1
|
Breitschaft FA, Saak AL, Krumbiegel C, Bartolomeu ADA, Weyhermüller T, Waldvogel SR. Multicomponent Electrosynthesis of Enaminyl Sulfonates Starting from Alkylamines, SO 2, and Alcohols. Org Lett 2025; 27:1210-1215. [PMID: 39869543 DOI: 10.1021/acs.orglett.4c04746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
An electrochemical one-pot synthesis of enaminyl sulfonate esters was established, featuring a quasidivided cell under constant current conditions. The multicomponent reaction utilizes simple and readily available alkylamines and an easy-to-use stock solution of SO2 and alcohols. Omission of additional supporting electrolyte through in-situ-generated monoalkylsulfite facilitates the downstream processing. A diverse scope with more than 28 examples and yields up to 85% as well as a 20-fold scale-up reaction prove the feasibility of this novel protocol.
Collapse
Affiliation(s)
- Florian A Breitschaft
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Alicia L Saak
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55218 Mainz, Germany
| | - Christian Krumbiegel
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Aloisio de A Bartolomeu
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Siegfried R Waldvogel
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS FMS), Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Rezaei H, Wang HW, Tian W, Zhao J, Najibi A, Retana-Márquez S, Rafiei E, Rowhanirad A, Sabouri S, Kiafar M, Fazlinezhad R, Niknahad AM, Evazzadeh F, Anousheh ST, Ommati MM, Niknahad H, Heidari R. Long-term taurine supplementation regulates brain mitochondrial dynamics in mice. Basic Clin Pharmacol Toxicol 2025; 136:e14101. [PMID: 39558449 DOI: 10.1111/bcpt.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Taurine (TAU) is the most abundant non-protein amino acid in the central nervous system (CNS). However, the molecular mechanism of TAU in the CNS is still poorly understood. Meanwhile, disruption in mitochondrial dynamics is evident in CNS disorders. This study aimed to investigate the effect of TAU on mitochondrial dynamics. METHODS TAU (0.25, 0.5 and 1% in drinking water) was administered to young mice for six months. Several memory/cognition parameters and indices of anxiety/depression were assessed. Meanwhile, various mitochondrial indices and the expression/activity of genes involved in mitochondrial biogenesis and dynamics (Akt, CREB, NRF1, TFAM, PGC-1α, Mfn1, Mfn2, UCP2, PINK1, OPA1, Drp1 and Fis1) were examined. RESULTS TAU significantly enhanced memory performance, suppressed anxiety and depression-like behaviour, increased mitochondrial biogenesis/dynamics and improved mitochondrial indices. It should be mentioned that there was no significant difference between different concentrations of TAU in changing most brain mitochondrial dynamic biomarkers in the current study. CONCLUSIONS These findings offer more insights into the molecular mechanism for TAU's action in the CNS. However, there is a need for further research to confirm these effects in humans. Overall, this study suggests the potential application of TAU in various neurological disorders and the need for clinical studies on the effects of this amino acid in the brain.
Collapse
Affiliation(s)
- Heresh Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Weishun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Socorro Retana-Márquez
- Department of Reproductive Biology, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Elahe Rafiei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ayeh Rowhanirad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Mohammadreza Kiafar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahil Fazlinezhad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mohammad Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Evazzadeh
- Department of Psychology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Bjerknes H, Elvevoll EO, Alterskjær Sundset M, Langdal A, Eilertsen KE. Farmed blue mussels ( Mytilus edulis)-a nutrient-dense resource retaining nutritional value through processing. Front Nutr 2024; 11:1443229. [PMID: 39555190 PMCID: PMC11563823 DOI: 10.3389/fnut.2024.1443229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
This study investigated how farmed blue mussels (Mytilus edulis) can optimize human nutrient intake. A particular focus was on assessing nutrient preservation during steaming and freeze-drying, processes that could deplete nutrients. The study compared the content of essential amino acids and fatty acids in steamed and freeze-dried blue mussels to the nutritional needs of humans and farmed Atlantic salmon (Salmo salar). Additionally, it assessed the ethyl acetate method versus the traditional, more toxic Folch method for lipid extraction from blue mussels. Both steaming and freeze-drying effectively preserved essential amino acids and fatty acids in blue mussels. A 100 g serving of steamed blue mussels contributes from 26.8 ± 0.78% (Phe) to 54.9 ± 1.66% (Thr) of the daily recommended intake of essential amino acids (EAA). For steamed freeze-dried blue mussels, over 100% of the recommended intake is met for all EAA and as much as 243% for threonine. The 100 g serving will also provide 271 mg eicosapentaenoic acid (EPA; 20:5n-3) and 220 mg docosahexaenoic acid (DHA; 22:6n-3), thus covering the required intake of n-3 long-chain polyunsaturated fatty acids for adults as well as the recommended intake for pregnant and lactating women. Mussels are non-fed filter feeders that generally provide these nutrients with significantly lower environmental footprints, measured as global warming, eutrophication, and acidification, compared to farmed Atlantic salmon. Blue mussels can also be a valuable feed ingredient for farmed Atlantic salmon. Finally, it was demonstrated that the ethyl acetate method is not suited for lipid extraction from blue mussels, as the lipid yield was only half compared to the lipid yield using the Folch method.
Collapse
Affiliation(s)
- Hanne Bjerknes
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Edel O. Elvevoll
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Monica Alterskjær Sundset
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Andreas Langdal
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Karl-Erik Eilertsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Ren L, Pushpakumar S, Almarshood H, Das SK, Sen U. Epigenetic DNA Methylation and Protein Homocysteinylation: Key Players in Hypertensive Renovascular Damage. Int J Mol Sci 2024; 25:11599. [PMID: 39519150 PMCID: PMC11546175 DOI: 10.3390/ijms252111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertension has been a threat to the health of people, the mechanism of which, however, remains poorly understood. It is clinically related to loss of nephron function, glomerular sclerosis, or necrosis, resulting in renal functional declines. The mechanisms underlying hypertension's development and progression to organ damage, including hypertensive renal damage, remain to be fully elucidated. As a developing approach, epigenetics has been postulated to elucidate the phenomena that otherwise cannot be explained by genetic studies. The main epigenetic hallmarks, such as DNA methylation, histone acetylation, deacetylation, noncoding RNAs, and protein N-homocysteinylation have been linked with hypertension. In addition to contributing to endothelial dysfunction and oxidative stress, biologically active gases, including NO, CO, and H2S, are crucial regulators contributing to vascular remodeling since their complex interplay conducts homeostatic functions in the renovascular system. Importantly, epigenetic modifications also directly contribute to the pathogenesis of kidney damage via protein N-homocysteinylation. Hence, epigenetic modulation to intervene in renovascular damage is a potential therapeutic approach to treat renal disease and dysfunction. This review illustrates some of the epigenetic hallmarks and their mediators, which have the ability to diminish the injury triggered by hypertension and renal disease. In the end, we provide potential therapeutic possibilities to treat renovascular diseases in hypertension.
Collapse
Affiliation(s)
- Lu Ren
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Swapan K. Das
- Department of Internal Medicine, Section on Endocrinology and Metabolism, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| |
Collapse
|
5
|
Tain YL, Hsu CN. Maternal Dietary Strategies for Improving Offspring Cardiovascular-Kidney-Metabolic Health: A Scoping Review. Int J Mol Sci 2024; 25:9788. [PMID: 39337276 PMCID: PMC11432268 DOI: 10.3390/ijms25189788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Dietary regulation has been recognized for its profound impact on human health. The convergence of cardiovascular, kidney, and metabolic disorders at the pathophysiological level has given rise to cardiovascular-kidney-metabolic (CKM) syndrome, which constitutes a significant global health burden. Maternal dietary nutrients play a crucial role in fetal development, influencing various programmed processes. This review emphasizes the effects of different types of dietary interventions on each component of CKM syndrome in both preclinical and clinical settings. We also provide an overview of potential maternal dietary strategies, including amino acid supplementation, lipid-associated diets, micronutrients, gut microbiota-targeted diets, and plant polyphenols, aimed at preventing CKM syndrome in offspring. Additionally, we discuss the mechanisms mediated by nutrient-sensing signals that contribute to CKM programming. Altogether, we underscore the interaction between maternal dietary interventions and the risk of CKM syndrome in offspring, emphasizing the need for continued research to facilitate their clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
6
|
Zhang C, Sun MW, Yang GY, Wang Y, Lu CD, Jiang H. Efficacy of taurine-enhanced enteral nutrition in improving the outcomes of critically ill patients: A systematic review and meta-analysis. Clin Nutr ESPEN 2024; 61:203-211. [PMID: 38777434 DOI: 10.1016/j.clnesp.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Taurine is considered an immunomodulatory agent. From current reports on clinical studies, we conducted a systematic review and meta-analysis to investigate the effects of taurine-enhanced enteral nutrition (EN) on the outcomes of critically ill patients to resolve conflicting evidence in literature. METHODS Literature from PubMed, EMBASE, Web of Science, Cochrane Library, CNKI, SINOMED, and WanFang databases were retrieved, and randomized controlled trials (RCTs) were identified. The time range spanned from January 1, 2000, to January 31, 2024. The Cochrane Collaboration Tool was used to evaluate the risk of bias. We used the GRADE approach to rate the quality of evidence and the I2 test to assess the statistical heterogeneity of the results. Risk ratio (RR), mean difference (MD), and 95% confidence interval (95% CI) were used to analyze measurement data. RESULTS Four trials involving 236 patients were finally included. The meta-analysis results indicated that taurine-enhanced EN did not reduce mortality (RR = 0.70, p = 0.45, 95% CI [0.28, 1.80], two trials, 176 participants, low quality). There was also no significant difference in length of stay in the intensive care unit (ICU) between the taurine-enhanced EN and control groups. Taurine-enhanced EN may reduce pro-inflammatory factor interleukin-6 (IL-6) levels in critically ill patients(the result about IL-6 cannot be pooled). However, taurine-enhanced EN had no significant impact on high-sensitivity-C-reactive protein levels (MD = -0.41, p = 0.40, 95% CI [-1.35, 0.54], two trials, 60 participants, low quality). DISCUSSION Taurine-enhanced EN may reduce IL-6 levels and is not associated with improved clinical outcomes in critically ill patients, which may have potential immunoregulatory effects in critically ill patients. Given that published studies have small samples, the above conclusions need to be verified by more rigorously designed large-sample clinical trials.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Intensive Care Medicine, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan Province, China; Institute for Emergency and Disaster Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Ming-Wei Sun
- Sichuan Provincial Center for Emergency Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Institute for Emergency and Disaster Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Sichuan Clinical Research Center for Emergency and Critical Care Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Guang-Yu Yang
- Sichuan Provincial Center for Emergency Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Institute for Emergency and Disaster Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Sichuan Clinical Research Center for Emergency and Critical Care Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Yu Wang
- Sichuan Provincial Center for Emergency Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Institute for Emergency and Disaster Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Sichuan Clinical Research Center for Emergency and Critical Care Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Department of Clinical Nutrition, Peking Union Medical College Hospital, Beijing, China
| | - Charles Damien Lu
- Sichuan Provincial Center for Emergency Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Institute for Emergency and Disaster Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Sichuan Clinical Research Center for Emergency and Critical Care Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Hua Jiang
- Sichuan Provincial Center for Emergency Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Institute for Emergency and Disaster Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Sichuan Clinical Research Center for Emergency and Critical Care Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China.
| |
Collapse
|
7
|
Tain YL, Hsu CN. Amino Acids during Pregnancy and Offspring Cardiovascular-Kidney-Metabolic Health. Nutrients 2024; 16:1263. [PMID: 38732510 PMCID: PMC11085482 DOI: 10.3390/nu16091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Amino acids are essential for normal pregnancy and fetal development. Disruptions in maternal amino acid metabolism have been associated with various adult diseases later in life, a phenomenon referred to as the developmental origins of health and disease (DOHaD). In this review, we examine the recent evidence highlighting the significant impact of amino acids on fetal programming, their influence on the modulation of gut microbiota, and their repercussions on offspring outcomes, particularly in the context of cardiovascular-kidney-metabolic (CKM) syndrome. Furthermore, we delve into experimental studies that have unveiled the protective effects of therapies targeting amino acids. These interventions have demonstrated the potential to reprogram traits associated with CKM in offspring. The discussion encompasses the challenges of translating the findings from animal studies to clinical applications, emphasizing the complexity of this process. Additionally, we propose potential solutions to overcome these challenges. Ultimately, as we move forward, future research endeavors should aim to pinpoint the most effective amino-acid-targeted therapies, determining the optimal dosage and mode of administration. This exploration is essential for maximizing the reprogramming effects, ultimately contributing to the enhancement of cardiovascular-kidney-metabolic health in offspring.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Gabirondo E, Świderek K, Marin E, Maiz-Iginitz A, Larranaga A, Moliner V, Etxeberria A, Sardon H. A Single Amino Acid Able to Promote High-Temperature Ring-Opening Polymerization by Dual Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308956. [PMID: 38348541 DOI: 10.1002/advs.202308956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Indexed: 04/25/2024]
Abstract
Amino acids are indispensable compounds in the body, performing several biological processes that enable proper functioning. In this work, it is demonstrated that a single amino acid, taurine, is also able to promote the ring-opening polymerization (ROP) of several cyclic monomers under industrially relevant conditions. It is shown that the unique zwitterionic structure of taurine, where the negatively charged sulfonic acid group and the protonated amine group are separated by two methylene groups, not only provides high thermal stability but also leads to a dual activation mechanism, which is corroborated by quantum mechanical calculations. This unique mechanism allows for the synthesis of polylactide of up to 50 kDa in bulk at 180 °C with good end-group fidelity using a highly abundant catalyst. Furthermore, cytotoxicity tests confirm that PLLA synthesized with taurine is non-toxic. Moreover, it is demonstrated that the presence of taurine does not have any detrimental effect on the thermal stability of polylactide, and therefore polymers can be used directly without any post-polymerization purification. It is believed that the demonstration that a simple structure composed of a single amino acid can promote polymerization can bring a paradigm shift in the preparation of polymers.
Collapse
Affiliation(s)
- Elena Gabirondo
- POLYMAT, Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel de Lardizabal 3 Pasealekua, Donostia, 20018, Spain
| | - Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló, 12071, Spain
| | - Edurne Marin
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao, 48013, Spain
| | - Ainhoa Maiz-Iginitz
- POLYMAT, Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel de Lardizabal 3 Pasealekua, Donostia, 20018, Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, San Sebastián, Spain
| | - Aitor Larranaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao, 48013, Spain
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló, 12071, Spain
| | - Agustin Etxeberria
- POLYMAT, Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel de Lardizabal 3 Pasealekua, Donostia, 20018, Spain
| | - Haritz Sardon
- POLYMAT, Department of Advanced Polymers and Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Manuel de Lardizabal 3 Pasealekua, Donostia, 20018, Spain
| |
Collapse
|
9
|
Zhu J, Shi W, Zhao R, Gu C, Shen H, Li H, Wang L, Cheng J, Wan X. Integrated physiological, transcriptome, and metabolome analyses of the hepatopancreas of Litopenaeus vannamei under cold stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101196. [PMID: 38295537 DOI: 10.1016/j.cbd.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024]
Abstract
Temperature is a limiting factor in the growth of aquatic organisms and can directly affect many chemical and biological processes, including metabolic enzyme activity, aerobic respiration, and signal transduction. In this study, physiological, transcriptomic, and metabolomic analyses were performed to characterize the response of Litopenaeus vannamei to cold stress. We subjected L. vannamei to gradually decreasing temperatures (24 °C, 20 °C, 18 °C, 14 °C, and 12 °C) and studied the changes in the hepatopancreas. The results showed that extreme cold stress (12 °C) caused structural damage to the hepatopancreas of L. vannamei. However, shrimp exhibited response mechanisms to enhance cold tolerance, through regulating changes in key genes and metabolites in amino acid, lipid metabolism, and carbohydrate metabolism, including (a) increased level of methylation in cells to enhance cold tolerance; (b) increased content of critical amino acids, such as proline, alanine, glutamic acid and taurine, to ameliorate energy metabolism, protect cells from cold-induced osmotic imbalance, and promote ion transport and DNA repair; (c) accumulation of unsaturated fatty acids to improve cell membrane fluidity; and (d) regulation of the metabolic pattern shift to rely on anaerobic metabolism with a gradual decrease in aerobic metabolism and enhance glycolysis to produce enough ATP to maintain energy metabolic balance. When the temperature dropped further, cold stress impaired antioxidant and immune defense responses in shrimp. This study provides an integrated analysis of the physiology, transcriptome, and metabolome of L. vannamei in response to cold stress.
Collapse
Affiliation(s)
- Jianqiang Zhu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong 226007, China
| | - Wenjun Shi
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong 226007, China.
| | - Ran Zhao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong 226007, China
| | - Chen Gu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong 226007, China
| | - Hui Shen
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong 226007, China
| | - Hui Li
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong 226007, China
| | - Libao Wang
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong 226007, China
| | - Jie Cheng
- Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong 226007, China
| | - Xihe Wan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Institute of Oceanology & Marine Fisheries, Jiangsu, Nantong 226007, China.
| |
Collapse
|
10
|
Beggan LA, Mulhern MS, Mæhre HK, McSorley EM, Yeates AJ, Zavez A, Thurston SW, Shamlaye C, van Wijngaarden E, Davidson PW, Myers GJ, Strain JJ, Elvevoll EO. Associations between serum taurine concentrations in mothers and neonates and the children's anthropometrics and early neurodevelopment: Results from the Seychelles Child Development Study, Nutrition Cohort 2. Neurotoxicology 2023; 99:43-49. [PMID: 37634816 PMCID: PMC10910272 DOI: 10.1016/j.neuro.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND High concentrations of taurine are present in the developing human brain and maternal breast milk. Taurine is thought to influence fetal growth and brain development based on experimental rodent studies. As fish is an important dietary source of taurine, we investigated associations between taurine concentrations and child outcomes in a high fish consuming population. OBJECTIVE To examine associations between maternal and cord serum taurine concentrations and birth anthropometric measures and cognitive development in children at 20 months of age. METHODS Pregnant women were recruited between 2008 and 2011 as part of Nutrition Cohort 2 (NC2) of the Seychelles Child Development Study (SCDS). Maternal taurine serum concentrations were measured at 28 week's gestation and in cord serum. Child weight, length and head circumference were measured at birth and neurodevelopment was assessed using Bayley Scales of Infant Development II (BSID-II) at 20 months of age. Associations between taurine status, birth measures and neurodevelopmental outcomes were examined (n = 300) using regression models and adjusted for relevant covariates. RESULTS Mean (SD) maternal and cord taurine concentrations were 124.9 (39.2) µmol/L (range 28.2-253.9 µmol/L) and 187.6 (60.0) µmol/L (range 55.0-417.4 µmol/L) respectively. We found no associations between maternal taurine concentrations and child anthropometric and neurodevelopmental measures (weight β = -0.001, SE=0.001; length β = -0.006, SE=0.006; head circumference β = -0.002, SE=0.002; MDI β = -0.005, SE=0.015; PDI β = -0.004, SE=0.016; all P > 0.05), or between cord taurine concentrations and outcomes (weight β = -0.001, SE<0.000; length β = -0.001, SE=0.004; head circumference β < 0.000, SE=0.002; MDI β = 0.004, SE=0.010; PDI β = -0.015, SE=0.012; all P > 0.05). CONCLUSION The Seychellois population have high maternal and cord taurine concentrations owing to their high fish intake and may be considered taurine replete compared to individuals who consume a Westernised diet. This high taurine status may explain why there were no significant associations between maternal and cord taurine concentrations and outcomes after adjusting for covariates.
Collapse
Affiliation(s)
- Laura A Beggan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Maria S Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - Hanne K Mæhre
- Norwegian College of Fishery Science, UIT The Arctic University of Norway, Tromsø, Norway
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Alison J Yeates
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Alexis Zavez
- School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Sally W Thurston
- School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Conrad Shamlaye
- Ministry of Health, Mahé, Republic of Seychelles, Seychelles
| | | | - Philip W Davidson
- School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Gary J Myers
- School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Edel O Elvevoll
- Norwegian College of Fishery Science, UIT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
11
|
Omotayo IA, Banjo S, Emmanuel OT, Felix LD, Kolawole OA, Dele OA, Olasegun AI, Dasola AM, Ayobami OO. Molecular properties and In silico bioactivity evaluation of (4-fluorophenyl)[5)-3-phen-(4-nitrophenyl yl-4,5-dihydro-1 H-pyrazol-1-yl]methanone derivatives: DFT and molecular docking approaches. J Taibah Univ Med Sci 2023; 18:1386-1405. [PMID: 37324403 PMCID: PMC10267600 DOI: 10.1016/j.jtumed.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Objectives Molecular structures, spectroscopic properties, charge distributions, frontier orbital energies, nonlinear optical (NLO) properties and molecular docking simulations were analyzed to examine the bio-usefulness of a series of (4-fluorophenyl)[5-(4-nitrophenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]methanone derivatives. Methods The compounds were studied through computational methods. Equilibrium optimization of the compounds was performed at the B3LYP/6-31G(d,p) level of theory, and geometric parameters, frequency vibration, UV-vis spectroscopy and reactivity properties were predicted on the basis of density functional theory (DFT) calculations. Results The energy gap (ΔEg), electron donating/accepting power (ω-/ω+) and electron density response toward electrophiles/nucleophiles calculated for M1 and M2 revealed the importance of substituent positioning on compound chemical behavior. In addition, ω-/ω+ and ΔEn/ΔEe indicated that M6 is more electrophilic because of the presence of two NO2 groups, which enhanced its NLO properties. The hyperpolarizability (β0) of the compounds ranged from 5.21 × 10-30 to 7.26 × 10-30 esu and was greater than that of urea; thus, M1-M6 were considered possible candidates for NLO applications. Docking simulation was also performed on the studied compounds and targets (PDB ID: 5ADH and 1RO6), and the calculated binding affinity and non-bonding interactions are reported. Conclusion The calculated ω- and ω+ indicated the electrophilic nature of the compounds; M6, a compound with two NO2 groups, showed enhanced effects. Molecular electrostatic potential (MEP) analysis indicated that amide and nitro groups on the compounds were centers of electrophilic attacks. The magnitude of the molecular hyperpolarizability suggested that the entire compound had good NLO properties and therefore could be explored as a candidate NLO material. The docking results indicated that these compounds have excellent antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Ibrahim A. Omotayo
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Semire Banjo
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Oladuji T. Emmanuel
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Latona D. Felix
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | | | - Owonikoko A. Dele
- Department of Chemistry, Emmanuel Alayande College of Education, Nigeria
| | | | - Adeoye M. Dasola
- Department of Chemical Sciences, Fountain University, Osogbo, Nigeria
| | - Odunola O. Ayobami
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Department of Chemistry, Faculty of Natural and Applied Sciences, Hallmark University, Ijebu-Itele, Nigeria
| |
Collapse
|
12
|
Sun Y, Du X, Yang Y, Wang A, Gu Z, Liu C. Dietary Taurine Intake Affects the Growth Performance, Lipid Composition, and Antioxidant Defense of Juvenile Ivory Shell ( Babylonia areolata). Animals (Basel) 2023; 13:2592. [PMID: 37627383 PMCID: PMC10451277 DOI: 10.3390/ani13162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, an eight-week feeding trial was performed to investigate the effects of different taurine supplementation levels (0.0% as control, 1.0%, 1.5%, 2.0%, 2.5%, and 3.0%) on the growth performance, lipid composition, and antioxidant ability in juvenile ivory shells Babylonia areolata. The results showed that taurine supplementation significantly improved the specific growth rates (SGRs) and survival rates of ivory shell (except the survival rate in the 3.0% taurine diet group) (p < 0.05). The SGRs showed an increasing and then decreasing tendency with increasing dietary taurine supplementation, and the highest value was observed in the 2.0% taurine diet (2.60%/d). The taurine content in the muscle of ivory shells fed taurine-supplemented diets significantly increased when compared to the control group (p < 0.05). The profiles of C22:2n6 in the muscle of ivory shells fed taurine-supplemented diets were significantly higher than in the control group (p < 0.05), and the highest values were observed in the 2.0% taurine supplementation group. The high-density lipoprotein cholesterol (HDL-C) content in the hepatopancreas showed an increasing and then decreasing tendency with increasing dietary taurine supplementation, while the low-density lipoprotein cholesterol (LDL-C) concentration showed a decreasing tendency. Furthermore, the activities of pepsin and lipase in both the intestine and hepatopancreas significantly increased at moderate taurine supplementation levels compared to the control group (p < 0.05). Accordingly, obvious increases in the histological parameters in the intestine of ivory shells fed taurine-supplemented diets were also found. As for the antioxidant ability, the activities of the total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) showed an increasing and then decreasing tendency with increasing dietary taurine supplementation, and the highest values were observed in the 1.0% and 1.0-2.0% taurine supplementation groups, respectively; the malondialdehyde (MDA) contents significantly decreased with increasing dietary taurine supplementation (p < 0.05). The taurine intake affected the expression of four appetite-related genes in the hepatopancreas, in which orexin and NPY showed an increasing and then decreasing tendency, while leptin and cholecyatoklnin decreased with increasing dietary taurine supplementation. In conclusion, moderate taurine supplementation in an artificial diet (about 1.5-2.0%) could improve the growth performance and antioxidant ability and change the lipid composition of juvenile ivory shells.
Collapse
Affiliation(s)
- Yunchao Sun
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Xiangyu Du
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Yi Yang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Aimin Wang
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Zhifeng Gu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Chunsheng Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| |
Collapse
|
13
|
Zhou X, Zhang H, Li S, Jiang Y, Kang L, Deng J, Yang C, Zhao X, Zhao J, Jiang L, Chen X. The effects of fermented feedstuff derived from Citri Sarcodactylis Fructus by-products on growth performance, intestinal digestive enzyme activity, nutrient utilization, meat quality, gut microbiota, and metabolites of broiler chicken. Front Vet Sci 2023; 10:1231996. [PMID: 37470069 PMCID: PMC10352846 DOI: 10.3389/fvets.2023.1231996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
This research aimed to assess the impact of fermented Citri Sarcodactylis Fructus by-products (FCSF) on the growth performance, gut digestive enzyme activity, nutrient utilization efficiency, gut microbiota, and their metabolites in broiler chickens. A total of 1,080 male broiler chickens were allocated into four groups (T1-T4) consisting of 6 replicates per group, each containing 45 chickens. The basal diet was provided to group T1, while groups T2, T3, and T4 were supplemented with 1%, 3%, and 5% FCSF in the basal diet, respectively. The experimental period was 42 days. The findings revealed that supplementing FCSF improved the FW and ADG of broiler chickens, and led to a reduction in the F/G, ADFI, and mortality rate of broiler chickens (p < 0.05). Furthermore, supplementation with 3% and 5% FCSF improved the thigh yield, semi-eviscerated carcass yield, slaughter yield, and lipase activity in the duodenum and ileum of birds (p < 0.05). Additionally, supplementing 3% FCSF enhanced the activity of protease in the duodenum of broilers (p < 0.05). Moreover, supplementing 3% FCSF enhanced the utilization of total phosphorus, dry matter, crude protein, and crude ash in the feed by broilers (p < 0.05). Compared with the control group, supplementation of 3% and 5% FCSF reduced the serine content in broiler chicken breast meat (p < 0.05). Supplementing 1% FCSF significantly increased the C14:0, C14:1, and C20:1 content in the breast meat compared to the other experimental groups (p < 0.05). The levels of C20:4n6 and C23:0 in the breast meat of birds of FCSF supplemented groups were lower than in T1 (p < 0.05). Furthermore, the content of ∑ω-3PUFA decreased after supplementing with 3% and 5% FCSF (p < 0.05). 16SrDNA showed that supplementing 3% FCSF reduced the ACE, Chao1, and Shannon indices in the cecum of birds (p < 0.05). Supplementing 3% FCSF also decreased the abundance of the phylum Desulfobacterota and improved genera Coprobacter and Prevotella in the cecum of broiler chickens (p < 0.05). Metabolomic analysis of the gut microbiota revealed that supplementing 3% FCSF upregulated 6 metabolites and downregulated 16 metabolites (p < 0.05). Moreover, supplementing 3% FCSF downregulated 12 metabolic pathways and upregulated 3 metabolic pathways (p < 0.05). In summary our findings indicate that supplementing FCSF can improve the growth performance of broiler chickens by enhancing intestinal digestive enzyme activity, nutrient utilization, improving gut microbial diversity, and influencing the metabolism of gut microbiota.
Collapse
Affiliation(s)
- Xinhong Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Huaidan Zhang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Shiyi Li
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Yilong Jiang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Lijuan Kang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Jicheng Deng
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Chuanpeng Yang
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Xin Zhao
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| | - Jingjing Zhao
- Leshan Animal Disease Prevention and Control Center, Leshan, Sichuan, China
| | - Li Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xianxin Chen
- Leshan Academy of Agriculture Science, Leshan, Sichuan, China
| |
Collapse
|
14
|
Liu Y, Hu J, Li MM, Zhao G. Effects of taurine on rumen fermentation, nutrient digestion, rumen bacterial community and metabolomics and nitrogen metabolism in beef steers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3414-3426. [PMID: 36710505 DOI: 10.1002/jsfa.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The objectives of this study were to investigate the effects of taurine on rumen fermentation, rumen bacterial community and metabolomics, nitrogen metabolism and plasma biochemical parameters in beef steers. Six castrated Simmental steers (liveweight 402 ± 34 kg) and three levels of taurine (0, 20, 40 g d-1 ) were assigned in a replicated 3 × 3 Latin square design. Each experimental period included 15 days for adaptation and 5 days for sampling. RESULTS Supplementing taurine did not affect the ruminal pH or concentrations of ammonia nitrogen and volatile fatty acids (P > 0.10), but linearly increased the ruminal concentrations of taurine (P < 0.001) and microbial crude protein (P = 0.041). Supplementing taurine linearly increased the neutral detergent fiber digestibility (P = 0.018), and tended to linearly increase dry matter digestibility (P = 0.095), tended to increase the fecal nitrogen excretion (P = 0.065) and increased the urinary taurine excretion (P < 0.001). Supplementing taurine quadratically increased the plasma concentration of triglycerides (P = 0.017), tended to linearly decrease growth hormone (P = 0.074), but did not affect other plasma parameters (P > 0.10). Supplementing taurine modified the rumen bacterial community and increased the ruminal concentration of taurine metabolite 2-hydroxyethoxysulfonic acid (P < 0.001). CONCLUSION It was concluded that taurine improved ruminal microbial crude protein synthesis and increased fiber digestibility through modifying rumen bacterial community. It is necessary to clarify the ruminal hydrolysis of taurine in steers. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yufeng Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Jinming Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Meng M Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Guangyong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| |
Collapse
|
15
|
Holton K. The potential role of dietary intervention for the treatment of neuroinflammation. TRANSLATIONAL NEUROIMMUNOLOGY, VOLUME 7 2023:239-266. [DOI: 10.1016/b978-0-323-85841-0.00022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Duan F, Xiao Z, Wang Y, Sun X, Tang Z, Wang R, Guo L, Tang W, Liu T, Wang P, Zhan Y. Metabolic alterations in the visual pathway of retinitis pigmentosa rats: A longitudinal multimodal magnetic resonance imaging study with histopathological validation. NMR IN BIOMEDICINE 2022; 35:e4751. [PMID: 35478360 DOI: 10.1002/nbm.4751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Because retinitis pigmentosa (RP) has been shown to cause degenerative changes in the entire visual pathway, there is an urgent need to perform longitudinal assessments of RP-induced degeneration and identify imaging protocols to detect this degeneration as early as possible. In this study, we assessed a transgenic rat model of RP by using complementary noninvasive magnetic resonance imaging techniques, namely, proton magnetic resonance spectroscopy (1 H-MRS), to investigate the metabolic changes in RP. Our study demonstrated decreased concentrations and ratios to creatine (Cr) of N-acetylaspartate (NAA), glutamate (Glu), γ-aminobutyric acid (GABA), and taurine (Tau), whereas myo-inositol (Ins) and choline (Cho) were increased in the visual cortex of Royal College of Surgeons (RCS) rats compared with control rats (p < 0.05). Furthermore, with the progression of RP, the concentrations of NAA, Glu, GABA, and Tau, and the ratios of GABA/Cr and Tau/Cr significantly decreased over time, whereas the concentrations of Ins and Cho and the ratio of Ins/Cr significantly increased over time (p < 0.05). In addition, in RCS rats, NAA/Cr decreased significantly from 3 to 4 months postnatal (p < 0.001), and Cho/Cr increased significantly from 4 to 5 months postnatal (p = 0.005). Meanwhile, the 1 H-MRS indicators in 5-month postnatal RCS rats could be confirmed by immunohistochemical staining. In conclusion, with the progression of RP, the metabolic alterations in the visual cortex indicated progressive reprogramming with the decrease of neurons and axons, accompanied by the proliferation of gliocytes.
Collapse
Affiliation(s)
- Fei Duan
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai Medical School, Fudan University, Shanghai, China
| | - Zebin Xiao
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai Medical School, Fudan University, Shanghai, China
| | - Yuzhe Wang
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai Medical School, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital of Fudan University, Shanghai Medical School, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- Key Laboratory of Myopia, NHFPC (Fudan University), Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Zuohua Tang
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai Medical School, Fudan University, Shanghai, China
| | - Rong Wang
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai Medical School, Fudan University, Shanghai, China
- Department of Radiology, Huashan Hospital of Fudan University, Shanghai Medical School, Fudan University, Shanghai, China
| | - Linying Guo
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai Medical School, Fudan University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital of Fudan University, Shanghai Medical School, Fudan University, Shanghai, China
| | - Tingting Liu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital of Fudan University, Shanghai Medical School, Fudan University, Shanghai, China
| | - Peng Wang
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai Medical School, Fudan University, Shanghai, China
| | - Yang Zhan
- Department of Radiology, Eye & ENT Hospital of Fudan University, Shanghai Medical School, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
17
|
Mottaghi S, Nikoupour H, Firoozifar M, Jalali SS, Jamshidzade A, Vazin A, Shafiekhani M. The effect Of Taurine Supplementation on Delirium Post Liver Transplantation: A Randomized Controlled Trial. Clin Nutr 2022; 41:2211-2218. [DOI: 10.1016/j.clnu.2022.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022]
|
18
|
Post A, Kremer D, Groothof D, van der Veen Y, de Blaauw P, van der Krogt J, Kema IP, Westerhuis R, Heiner-Fokkema MR, Bakker SJL, Franssen CFM. Amino Acid Homeostasis and Fatigue in Chronic Hemodialysis Patients. Nutrients 2022; 14:2810. [PMID: 35889768 PMCID: PMC9318329 DOI: 10.3390/nu14142810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Patients dependent on chronic hemodialysis treatment are prone to malnutrition, at least in part due to insufficient nutrient intake, metabolic derangements, and chronic inflammation. Losses of amino acids during hemodialysis may be an important additional contributor. In this study, we assessed changes in plasma amino acid concentrations during hemodialysis, quantified intradialytic amino acid losses, and investigated whether plasma amino acid concentrations and amino acid losses by hemodialysis and urinary excretion are associated with fatigue. The study included a total of 59 hemodialysis patients (65 ± 15 years, 63% male) and 33 healthy kidney donors as controls (54 ± 10 years, 45% male). Total plasma essential amino acid concentration before hemodialysis was lower in hemodialysis patients compared with controls (p = 0.006), while total non-essential amino acid concentration did not differ. Daily amino acid losses were 4.0 ± 1.3 g/24 h for hemodialysis patients and 0.6 ± 0.3 g/24 h for controls. Expressed as proportion of protein intake, daily amino acid losses of hemodialysis patients were 6.7 ± 2.4% of the total protein intake, compared to 0.7 ± 0.3% for controls (p < 0.001). Multivariable regression analyses demonstrated that hemodialysis efficacy (Kt/V) was the primary determinant of amino acid losses (Std. β = 0.51; p < 0.001). In logistic regression analyses, higher plasma proline concentrations were associated with higher odds of severe fatigue (OR (95% CI) per SD increment: 3.0 (1.3; 9.3); p = 0.03), while higher taurine concentrations were associated with lower odds of severe fatigue (OR (95% CI) per log2 increment: 0.3 (0.1; 0.7); p = 0.01). Similarly, higher daily taurine losses were also associated with lower odds of severe fatigue (OR (95% CI) per log2 increment: 0.64 (0.42; 0.93); p = 0.03). Lastly, a higher protein intake was associated with lower odds of severe fatigue (OR (95% CI) per SD increment: 0.2 (0.04; 0.5); p = 0.007). Future studies are warranted to investigate the mechanisms underlying these associations and investigate the potential of taurine supplementation.
Collapse
Affiliation(s)
- Adrian Post
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (D.G.); (Y.v.d.V.); (S.J.L.B.); (C.F.M.F.)
| | - Daan Kremer
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (D.G.); (Y.v.d.V.); (S.J.L.B.); (C.F.M.F.)
| | - Dion Groothof
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (D.G.); (Y.v.d.V.); (S.J.L.B.); (C.F.M.F.)
| | - Yvonne van der Veen
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (D.G.); (Y.v.d.V.); (S.J.L.B.); (C.F.M.F.)
| | - Pim de Blaauw
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (P.d.B.); (J.v.d.K.); (I.P.K.); (M.R.H.-F.)
| | - Jennifer van der Krogt
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (P.d.B.); (J.v.d.K.); (I.P.K.); (M.R.H.-F.)
| | - Ido P. Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (P.d.B.); (J.v.d.K.); (I.P.K.); (M.R.H.-F.)
| | - Ralf Westerhuis
- Dialysis Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - M. Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (P.d.B.); (J.v.d.K.); (I.P.K.); (M.R.H.-F.)
| | - Stephan J. L. Bakker
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (D.G.); (Y.v.d.V.); (S.J.L.B.); (C.F.M.F.)
| | - Casper F. M. Franssen
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (D.K.); (D.G.); (Y.v.d.V.); (S.J.L.B.); (C.F.M.F.)
| |
Collapse
|
19
|
Siregar AS, Nyiramana MM, Kim E, Shin E, Woo MS, Kim J, Park S, Hahm JR, Choi Y, Kang D. Oyster broth concentrate and its major component taurine alleviate acute alcohol-induced liver damage. Food Sci Nutr 2022; 10:2390-2399. [PMID: 35844927 PMCID: PMC9281932 DOI: 10.1002/fsn3.2847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/02/2022] Open
Abstract
Our previous study showed that oyster hydrolysate (OH) protected against the liver damage caused by a single instance of ethanol (EtOH) binge drinking. Oyster broth concentrate (OBC) was discovered in the process of searching for a different substance derived from oysters (Crassostrea gigas) with economic value. OBC is a by-product of boiling oysters at 95°C for 3 min. In this study, we investigated the effects of OBC and its major component taurine on blood and liver tissues obtained from a single-EtOH-binge-drinking mouse model. The preadministration of OBC enhanced EtOH metabolism by increasing the activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and catalase. In addition, the preadministration of OBC reduced cytochrome P450 2E1 (CYP2E1) activity, reactive oxygen species (ROS) generation, Ca2+ concentrations, apoptotic signals, and inflammatory mediators in liver tissues. The reduction of apoptotic and inflammatory signals by OBC resulted from the downregulation of endoplasmic reticulum (ER) stress molecules and NF-κB activity. Taurine administration showed similar effects to OBC. These results show that OBC protected against acute EtOH-induced liver damage through the action of taurine. Our findings suggest that OBC could be an economically valuable substance and a functional food with hepatoprotective effects.
Collapse
Affiliation(s)
- Adrian S. Siregar
- Department of Physiology and Institute of Health SciencesCollege of MedicineGyeongsang National UniversityJinjuSouth Korea
- Department of Convergence Medical ScienceGyeongsang National UniversityJinjuSouth Korea
| | - Marie Merci Nyiramana
- Department of Physiology and Institute of Health SciencesCollege of MedicineGyeongsang National UniversityJinjuSouth Korea
- Department of Convergence Medical ScienceGyeongsang National UniversityJinjuSouth Korea
| | - Eun‐Jin Kim
- Department of Physiology and Institute of Health SciencesCollege of MedicineGyeongsang National UniversityJinjuSouth Korea
| | - Eui‐Jung Shin
- Department of Physiology and Institute of Health SciencesCollege of MedicineGyeongsang National UniversityJinjuSouth Korea
- Department of Convergence Medical ScienceGyeongsang National UniversityJinjuSouth Korea
| | - Min Seok Woo
- Department of Physiology and Institute of Health SciencesCollege of MedicineGyeongsang National UniversityJinjuSouth Korea
- Department of Convergence Medical ScienceGyeongsang National UniversityJinjuSouth Korea
| | - Jin‐Mok Kim
- Department of Clinical Laboratory ScienceMasan UniversityChangwonSouth Korea
| | - Si‐Hyang Park
- Sunmarin BiotechJinju Bioindustry FoundationJinjuSouth Korea
| | - Jong Ryeal Hahm
- Department of Internal Medicine, Hospital and Institute of Health SciencesCollege of MedicineGyeongsang National UniversityJinjuSouth Korea
| | | | - Dawon Kang
- Department of Physiology and Institute of Health SciencesCollege of MedicineGyeongsang National UniversityJinjuSouth Korea
- Department of Convergence Medical ScienceGyeongsang National UniversityJinjuSouth Korea
| |
Collapse
|
20
|
Wen S, Wang Z, Feng J, Yang Y, Lin X, Huang H. NMR-Based Metabolomics Identify Metabolic Change in Spleen of Idiopathic Thrombocytopenic Purpura Patients. Metabolites 2022; 12:metabo12060565. [PMID: 35736497 PMCID: PMC9228686 DOI: 10.3390/metabo12060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Idiopathic thrombocytopenic purpura (ITP) is a common hematological disease and the abnormal platelet destruction in the spleen is a critical pathological mechanism for ITP. However, the metabolomic change in the spleen caused by ITP is still unclear. In the present study, the metabolomic information of 18 ITP and 20 normal spleen samples were detected by using 1H high-resolution magic angle spinning NMR spectroscopy (1H MAS NMR). Compared with normal spleen, the concentrations of acetate, alanine, glutamine, glycerol, isoleucine, lysine, valine, phenylalanine, leucine, and methanol in ITP spleen tissue were elevated and 3-hydroxybutyric acid, ascorbate, asparagine, ethanol, glycogen, low-density lipoprotein, malonate, myo-inositol, glycerophosphocholine, pyroglutamate, and taurine were decreased. Amino acids metabolic pathways, such as branched-chain amino acids pathway, were identified as the main involved pathways based on enrichment analysis. The decrease in taurine level in the spleen was the most obvious metabolic signature involving ITP with high sensitivity and specificity to distinguish the spleen of ITP from the normal (CI: 0.825–0.982). Notably, the level of taurine in the spleen was negatively correlated with the efficacy of splenectomy (r = 0.622, p = 0.006). Collectively, the data from our study revealed previously unknown ITP-related metabolomic changes in the spleen and found a potential diagnostic and efficacy-predictive biomarker for ITP treatment.
Collapse
Affiliation(s)
- Shi Wen
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou 351001, China; (S.W.); (Y.Y.); (X.L.)
| | - Zhenzhao Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, No. 422, Siming South Road, Siming District, Xiamen 361005, China;
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, No. 422, Siming South Road, Siming District, Xiamen 361005, China;
- Correspondence: (H.H.); (J.F.)
| | - Yuanyuan Yang
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou 351001, China; (S.W.); (Y.Y.); (X.L.)
| | - Xianchao Lin
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou 351001, China; (S.W.); (Y.Y.); (X.L.)
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou 351001, China; (S.W.); (Y.Y.); (X.L.)
- Correspondence: (H.H.); (J.F.)
| |
Collapse
|
21
|
Batiha GES, Al-Gareeb AI, Qusti S, Alshammari EM, Kaushik D, Verma R, Al-Kuraishy HM. Deciphering the immunoboosting potential of macro and micronutrients in COVID support therapy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43516-43531. [PMID: 35391642 PMCID: PMC8989262 DOI: 10.1007/s11356-022-20075-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/30/2022] [Indexed: 04/16/2023]
Abstract
The immune system protects human health from the effects of pathogenic organisms; however, its activity is affected when individuals become infected. These activities require a series of molecules, substrates, and energy sources that are derived from diets. The consumed nutrients from diets help to enhance the immunity of infected individuals as it relates to COVID-19 patients. This study aims to review and highlight requirement and role of macro- and micronutrients of COVID-19 patients in enhancing their immune systems. Series of studies were found to have demonstrated the enhancing potentials of macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins, copper, zinc, iron, calcium, magnesium, and selenium) in supporting the immune system's fight against respiratory infections. Each of these nutrients performs a vital role as an antiviral defense in COVID-19 patients. Appropriate consumption or intake of dietary sources that yield these nutrients will help provide the daily requirement to support the immune system in its fight against pathogenic viruses such as COVID-19.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| |
Collapse
|
22
|
Faghfouri AH, Seyyed Shoura SM, Fathollahi P, Shadbad MA, Papi S, Ostadrahimi A, Faghfuri E. Profiling inflammatory and oxidative stress biomarkers following taurine supplementation: a systematic review and dose-response meta-analysis of controlled trials. Eur J Clin Nutr 2022; 76:647-658. [PMID: 34584225 DOI: 10.1038/s41430-021-01010-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Taurine (Tau) has modulatory effects on inflammatory and oxidative stress biomarkers; however, the results of clinical studies are not comprehensive enough to determine the effect of different durations and doses of Tau supplementation on inflammatory and oxidative stress biomarkers. The current study was conducted based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. For this purpose, PubMed/Medline, Scopus, and Embase databases were systematically searched to obtain the relevant studies published before 30th March 2021. Meta-analysis was performed on controlled clinical trials by using the random-effects method. Non-linear relationship between variables and effect size was performed using dose-response and time-response analyses. The Cochrane Collaboration's tool was used to evaluate the quality of included studies. Tau supplementation can reduce the levels of malondialdehyde (MDA) (SMD = -1.17 µmol/l; 95% CI: -2.08, - 0.26; P = 0.012) and C-reactive protein (CRP) (SMD = -1.95 mg/l; 95% CI: -3.20, - 0.71; P = 0.002). There have been no significant effects of Tau supplementation on the levels of tumor necrosis factors-alpha (TNF-α) (SMD = -0.18 pg/ml; 95% CI: -0.56, 0.21; P = 0.368), and interleukin-6 (IL-6) (SMD = -0.49 pg/ml; 95% CI: -1.13, 0.16; P = 0.141). Besides, Tau has more alleviating effect on oxidative stress and inflammation on 56 days after supplementation (P < 0.05). Tau can decrease the levels of CRP and MDA. Based on the currently available evidence, Tau has no significant effect on the level of TNF-α and IL-6. Eight-week of Tau supplementation has more beneficial effects on inflammatory and oxidative stress biomarkers.
Collapse
Affiliation(s)
- Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Morteza Seyyed Shoura
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Fathollahi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahab Papi
- Department of Public Health, Faculty of Health, Social Determinants of Health Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
23
|
Biasato I, Chemello G, Caimi C, Oddon SB, Capucchio M, Colombino E, Schiavone A, Ceccotti C, Terova G, Gasco L. Taurine supplementation in plant-based diets for juvenile rainbow trout (Oncorhynchus mykiss): effects on growth performance, whole body composition, and histomorphological features. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Correia MJ, Pimpão AB, Fernandes DGF, Morello J, Sequeira CO, Calado J, Antunes AMM, Almeida MS, Branco P, Monteiro EC, Vicente JB, Serpa J, Pereira SA. Cysteine as a Multifaceted Player in Kidney, the Cysteine-Related Thiolome and Its Implications for Precision Medicine. Molecules 2022; 27:1416. [PMID: 35209204 PMCID: PMC8874463 DOI: 10.3390/molecules27041416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this review encouraged by original data, we first provided in vivo evidence that the kidney, comparative to the liver or brain, is an organ particularly rich in cysteine. In the kidney, the total availability of cysteine was higher in cortex tissue than in the medulla and distributed in free reduced, free oxidized and protein-bound fractions (in descending order). Next, we provided a comprehensive integrated review on the evidence that supports the reliance on cysteine of the kidney beyond cysteine antioxidant properties, highlighting the relevance of cysteine and its renal metabolism in the control of cysteine excess in the body as a pivotal source of metabolites to kidney biomass and bioenergetics and a promoter of adaptive responses to stressors. This view might translate into novel perspectives on the mechanisms of kidney function and blood pressure regulation and on clinical implications of the cysteine-related thiolome as a tool in precision medicine.
Collapse
Affiliation(s)
- Maria João Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - António B. Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Dalila G. F. Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Judit Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Catarina O. Sequeira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Joaquim Calado
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal;
- Nephrology Department, Centro Hospitalar Universitário de Lisboa Central, 1069-166 Lisboa, Portugal
| | - Alexandra M. M. Antunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, 1049-001 Lisboa, Portugal;
| | - Manuel S. Almeida
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Patrícia Branco
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal
| | - Sofia A. Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| |
Collapse
|
25
|
Seo SO, Jin YS. Next-Generation Genetic and Fermentation Technologies for Safe and Sustainable Production of Food Ingredients: Colors and Flavorings. Annu Rev Food Sci Technol 2022; 13:463-488. [DOI: 10.1146/annurev-food-052720-012228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A growing human population is a significant issue in food security owing to the limited land and resources available for agricultural food production. To solve these problems, sustainable food manufacturing processes and the development of alternative foods and ingredients are needed. Metabolic engineering and synthetic biology can help solve the food security issue and satisfy the demand for alternative food production. Bioproduction of food ingredients by microbial fermentation is a promising method to replace current manufacturing processes, such as extraction from natural materials and chemical synthesis, with more ecofriendly and sustainable operations. This review highlights successful examples of bioproduction for food additives by engineered microorganisms, with an emphasis on colorants and flavors that are extensively used in the food industry. Recent strain engineering developments and fermentation strategies for producing selected food colorants and flavors are introduced with discussions on the current status and future perspectives. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Seung-Oh Seo
- Department of Food Science and Nutrition, Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
26
|
Wang X, Shen Y, Zhuang X, Wang N, Zhang Q, Zhu L, Liu Y, Lu X, Qin L, Zhang Q. Jintiange Capsule Alleviates Rheumatoid Arthritis and Reverses Changes of Serum Metabolic Profile in Collagen-Induced Arthritic Rats. J Inflamm Res 2021; 14:6685-6706. [PMID: 34949931 PMCID: PMC8688834 DOI: 10.2147/jir.s338107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Jintiange capsule (JTG), an approved drug developed as a substitute for tiger bone (TB), has been clinically applied for osteoporosis therapy since 2003. The drug is composed of bionic TB powder, in which peptides and proteins are primarily enriched from other bone extracts. However, as a precious material of traditional Chinese medicine (TCM), TB has been mainly understood and used in TCM to relieve osteoporosis, rheumatoid arthritis and bone injury. Inspired by those, the purpose of this study was to investigate whether JTG also had an effect on relieving rheumatoid arthritis in collagen-induced arthritic (CIA) rats and explore potential mechanism from the perspective of serum metabolic profile changes. Methods JTG was analyzed using Nano LC-MS/MS and orally administered in CIA rats for 6 weeks. After administration, intervention effects of JTG on synovial inflammation, bone micro-architecture and bone metabolism were studied, and the impact of JTG on serum metabolic profiles in CIA rats was investigated by metabolomics. Results Nine bioactive peptides were identified in JTG. In animal treatments, JTG alleviated paw swelling (P < 0.01), arthritic severity (P < 0.01) and synovial tissue proliferation, as well as inflammatory cell infiltration of ankle joint, decreased bone loss, improved microstructure of bone in CIA rats by regulating bone absorption and formation, specifically increasing bone mineral density (BMD) (P < 0.05), bone volume fraction (BVF) (P < 0.05), trabecular number (Tb.N) (P < 0.05) and decreasing trabecular separation (Tb.Sp) (P < 0.05). Besides, serum IL-6 was down-regulated remarkably in CIA rats (P < 0.05). Furthermore, metabolomics analysis revealed that 32 metabolites were regulated significantly (P < 0.05) by comparison between CIA model and JTG in 360 mg/kg dose. The pathway analysis implied that JTG was involved in regulation of biosynthesis of phenylalanine. Conclusion JTG alleviates rheumatoid arthritis and reverses changes in serum metabolic profile in CIA rats. ![]()
Point your SmartPhone at the code above. If you have a QR code reader, the video abstract will appear. Or use: https://youtu.be/fgIlcSWmw_Y
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Yi Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Xinying Zhuang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Na Wang
- Ginwa Enterprise (Group) INC, Xi'an, 710069, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Lulin Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Yuling Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Xinyu Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| |
Collapse
|
27
|
Dehiba F, Allaoui A, Benomar S, Yahia S, Guillén N, Rodríguez-Yoldi MJ, Osada J, Boualga A. Protective properties of sardine and chickpea protein hydrolysates against lipoprotein oxidative damages and some inflammation markers in hypercholesterolemic rats. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-210548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE: This study evaluated the effect of sardine (SPH) and chickpea protein hydrolysates (CPH) on oxidant stress and inflammatory profile in cholesterol-fed rats. METHODS: The experiment was undertaken for thirty days on 18 cholesterol-fed Wistar rats (220±10 g) divided into three groups and receiving 1 g/kg of body weight either chickpea protein hydrolysate (CPH), sardine protein hydrolysate (SPH) or casein in water (CG). RESULTS: Compared to CG, SPH and CPH treatment reduced cholesterol, hydroperoxide and malondialdehyde contents in serum, lipoproteins, erythrocytes and aorta. These same treated groups showed also lower serum isoprostane levels. However, serum paraoxonase activity and HDL-antioxidant property were improved only by CPH compared to CG. SOD activity of aorta and erythrocytes was higher in CPH but in SPH group, SOD activity was lower in these tissues and remained unchanged in serum. Furthermore, CPH and SPH stimulated glutathione peroxidase and catalase activities of aorta and erythrocytes. In CPH group, nitric oxide levels of serum, erythrocytes and aorta were increased by respectively 1.4- to 1.8-fold compared to CG and SPH. In addition, among the three groups, CPH exhibited the best anti-inflammatory effect by lowering serum C reactive protein, uric acid and albumin concentrations. CONCLUSIONS: SPH and particularly CPH possess antioxidant and anti-inflammatory properties and could be useful as nutraceuticals for health improving and preventing numerous disorders such as cardiovascular diseases.
Collapse
Affiliation(s)
- Faiza Dehiba
- Laboratoire de Nutrition Clinique et Métabolique, Faculty of Natural and Life Sciences, University of Oran1, Thematic Agency of Research in Health Sciences, 31000 Oran, Algeria
- École Supérieure en Sciences Biologiques d’Oran, 31000 Oran, Algérie
| | - Amine Allaoui
- Laboratoire de Nutrition Clinique et Métabolique, Faculty of Natural and Life Sciences, University of Oran1, Thematic Agency of Research in Health Sciences, 31000 Oran, Algeria
- Amine Allaoui, Department of Biology, Faculty of Natural and Life Sciences, Université Blida1, Blida, 09000, Algeria
| | - Souhila Benomar
- Laboratoire de Nutrition Clinique et Métabolique, Faculty of Natural and Life Sciences, University of Oran1, Thematic Agency of Research in Health Sciences, 31000 Oran, Algeria
| | - Sanaa Yahia
- Laboratoire de Nutrition Clinique et Métabolique, Faculty of Natural and Life Sciences, University of Oran1, Thematic Agency of Research in Health Sciences, 31000 Oran, Algeria
| | - Natalia Guillén
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, CIBERobn (ISCIII), IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - María Jesús Rodríguez-Yoldi
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Universidad de Zaragoza, CIBERobn (ISCIII), IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - Jesús Osada
- Departamento de Farmacología y Fisiologa, Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, CIBERobn (ISCIII), IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - Ahmed Boualga
- Laboratoire de Nutrition Clinique et Métabolique, Faculty of Natural and Life Sciences, University of Oran1, Thematic Agency of Research in Health Sciences, 31000 Oran, Algeria
| |
Collapse
|
28
|
Surai PF, Earle-Payne K, Kidd MT. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants (Basel) 2021; 10:1876. [PMID: 34942978 PMCID: PMC8698923 DOI: 10.3390/antiox10121876] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Natural antioxidants have received tremendous attention over the last 3 decades. At the same time, the attitude to free radicals is slowly changing, and their signalling role in adaptation to stress has recently received a lot of attention. Among many different antioxidants in the body, taurine (Tau), a sulphur-containing non-proteinogenic β-amino acid, is shown to have a special place as an important natural modulator of the antioxidant defence networks. Indeed, Tau is synthesised in most mammals and birds, and the Tau requirement is met by both synthesis and food/feed supply. From the analysis of recent data, it could be concluded that the direct antioxidant effect of Tau due to scavenging free radicals is limited and could be expected only in a few mammalian/avian tissues (e.g., heart and eye) with comparatively high (>15-20 mM) Tau concentrations. The stabilising effects of Tau on mitochondria, a prime site of free radical formation, are characterised and deserve more attention. Tau deficiency has been shown to compromise the electron transport chain in mitochondria and significantly increase free radical production. It seems likely that by maintaining the optimal Tau status of mitochondria, it is possible to control free radical production. Tau's antioxidant protective action is of great importance in various stress conditions in human life, and is related to commercial animal and poultry production. In various in vitro and in vivo toxicological models, Tau showed AO protective effects. The membrane-stabilizing effects, inhibiting effects on ROS-producing enzymes, as well as the indirect AO effects of Tau via redox balance maintenance associated with the modulation of various transcription factors (e.g., Nrf2 and NF-κB) and vitagenes could also contribute to its protective action in stress conditions, and thus deserve more attention.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
29
|
Pradhan LK, Sahoo PK, Aparna S, Sargam M, Biswal AK, Polai O, Chauhan NR, Das SK. Suppression of bisphenol A-induced oxidative stress by taurine promotes neuroprotection and restores altered neurobehavioral response in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY 2021; 36:2342-2353. [PMID: 34403186 DOI: 10.1002/tox.23348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 07/11/2021] [Accepted: 08/04/2021] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA) has been documented as a mediator for a number of health effects, including inflammation, oxidative stress, carcinogenicity, and mood dysfunction. The literature on the role of BPA in inducing altered neurobehavioral response and brain morphology and plausible neuroprotective role of taurine against BPA induced oxidative stress mediated neurotoxicity is limited. Therefore, the present experimental paradigm was set for 21 days to expound the neuroprotective efficacy of taurine against BPA-induced neurotoxicity in zebrafish (Danio rerio) following waterborne exposure. Neurobehavioral studies were conducted by light-dark preference test (LDPT) and novel tank diving test (NTDT). To validate that the neuroprotective efficacy of taurine against BPA-induced neurotoxicity is associated with the modulation of the antioxidant defense system, we have conducted biochemical studies in zebrafish brain. Changes in brain morphology leading to neurobehavioral variations following co-supplementation of BPA and taurine were evaluated by Hoechst staining and cresyl violet staining (CVS) in periventricular gray zone (PGZ) of zebrafish brain. Our findings show that taurine co-supplementation significantly improved the BPA-induced altered scototaxis and explorative behavior of zebrafish. Further, BPA-induced augmented oxidative stress was considerably ameliorated by taurine co-supplementation. Subsequently, our observation also points toward the neuroprotective role of taurine against BPA-induced neuronal pyknosis and chromatin condensation in PGZ of zebrafish brain. In a nutshell, the findings of the current study show the neuroprotective efficacy of taurine against BPA-induced oxidative stress-mediated neurotoxicity. Elucidation of the underlying signaling mechanism of taurine-mediated neuroprotection would provide novel strategies for the prevention/treatment of BPA-persuaded serious neurological consequences.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Sai Aparna
- Neurobiology Laboratory, Department of Zoology, Ravenshaw University, Cuttack, India
| | - Meghana Sargam
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Amit Kumar Biswal
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Omkar Polai
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | | | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
30
|
The effects of Taurine supplementation on inflammatory markers and clinical outcomes in patients with traumatic brain injury: a double-blind randomized controlled trial. Nutr J 2021; 20:53. [PMID: 34103066 PMCID: PMC8186362 DOI: 10.1186/s12937-021-00712-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background Traumatic brain injury is a public health concern and is the main cause of death among various types of trauma. The inflammatory conditions due to TBI are associated with unfavorable clinical outcomes. Taurine has been reported to have immune-modulatory effects. Thus, the aim of this study was to survey the effect of taurine supplementation in TBI patients. Methods In this study, 32 patients with TBI were randomized into two groups. The treatment group received 30 mg/kg/day of taurine in addition to the Standard Entera Meal and the control group received Standard Entera Meal for 14 days. Prior to and following the intervention, the patients were investigated in terms of serum levels of IL-6, IL-10, hs-CRP and TNF-α as well as APACHEII, SOFA and NUTRIC scores, Glasgow coma scale and weight. In addition, the length of Intensive Care Unit stay, days of dependence on ventilator and 30-day mortality were studied. SPSS software (version 13.0) was used for data analysis. Results Taurine significantly decreased the serum levels of IL-6 (p = 0.04) and marginally APACHEII score (p = 0.05). In addition, weight loss was significantly lower in taurine group (p = 0.03). Furthermore, taurine significantly increased the GCS (p = 0.03). The groups were not different significantly in terms of levels of IL-10, hs-CRP, and TNF-α, SOFA and NUTRIC scores, 30-day mortality, length of ICU stay and days of dependence on ventilator. Conclusion According to the results of the present study, taurine supplementation can reduce the IL-6 levels as one of the important inflammatory markers in these patients; and enhances the clinical outcomes too. Trial registration IRCT, IRCT20180514039657N1. Registered 22 June 2018.
Collapse
|
31
|
He Z, Liu Z, Gong L. Biomarker identification and pathway analysis of rheumatoid arthritis based on metabolomics in combination with ingenuity pathway analysis. Proteomics 2021; 21:e2100037. [PMID: 33969925 DOI: 10.1002/pmic.202100037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune and inflammatory disease worldwide, but understanding its pathogenesis is still limited. In this study, plasma untargeted metabolomics of a discovery cohort and targeted analysis of a verification cohort were performed by gas chromatograph mass spectrometry (GC/MS). Univariate and multivariate statistical analysis were utilized to reveal differential metabolites, followed by the construction of biomarker panel through random forest (RF) algorithm. The pathways involved in RA were enriched by differential metabolites using Ingenuity Pathway Analysis (IPA) suite. Untargeted metabolomics revealed eighteen significantly altered metabolites in RA. Among these metabolites, a three-metabolite marker panel consisting of L-cysteine, citric acid and L-glutamine was constructed, using random forest algorithm that could predict RA with high accuracy, sensitivity and specificity based on a multivariate exploratory receiver operator characteristic (ROC) curve analysis. The panel was further validated by support vector machine (SVM) and partial least squares discriminant analysis (PLS-DA) algorithms, and also verified with targeted metabolomics using a verification cohort. Additionally, the dysregulated taurine biosynthesis pathway in RA was revealed by an integrated analysis of metabolomics and transcriptomics. Our findings in this study not only provided a mechanism underlying RA pathogenesis, but also offered alternative therapeutic targets for RA.
Collapse
Affiliation(s)
- Zhuoru He
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Lingzhi Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| |
Collapse
|
32
|
Taurine Augments Telomerase Activity and Promotes Chondrogenesis in Dental Pulp Stem Cells. J Pers Med 2021; 11:jpm11060491. [PMID: 34072707 PMCID: PMC8228366 DOI: 10.3390/jpm11060491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Stem cell therapy has become an advanced and state-of-the-art procedure to regenerate lost tissues of the human body. Cartilage repair is a challenging task in which stem cells find potential application. One of the important biologic modifiers that can cause chondrogenic differentiation of stem cells is taurine. However, taurine has not been investigated for its effects on dental pulp derived stem cell (DPSC) chondrogenic differentiation. Objective: The objective of the study was to investigate if taurine administration to DPSCs heralds chondrogenic differentiation as ascertained by expression of SOX9, COL2A1, ACAN, ELN, and COMP. The study also investigated if the differentiated cells synthesized glycosaminoglycans, a marker of cartilage formation. The study also aimed to assess proliferative activity of the cells after taurine administration by measuring the hTERT gene and protein expression. Materials and methods: DPSCs were obtained from a molecular biology laboratory and characterization of stem cell markers was done by flow cytometry. The cells were subjected to a MTT assay using various concentrations of taurine. Following this, hTERT gene and protein estimation was done in the control, telomerase inhibitor treated DPSC (TI-III), 10 μM taurine treated DPSC, and TI-III + 10 μM taurine treated DPSCs. A polymerase chain reaction was done to assess gene expression of SOX9, COL2A1, ACAN, ELN, and COMP genes and glycosaminoglycans were estimated in control cells, Induced DPSCs, induced and TI-III treated DPSCs, and 10 μM taurine treated DPSCs. Results: DPSCs expressed CD73, CD90, and CD105 and did not express CD34, CD45, and HLA-DR, which demonstrated that they were mesenchymal stem cells. The MTT assay revealed that various concentrations of taurine did not affect the cell viability of DPSCs. A concentration of 10 μM of taurine was used for further assays. With regard to the hTERT gene and protein expression, the taurine treated cells expressed the highest levels that were statistically significant compared to the other groups. Taurine was also found to restore hTERT expression in telomerase inhibitor treated cells. With regard to chondrogenesis related genes, taurine administration significantly increased the expression of SOX9, COL2A1, ACAN, and ELN genes in DPSCs and caused a significant increase in glycosaminoglycan production by the cells. Conclusions: Taurine can be regarded a biologic modifier that can significantly augment chondrogenic differentiation of DPSCs and can find potential applications in regenerative medicine in the area of cartilage regeneration.
Collapse
|
33
|
Bioactive Compounds in Infant Formula and Their Effects on Infant Nutrition and Health: A Systematic Literature Review. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8850080. [PMID: 34095293 PMCID: PMC8140835 DOI: 10.1155/2021/8850080] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Infant formulas are an alternative to replace or supplement human milk when breastfeeding is not possible. The knowledge of human milk's bioactive compounds and their beneficial effects has attracted the interest of researchers in the field of infant nutrition, as well as researchers of technology and food sciences that seek to improve the nutritional characteristics of infant formulas. Several scientific studies evaluate the optimization of infant formula composition. The bioactive compound inclusion has been used to upgrade the quality and nutrition of infant formulas. In this context, the purpose of this systematic literature review is to assess the scientific evidence of bioactive compounds present in infant formulas (α-lactalbumin, lactoferrin, taurine, milk fat globule membrane, folates, polyamines, long-chain polyunsaturated fatty acids, prebiotics, and probiotics) and their effects on infant nutrition and health. Through previously determined criteria, studies published in the last fifteen years from five different databases were included to identify the advances in the optimization of infant formula composition. Over the last few years, there has been optimization of the infant formula composition, not only to increase the similarities in their content of macro and micronutrients but also to include novel bioactive ingredients with potential health benefits for infants. Although the infant food industry has advanced in the last years, there is no consensus on whether novel bioactive ingredients added to infant formulas have the same functional effects as the compounds found in human milk. Thus, further studies about the impact of bioactive compounds in infant nutrition are fundamental to infant health.
Collapse
|
34
|
Malek Mahdavi A, Javadivala Z. A systematic review of preclinical studies on the efficacy of taurine for the treatment of rheumatoid arthritis. Amino Acids 2021; 53:783-800. [PMID: 33929638 DOI: 10.1007/s00726-021-02988-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
Due to the undesirable effects of conventional medical therapies prescribed for rheumatoid arthritis (RA), complementary therapies, especially nutritional agents, have recently gained great attention. Recent animal and in vitro researches have shown benefits of taurine (Tau), a sulfur-containing amino acid, in RA and suggest that Tau may be a therapeutic candidate in RA; however, no systematic review exists regarding Tau and RA. Accordingly, this paper systematically reviewed the available researches regarding Tau and RA and plausible underlying mechanisms. We searched electronic databases like Scopus, WOS, PubMed, Embase, ProQuest, Cochrane Library, and a search engine Google Scholar until December 2020 and we have applied search alert services to detect related papers published after the primary search. We did not have any restriction in publication date and/or language. We found no clinical study; thus we considered related animal and in vitro researches. Furthermore, we checked the citations or references of these researches and grey literature to detect possible studies. We did not consider reviews, book chapters, conference abstracts, and articles about Tau in health problems other than RA. Eighteen articles were entered in present systematic review. Animal and in vitro researches showed that Tau either directly or indirectly (via Tau derivatives such as Tau-chloramine, Tau-bromamine, taurochenodeoxycholic acid, and taurolidine) could control RA by different mechanisms such as reducing inflammation, suppressing oxidative stress, and inducing apoptosis. This review serves convincing clues about the efficacy of Tau in RA and explains the importance of additional clinical investigations.
Collapse
Affiliation(s)
- Aida Malek Mahdavi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zeinab Javadivala
- Department of Health Education and Promotion, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Dietary Histidine, Threonine, or Taurine Supplementation Affects Gilthead Seabream ( Sparus aurata) Immune Status. Animals (Basel) 2021; 11:ani11051193. [PMID: 33919381 PMCID: PMC8143364 DOI: 10.3390/ani11051193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The concept of supporting animal health through the best possible nutrition is well-accepted in modern aquaculture, and functional amino acids (AAs) appear to be good candidates to improve health and growth performance. For instance, histidine (His), taurine (Tau), and threonine (Thr) appear to play important roles in homeostatic maintenance, detoxification of reactive species, and immune function. The present study aimed to evaluate the effects of His, Tau, and Thr supplementation on the gilthead seabream (Sparus aurata) immune status. In general, the results suggest that dietary supplementation with His, Tau, or Thr above their nominal requirements for this species has relatively mild effects. Still, some effects of threonine and taurine supplementation on the fish immune system were observed, particularly after a short-term feeding period (four weeks), which reinforces the importance of feeding period when aiming to improve immune alertness. Hence, further studies with other supplementation levels and eventually duration of supplementation could help to clarify the potential immunomodulatory role of these AAs for gilthead seabream. Abstract AAs have become interesting feed ingredients to be used in functional fish feeds as not only are they protein building blocks, but they also participate in several other key metabolic processes. In the present study, a comprehensive analysis of transcriptomics, hematology, and humoral immune parameters (plasma and skin mucus) were measured twice over the course of the feeding trial (four weeks). Plasma antiprotease activity increased in fish fed Thr compared to those fed the CTRL and Tau treatments, regardless of sampling time. The bactericidal activity in skin mucus decreased in fish fed Tau and His treatments compared to those fed the CTRL diet after two weeks. The membrane IgT (mIgT) was upregulated in fish fed Tau after four weeks, while C-type lectin domain family domain 10 member (clec10a) was downregulated in fish fed Thr after two weeks of feeding. By comparing the molecular signatures of head-kidney by means of a PLS-DA, it is possible to visualize that the main difference is between the two sampling points, regardless of diet. Altogether, these results suggest that dietary supplementation with these AAs at the tested levels causes mild immune-modulation effects in gilthead seabream, which should be further studied under disease challenge conditions.
Collapse
|
36
|
Lee CC, Chen WT, Chen SY, Lee TM. Taurine Alleviates Sympathetic Innervation by Inhibiting NLRP3 Inflammasome in Postinfarcted Rats. J Cardiovasc Pharmacol 2021; 77:745-755. [PMID: 34057159 PMCID: PMC8274585 DOI: 10.1097/fjc.0000000000001005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/14/2021] [Indexed: 01/02/2023]
Abstract
ABSTRACT The NLRP3 inflammasome is activated by myocardial infarction and then induces the activation of inflammatory caspase-1 activation and maturation of IL-1β, a regulator of synthesis of the nerve growth factor (NGF). Here, we studied whether taurine, 2-aminoethanesulphonic acid, can attenuate cardiac sympathetic reinnervation by modulating NLRP3 inflammasome-mediated NGF in a rat model of myocardial infarction. Male Wistar rats were subjected to coronary ligation and then randomized to either saline or taurine for 3 days or 4 weeks. Postinfarction was associated with activation of NF-κB (p65) and NLRP3 inflammasome component and increased the protein and expression of IL-1β. Macrophages at the border zone were shown to be positive for IL-1β 3 days postinfarction. Compared with vehicle, infarcted rats treated with taurine significantly attenuated myocardial messenger RNA and protein levels of NF-κB, NLRP3 inflammasome, mature caspase-1, and IL-1β. Immunofluorescent analysis, real-time quantitative reverse transcription polymerase chain reaction, and Western blotting of NGF showed that sympathetic hyperinnervation was blunted after administering taurine. Arrhythmia vulnerability in the taurine-treated infarcted rats was significantly improved than those in vehicle. Ex vivo studies showed that taurine infusion reduced myocardial IL-1β level at the extent similar to either pyrrolidine dithiocarbamate or CP-456,773, inhibitors of NF-κB and NLRP3 inflammasome, implying the key axis of NF-κB/NLRP3 inflammasome in mediating taurine-related anti-inflammation. Furthermore, administration of anti-IL-1β antibody reduced NGF levels. Taurine attenuated sympathetic innervation mainly by NLRP3 inflammasome/IL-1β-dependent pathway, which downregulated expression of NGF in infarcted rats. These findings may provide a new insight into the anti-inflammation effect of taurine.
Collapse
Affiliation(s)
| | - Wei-Ting Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan; and
| | - Syue-yi Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan; and
| | - Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan; and
- Department of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
37
|
Mateo-Fernández M, Valenzuela-Gómez F, Font R, Del Río-Celestino M, Merinas-Amo T, Alonso-Moraga Á. In Vivo and In Vitro Assays Evaluating the Biological Activity of Taurine, Glucose and Energetic Beverages. Molecules 2021; 26:2198. [PMID: 33920365 PMCID: PMC8069289 DOI: 10.3390/molecules26082198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Taurine is one of the main ingredients used in energy drinks which are highly consumed in adolescents for their sugary taste and stimulating effect. With energy drinks becoming a worldwide phenomenon, the biological effects of these beverages must be evaluated in order to fully comprehend the potential impact of these products on the health due to the fact nutrition is closely related to science since the population consumes food to prevent certain diseases. Therefore, the aim of this study was to evaluate the biological effects of taurine, glucose, classic Red Bull® and sugar-free Red Bull® in order to check the food safety and the nutraceutical potential of these compounds, characterising different endpoints: (i) Toxicology, antitoxicology, genotoxicology and life expectancy assays were performed in the Drosophila melanogaster model organism; (ii) The in vitro chemopreventive activity of testing compounds was determined by assessing their cytotoxicity, the proapoptotic DNA-damage capability to induce internucleosomal fragmentation, the strand breaks activity and the modulator role on the methylation status of genomic repetitive sequences of HL-60 promyelocytic cells. Whereas none tested compounds showed toxic or genotoxic effect, all tested compounds exerted antitoxic and antigenotoxic activity in Drosophila. Glucose, classic Red Bull® and sugar-free Red Bull® were cytotoxic in HL-60 cell line. Classic Red Bull® induced DNA internucleosomal fragmentation although none of them exhibited DNA damage on human leukaemia cells. In conclusion, the tested compounds are safe on Drosophila melanogaster and classic Red Bull® could overall possess nutraceutical potential in the in vivo and in vitro model used in this study. Besides, taurine could holistically be one of the bioactive compounds responsible for the biological activity of classic Red Bull®.
Collapse
Affiliation(s)
- Marcos Mateo-Fernández
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| | | | - Rafael Font
- Agri-Food Laboratory, Avda. Menéndez Pidal, s/n, 14080 Córdoba, Spain; (R.F.); (M.D.R.-C.)
| | | | - Tania Merinas-Amo
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| | - Ángeles Alonso-Moraga
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain; (T.M.-A.); (Á.A.-M.)
| |
Collapse
|
38
|
Liu GY, Jiang WX, Sun HT, Gao SX, Yang LP, Liu C, Bai LY. Effects of dietary supplementation with taurine on production performance of Angora rabbits. WORLD RABBIT SCIENCE 2021. [DOI: 10.4995/wrs.2021.13133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<p>This study aimed to evaluate the effects of dietary supplementation with taurine on production performance, serum biochemistry, immunoglobulin, antioxidant and hormones of Angora rabbits. A total of 160 8-month-old Angora rabbits with similar body weight were randomly assigned to one of four dietary groups, with 40 animals per group. The dietary groups consisted of the following different taurine supplementation levels: 0 (control), 0.1, 0.2, and 0.3% (air-dry basis). The 73-d feeding trial (from July 31 to October 11, 2016 in China) included a 7-d adjustment period and a 66-d experimental period. The results showed that taurine dietary supplementation had effects on feed consumption, hair follicle density and wool yield of the Angora rabbits (<em>P</em><0.05), and adding 0.2% taurine could improve the wool yield. Compared with the control group, serum total cholesterol and low-density lipoprotein levels in supplemented groups were decreased (<em>P</em><0.05). Dietary supplementation with taurine could improve the activity of superoxide dismutase, enhance total antioxidant capacity and reduce the content of malondialdehyde in serum (<em>P</em><0.05). Besides, the serum level of thyroid (T4) hormone and insulin-like growth factor-1 in experimental groups was higher than that in the control group (<em>P</em><0.05). In conclusion, taurine dietary supplementation could reduce the lipid metabolism, enhance the antioxidant capacity and hormone level of Angora rabbits, and adding 0.2% taurine could achieve the effect of increasing wool production.</p>
Collapse
|
39
|
Ma B, Zhang L, Li J, Xing T, Jiang Y, Gao F. Dietary taurine supplementation ameliorates muscle loss in chronic heat stressed broilers via suppressing the perk signaling and reversing endoplasmic reticulum-stress-induced apoptosis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2125-2134. [PMID: 32978773 DOI: 10.1002/jsfa.10835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Heat stress seriously affects animal health and induces enormous financial losses in poultry production. Exploring the appropriate means for ameliorating unfavorable effects caused by heat stress is essential. We investigated whether taurine supplementation could attenuate breast muscle loss in chronic heat-stressed broilers, as well as its mechanism. We designed three groups: a normal control group (22 °C), a heat stress group (32 °C) and a taurine treatment group (32 °C, basal diet + 5 g·kg-1 taurine). RESULTS We found that taurine significantly moderated the decreases of breast muscle mass and yield, as well as the increases of serum aspartate aminotransferase activity and serum urine acid level in chronic heat-stressed broilers. Additionally, supplementary taurine significantly alleviated elevations of the cytoplasm Ca2+ concentration, protein expressions of GRP78 and p-PERK, mRNA expressions of Ca2+ channels (RyR1, IP3R3) and endoplasmic reticulum (ER) stress factors (GRP78, GRP94, PERK, EIF2α, ATF4, IRE1, XBP1, ATF6 and CHOP), apoptosis (Caspase-3 and TUNEL), protein catabolism, and the reduction of taurine transporter (TauT) mRNA expression in the breast muscle induced by chronic heat stress. CONCLUSION Supplementary taurine could attenuate chronic heat stress-induced breast muscle loss via reversing ER stress-induced apoptosis and suppressing protein catabolism. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bingbing Ma
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
The expanding world of tRNA modifications and their disease relevance. Nat Rev Mol Cell Biol 2021; 22:375-392. [PMID: 33658722 DOI: 10.1038/s41580-021-00342-0] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/08/2023]
Abstract
Transfer RNA (tRNA) is an adapter molecule that links a specific codon in mRNA with its corresponding amino acid during protein synthesis. tRNAs are enzymatically modified post-transcriptionally. A wide variety of tRNA modifications are found in the tRNA anticodon, which are crucial for precise codon recognition and reading frame maintenance, thereby ensuring accurate and efficient protein synthesis. In addition, tRNA-body regions are also frequently modified and thus stabilized in the cell. Over the past two decades, 16 novel tRNA modifications were discovered in various organisms, and the chemical space of tRNA modification continues to expand. Recent studies have revealed that tRNA modifications can be dynamically altered in response to levels of cellular metabolites and environmental stresses. Importantly, we now understand that deficiencies in tRNA modification can have pathological consequences, which are termed 'RNA modopathies'. Dysregulation of tRNA modification is involved in mitochondrial diseases, neurological disorders and cancer.
Collapse
|
41
|
Albracht-Schulte K, Islam T, Johnson P, Moustaid-Moussa N. Systematic Review of Beef Protein Effects on Gut Microbiota: Implications for Health. Adv Nutr 2021; 12:102-114. [PMID: 32761179 PMCID: PMC7850003 DOI: 10.1093/advances/nmaa085] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/10/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023] Open
Abstract
The influence of diet on the gut microbiota is an emerging research area with significant impact on human health and disease. However, the effects of beef, the most consumed red meat in the United States, on gut microbial profile are not well studied. Following Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, the objective of this systematic review was to conduct a rigorous and thorough review of the current scientific literature regarding the effects of beef protein and the resulting bioactivity of beef protein and amino acids on the gut microbiota, with the goal of identifying gaps in the literature and guiding future research priorities. Utilizing MEDLINE Complete, PubMed, ScienceDirect, Scopus, and Google Scholar databases, we conducted searches including terms and combinations of the following: animal protein, amino acid, beef, bioactive compounds, diet, health, microbiome, peptide, processed beef, and protein. We identified 131 articles, from which 15 were included in our review. The effects of beef on mouse and rat models were mostly consistent for the bacterial phylum level. Short-term (1-4-wk) beef intakes had little to no effect on microbial profiles in humans. Most studies utilized high beef feeding (240-380 g/d), and no study examined recommended amounts of protein [∼3.71 oz/d (105 g/d) meats, poultry, and eggs, or ∼26 oz/week (737 g/wk) from these food sources] according to US dietary guidelines. Additionally, the majority of animal and human studies with adverse findings examined the impact of beef in the context of a diet high in fat or sugar. In conclusion, an extensive gap exists in the literature regarding beef and the microbiota. More studies are necessary to elucidate the role of the microbiota following the consumption of beef, especially in interaction with other dietary compounds, and how beef preparation, processing, and cooking methods differentially influence the biological effects of beef on human health.
Collapse
Affiliation(s)
- Kembra Albracht-Schulte
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Tariful Islam
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Paige Johnson
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
42
|
Sweed M, Zaki H, Ali R, Abdelhafeez M. Taurine as an adjunct therapy for early left ventricular recovery in peripartum cardiomyopathy. JOURNAL OF OBSTETRIC ANAESTHESIA AND CRITICAL CARE 2021. [DOI: 10.4103/joacc.joacc_36_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
Morsy MD, Aboonq MS, ALsleem MA, Abusham AA. Taurine prevents high-fat diet-induced-hepatic steatosis in rats by direct inhibition of hepatic sterol regulatory element-binding proteins and activation of AMPK. Clin Exp Pharmacol Physiol 2021; 48:72-85. [PMID: 32691860 DOI: 10.1111/1440-1681.13387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
This study investigated if the protective effect of taurine against high fat diet-induced hepatic steatosis involves modulating the hepatic activity of 5' AMP-activated protein kinase (AMPK) and levels/activity of the sterol regulatory element-binding proteins-1/2 (SREBP1/2). Rats were divided into four groups (n = 12/group) as (a) STD, fed standard diet (3.85 kcal/g); (b) STD + taurine (500 mg/kg); (c) HFD, fed HFD (4.73 kcal/g); and (d) HFD + taurine. All treatments were conducted for 12 weeks. Independent of food intake or modulating glucose or insulin levels, taurine administration to STD and HFD-fed rats significantly lowered weekly weight gain and the accumulation of the retroperitoneal, visceral and subcutaneous fats. In both groups, taurine also reduced serum and hepatic levels of triglycerides and cholesterol and reduced hepatic mRNA and protein levels of fatty acid synthase (FAS), acetyl CoA carboxylase-1 (ACC-1), HMG-CoA-reductase and HMG-CoA synthetase. In control rats only, taurine reduced hepatic levels of mature forms of sterol regulatory element-binding proteins (SREBP)-1/2. In HFD-fed rats, taurine reduced SREBP-1/2 precursor and mature forms in the livers of HFD-fed rats. Besides, taurine significantly increased levels of glutathione (GSH), the activity of superoxide dismutase (SOD), and the activity of AMPK and its downstream β-oxidation genes including peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyltransferase (CPT-1) in the livers of both the control and HFD-fed rats. In conclusion, taurine protects against HFD-induced hepatic steatosis stimulating antioxidant levels, and concomitant stimulating hepatic β-oxidation and suppressing lipid synthesis, mediated by activation of AMPK and suppression of SREBP-1.
Collapse
Affiliation(s)
- Mohamed Darwesh Morsy
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, College of Medicine, Menoufia University, Shebeen Alkoom, Egypt
| | - Moutasem Salih Aboonq
- Department of Physiology, College of Medicine, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Mohammed Abadi ALsleem
- Department of Family and Community Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdalla Abdelrahim Abusham
- Department of Obstetrics and Gynecology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
44
|
Hsu CN, Tain YL. Developmental Origins of Kidney Disease: Why Oxidative Stress Matters? Antioxidants (Basel) 2020; 10:E33. [PMID: 33396856 PMCID: PMC7823649 DOI: 10.3390/antiox10010033] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
The "developmental origins of health and disease" theory indicates that many adult-onset diseases can originate in the earliest stages of life. The developing kidney has emerged as being particularly vulnerable to adverse in utero conditions leading to morphological and functional changes, namely renal programming. Emerging evidence indicates oxidative stress, an imbalance between reactive oxygen/nitrogen species (ROS/RNS) and antioxidant systems, plays a pathogenetic role in the developmental programming of kidney disease. Conversely, perinatal use of antioxidants has been implemented to reverse programming processes and prevent adult-onset diseases. We have termed this reprogramming. The focus of this review is twofold: (1) To summarize the current knowledge on oxidative stress implicated in renal programming and kidney disease of developmental origins; and (2) to provide an overview of reprogramming effects of perinatal antioxidant therapy on renal programming and how this may prevent adult-onset kidney disease. Although early-life oxidative stress is implicated in mediating renal programming and adverse offspring renal outcomes, and animal models provide promising results to allow perinatal antioxidants applied as potential reprogramming interventions, it is still awaiting clinical translation. This presents exciting new challenges and areas for future research.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
45
|
Hsu CN, Tain YL. Early Origins of Hypertension: Should Prevention Start Before Birth Using Natural Antioxidants? Antioxidants (Basel) 2020; 9:E1034. [PMID: 33113999 PMCID: PMC7690716 DOI: 10.3390/antiox9111034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Hypertension may originate in early life. Reactive oxygen species (ROS) generated due to the exposure of adverse in utero conditions causes developmental programming of hypertension. These excessive ROS can be antagonized by molecules which are antioxidants. Prenatal use of natural antioxidants may reverse programming processes and prevent hypertension of developmental origin. In the current review, firstly we document data on the impact of oxidative stress in hypertension of developmental origin. This will be followed by effective natural antioxidants uses starting before birth to prevent hypertension of developmental origin in animal models. It will also discuss evidence for the common mechanisms underlying developmental hypertension and beneficial effects of natural antioxidant interventions used as reprogramming strategies. A better understanding of the reprogramming effects of natural antioxidants and their interactions with common mechanisms underlying developmental hypertension is essential. Therefore, pregnant mothers and their children can benefit from natural antioxidant supplementation during pregnancy in order to reduce their risk for hypertension later in life.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
46
|
Zaric BL, Radovanovic JN, Gluvic Z, Stewart AJ, Essack M, Motwalli O, Gojobori T, Isenovic ER. Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Front Immunol 2020; 11:551758. [PMID: 33117340 PMCID: PMC7549398 DOI: 10.3389/fimmu.2020.551758] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the leading global health concern and responsible for more deaths worldwide than any other type of disorder. Atherosclerosis is a chronic inflammatory disease in the arterial wall, which underpins several types of cardiovascular disease. It has emerged that a strong relationship exists between alterations in amino acid (AA) metabolism and the development of atherosclerosis. Recent studies have reported positive correlations between levels of branched-chain amino acids (BCAAs) such as leucine, valine, and isoleucine in plasma and the occurrence of metabolic disturbances. Elevated serum levels of BCAAs indicate a high cardiometabolic risk. Thus, BCAAs may also impact atherosclerosis prevention and offer a novel therapeutic strategy for specific individuals at risk of coronary events. The metabolism of AAs, such as L-arginine, homoarginine, and L-tryptophan, is recognized as a critical regulator of vascular homeostasis. Dietary intake of homoarginine, taurine, and glycine can improve atherosclerosis by endothelium remodeling. Available data also suggest that the regulation of AA metabolism by indoleamine 2,3-dioxygenase (IDO) and arginases 1 and 2 are mediated through various immunological signals and that immunosuppressive AA metabolizing enzymes are promising therapeutic targets against atherosclerosis. Further clinical studies and basic studies that make use of animal models are required. Here we review recent data examining links between AA metabolism and the development of atherosclerosis.
Collapse
Affiliation(s)
- Bozidarka L. Zaric
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena N. Radovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Faculty of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, University of Belgrade, Belgrade, Serbia
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olaa Motwalli
- College of Computing and Informatics, Saudi Electronic University (SEU), Medina, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
47
|
Maleki V, Mahdavi R, Hajizadeh-Sharafabad F, Alizadeh M. A Comprehensive Insight into Potential Roles of Taurine on Metabolic Variables in Type 2 Diabetes: A Systematic Review. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hajizadeh-Sharafabad
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Baliou S, Kyriakopoulos AM, Spandidos DA, Zoumpourlis V. Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review). Int J Oncol 2020; 57:631-664. [PMID: 32705269 PMCID: PMC7384849 DOI: 10.3892/ijo.2020.5100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
For one century, taurine is considered as an end product of sulfur metabolism. In this review, we discuss the beneficial effect of taurine, its haloamines and taurine upregulated gene 1 (TUG1) long non‑coding RNA (lncRNA) in both cancer and inflammation. We outline how taurine or its haloamines (N‑Bromotaurine or N‑Chlorotaurine) can induce robust and efficient responses against inflammatory diseases, providing insight into their molecular mechanisms. We also provide information about the use of taurine as a therapeutic approach to cancer. Taurine can be combined with other chemotherapeutic drugs, not only mediating durable responses in various malignancies, but also circumventing the limitations met from chemotherapeutic drugs, thus improving the therapeutic outcome. Interestingly, the lncRNA TUG1 is regarded as a promising therapeutic approach, which can overcome acquired resistance of cancer cells to selected strategies. In this regard, we can translate basic knowledge about taurine and its TUG1 lncRNA into potential therapeutic options directed against specific oncogenic signaling targets, thereby bridging the gap between bench and bedside.
Collapse
Affiliation(s)
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | | |
Collapse
|
49
|
Hakim F, Chianea T, Sturtz F, Paraf F, Gaulier JM. Interpretation of the toxicological findings in a probably Energy drink intake-related fatality. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2020. [DOI: 10.1016/j.toxac.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Dietary taurine stimulates the hepatic biosynthesis of both bile acids and cholesterol in the marine teleost, tiger puffer ( Takifugu rubripes). Br J Nutr 2020; 123:1345-1356. [PMID: 31959268 DOI: 10.1017/s0007114520000161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Taurine (TAU) plays important roles in the metabolism of bile acids, cholesterol and lipids. However, little relevant information has been available in fish where TAU has been identified as a conditionally essential nutrient. The present study aimed to investigate the effects of dietary TAU on the metabolism of bile acids, cholesterol and lipids in tiger puffer, which is both an important aquaculture species and a good research model, having a unique lipid storage pattern. An 8-week feeding trial was conducted in a flow-through seawater system. Three experimental diets differed only in TAU level, that is, 1·7, 8·2 and 14·0 mg/kg. TAU supplementation increased the total bile acid content in liver but decreased the content in serum. TAU supplementation also increased the contents of total cholesterol and HDL-cholesterol in both liver and serum. The hepatic bile acid profile mainly includes taurocholic acid (94·48 %), taurochenodeoxycholic acid (4·17 %) and taurodeoxycholic acid (1·35 %), and the contents of all these conjugated bile acids were increased by dietary TAU. The hepatic lipidomics analysis showed that TAU tended to decrease the abundance of individual phospholipids and increase those of some individual TAG and ceramides. The hepatic mRNA expression study showed that TAU stimulated the biosynthesis of both bile acids and cholesterol, possibly via regulation of farnesoid X receptor and HDL metabolism. TAU also stimulated the hepatic expression of lipogenic genes. In conclusion, dietary TAU stimulated the hepatic biosynthesis of both bile acids and cholesterol and tended to regulate lipid metabolism in multiple ways.
Collapse
|