,MyDNA Life Australia, Melbourne, Victoria, Australia
| | - Alison Thornton
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | | | - Sandra Younie
- Faculty of Health, Deakin Health Economics, Deakin University, Melbourne, Victoria, Australia
| | - PGrad Dip Hlth Econ
- Faculty of Health, Deakin Health Economics, Deakin University, Melbourne, Victoria, Australia
| | - Jon D Emery
- School of Primary Aboriginal and Rural Health Care, University of Western Australia.,Department of General Practice, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|