1
|
García-Caballero C, Guerrero-Hue M, Vallejo-Mudarra M, Palomino Antolin A, Decouty-Pérez C, Sánchez-Mendoza LM, Villalba JM, González-Reyes JA, Opazo-Rios L, Vázquez-Carballo C, Herencia C, Leiva-Cepas F, Cortegano I, Andrés BD, Egido J, Egea J, Moreno JA. Nox4 is involved in acute kidney injury associated to intravascular hemolysis. Free Radic Biol Med 2024; 225:430-444. [PMID: 39413979 DOI: 10.1016/j.freeradbiomed.2024.10.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Massive intravascular hemolysis occurs not unfrequently in many clinical conditions. Breakdown of erythrocytes promotes the accumulation of heme-derivates in the kidney, increasing oxidative stress and cell death, thus promoting acute kidney injury (AKI). NADPH oxidase 4 (Nox4) is a major source of reactive oxygen species (ROS) in the kidney, however it is unknown the role of Nox4 in hemolysis and whether inhibition of this enzyme may protect from heme-mediated injury. To answer these questions, we elicited intravascular hemolysis in wild type and Nox4 knockout mice. We also evaluated whether nephrotoxic effects of heme may be reduced by using Nox4 siRNA and pharmacologic inhibition with GKT137831, a Nox4 inhibitor, both in vivo and in cultured renal cells. Our results showed that induction of massive hemolysis elicited AKI characterized by loss of renal function, morphological alterations of the tubular epithelium and podocytes, oxidative stress, inflammation, mitochondrial dysfunction, blockade of autophagy and cell death. These pathological effects were significantly prevented in Nox4-deficient mice and in animals treated with GKT137831. In vitro studies showed that Nox4 disruption by specific siRNAs or Nox4 inhibitors declined heme-mediated ROS production and cell death. Our data identify Nox4 as a key enzyme involved in intravascular hemolysis-induced AKI. Thus, Nox4 inhibition may be a potential therapeutic approach to prevent renal damage in patients with severe hemolytic crisis.
Collapse
Affiliation(s)
- Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.
| | - Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.
| | - Mercedes Vallejo-Mudarra
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain.
| | - Alejandra Palomino Antolin
- Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| | - Celine Decouty-Pérez
- Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| | - Luz Marina Sánchez-Mendoza
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Campus of International Agri-Food Excellence, CeiA3, Cordoba, Spain.
| | - José Manuel Villalba
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Campus of International Agri-Food Excellence, CeiA3, Cordoba, Spain.
| | - José Antonio González-Reyes
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Campus of International Agri-Food Excellence, CeiA3, Cordoba, Spain.
| | - Lucas Opazo-Rios
- Health Science Faculty, University of Las Américas, Concepción, Talcahuano, Chile.
| | - Cristina Vázquez-Carballo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Autonomous University Madrid, Spain.
| | - Carmen Herencia
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Autonomous University Madrid, Spain.
| | - Fernando Leiva-Cepas
- Departament of Morphological and Sociosanitary Sciences, Pathology Unit, Faculty of Medicine and Nurse, University of Cordoba/Pathology Unit, Hospital Universitario Reina Sofía, Cordoba, Spain.
| | - Isabel Cortegano
- Immunobiology Department, Carlos III Health Institute, Madrid, Spain.
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, Madrid, Spain.
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Autonomous University Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| | - Javier Egea
- Research Unit, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Campus of International Agri-Food Excellence, CeiA3, Cordoba, Spain.
| |
Collapse
|
2
|
Li J, Fu C, Feng B, Liu Q, Gu J, Khan MN, Sun L, Wu H, Wu H. Polyacrylic Acid-Coated Selenium-Doped Carbon Dots Inhibit Ferroptosis to Alleviate Chemotherapy-Associated Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400527. [PMID: 38689508 PMCID: PMC11267338 DOI: 10.1002/advs.202400527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Cisplatin-associated acute kidney injury (AKI) is a severe clinical syndrome that significantly restricts the chemotherapeutic application of cisplatin in cancer patients. Ferroptosis, a newly characterized programmed cell death driven by the lethal accumulation of lipid peroxidation, is widely reported to be involved in the pathogenesis of cisplatin-associated AKI. Targeted inhibition of ferroptosis holds great promise for developing novel therapeutics to alleviate AKI. Unfortunately, current ferroptosis inhibitors possess low bioavailability or perform non-specific accumulation in the body, making them inefficient in alleviating cisplatin-associated AKI or inadvertently reducing the anti-tumor efficacy of cisplatin, thus not suitable for clinical application. In this study, a novel selenium nanomaterial, polyacrylic acid-coated selenium-doped carbon dots (SeCD), is rationally developed. SeCD exhibits high biocompatibility and specifically accumulates in the kidney. Administration of SeCD effectively scavenges broad-spectrum reactive oxygen species and significantly facilitates GPX4 expression by releasing selenium, resulting in strong mitigation of ferroptosis in renal tubular epithelial cells and substantial alleviation of cisplatin-associated AKI, without compromising the chemotherapeutic efficacy of cisplatin. This study highlights a novel and promising therapeutic approach for the clinical prevention of AKI in cancer patients undergoing cisplatin chemotherapy.
Collapse
Affiliation(s)
- Jiahuan Li
- State Key Laboratory of Agricultural MicrobiologyCollege of Animal Science & Technology and College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Chengcheng Fu
- Hubei Hongshan LaboratoryWuhan430070China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhan430070China
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
| | - Baoli Feng
- State Key Laboratory of Agricultural MicrobiologyCollege of Animal Science & Technology and College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Qingquan Liu
- Department of NephrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jiangjiang Gu
- College of ChemistryHuazhong Agricultural UniversityWuhan430070China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication)Hainan UniversitySanya572000China
| | - Lvhui Sun
- State Key Laboratory of Agricultural MicrobiologyCollege of Animal Science & Technology and College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Honghong Wu
- Hubei Hongshan LaboratoryWuhan430070China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze RiverCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhan430070China
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
| | - Hao Wu
- State Key Laboratory of Agricultural MicrobiologyCollege of Animal Science & Technology and College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
3
|
Nath KA, Singh RD, Croatt AJ, Ackerman AW, Grande JP, O'Brien DR, Garovic VD, Adams CM, Tchkonia T, Kirkland JL. Induction of p16Ink4a Gene Expression in Heme Protein-Induced AKI and by Heme: Pathophysiologic Implications. KIDNEY360 2024; 5:501-514. [PMID: 38379160 PMCID: PMC11093543 DOI: 10.34067/kid.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Key Points In heme protein–mediated AKI (HP-AKI), a senescence phenotype promptly occurs, and increased expression of p16Ink4a contributes to HP-AKI. Renal p16Ink4a expression is induced by hemoglobin, myoglobin, and heme in vivo and in renal epithelial cells exposed to heme in vitro . Impairing the binding or degradation of heme by hemopexin deficiency or heme oxygenase-1 deficiency, respectively, further upregulates p16Ink4a. Background Understanding the pathogenetic basis for AKI involves the study of ischemic and nephrotoxic models of AKI, the latter including heme protein–mediated AKI (HP-AKI). Recently, interest has grown regarding the role of senescence as a mechanism of kidney injury, including AKI. We examined whether senescence occurs in HP-AKI and potential inducers of and the role of a key driver of senescence, namely, p16Ink4a, in HP-AKI. Methods The long-established murine glycerol model of HP-AKI was used, and indices of senescence were examined. To evaluate the interaction of heme and p16Ink4a expression, murine models of genetic deficiency of hemopexin (HPX ) and heme oxygenase-1 (HO-1 ) were used. To determine the involvement of p16Ink4a in HP-AKI, the population of p16Ink4a-expressing cells was reduced using the INK-ATTAC model. Results Using multiple indices, a senescence phenotype appears in the kidney within hours after the induction of HP-AKI. This phenotype includes significant upregulation of p16Ink4a. p16Ink4a is upregulated in the kidney after the individual administration of myoglobin, hemoglobin, and heme, as well as in renal epithelial cells exposed to heme in vitro . Genetic deficiencies of HPX and HO-1 , which, independently, are expected to increase heme content in the kidney, exaggerate induction of p16Ink4a in the kidney and exacerbate HP-AKI, the latter shown in the present studies involving HPX −/− mice and in previous studies involving HO-1 −/− mice. Finally, reduction in the population of p16Ink4a-expressing cells in the kidney improves renal function in HP-AKI even within 24 hours. Conclusions The pathogenesis of HP-AKI involves senescence and the induction of p16Ink4a, the latter driven, in part, by hemoglobin, myoglobin, and heme.
Collapse
Affiliation(s)
- Karl A. Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raman Deep Singh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anthony J. Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Allan W. Ackerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Joseph P. Grande
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Daniel R. O'Brien
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, Minnesota
| | - Vesna D. Garovic
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christopher M. Adams
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Tamara Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - James L. Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Karami E, Goodarzi Z, Shahtaheri SJ, Kiani M, Faridan M, Ghazi-Khansari M. The aqueous extract of Artemisia Absinthium L. stimulates HO-1/MT-1/Cyp450 signaling pathway via oxidative stress regulation induced by aluminium oxide nanoparticles (α and γ) animal model. BMC Complement Med Ther 2023; 23:310. [PMID: 37670294 PMCID: PMC10478434 DOI: 10.1186/s12906-023-04121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND This research aimed to evaluate the protective effects of Artemisia Absinthium L. (Abs) against liver damage induced by aluminium oxide nanoparticles (Al2O3 NPs) in rats, including both structural and functional changes associated with hepatotoxicity. METHODS Thirty-six rats were randomly divided into six groups (n = 6). The first group received no treatment. The second group was orally administered Abs at a dose of 200 mg/kg/b.w. The third and fifth groups were injected intraperitoneally with γ-Al2O3 NPs and α-Al2O3 NPs, respectively, at a dose of 30 mg/kg/b.w. The fourth and sixth groups were pre-treated with oral Abs at a dose of 200 mg/kg/b.w. along with intraperitoneal injection of γ-Al2O3 NPs and α-Al2O3 NPs, respectively, at a dose of 30 mg/kg/b.w. RESULTS Treatment with γ-Al2O3 NPs resulted in a significant decrease (P < 0.05) in total body weight gain, relative liver weight to body weight, and liver weight in rats. However, co-administration of γ-Al2O3 NPs with Abs significantly increased body weight gain (P < 0.05). Rats treated with Al2O3 NPs (γ and α) exhibited elevated levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), alanine transaminase (ALT), and aspartate aminotransferase (AST). Conversely, treatment significantly reduced glutathione peroxidase (GPx), catalase (CAT), total superoxide dismutase (T-SOD), and total antioxidant capacity (TAC) levels compared to the control group. Furthermore, the expression of heme oxygenase-1 (HO-1) and metallothionein-1 (MT-1) mRNAs, cytochrome P450 (CYP P450) protein, and histopathological changes were significantly up-regulated in rats injected with Al2O3 NPs. Pre-treatment with Abs significantly reduced MDA, AST, HO-1, and CYP P450 levels in the liver, while increasing GPx and T-SOD levels compared to rats treated with Al2O3 NPs. CONCLUSION The results indicate that Abs has potential protective effects against oxidative stress, up-regulation of oxidative-related genes and proteins, and histopathological alterations induced by Al2O3 NPs. Notably, γ-Al2O3 NPs exhibited greater hepatotoxicity than α-Al2O3 NPs.
Collapse
Affiliation(s)
- Esmaeil Karami
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Goodarzi
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Jamaleddin Shahtaheri
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehrafarin Kiani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Faridan
- Department of Occupational Health and Safety at Work Engineering, Environmental Health Research CenterLorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Williams MC, Zhang X, Baek JH, D’Agnillo F. Renal glomerular and tubular responses to glutaraldehyde- polymerized human hemoglobin. Front Med (Lausanne) 2023; 10:1158359. [PMID: 37384048 PMCID: PMC10293615 DOI: 10.3389/fmed.2023.1158359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Hemoglobin-based oxygen carriers (HBOCs) are being developed as oxygen and volume replacement therapeutics, however, their molecular and cellular effects on the vasculature and different organ systems are not fully defined. Using a guinea pig transfusion model, we examined the renal glomerular and tubular responses to PolyHeme, a highly characterized glutaraldehyde-polymerized human hemoglobin with low tetrameric hemoglobin content. PolyHeme-infused animals showed no major changes in glomerular histology or loss of specific markers of glomerular podocytes (Wilms tumor 1 protein, podocin, and podocalyxin) or endothelial cells (ETS-related gene and claudin-5) after 4, 24, and 72 h. Relative to sham controls, PolyHeme-infused animals also showed similar expression and subcellular distribution of N-cadherin and E-cadherin, two key epithelial junctional proteins of proximal and distal tubules, respectively. In terms of heme catabolism and iron-handling responses, PolyHeme induced a moderate but transient expression of heme oxygenase-1 in proximal tubular epithelium and tubulointerstitial macrophages that was accompanied by increased iron deposition in tubular epithelium. Contrary to previous findings with other modified or acellular hemoglobins, the present data show that PolyHeme does not disrupt the junctional integrity of the renal glomerulus and tubular epithelium, and triggers moderate activation of heme catabolic and iron sequestration systems likely as part of a renal adaptive response.
Collapse
|
6
|
Detsika MG, Theochari E, Palamaris K, Gakiopoulou H, Lianos EA. Effect of Heme Oxygenase-1 Depletion on Complement Regulatory Proteins Expression in the Rat. Antioxidants (Basel) 2022; 12:61. [PMID: 36670923 PMCID: PMC9854825 DOI: 10.3390/antiox12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Heme oxygenase has been implicated in the regulation of various immune responses including complement activation. Using a transgenic rat model of HO-1 depletion, the present study assessed the effect of HO-1 absence on the expression of complement regulatory proteins: decay accelerating factor (DAF), CR1-related gene/protein Y (Crry) and CD59, which act to attenuate complement activation. Protein expression was assessed by immunohistochemistry in kidney, liver, lung and spleen tissues. DAF protein was reduced in all tissues retrieved from rats lacking HO-1 (Hmox1-/-) apart from spleen tissue sections. Crry protein was also reduced, but only in Hmox1-/- kidney and liver tissue. C3b staining was augmented in the kidney and spleen from Hmox1-/- rats, suggesting that the decrease of DAF and Crry was sufficient to increase C3b deposition. The observations support an important role of HO-1 as a regulator of the complement system.
Collapse
Affiliation(s)
- Maria G. Detsika
- GP Livanos and M Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece
| | - Eirini Theochari
- Department of Pathology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Kostas Palamaris
- Department of Pathology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Harikleia Gakiopoulou
- Department of Pathology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Elias A. Lianos
- Veterans Affairs Medical Center and Virginia Tech, Carilion School of Medicine, Salem, VA 24153, USA
| |
Collapse
|
7
|
Athanassiadou V, Plavoukou S, Grapsa E, Detsika MG. The Role of Heme Oxygenase-1 as an Immunomodulator in Kidney Disease. Antioxidants (Basel) 2022; 11:antiox11122454. [PMID: 36552662 PMCID: PMC9774641 DOI: 10.3390/antiox11122454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The protein heme oxygenase (HO)-1 has been implicated in the regulations of multiple immunological processes. It is well known that kidney injury is affected by immune mechanisms and that various kidney-disease forms may be a result of autoimmune disease. The current study describes in detail the role of HO-1 in kidney disease and provides the most recent observations of the effect of HO-1 on immune pathways and responses both in animal models of immune-mediated disease forms and in patient studies.
Collapse
Affiliation(s)
- Virginia Athanassiadou
- Department of Nephrology, School of Medicine, National and Kapodistrian University of Athens, Aretaieion University Hospital, 11528 Athens, Greece
| | - Stella Plavoukou
- Department of Nephrology, School of Medicine, National and Kapodistrian University of Athens, Aretaieion University Hospital, 11528 Athens, Greece
| | - Eirini Grapsa
- Department of Nephrology, School of Medicine, National and Kapodistrian University of Athens, Aretaieion University Hospital, 11528 Athens, Greece
| | - Maria G. Detsika
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece
- Correspondence:
| |
Collapse
|
8
|
El-Ashmawy NE, Al-Ashmawy GM, Farag AA, Ibrahim AO. Hemin versus erythropoietin: Possible role in Nrf2/HO-1 signaling pathway in rats with nephrotoxicity. Biomed Pharmacother 2022; 156:113971. [PMID: 36411647 DOI: 10.1016/j.biopha.2022.113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND AIM Gentamycin-induced nephrotoxicity is related to stimulation of oxidative stress and inflammatory cascades leading to apoptotic renal damage. Heme oxygenase-1 (HO-1) induction considered to be an adaptive response against oxidative tissue damage. Our study aimed to investigate the possible nephroprotective role of HO-1 inducers (hemin and erythropoietin (EPO)) and elucidate their potential underlying molecular mechanisms by assessing their antioxidant, anti-apoptotic, and anti-inflammatory properties. METHODS Kidney function markers (urea and creatinine), lipid peroxidation and antioxidant markers (MDA and GPx), inflammation and apoptotic markers (IL-6 and Bcl-2), and the relative gene expression levels of Nrf2 and HO-1 were assessed. Histopathological changes of the kidney were examined. RESULTS Nephrotoxic rats pretreated with hemin showed significant decrease in serum level of urea, creatinine, and MDA, compared to non-treated group. The kidney tissues also showed significant elevation of Bcl2 level, but significant decrease of IL-6, compared to non-treated group. Moreover, hemin pre-treatment significantly upregulated gene expression of Nrf2 and HO-1 in kidney tissue to near the normal control group. On the other hand, pretreatment with EPO showed significant upregulation of HO-1 gene expression but didn't show significant difference in Nrf2 gene expression compared to control group. The histopathological examination of kidney supported the biochemical results. CONCLUSION The current results proved that hemin rather than EPO, showed reno-protective effects in rats, which was mediated by activation of Nrf2 signaling pathway. This could be also attributed to the observed anti-inflammatory, antioxidant, and anti-apoptotic properties of hemin. In this regard, EPO showed lower potency.
Collapse
Affiliation(s)
| | | | - Amr A Farag
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt.
| | - Amera O Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Egypt.
| |
Collapse
|
9
|
Li J, Duan Q, Wei X, Wu J, Yang Q. Kidney-Targeted Nanoparticles Loaded with the Natural Antioxidant Rosmarinic Acid for Acute Kidney Injury Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204388. [PMID: 36253133 DOI: 10.1002/smll.202204388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Acute kidney injury (AKI) is a common clinical disease with high morbidity and mortality, and with a lack of effective drugs for treatment. Oxidative stress is very important in the occurrence and progression of AKI, and antioxidants use is one of the promising treatments. Rosmarinic acid (RA) is a ubiquitous natural polyphenol with powerful antioxidant and anti-inflammatory activities. Due to its inherent characteristic with poor water solubility and inferior bioavailability, its clinical application is impeded. Hence, the authors design a nanoparticle for effectively delivering RA, which is a chemical complex of RA and fourth-generation poly-amidoamine-based amphiphilic polymer (G4-PAMAM). The nanoparticle is modified with l-serine due to the specific interaction between kidney injury molecule-1 (Kim-1) and serine, which eventually generates a promising AKI kidney-targeting nanoparticle (S-G-R). The S-G-R is rapidly cumulated and long-term retained in ischemia-reperfusion-induced AKI kidneys, especially in the damaged renal tubular cells. The S-G-R exhibits more excellent antioxidative and antiapoptotic effects in vitro and has a more outstanding ability to improve the renal function, repair damaged renal tissue, and decrease oxidative stress, inflammatory response and apoptosis of tubular cells in vivo. Overall, this study might develop a safe and effective targeting strategy for the therapy of AKI.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Qijia Duan
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaona Wei
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Jianping Wu
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Qiongqiong Yang
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
10
|
Nath KA, Singh RD, Croatt AJ, Adams CM. Heme Proteins and Kidney Injury: Beyond Rhabdomyolysis. KIDNEY360 2022; 3:1969-1979. [PMID: 36514409 PMCID: PMC9717624 DOI: 10.34067/kid.0005442022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
Heme proteins, the stuff of life, represent an ingenious biologic strategy that capitalizes on the biochemical versatility of heme, and yet is one that avoids the inherent risks to cellular vitality posed by unfettered and promiscuously reactive heme. Heme proteins, however, may be a double-edged sword because they can damage the kidney in certain settings. Although such injury is often viewed mainly within the context of rhabdomyolysis and the nephrotoxicity of myoglobin, an increasing literature now attests to the fact that involvement of heme proteins in renal injury ranges well beyond the confines of this single disease (and its analog, hemolysis); indeed, through the release of the defining heme motif, destabilization of intracellular heme proteins may be a common pathway for acute kidney injury, in general, and irrespective of the underlying insult. This brief review outlines current understanding regarding processes underlying such heme protein-induced acute kidney injury (AKI) and chronic kidney disease (CKD). Topics covered include, among others, the basis for renal injury after the exposure of the kidney to and its incorporation of myoglobin and hemoglobin; auto-oxidation of myoglobin and hemoglobin; destabilization of heme proteins and the release of heme; heme/iron/oxidant pathways of renal injury; generation of reactive oxygen species and reactive nitrogen species by NOX, iNOS, and myeloperoxidase; and the role of circulating cell-free hemoglobin in AKI and CKD. Also covered are the characteristics of the kidney that render this organ uniquely vulnerable to injury after myolysis and hemolysis, and pathobiologic effects emanating from free, labile heme. Mechanisms that defend against the toxicity of heme proteins are discussed, and the review concludes by outlining the therapeutic strategies that have arisen from current understanding of mechanisms of renal injury caused by heme proteins and how such mechanisms may be interrupted.
Collapse
Affiliation(s)
- Karl A. Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raman Deep Singh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anthony J. Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christopher M. Adams
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
11
|
Westenfelder C, Gooch A. Heme Protein-Induced Acute Kidney Injury Is Caused by Disruption of Mitochondrial Homeostasis in Proximal Tubular Cells. KIDNEY360 2022; 3:2140-2142. [PMID: 36591348 PMCID: PMC9802552 DOI: 10.34067/kid.0006372022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Christof Westenfelder
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, Utah,SymbioCellTech, LLC, Salt Lake City, Utah
| | - Anna Gooch
- SymbioCellTech, LLC, Salt Lake City, Utah
| |
Collapse
|
12
|
Zager RA. Oxidant- induced preconditioning: A pharmacologic approach for triggering renal 'self defense'. Physiol Rep 2022; 10:e15507. [PMID: 36305701 PMCID: PMC9615572 DOI: 10.14814/phy2.15507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/07/2023] Open
Abstract
Acute kidney injury (AKI) is a common event, occurring in ~5% and ~35% of hospitalized and ICU patients, respectively. The development of AKI portends an increased risk of morbidity, mortality, prolonged hospitalization, and subsequent development of chronic kidney disease (CKD). Given these facts, a multitude of experimental studies have addressed potential methods for inducing AKI prevention in high-risk patients. However, successful clinical translation of promising experimental data has remained elusive. Over the past decade, our laboratory has focused on developing a method for safely triggering AKI protection by inducing "kidney preconditioning" in mice by the intravenous administration of a combination of Fe sucrose (FeS) + tin protoporphyrin (SnPP). These agents induce mild, but short lived, 'oxidant stress' which synergistically activate a number of kidney 'self-defense' pathways (e.g., Nrf2, ferritin, IL-10). Within 18-24 h of Fe/SnPP administration, marked protection against diverse forms of experimental toxic and ischemic AKI results. FeS/SnPP-mediated reductions in kidney injury can also indirectly decrease injury in other organs by mitigating the so called "organ cross talk" phenomenon. Given these promising experimental data, three phase 1b clinical trials were undertaken in healthy subjects and patients with stage 3 or 4 CKD. These studies demonstrated that FeS/SnPP were well tolerated and that they up-regulated the cytoprotective Nrf2, ferritin, and IL-10 pathways. Two subsequent phase 2 trials, conducted in patients undergoing 'on-pump' cardiovascular surgery or in patients hospitalized with COVID 19, confirmed FeS/SnPP safety. Furthermore, interim data analyses revealed statistically significant improvements in several clinical parameters. The goals of this review are to: (i) briefly discuss the historical background of renal "preconditioning"; (ii) present the experimental data that support the concept of FeS/SnPP- induced organ protection; and (iii) discuss the initial results of clinical trials that suggest the potential clinical utility of an 'oxidant preconditioning' strategy.
Collapse
Affiliation(s)
- Richard A. Zager
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Fred Hutchinson Cancer CenterSeattleWashingtonUSA
| |
Collapse
|
13
|
El-Ashmawy NE, Khedr EG, Doghish AS, Elballal MS. Carnosine and crocin ameliorate oxidative stress in rats with rhabdomyolysis-induced acute kidney injury through upregulating HO-1 gene expression. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
El-Ashmawy NE, Khedr EG, Doghish AS, Elballal MS. Carnosine and crocin ameliorate oxidative stress in rats with rhabdomyolysis-induced acute kidney injury through upregulating HO-1 gene expression. FOOD BIOSCI 2022; 49:101972. [DOI: https:/doi.org/10.1016/j.fbio.2022.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
|
15
|
Ghajar-Rahimi G, Traylor AM, Mathew B, Bostwick JR, Nebane NM, Zmijewska AA, Esman SK, Thukral S, Zhai L, Sambandam V, Cowell RM, Suto MJ, George JF, Augelli-Szafran CE, Agarwal A. Identification of Cytoprotective Small-Molecule Inducers of Heme-Oxygenase-1. Antioxidants (Basel) 2022; 11:1888. [PMID: 36290611 PMCID: PMC9598442 DOI: 10.3390/antiox11101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury (AKI) is a major public health concern with significant morbidity and mortality and no current treatments beyond supportive care and dialysis. Preclinical studies have suggested that heme-oxygenase-1 (HO-1), an enzyme that catalyzes the breakdown of heme, has promise as a potential therapeutic target for AKI. Clinical trials involving HO-1 products (biliverdin, carbon monoxide, and iron), however, have not progressed beyond the Phase ½ level. We identified small-molecule inducers of HO-1 that enable us to exploit the full therapeutic potential of HO-1, the combination of its products, and yet-undefined effects of the enzyme system. Through cell-based, high-throughput screens for induction of HO-1 driven by the human HO-1 promoter/enhancer, we identified two novel small molecules and broxaldine (an FDA-approved drug) for further consideration as candidate compounds exhibiting an Emax ≥70% of 5 µM hemin and EC50 <10 µM. RNA sequencing identified shared binding motifs to NRF2, a transcription factor known to regulate antioxidant genes, including HMOX1. In vitro, the cytoprotective function of the candidates was assessed against cisplatin-induced cytotoxicity and apoptosis. In vivo, delivery of a candidate compound induced HO-1 expression in the kidneys of mice. This study serves as the basis for further development of small-molecule HO-1 inducers as preventative or therapeutic interventions for a variety of pathologies, including AKI.
Collapse
Affiliation(s)
- Gelare Ghajar-Rahimi
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Amie M. Traylor
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Bini Mathew
- Southern Research, Birmingham, AL 35205, USA
| | | | | | - Anna A. Zmijewska
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Stephanie K. Esman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Saakshi Thukral
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ling Zhai
- Southern Research, Birmingham, AL 35205, USA
| | | | - Rita M. Cowell
- Southern Research, Birmingham, AL 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - James F. George
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Veterans Affairs, Birmingham, AL 35233, USA
| |
Collapse
|
16
|
Targeting ferroptosis in ischemia/reperfusion renal injury. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1331-1341. [PMID: 35920897 DOI: 10.1007/s00210-022-02277-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
Renal I/R injury is a severe medical condition contributing to acute kidney injury (AKI), leading to rapid kidney dysfunction and high mortality rates. It is generally observed during renal transplantation, shock, trauma, and urologic and cardiovascular surgery, for which there is no effective treatment. Cell death and damage are commonly linked to I/R. Cell death triggered by iron-dependent lipid peroxidation, such as ferroptosis, has been demonstrated to have a significant detrimental effect in renal IRI models, making it a new type of cell death currently being researched. Ferroptosis is a nonapoptotic type of cell death that occurs when free iron enters the cell and is a critical component of many biological processes. In ferroptosis-induced renal I/R injury, iron chelators such as Deferasirox, Deferiprone, and lipophilic antioxidants are currently suppressed lipid peroxidation Liproxstatin-1 (Lip-1), Ferrostatin-1 along with antioxidants like vitamin and quercetin. Ferroptosis has been considered a potential target for pharmaceutical intervention to alleviate renal IRI-associated cell damage. Thus, this review emphasized the role of ferroptosis and its inhibition in renal IRI. Also, Pharmacological modulation of ferroptosis mechanism in renal I/R injury has been conferred. Graphical abstract.
Collapse
|
17
|
Gao Z, Zhang Z, Gu D, Li Y, Zhang K, Dong X, Liu L, Zhang J, Chen J, Wu D, Zeng M. Hemin mitigates contrast‐induced nephropathy by inhibiting ferroptosis via HO‐1/Nrf2/GPX4 pathway. Clin Exp Pharmacol Physiol 2022; 49:858-870. [PMID: 35598290 DOI: 10.1111/1440-1681.13673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Zhao Gao
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ziyue Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Daqian Gu
- Department of Cardiology, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian, China
| | - Yunqian Li
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Kun Zhang
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaoli Dong
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lingli Liu
- Department of Clinical Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jiye Zhang
- Medical Laboratory, Liang Ping People's Hospital of Chongqing, Chongqing, China
| | - Jimin Chen
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Duozhi Wu
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Min Zeng
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
18
|
Nath KA, Singh RD, Croatt AJ, Ackerman AW, Grande JP, Khazaie K, Chen YE, Zhang J. KLF11 Is a Novel Endogenous Protectant against Renal Ischemia-Reperfusion Injury. KIDNEY360 2022; 3:1417-1422. [PMID: 36176648 PMCID: PMC9416845 DOI: 10.34067/kid.0002272022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 01/19/2023]
Abstract
Discovering new nephroprotectants may provide therapeutic strategies in AKI.This study provides the first evidence that KLF11, a member of the Krüppel-like factor (KLF) family of proteins, protects against AKI.In the absence of KLF11, exaggerated induction of endothelin-1 and IL-6 occurs after ischemic renal injury and may contribute to worse AKI.
Collapse
Affiliation(s)
- Karl A. Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raman Deep Singh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anthony J. Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Allan W. Ackerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Joseph P. Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan
| |
Collapse
|
19
|
Singh RD, Barry MA, Croatt AJ, Ackerman AW, Grande JP, Diaz RM, Vile RG, Agarwal A, Nath KA. The spike protein of SARS-CoV-2 induces heme oxygenase-1: Pathophysiologic implications. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166322. [PMID: 34920080 PMCID: PMC8669938 DOI: 10.1016/j.bbadis.2021.166322] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is both a consequence and determinant of outcomes in COVID-19. The kidney is one of the major organs infected by the causative virus, SARS-CoV-2. Viral entry into cells requires the viral spike protein, and both the virus and its spike protein appear in the urine of COVID-19 patients with AKI. We examined the effects of transfecting the viral spike protein of SARS-CoV-2 in kidney cell lines. METHODS HEK293, HEK293-ACE2+ (stably overexpressing ACE2), and Vero E6 cells having endogenous ACE2 were transfected with SARS-CoV-2 spike or control plasmid. Assessment of gene and protein expression, and syncytia formation was performed, and the effects of quercetin on syncytia formation examined. FINDINGS Spike transfection in HEK293-ACE2+ cells caused syncytia formation, cellular sloughing, and focal denudation of the cell monolayer; transfection in Vero E6 cells also caused syncytia formation. Spike expression upregulated potentially nephrotoxic genes (TNF-α, MCP-1, and ICAM1). Spike upregulated the cytoprotective gene HO-1 and relevant signaling pathways (p-Akt, p-STAT3, and p-p38). Quercetin, an HO-1 inducer, reduced syncytia formation and spike protein expression. INTERPRETATION The major conclusions of the study are: 1) Spike protein expression in kidney cells provides a relevant model for the study of maladaptive and adaptive responses germane to AKI in COVID-19; 2) such spike protein expression upregulates HO-1; and 3) quercetin, an HO-1 inducer, may provide a clinically relevant/feasible protective strategy in AKI occurring in the setting of COVID-19. FUNDING R01-DK119167 (KAN), R01-AI100911 (JPG), P30-DK079337; R01-DK059600 (AA).
Collapse
Affiliation(s)
- Raman Deep Singh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Michael A. Barry
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Anthony J. Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Allan W. Ackerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Joseph P. Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Rosa M. Diaz
- Molecular Medicine Program, Mayo Clinic, Rochester, MN, United States of America
| | - Richard G. Vile
- Molecular Medicine Program, Mayo Clinic, Rochester, MN, United States of America
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama, Birmingham, AL, United States of America
| | - Karl A. Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States of America,Corresponding author at: Mayo Clinic, Siebens 7, 200 First St., SW, Rochester, MN 55905, United States of America
| |
Collapse
|
20
|
Bejoy J, Qian ES, Woodard LE. Tissue Culture Models of AKI: From Tubule Cells to Human Kidney Organoids. J Am Soc Nephrol 2022; 33:487-501. [PMID: 35031569 PMCID: PMC8975068 DOI: 10.1681/asn.2021050693] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
AKI affects approximately 13.3 million people around the world each year, causing CKD and/or mortality. The mammalian kidney cannot generate new nephrons after postnatal renal damage and regenerative therapies for AKI are not available. Human kidney tissue culture systems can complement animal models of AKI and/or address some of their limitations. Donor-derived somatic cells, such as renal tubule epithelial cells or cell lines (RPTEC/hTERT, ciPTEC, HK-2, Nki-2, and CIHP-1), have been used for decades to permit drug toxicity screening and studies into potential AKI mechanisms. However, tubule cell lines do not fully recapitulate tubular epithelial cell properties in situ when grown under classic tissue culture conditions. Improving tissue culture models of AKI would increase our understanding of the mechanisms, leading to new therapeutics. Human pluripotent stem cells (hPSCs) can be differentiated into kidney organoids and various renal cell types. Injury to human kidney organoids results in renal cell-type crosstalk and upregulation of kidney injury biomarkers that are difficult to induce in primary tubule cell cultures. However, current protocols produce kidney organoids that are not mature and contain off-target cell types. Promising bioengineering techniques, such as bioprinting and "kidney-on-a-chip" methods, as applied to kidney nephrotoxicity modeling advantages and limitations are discussed. This review explores the mechanisms and detection of AKI in tissue culture, with an emphasis on bioengineered approaches such as human kidney organoid models.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eddie S. Qian
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren E. Woodard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
21
|
A Journey into the Clinical Relevance of Heme Oxygenase 1 for Human Inflammatory Disease and Viral Clearance: Why Does It Matter on the COVID-19 Scene? Antioxidants (Basel) 2022; 11:antiox11020276. [PMID: 35204159 PMCID: PMC8868141 DOI: 10.3390/antiox11020276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Heme oxygenase 1 (HO-1), the rate-limiting enzyme in heme degradation, is involved in the maintenance of cellular homeostasis, exerting a cytoprotective role by its antioxidative and anti-inflammatory functions. HO-1 and its end products, biliverdin, carbon monoxide and free iron (Fe2+), confer cytoprotection against inflammatory and oxidative injury. Additionally, HO-1 exerts antiviral properties against a diverse range of viral infections by interfering with replication or activating the interferon (IFN) pathway. Severe cases of coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are characterized by systemic hyperinflammation, which, in some cases, leads to severe or fatal symptoms as a consequence of respiratory failure, lung and heart damage, kidney failure, and nervous system complications. This review summarizes the current research on the protective role of HO-1 in inflammatory diseases and against a wide range of viral infections, positioning HO-1 as an attractive target to ameliorate clinical manifestations during COVID-19.
Collapse
|
22
|
10-Dehydrogingerdione Attenuates Tramadol-Induced Nephrotoxicity by Modulating Renal Oxidative Stress, Inflammation and Apoptosis in Experimental Rats: Role of HO-1 Activation and TLR4/NF-κB/ERK Inhibition. Int J Mol Sci 2022; 23:ijms23031384. [PMID: 35163308 PMCID: PMC8836278 DOI: 10.3390/ijms23031384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Tramadol represents a synthetic opioid analgesic especially for mild to severe pain. Its dose must be commonly monitored according to pain status and to alleviate the appearance of any adverse effects such as renal cellular damage during its excretion. Present work aimed mainly to study the effects of tramadol intake on renal tissues and 10-dehydrogingerdione (10-DHGD) potential as a protective agent. Tramadol administration induced an increase in serum levels of urea, creatinine, uric acid, the renal immune expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and caspase-3 which turned out to be decreased by 10-DHGD intake. Our results also recorded a significant increase in renal malondialdehyde (MDA), toll-like receptor 4 (TLR4), and extracellular signal-regulated protein kinase-1 (ERK1) along with glutathione (GSH), superoxide dismutase (SOD), and heme oxygenase-1 (HO-1) decrease due to tramadol intake, which were counteracted by 10-DHGD administration as illustrated and supported by the histopathological findings. Our conclusion refers to renoprotective potential of 10-DHGD against tramadol adverse effects.
Collapse
|
23
|
Investigating the Molecular Mechanisms of Renal Hepcidin Induction and Protection upon Hemoglobin-Induced Acute Kidney Injury. Int J Mol Sci 2022; 23:ijms23031352. [PMID: 35163276 PMCID: PMC8835743 DOI: 10.3390/ijms23031352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hemolysis is known to cause acute kidney injury (AKI). The iron regulatory hormone hepcidin, produced by renal distal tubules, is suggested to exert a renoprotective role during this pathology. We aimed to elucidate the molecular mechanisms of renal hepcidin synthesis and its protection against hemoglobin-induced AKI. In contrast to known hepatic hepcidin induction, incubation of mouse cortical collecting duct (mCCDcl1) cells with IL-6 or LPS did not induce Hamp1 mRNA expression, whereas iron (FeS) and hemin significantly induced hepcidin synthesis (p < 0.05). Moreover, iron/heme-mediated hepcidin induction in mCCDcl1 cells was caused by the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, as indicated by increased nuclear Nrf2 translocation and induced expression of Nrf2 downstream targets GCLM (p < 0.001), NQO1 (p < 0.001), and TXNRD1 (p < 0.005), which could be prevented by the known Nrf2 inhibitor trigonelline. Newly created inducible kidney-specific hepcidin KO mice demonstrated a significant reduction in renal Hamp1 mRNA expression. Phenylhydrazine (PHZ)-induced hemolysis caused renal iron loading and oxidative stress in both wildtype (Wt) and KO mice. PHZ treatment in Wt induced inflammatory markers (IL-6, TNFα) but not Hamp1. However, since PHZ treatment also significantly reduced systemic hepcidin levels in both Wt and KO mice (both p < 0.001), a dissection between the roles of systemic and renal hepcidin could not be made. Combined, the results of our study indicate that there are kidney-specific mechanisms in hepcidin regulation, as indicated by the dominant role of iron and not inflammation as an inducer of renal hepcidin, but also emphasize the complex interplay of various iron regulatory mechanisms during AKI on a local and systemic level.
Collapse
|
24
|
Balla J, Zarjou A. Heme Burden and Ensuing Mechanisms That Protect the Kidney: Insights from Bench and Bedside. Int J Mol Sci 2021; 22:8174. [PMID: 34360940 PMCID: PMC8347331 DOI: 10.3390/ijms22158174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
With iron at its core, the tetrapyrrole heme ring is a cardinal prosthetic group made up of many proteins that participate in a wide array of cellular functions and metabolism. Once released, due to its pro-oxidant properties, free heme in sufficient amounts can result in injurious effects to the kidney and other organs. Heme oxygenase-1 (HO-1) has evolved to promptly attend to such injurious potential by facilitating degradation of heme into equimolar amounts of carbon monoxide, iron, and biliverdin. HO-1 induction is a beneficial response to tissue injury in diverse animal models of diseases, including those that affect the kidney. These protective attributes are mainly due to: (i) prompt degradation of heme leading to restraining potential hazardous effects of free heme, and (ii) generation of byproducts that along with induction of ferritin have proven beneficial in a number of pathological conditions. This review will focus on describing clinical aspects of some of the conditions with the unifying end-result of increased heme burden and will discuss the molecular mechanisms that ensue to protect the kidneys.
Collapse
Affiliation(s)
- József Balla
- ELKH-UD Vascular Biology and Myocardial Pathophysiology Research Group, Division of Nephrology, Department of Medicine, Faculty of Medicine, Hungarian Academy of Sciences, H-4032 Debrecen, Hungary;
| | - Abolfazl Zarjou
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 618 Zeigler Research Building, 703 South 19th Street, Birmingham, AL 35294, USA
| |
Collapse
|
25
|
Nath KA, Singh RD, Grande JP, Garovic VD, Croatt AJ, Ackerman AW, Barry MA, Agarwal A. Expression of ACE2 in the Intact and Acutely Injured Kidney. KIDNEY360 2021; 2:1095-1106. [PMID: 35368365 PMCID: PMC8786087 DOI: 10.34067/kid.0001562021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/14/2021] [Indexed: 02/04/2023]
Abstract
Background The actions of angiotensin-converting enzyme 2 (ACE2) oppose those of the renin-angiotensin-aldosterone system. ACE2 may be a cytoprotectant in some tissues. This study examined ACE2 expression in models of AKI. Methods ACE2 mRNA and protein expression and ACE2 activity were assessed in murine ischemic AKI. Renal ACE2 mRNA expression was evaluated in LPS-induced AKI in wild-type (C57BL/6J) mice, in heme oxygenase-1+/+ and heme oxygenase-1-/- mice, and after unilateral ureteral obstruction (UUO) in wild-type mice. The effect of sex and age on renal ACE2 protein expression was also assessed. Results In ischemic AKI, ACE2 mRNA and protein expression and ACE2 activity were reduced as compared with such indices in the intact kidney. In ischemic AKI, ACE2, which, in health, is prominently expressed in the tubular epithelium, especially proximal tubules, is decreased in expression in these segments. Decreased ACE2 expression in AKI did not reflect reduced GFR, because ACE2 mRNA expression was unaltered after UUO. LPS induced renal ACE2 mRNA expression in wild-type mice, but this effect did not occur in heme oxygenase-1-deficient mice. In ischemic and LPS-induced AKI, renal expression of the Mas receptor was increased. In the intact kidney, renal ACE2 protein expression decreased in female mice as compared with male mice, but was unaltered with age. Conclusion We conclude that renal ACE2 expression is decreased in ischemic AKI, characterized by decreased GFR and abundant cell death, but is upregulated in LPS-induced AKI, an effect requiring heme oxygenase-1. Determining the significance of ACE2 expression in experimental AKI merits further study. We suggest that understanding the mechanism underlying ACE2 downregulation in AKI may offer insights relevant to COVID-19: ACE2 expression is downregulated after ACE2 mediates SARS-CoV-2 cellular entry; such downregulation is proinflammatory; and AKI commonly occurs and determines outcomes in COVID-19.
Collapse
Affiliation(s)
- Karl A. Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raman Deep Singh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Joseph P. Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Vesna D. Garovic
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anthony J. Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Allan W. Ackerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael A. Barry
- Division of Infectious Diseases, Mayo Clinic Rochester, Minnesota
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
26
|
The Cross-Link between Ferroptosis and Kidney Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6654887. [PMID: 34007403 PMCID: PMC8110383 DOI: 10.1155/2021/6654887] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
Acute and chronic kidney injuries result from structural dysfunction and metabolic disorders of the kidney in various etiologies, which significantly affect human survival and social wealth. Nephropathies are often accompanied by various forms of cell death and complex microenvironments. In recent decades, the study of kidney diseases and the traditional forms of cell death have improved. Nontraditional forms of cell death, represented by ferroptosis and necroptosis, have been discovered in the field of kidney diseases, which have reshuffled the role of traditional cell death in nephropathies. Although interactions between ferroptosis and acute kidney injury (AKI) have been continuously explored, studies on ferroptosis and chronic kidney disease (CKD) remain limited. Here, we have reviewed the therapeutic significance of ferroptosis in AKI and anticipated the curative potential of ferroptosis for CKD in the hope of providing insights into ferroptosis and CKD.
Collapse
|
27
|
El-Sayed RM, Abo El Gheit RE, Badawi GA. Vincamine protects against cisplatin induced nephrotoxicity via activation of Nrf2/HO-1 and hindering TLR4/ IFN-γ/CD44 cells inflammatory cascade. Life Sci 2021; 272:119224. [PMID: 33610575 DOI: 10.1016/j.lfs.2021.119224] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Cisplatin is a commonly prescribed chemotherapeutic agent for the treatment of different types of solid tumors. However, the high incidence of cisplatin-induced nephrotoxicity largely restricts its clinical efficacy in absence of both preventive and treatment options to combat its serious and life-threatening effects. Therefore, the current study investigated the reno-protective molecular mechanisms of vincamine against cisplatin nephrotoxicity. Vincamine (40 mg/kg P.O.) was given for 7 days, cisplatin was injected as single dose (10 mg/kg i.p.) at the seven day of the experiments. Animals were sacrificed after 72 h of cisplatin injection to allow nephrotoxicity. Vincamine pretreatment improved kidney functions and decreased kidney function tests as urea, creatinine and kidney injury molecule-1 (KIM-1), as well as it exhibited antioxidant properties by restoring balance between pro and anti-oxidants of malondialdehyde (MDA), myeloperoxidase (MPO), nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1). Moreover, vincamine hindered the inflammatory cascade via mediating Toll like receptor 4 (TLR4)- interferon gamma (IFNγ)-CD44 cells pathway and transforming growth factor beta (TGFβ1). Additionally, vincamine retained DNA fragmentation. In conclusion, vincamine represents a promising intervention in limiting cisplatin nephrotoxicity by its anti-oxidant, anti-inflammatory, antiapoptotic mechanistic activities. Therefore, vincamine can be used as adjunct therapy with cisplatin to mitigate cisplatin-induced-AKI.
Collapse
Affiliation(s)
- Rehab M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-Arish, Egypt.
| | - Rehab E Abo El Gheit
- Department of Physiology, Faculty of Medicine, Tanta University, El Geesh Street, Tanta, Egypt
| | - Ghada A Badawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El-Arish, Egypt
| |
Collapse
|
28
|
Heme oxygenase-1 induction mitigates burn-associated early acute kidney injury via the TLR4 signaling pathway. Burns 2021; 48:156-167. [PMID: 33962830 DOI: 10.1016/j.burns.2021.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Early acute kidney injury (AKI) after burn contributes to disastrous prognoses for severely burned patients. Burn-induced renal oxidative stress and secondary proinflammatory mediator release contribute to early AKI development, and Toll-like receptor (TLR) 4 regulates inflammation. Heme oxygenase-1 (HO-1) is a stress-responsive enzyme that plays a vital role in protecting against ischemia-induced organ injury via its antioxidant properties and regulation of inflammation. We investigated the potential effect of HO-1 induction in preventing burn-induced early AKI and its related mechanism. METHODS A classic major-burn rat model was established using a 100 °C water bath, and hemin was injected intraperitoneally immediately after the injury to induce HO-1. Histological staining and blood tests were used to assess AKI progression based on structural changes and function. Renal levels of HO-1, oxidative stress, proinflammatory mediators and TLR4-related signals were detected using ELISA, immunostaining, qRT-PCR, and western blotting. The selective TLR4 inhibitor TAK242 and TLR4 inducer LPS were introduced to determine the roles of HO-1 in burn-related renal inflammation and the TLR4 pathway. RESULTS Hemin improved burn-induced renal histological damage and dysfunction, and this beneficial effect was related to reduced renal oxidative stress and the release of proinflammatory mediators, such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6 and intracellular adhesion molecule-1 (ICAM-1). Hemin downregulated the expression of TLR4 and the subsequent phosphorylation of IKKα/β, IκBα, and NF-κB p65;. TAK242 exerted an effect similar to but weaker than hemin; and LPS reversed the antiinflammatory effect of hemin and the regulation of TLR4 signals. These results suggested that the TLR4 signaling pathway mediated the HO-1-facilitated regulation of renal inflammation after burn. CONCLUSION The present study demonstrated that HO-1 induction prevented burn-induced early AKI by targeting renal inflammation, which was mediated via regulation of the TLR4/NF-κB signaling pathway.
Collapse
|
29
|
Guo S, Guo L, Fang Q, Yu M, Zhang L, You C, Wang X, Liu Y, Han C. Astaxanthin protects against early acute kidney injury in severely burned rats by inactivating the TLR4/MyD88/NF-κB axis and upregulating heme oxygenase-1. Sci Rep 2021; 11:6679. [PMID: 33758309 PMCID: PMC7988001 DOI: 10.1038/s41598-021-86146-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/09/2021] [Indexed: 02/05/2023] Open
Abstract
Early acute kidney injury (AKI) contributes to severe morbidity and mortality in critically burned patients. Renal inflammation plays a vital role in the progression of early AKI, acting as a therapeutic target. Astaxanthin (ATX) is a strong antioxidant widely distributed in marine organisms that exerts many biological effects in trauma and disease. ATX is also suggested to have anti-inflammatory activity. Hence, we attempted to explore the role of ATX in protecting against early postburn AKI via its anti-inflammatory effects and the related mechanisms. A severely burned model was established for histological and biochemical assessments based on adult male rats. We found that oxidative stress-induced tissue inflammation participated in the development of early AKI after burn injury and that the MyD88-dependent TLR4/NF-κB pathway was activated to regulate renal inflammation. The TLR4 and NF-κB inhibitors TAK242 and PDTC showed similar effects in attenuating burn-induced renal inflammation and early AKI. Upon ATX treatment, the release of inflammatory mediators in the kidneys was downregulated, while the TLR4/MyD88/NF-κB axis was inhibited in a dose-related manner. TAK242 and PDTC could enhance the anti-inflammatory effect of high-dose ATX, whereas lipopolysaccharide (LPS) reversed its action. Furthermore, the expression of heme oxygenase (HO)-1 was upregulated by ATX in a dose-related manner. Collectively, the above data suggest that ATX protects against renal inflammation in a dose-related manner by regulating the TLR4/MyD88/NF-κB axis and HO-1 and ultimately prevents early AKI following severe burns.
Collapse
Affiliation(s)
- Songxue Guo
- Department of Plastic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, 1511 Jianghong Road, Hangzhou, 310000, Zhejiang, China
| | - Linsen Guo
- Department of Burns, Changzhou No.7 People's Hospital, 288 East Yanling Road, Changzhou, 213011, Jiangsu, China
| | - Quan Fang
- Department of Plastic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, 1511 Jianghong Road, Hangzhou, 310000, Zhejiang, China
| | - Meirong Yu
- Clinical Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Liping Zhang
- Department of Burns, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Chuangang You
- Department of Burns, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Xingang Wang
- Department of Burns, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yong Liu
- West China Hospital, Sichuan University, 37 Guoxuexiang Street, Chengdu, China
| | - Chunmao Han
- Department of Burns, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
30
|
Grunenwald A, Roumenina LT, Frimat M. Heme Oxygenase 1: A Defensive Mediator in Kidney Diseases. Int J Mol Sci 2021; 22:2009. [PMID: 33670516 PMCID: PMC7923026 DOI: 10.3390/ijms22042009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
The incidence of kidney disease is rising, constituting a significant burden on the healthcare system and making identification of new therapeutic targets increasingly urgent. The heme oxygenase (HO) system performs an important function in the regulation of oxidative stress and inflammation and, via these mechanisms, is thought to play a role in the prevention of non-specific injuries following acute renal failure or resulting from chronic kidney disease. The expression of HO-1 is strongly inducible by a wide range of stimuli in the kidney, consequent to the kidney's filtration role which means HO-1 is exposed to a wide range of endogenous and exogenous molecules, and it has been shown to be protective in a variety of nephropathological animal models. Interestingly, the positive effect of HO-1 occurs in both hemolysis- and rhabdomyolysis-dominated diseases, where the kidney is extensively exposed to heme (a major HO-1 inducer), as well as in non-heme-dependent diseases such as hypertension, diabetic nephropathy or progression to end-stage renal disease. This highlights the complexity of HO-1's functions, which is also illustrated by the fact that, despite the abundance of preclinical data, no drug targeting HO-1 has so far been translated into clinical use. The objective of this review is to assess current knowledge relating HO-1's role in the kidney and its potential interest as a nephroprotection agent. The potential therapeutic openings will be presented, in particular through the identification of clinical trials targeting this enzyme or its products.
Collapse
Affiliation(s)
- Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (A.G.); (L.T.R.)
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (A.G.); (L.T.R.)
| | - Marie Frimat
- U1167-RID-AGE, Institut Pasteur de Lille, Inserm, Univ. Lille, F-59000 Lille, France
- Nephrology Department, CHU Lille, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
31
|
Guo L, Zhang T, Wang F, Chen X, Xu H, Zhou C, Chen M, Yu F, Wang S, Yang D, Wu B. Targeted inhibition of Rev-erb-α/β limits ferroptosis to ameliorate folic acid-induced acute kidney injury. Br J Pharmacol 2020; 178:328-345. [PMID: 33068011 DOI: 10.1111/bph.15283] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/20/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute kidney injury (AKI) is a common and critical illness, resulting in severe morbidity and a high mortality. There is a considerable interest in identifying novel molecular targets for management of AKI. We investigated the potential role of the circadian clock components Rev-erb-α/β in regulation of ferroptosis and AKI. EXPERIMENTAL APPROACH AKI model was established by treating mice with folic acid. Regulatory effects of Rev-erb-α/β on AKI and ferroptosis were determined using single-gene knockout (Rev-erb-α-/- and Rev-erb-β-/- ) mice, incomplete double-knockout (icDKO, Rev-erb-α+/- Rev-erb-β-/- ) mice and cells with erastin-induced ferroptosis. Targeted antagonism of Rev-erb-α/β to alleviate AKI and ferroptosis was assessed using the small-molecule antagonist SR8278. Transcriptional gene regulation was investigated using luciferase reporter, mobility shift and chromatin immunoprecipitation assays. KEY RESULTS Loss of Rev-erb-α or Rev-erb-β reduced the sensitivity of mice to folic acid-induced AKI and eliminated the circadian time dependency in disease severity. This coincided with less extensive ferroptosis, a main cause of folic acid-induced AKI. Moreover, icDKO mice were more resistant to folic acid-induced AKI and ferroptosis as compared with single-gene knockout mice. Supporting this, targeting Rev-erb-α/β by SR8278 attenuated ferroptosis to ameliorate folic acid-induced AKI in mice. Rev-erb-α/β promoted ferroptosis by repressing the transcription of Slc7a11 and HO1 (two ferroptosis-inhibitory genes) via direct binding to a RORE cis-element. CONCLUSION AND IMPLICATIONS Targeted inhibition of Rev-erb-α/β limits ferroptosis to ameliorate folic acid-induced AKI in mice. The findings may have implications for improved understanding of circadian clock-controlled ferroptosis and for formulating new strategies to treat AKI.
Collapse
Affiliation(s)
- Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Fei Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xun Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Haiman Xu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Cui Zhou
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Deguang Yang
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Therapeutic Potential of Heme Oxygenase-1 and Carbon Monoxide in Acute Organ Injury, Critical Illness, and Inflammatory Disorders. Antioxidants (Basel) 2020; 9:antiox9111153. [PMID: 33228260 PMCID: PMC7699570 DOI: 10.3390/antiox9111153] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible stress protein that catalyzes the oxidative conversion of heme to carbon monoxide (CO), iron, and biliverdin (BV), the latter of which is converted to bilirubin (BR) by biliverdin reductase. HO-1 has been implicated as a cytoprotectant in various models of acute organ injury and disease (i.e., lung, kidney, heart, liver). Thus, HO-1 may serve as a general therapeutic target in inflammatory diseases. HO-1 may function as a pleiotropic modulator of inflammatory signaling, via the removal of heme, and generation of its enzymatic degradation-products. Iron release from HO activity may exert pro-inflammatory effects unless sequestered, whereas BV/BR have well-established antioxidant properties. CO, derived from HO activity, has been identified as an endogenous mediator that can influence mitochondrial function and/or cellular signal transduction programs which culminate in the regulation of apoptosis, cellular proliferation, and inflammation. Much research has focused on the application of low concentration CO, whether administered in gaseous form by inhalation, or via the use of CO-releasing molecules (CORMs), for therapeutic benefit in disease. The development of novel CORMs for their translational potential remains an active area of investigation. Evidence has accumulated for therapeutic effects of both CO and CORMs in diseases associated with critical care, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS), mechanical ventilation-induced lung injury, pneumonias, and sepsis. The therapeutic benefits of CO may extend to other diseases involving aberrant inflammatory processes such as transplant-associated ischemia/reperfusion injury and chronic graft rejection, and metabolic diseases. Current and planned clinical trials explore the therapeutic benefit of CO in ARDS and other lung diseases.
Collapse
|
33
|
HO-1/PINK1 Regulated Mitochondrial Fusion/Fission to Inhibit Pyroptosis and Attenuate Septic Acute Kidney Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2148706. [PMID: 33145342 PMCID: PMC7599399 DOI: 10.1155/2020/2148706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/01/2020] [Accepted: 09/20/2020] [Indexed: 12/27/2022]
Abstract
Background Endotoxin-associated acute kidney injury (AKI), a disease characterized by marked oxidative stress and inflammation disease, is a major cause of mortality in critically ill patients. Mitochondrial fission and pyroptosis often occur in AKI. However, the underlying biological pathways involved in endotoxin AKI remain poorly understood, especially those related to mitochondrial dynamics equilibrium disregulation and pyroptosis. Previous studies suggest that heme oxygenase- (HO-) 1 confers cytoprotection against AKI during endotoxic shock, and PTEN-induced putative kinase 1 (PINK1) takes part in mitochondrial dysfunction. Thus, in this study, we examine the roles of HO-1/PINK1 in maintaining the dynamic process of mitochondrial fusion/fission to inhibit pyroptosis and mitigate acute kidney injury in rats exposed to endotoxin. Methods An endotoxin-associated AKI model induced by lipopolysaccharide (LPS) was used in our study. Wild-type (WT) rats and PINK1 knockout (PINK1KO) rats, respectively, were divided into four groups: the control, LPS, Znpp+LPS, and Hemin+LPS groups. Rats were sacrificed 6 h after intraperitoneal injecting LPS to assess renal function, oxidative stress, and inflammation by plasma. Mitochondrial dynamics, morphology, and pyroptosis were evaluated by histological examinations. Results In the rats with LPS-induced endotoxemia, the expression of HO-1 and PINK1 were upregulated at both mRNA and protein levels. These rats also exhibited inflammatory response, oxidative stress, mitochondrial fission, pyroptosis, and decreased renal function. After upregulating HO-1 in normal rats, pyroptosis was inhibited; mitochondrial fission and inflammatory response to oxidative stress were decreased; and the renal function was improved. The effects were reversed by adding Znpp (a type of HO-1 inhibitor). Finally, after PINK1 knockout, there is no statistical difference in the LPS-treated group and Hemin or Znpp pretreated group. Conclusions HO-1 inhibits inflammation response and oxidative stress and regulates mitochondria fusion/fission to inhibit pyroptosis, which can alleviate endotoxin-induced AKI by PINK1.
Collapse
|
34
|
Liu D, Shu G, Jin F, Qi J, Xu X, Du Y, Yu H, Wang J, Sun M, You Y, Zhu M, Chen M, Zhu L, Shen Q, Ying X, Lou X, Jiang S, Du Y. ROS-responsive chitosan-SS31 prodrug for AKI therapy via rapid distribution in the kidney and long-term retention in the renal tubule. SCIENCE ADVANCES 2020; 6:6/41/eabb7422. [PMID: 33036968 PMCID: PMC7546709 DOI: 10.1126/sciadv.abb7422] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/21/2020] [Indexed: 05/06/2023]
Abstract
The development of drugs with rapid distribution in the kidney and long-term retention in the renal tubule is a breakthrough for enhanced treatment of acute kidney injury (AKI). Here, l-serine-modified chitosan (SC) was synthesized as a potential AKI kidney-targeting agent due to the native cationic property of chitosan and specific interaction between kidney injury molecule-1 (Kim-1) and serine. Results indicated that SC was rapidly accumulated and long-term retained in ischemia-reperfusion-induced AKI kidneys, especially in renal tubules, which was possibly due to the specific interactions between SC and Kim-1. SC-TK-SS31 was then prepared by conjugating SS31, a mitochondria-targeted antioxidant, to SC via reactive oxygen species (ROS)-sensitive thioketal linker. Because of the effective renal distribution combined with ROS-responsive drug release behavior, the administration of SC-TK-SS31 led to an enhanced therapeutic effect of SS31 by protecting mitochondria from damage and reducing the oxidative stress, inflammation, and cell apoptosis.
Collapse
Affiliation(s)
- Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Gaofeng Shu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Hui Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Jun Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Mingchen Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Minxia Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Meixuan Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Qiying Shen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xiaoying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xuefang Lou
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| | - Saiping Jiang
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| |
Collapse
|
35
|
Aging and Progression of Beta-Amyloid Pathology in Alzheimer's Disease Correlates with Microglial Heme-Oxygenase-1 Overexpression. Antioxidants (Basel) 2020; 9:antiox9070644. [PMID: 32708329 PMCID: PMC7402118 DOI: 10.3390/antiox9070644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation and oxidative stress are being recognized as characteristic hallmarks in many neurodegenerative diseases, especially those that portray proteinopathy, such as Alzheimer’s disease (AD). Heme-oxygenase 1 (HO-1) is an inducible enzyme with antioxidant and anti-inflammatory properties, while microglia are the immune cells in the central nervous system. To elucidate the brain expression profile of microglial HO-1 in aging and AD-progression, we have used the 5xFAD (five familial AD mutations) mouse model of AD and their littermates at different ages (four, eight, 12, and 18 months). Total brain expression of HO-1 was increased with aging and such increase was even higher in 5xFAD animals. In co-localization studies, HO-1 expression was mainly found in microglia vs. other brain cells. The percentage of microglial cells expressing HO-1 and the amount of HO-1 expressed within microglia increased progressively with aging. Furthermore, this upregulation was increased by 2–3-fold in the elder 5xFAD mice. In addition, microglia overexpressing HO-1 was predominately found surrounding beta-amyloid plaques. These results were corroborated using postmortem brain samples from AD patients, where microglial HO-1 was found up-regulated in comparison to brain samples from aged matched non-demented patients. This study demonstrates that microglial HO-1 expression increases with aging and especially with AD progression, highlighting HO-1 as a potential biomarker or therapeutic target for AD.
Collapse
|
36
|
The protective effect of human adiposederived mesenchymal stem cells on cisplatin-induced nephrotoxicity is dependent on their level of expression of heme oxygenase-1. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220934563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The therapeutic efficacy of adipose mesenchymal stem cells (Ad-MSCs) for acute kidney injury (AKI) has been investigated extensively, and the anti-apoptotic, anti-inflammatory, and proangiogenic effects of heme oxygenase-1 (HO-1) reportedly ameliorate AKI. We hypothesized that the therapeutic efficacy of Ad-MSCs is dependent on their expression level of HO-1. The viability and migration ability of cisplatin-treated human renal proximal tubular epithelial cells were assessed. Sprague–Dawley rats were divided into control, cisplatin (10 mg/kg), and cisplatin plus Ad MSCs (with high and low HO-1 expression) groups. The HO-1 expression level in hAd-MSCs increased with increasing passage number, peaking at passage 4 and decreasing thereafter. The viability and migratory ability of hAd-MSCs with high HO-1 expression were greater than those of hAd-MSCs with low HO-1 expression. Renal tubular toxicity in cisplatin-treated rats was ameliorated by administration of hAd-MSCs with high HO-1 expression, although the levels of blood urea nitrogen and serum creatinine did not differ according to the level of HO-1 expression. The magnitude of reactive oxygen species induced DNA damage was lower in hAd-MSCs with high HO-1 expression than in those with low HO-1 expression. Administration of hAd-MSCs significantly suppressed cisplatin induced apoptosis. Also, hAd-MSCs with high HO-1 expression were more resistant to cisplatin-induced apoptosis than were those with low HO-1 expression. hAd MSCs with high HO-1 expression have therapeutic potential for cisplatin induced nephrotoxicity, based on our in vitro and in vivo results. These findings will facilitate the development of novel therapeutic strategies for cisplatin-induced AKI.
Collapse
|
37
|
Corona D, Ekser B, Gioco R, Caruso M, Schipa C, Veroux P, Giaquinta A, Granata A, Veroux M. Heme-Oxygenase and Kidney Transplantation: A Potential for Target Therapy? Biomolecules 2020; 10:E840. [PMID: 32486245 PMCID: PMC7355572 DOI: 10.3390/biom10060840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Kidney transplantation is a well-established therapy for patients with end-stage renal disease. While a significant improvement of short-term results has been achieved in the short-term, similar results were not reported in the long-term. Heme-oxygenase (HO) is the rate-limiting enzyme in heme catabolism, converting heme to iron, carbon monoxide, and biliverdin. Heme-oxygenase overexpression may be observed in all phases of transplant processes, including brain death, recipient management, and acute and chronic rejection. HO induction has been proved to provide a significant reduction of inflammatory response and a reduction of ischemia and reperfusion injury in organ transplantation, as well as providing a reduction of incidence of acute rejection. In this review, we will summarize data on HO and kidney transplantation, suggesting possible clinical applications in the near future to improve the long-term outcomes.
Collapse
Affiliation(s)
- Daniela Corona
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (D.C.); (M.C.)
- Organ Transplant Unit, University Hospital of Catania, 95123 Catania, Italy; (P.V.); (A.G.)
| | - Burcin Ekser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46077, USA;
| | - Rossella Gioco
- General Surgery Unit, University Hospital of Catania, 95123 Catania, Italy; (R.G.); (C.S.)
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (D.C.); (M.C.)
| | - Chiara Schipa
- General Surgery Unit, University Hospital of Catania, 95123 Catania, Italy; (R.G.); (C.S.)
| | - Pierfrancesco Veroux
- Organ Transplant Unit, University Hospital of Catania, 95123 Catania, Italy; (P.V.); (A.G.)
| | - Alessia Giaquinta
- Organ Transplant Unit, University Hospital of Catania, 95123 Catania, Italy; (P.V.); (A.G.)
| | | | - Massimiliano Veroux
- Organ Transplant Unit, University Hospital of Catania, 95123 Catania, Italy; (P.V.); (A.G.)
- General Surgery Unit, University Hospital of Catania, 95123 Catania, Italy; (R.G.); (C.S.)
| |
Collapse
|
38
|
Uchida M, Maier B, Waghwani HK, Selivanovitch E, Pay SL, Avera J, Yun EJ, Sandoval RM, Molitoris BA, Zollman A, Douglas T, Hato T. The archaeal Dps nanocage targets kidney proximal tubules via glomerular filtration. J Clin Invest 2020; 129:3941-3951. [PMID: 31424427 DOI: 10.1172/jci127511] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
Nature exploits cage-like proteins for a variety of biological purposes, from molecular packaging and cargo delivery to catalysis. These cage-like proteins are of immense importance in nanomedicine due to their propensity to self-assemble from simple identical building blocks to highly ordered architecture and the design flexibility afforded by protein engineering. However, delivery of protein nanocages to the renal tubules remains a major challenge because of the glomerular filtration barrier, which effectively excludes conventional size nanocages. Here, we show that DNA-binding protein from starved cells (Dps) - the extremely small archaeal antioxidant nanocage - is able to cross the glomerular filtration barrier and is endocytosed by the renal proximal tubules. Using a model of endotoxemia, we present an example of the way in which proximal tubule-selective Dps nanocages can limit the degree of endotoxin-induced kidney injury. This was accomplished by amplifying the endogenous antioxidant property of Dps with addition of a dinuclear manganese cluster. Dps is the first-in-class protein cage nanoparticle that can be targeted to renal proximal tubules through glomerular filtration. In addition to its therapeutic potential, chemical and genetic engineering of Dps will offer a nanoplatform to advance our understanding of the physiology and pathophysiology of glomerular filtration and tubular endocytosis.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Bernhard Maier
- Department of Medicine, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | | | | | - S Louise Pay
- Department of Medicine, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - John Avera
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| | - EJun Yun
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Ruben M Sandoval
- Department of Medicine, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Bruce A Molitoris
- Department of Medicine, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Amy Zollman
- Department of Medicine, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Takashi Hato
- Department of Medicine, Indiana University Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
39
|
Poulaki E, Detsika MG, Fourtziala E, Lianos EA, Gakiopoulou H. Podocyte-targeted Heme Oxygenase (HO)-1 overexpression exacerbates age-related pathology in the rat kidney. Sci Rep 2020; 10:5719. [PMID: 32235880 PMCID: PMC7109035 DOI: 10.1038/s41598-020-62016-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/20/2020] [Indexed: 11/09/2022] Open
Abstract
Although Heme Oxygenase-1 (HO-1) induction in various forms of kidney injury is protective, its role in age-related renal pathology is unknown. In the ageing kidney there is nephron loss and lesions of focal glomerulosclerosis, interstitial fibrosis, tubular atrophy and arteriolosclerosis. Underlying mechanisms include podocyte (visceral glomerular epithelial cell/GEC) injury. To assess whether HO-1 can attenuate ageing - related lesions, rats with GEC-targeted HO-1 overexpression (GECHO-1 rats) were generated using a Sleeping Beauty (SB) transposon system and extent of lesions over a 12-month period were assessed and compared to those in age-matched wild-type (WT) controls. GECHO-1 rats older than 6 months developed albuminuria that was detectable at 6 months and became significantly higher compared to age-matched WT controls at 12 months. In GECHO-1 rats, lesions of focal segmental and global glomerulosclerosis as well as tubulointerstitial lesions were prominent while podocytes were edematous with areas of foot process effacement and glomerular basement membrane thickening and wrinkling. GECHO-1 rats also developed hemoglobinuria and hemosiderinuria associated with marked tubular hemosiderin deposition and HO-1 induction, while there was depletion of splenic iron stores. Kidney injury was of sufficient magnitude to increase serum lactate dehydrogenase (LDH) and was oxidative in nature as shown by increased expression of 8-hydroxydeoxyguanosine (8-OHdg, a byproduct of oxidative DNA damage) in podocytes and tubular epithelial cells. These observations highlight a detrimental effect of podocyte-targeted HO-1 overexpression on ageing-related renal pathology and point to increased renal iron deposition as a putative underlying mechanism.
Collapse
Affiliation(s)
- Elpida Poulaki
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens, 11527, Greece
| | - Maria G Detsika
- First Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University School of Medicine, 3 Ploutarchou Street, Athens, 10675, Greece
| | - Eythimia Fourtziala
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens, 11527, Greece
| | - Elias A Lianos
- Veterans Affairs Medical Center and Virginia Tech. Carilion School of Medicine, 1970 Roanoke Blvd, Salem, VA, 24153, USA.
| | - Hariklia Gakiopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens, 11527, Greece
| |
Collapse
|
40
|
Aziz NM, Elbassuoni EA, Kamel MY, Ahmed SM. Hydrogen sulfide renal protective effects: possible link between hydrogen sulfide and endogenous carbon monoxide in a rat model of renal injury. Cell Stress Chaperones 2020; 25:211-221. [PMID: 32088905 PMCID: PMC7058727 DOI: 10.1007/s12192-019-01055-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulfide (H2S), along with nitric oxide (NO) and carbon monoxide (CO), proved to have renoprotective effects in various renal diseases. Therefore, this study investigated the renoprotective effect of H2S, in a renal injury model, and its crosstalk with other gasotransmitters such as CO. Thirty-two adult rats were divided into four groups: control, gentamicin (GEN)-treated, GEN + sodium hydrosulfide (NaHS), and GEN + NaHS + zinc protoporphyrin (ZnPP) groups. GEN was used to induce renal injury, NaHS is a water-soluble H2S, and ZnPP is a selective heme oxygenase-1 (HO-1) inhibitor used to inhibit CO synthesis in vivo. NaHS improved kidney functions in the GEN group as evidenced by significantly lower levels of renal injury markers: serum urea, creatinine, uric acid, urinary albumin excretion, and urinary albumin/creatinine. Moreover, NaHS administration to the GEN-treated group significantly lowered renal levels of NO and tumor necrosis factor-α with an increase in total antioxidant, HO-1, and interleukin-10 levels. Furthermore, NaHS administration downregulated the GEN-induced overexpression of the renal inducible nitric oxide synthase (iNOS) and upregulated the suppression of endothelial nitric oxide synthase (eNOS) with improvement in the histological examination and periodic acid Schiff (PAS) staining. However, this improvement in kidney function produced by NaHS was reduced by combination with ZnPP but still improved as compared with the GEN-treated group. The renoprotective effects of H2S can be through its effects on renal tissue antioxidants, pro-inflammatory and anti-inflammatory cytokines, and expression of eNOS and iNOS which can be partially dependent on CO pathway via induction of HO-1 enzyme.
Collapse
Affiliation(s)
- Neven M Aziz
- Department of Physiology, Faculty of Medicine, Minia University, Minya, Egypt
- Deraya University, New Minya City, Egypt
| | - Eman A Elbassuoni
- Department of Physiology, Faculty of Medicine, Minia University, Minya, Egypt.
| | - Maha Y Kamel
- Department of Pharmacology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Sabreen M Ahmed
- Deraya University, New Minya City, Egypt
- Department of Human Anatomy and Embryology, Faculty of Medicine, Minia University, Minya, Egypt
| |
Collapse
|
41
|
Mesenchymal stromal cell-based therapies for acute kidney injury: progress in the last decade. Kidney Int 2020; 97:1130-1140. [PMID: 32305128 DOI: 10.1016/j.kint.2019.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
A little over 10 years ago, the therapeutic potential of mesenchymal stromal cells (MSCs) for the treatment of acute kidney injury (AKI) was becoming widely recognized. Since then, there has been further intensive study of this topic with a clear translational intent. Over the past decade, many more animal model studies have strengthened the evidence that systemically or locally delivered MSCs ameliorate renal injury in sterile and sepsis-associated AKI. Some of these preclinical studies have also provided a range of compelling new insights into the in vivo fate and mechanisms of action of MSCs in the setting of AKI and other inflammatory conditions. Coupled with increased knowledge of the functional roles of resident and infiltrating immune cell mediators in determining the severity and outcome of AKI, the progress made in the past decade would appear to have significantly strengthened the translational pathway for MSC-based therapies. In contrast, however, the extent of the clinical experience with MSC administration in human subjects with AKI or sepsis-associated AKI has been limited to a small number of early-phase clinical trials, which appear to demonstrate safety but have not thus far delivered a strong signal of efficacy. In this review, we summarize the most significant new developments in the field of MSC-based therapies as they relate to AKI and reflect on the key gaps in knowledge and technology that remain to be addressed for the true clinical potential of MSCs and, perhaps, other emerging cellular therapies to be realized.
Collapse
|
42
|
The effects of Hemiscorpius lepturus induced-acute kidney injury on PGC-1α gene expression: From induction to suppression in mice. Toxicon 2019; 174:57-63. [PMID: 31887316 DOI: 10.1016/j.toxicon.2019.12.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/05/2019] [Accepted: 12/21/2019] [Indexed: 11/23/2022]
Abstract
Hemiscorpius lepturus envenomation induces acute kidney injury (AKI) through hemoglubinoria and mitochondrial dysfunction. Mitochondria supports ATP production to promote the regulation of fluid and electrolyte balance. Mitochondrial homeostasis in different metabolic environments can be adjusted by overexpression of PGC-1α. High reactive oxygen species (ROS) production after H. lepturus envenomation and heme oxygenase-1 (HO-1) overexpression causes ATP depletion as well as mitochondrial homeostasis disruption, which lead to progression in renal diseases. The present study aims to evaluate the role of venom induced-AKI in modulating mitochondrial function in cell death and metabolic signaling associated with PPAR-α, PGC-1α, and Nrf-2 as the main transcription factors involved in metabolism. Based on the data, two significant events occurred after envenomation: reduction of gl glutathione level and overexpression of the cytoprotective enzyme HO-1. Apaoptosis induction is associated with a significant decrease in the transcription of PPAR-α, PGC-1α and Nrf-2 after administrating lethal dose of venom (10 mg/kg). Furthermore, at the lower doses of venom (1 and 5 mg/kg), with a significant recovery accompanied with PGC-1α upregulation occurs after AKI. As the findings indicate, PGC-1α has a key role in restoring the mitochondrial function at the recovery phase of mouse model of AKI, which highlights the PGC-1α as a therapeutic target for venom induced-AKI prevention and treatment.
Collapse
|
43
|
Sirt5 Attenuates Cisplatin-Induced Acute Kidney Injury through Regulation of Nrf2/HO-1 and Bcl-2. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4745132. [PMID: 31815138 PMCID: PMC6878818 DOI: 10.1155/2019/4745132] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/11/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022]
Abstract
Cisplatin- (CDDP) induced acute kidney injury (AKI) limits the clinical use of cisplatin. Several sirtuin (SIRT) family proteins are involved in AKI, while the roles of Sirt5 in cisplatin-induced AKI remain unknown. In the present study, we characterized the role and mechanism of Sirt5 in cisplatin-induced apoptosis using the human kidney 2 (HK-2) cell line. CDDP treatment decreased Sirt5 expression of HK-2 cells in a dose-dependent manner. In addition, Sirt5 overexpression enhanced the metabolic activity in CDDP-treated HK-2 cells while Sirt5 siRNA attenuated it. Forced expression of Sirt5 inhibited CDDP-induced apoptosis while Sirt5 siRNA showed the opposite effects. Accordingly, Sirt5 overexpression inhibited the level of caspase 3 cleavage and cytochrome c levels. Furthermore, we found that Sirt5 increased mitochondrial membrane potentials and ameliorated intracellular ROS production. Mitotracker Red staining indicated that Sirt5 overexpression was able to maintain the mitochondrial density during CDDP treatment. We also investigated possible downstream targets of Sirt5 and found that Sirt5 increased Nrf2, HO-1, and Bcl-2 while it decreased Bax protein expression. Sirt5 siRNA showed the opposite effect on these proteins. The levels of Nrf2, HO-1, and Bcl-2 proteins in HK-2 cells were also decreased after CDDP treatment. Moreover, Nrf2 and Bcl-2 siRNA partly abolished the protecting effect of Sirt5 on CDDP-induced apoptosis and cytochrome c release. Catalase inhibitor 3-AT also abolished the cytoprotective effect of Sirt5. Together, the results demonstrated that Sirt5 attenuated cisplatin-induced apoptosis and mitochondrial injury in human kidney HK-2 cells, possibly through the regulation of Nrf2/HO-1 and Bcl-2.
Collapse
|
44
|
Johnson ACM, Zager RA. Mechanisms and consequences of oxidant-induced renal preconditioning: an Nrf2-dependent, P21-independent, anti-senescence pathway. Nephrol Dial Transplant 2019. [PMID: 29522116 DOI: 10.1093/ndt/gfy029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background P21, a cyclin kinase inhibitor, is upregulated by renal 'ischemic preconditioning' (IPC), and induces a 'cytoresistant' state. However, P21-induced cell cycle inhibition can also contribute to cellular senescence, a potential adverse renal event. Hence, this study assessed whether: (i) IPC-induced P21 upregulation is associated with subsequent renal senescence; and (ii) preconditioning can be established 'independent' of P21 induction and avoid a post-ischemic senescent state? Methods CD-1 mice were subjected to either IPC (5-15 min) or to a recently proposed 'oxidant-induced preconditioning' (OIP) strategy (tin protoporphyrin-induced heme oxygenase inhibition +/- parental iron administration). P21 induction [messenger RNA (mRNA)/protein], cell proliferation (KI-67, phosphohistone H3 nuclear staining), kidney senescence (P16ink4a; P19Arf mRNAs; senescence-associated beta-galactosidase levels) and resistance to ischemic acute kidney injury were assessed. Results IPC induced dramatic (10-25×) and persistent P21 activation and 'downstream' tubular senescence. Conversely, OIP did not upregulate P21, it increased, rather than decreased, cell proliferation markers, and it avoided a senescence state. OIP markedly suppressed ischemia-induced P21 up-regulation, it inhibited the development of post-ischemic senescence and it conferred near-complete protection against ischemic acute renal failure (ARF). To assess OIP's impact on a non-P21-dependent cytoprotective pathway, its ability to activate Nrf2, the so-called 'master regulator' of endogenous cell defenses, was assessed. Within 4 h, OIP activated each of three canonical Nrf2-regulated genes (NQO1, SRXN1, GCLC; 3- to 5-fold mRNA increases). Conversely, this gene activation pathway was absent in Nrf2-/- mice, confirming Nrf2 specificity. Nrf2-/- mice also did not develop significant OIP-mediated protection against ischemic ARF. Conclusions OIP (i) activates the cytoprotective Nrf2, but not the P21, pathway; (ii) suppresses post-ischemic P21 induction and renal senescence; and (iii) confers marked protection against ischemic ARF. In sum, these findings suggest that OIP may be a clinically feasible approach for safely activating the Nrf2 pathway, and thereby confer protection against clinical renal injury.
Collapse
Affiliation(s)
| | - Richard A Zager
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
45
|
Sharma S, Leaf DE. Iron Chelation as a Potential Therapeutic Strategy for AKI Prevention. J Am Soc Nephrol 2019; 30:2060-2071. [PMID: 31554656 DOI: 10.1681/asn.2019060595] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AKI remains a major public health concern. Despite years of investigation, no intervention has been demonstrated to reliably prevent AKI in humans. Thus, development of novel therapeutic targets is urgently needed. An important role of iron in the pathophysiology of AKI has been recognized for over three decades. When present in excess and in nonphysiologic labile forms, iron is toxic to the kidneys and multiple other organs, whereas iron chelation is protective across a broad spectrum of insults. In humans, small studies have investigated iron chelation as a novel therapeutic strategy for prevention of AKI and extrarenal acute organ injury, and have demonstrated encouraging initial results. In this review, we examine the existing data on iron chelation for AKI prevention in both animal models and human studies. We discuss practical considerations for future clinical trials of AKI prevention using iron chelators, including selection of the ideal clinical setting, patient population, iron chelating agent, and dosing regimen. Finally, we compare the key differences among the currently available iron chelators, including pharmacokinetics, routes of administration, and adverse effects.
Collapse
Affiliation(s)
- Shreyak Sharma
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
46
|
Nath KA, Garovic VD, Grande JP, Croatt AJ, Ackerman AW, Farrugia G, Katusic ZS, Belcher JD, Vercellotti GM. Heme oxygenase-2 protects against ischemic acute kidney injury: influence of age and sex. Am J Physiol Renal Physiol 2019; 317:F695-F704. [PMID: 31215802 PMCID: PMC6842883 DOI: 10.1152/ajprenal.00085.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
Heme oxygenase (HO) activity is exhibited by inducible (HO-1) and constitutive (HO-2) proteins. HO-1 protects against ischemic and nephrotoxic acute kidney injury (AKI). We have previously demonstrated that HO-2 protects against heme protein-induced AKI. The present study examined whether HO-2 is protective in ischemic AKI. Renal ischemia was imposed on young and aged HO-2+/+ and HO-2-/- mice. On days 1 and 2 after renal ischemia, there were no significant differences in renal function between young male HO-2+/+ and HO-2-/- mice, between young female HO-2+/+ and HO-2-/- mice, or between aged female HO-2+/+ and HO-2-/- mice. However, in aged male mice, HO-2 deficiency worsened renal function on days 1 and 2 after ischemic AKI, and, on day 2 after ischemia, such deficiency augmented upregulation of injury-related genes and worsened histological injury. Renal HO activity was markedly decreased in unstressed aged male HO-2-/- mice and remained so after ischemia, despite exaggerated HO-1 induction in HO-2-/- mice after ischemia. Such exacerbation of deficiency of HO-2 protein and HO activity may reflect phosphorylated STAT3, as activation of this proinflammatory transcription factor was accentuated early after ischemia in aged male HO-2-/- mice. This exacerbation may not reflect impaired induction of nephroprotectant genes, since the induction of HO-1, sirtuin 1, and β-catenin was accentuated in aged male HO-2-/- mice after ischemia. We conclude that aged male mice are hypersensitive to ischemic AKI and that HO-2 mitigates such sensitivity. We speculate that this protective effect of HO-2 may be mediated, at least in part, by suppression of phosphorylated STAT3-dependent signaling.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Anthony J Croatt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Allan W Ackerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - John D Belcher
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Gregory M Vercellotti
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
47
|
Black LM, Lever JM, Agarwal A. Renal Inflammation and Fibrosis: A Double-edged Sword. J Histochem Cytochem 2019; 67:663-681. [PMID: 31116067 PMCID: PMC6713973 DOI: 10.1369/0022155419852932] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022] Open
Abstract
Renal tissue injury initiates inflammatory and fibrotic processes that occur to promote regeneration and repair. After renal injury, damaged tissue releases cytokines and chemokines, which stimulate activation and infiltration of inflammatory cells to the kidney. Normal tissue repair processes occur simultaneously with activation of myofibroblasts, collagen deposition, and wound healing responses; however, prolonged activation of pro-inflammatory and pro-fibrotic cell types causes excess extracellular matrix deposition. This review focuses on the physiological and pathophysiological roles of specialized cell types, cytokines/chemokines, and growth factors, and their implications in recovery or exacerbation of acute kidney injury.
Collapse
Affiliation(s)
- Laurence M Black
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Jeremie M Lever
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Anupam Agarwal
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL
- Department of Veterans Affairs, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
48
|
Xie Y, Bowe B, Yan Y, Xian H, Li T, Al-Aly Z. Estimates of all cause mortality and cause specific mortality associated with proton pump inhibitors among US veterans: cohort study. BMJ 2019; 365:l1580. [PMID: 31147311 PMCID: PMC6538974 DOI: 10.1136/bmj.l1580] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To estimate all cause mortality and cause specific mortality among patients taking proton pump inhibitors (PPIs). DESIGN Longitudinal observational cohort study. SETTING US Department of Veterans Affairs. PARTICIPANTS New users of PPIs (n=157 625) or H2 blockers (n=56 842). MAIN OUTCOME MEASURES All cause mortality and cause specific mortality associated with taking PPIs (values reported as number of attributable deaths per 1000 patients taking PPIs). RESULTS There were 45.20 excess deaths (95% confidence interval 28.20 to 61.40) per 1000 patients taking PPIs. Circulatory system diseases (number of attributable deaths per 1000 patients taking PPIs 17.47, 95% confidence interval 5.47 to 28.80), neoplasms (12.94, 1.24 to 24.28), infectious and parasitic diseases (4.20, 1.57 to 7.02), and genitourinary system diseases (6.25, 3.22 to 9.24) were associated with taking PPIs. There was a graded relation between cumulative duration of PPI exposure and the risk of all cause mortality and death due to circulatory system diseases, neoplasms, and genitourinary system diseases. Analyses of subcauses of death suggested that taking PPIs was associated with an excess mortality due to cardiovascular disease (15.48, 5.02 to 25.19) and chronic kidney disease (4.19, 1.56 to 6.58). Among patients without documented indication for acid suppression drugs (n=116 377), taking PPIs was associated with an excess mortality due to cardiovascular disease (22.91, 11.89 to 33.57), chronic kidney disease (4.74, 1.53 to 8.05), and upper gastrointestinal cancer (3.12, 0.91 to 5.44). Formal interaction analyses suggested that the risk of death due to these subcauses was not modified by a history of cardiovascular disease, chronic kidney disease, or upper gastrointestinal cancer. Taking PPIs was not associated with an excess burden of transportation related mortality and death due to peptic ulcer disease (as negative outcome controls). CONCLUSIONS Taking PPIs is associated with a small excess of cause specific mortality including death due to cardiovascular disease, chronic kidney disease, and upper gastrointestinal cancer. The burden was also observed in patients without an indication for PPI use. Heightened vigilance in the use of PPI may be warranted.
Collapse
Affiliation(s)
- Yan Xie
- Clinical Epidemiology Center, Department of Veterans Affairs St Louis Health Care System, 915 North Grand Boulevard, St Louis, MO 63106, USA
- Veterans Research and Education Foundation of St Louis, St Louis, MO, USA
| | - Benjamin Bowe
- Clinical Epidemiology Center, Department of Veterans Affairs St Louis Health Care System, 915 North Grand Boulevard, St Louis, MO 63106, USA
- Department of Biostatistics, College for Public Health and Social Justice, Saint Louis University, St Louis, MO, USA
| | - Yan Yan
- Clinical Epidemiology Center, Department of Veterans Affairs St Louis Health Care System, 915 North Grand Boulevard, St Louis, MO 63106, USA
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Hong Xian
- Clinical Epidemiology Center, Department of Veterans Affairs St Louis Health Care System, 915 North Grand Boulevard, St Louis, MO 63106, USA
- Department of Biostatistics, College for Public Health and Social Justice, Saint Louis University, St Louis, MO, USA
| | - Tingting Li
- Clinical Epidemiology Center, Department of Veterans Affairs St Louis Health Care System, 915 North Grand Boulevard, St Louis, MO 63106, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Ziyad Al-Aly
- Clinical Epidemiology Center, Department of Veterans Affairs St Louis Health Care System, 915 North Grand Boulevard, St Louis, MO 63106, USA
- Veterans Research and Education Foundation of St Louis, St Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Renal Section, Medicine Service, Department of Veterans Affairs Saint Louis Health Care System, St Louis, MO, USA
- Institute for Public Health, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
49
|
Vilander LM, Vaara ST, Donner KM, Lakkisto P, Kaunisto MA, Pettilä V. Heme oxygenase-1 repeat polymorphism in septic acute kidney injury. PLoS One 2019; 14:e0217291. [PMID: 31120979 PMCID: PMC6532969 DOI: 10.1371/journal.pone.0217291] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
Acute kidney injury (AKI) is a syndrome that frequently affects the critically ill. Recently, an increased number of dinucleotide repeats in the HMOX1 gene were reported to associate with development of AKI in cardiac surgery. We aimed to test the replicability of this finding in a Finnish cohort of critically ill septic patients. This multicenter study was part of the national FINNAKI study. We genotyped 300 patients with severe AKI (KDIGO 2 or 3) and 353 controls without AKI (KDIGO 0) for the guanine–thymine (GTn) repeat in the promoter region of the HMOX1 gene. The allele calling was based on the number of repeats, the cut off being 27 repeats in the S–L (short to long) classification, and 27 and 34 repeats for the S–M–L2 (short to medium to very long) classification. The plasma concentrations of heme oxygenase-1 (HO-1) enzyme were measured on admission. The allele distribution in our patients was similar to that published previously, with peaks at 23 and 30 repeats. The S-allele increases AKI risk. An adjusted OR was 1.30 for each S-allele in an additive genetic model (95% CI 1.01–1.66; p = 0.041). Alleles with a repeat number greater than 34 were significantly associated with lower HO-1 concentration (p<0.001). In septic patients, we report an association between a short repeat in HMOX1 and AKI risk.
Collapse
Affiliation(s)
- Laura M. Vilander
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- * E-mail:
| | - Suvi T. Vaara
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kati M. Donner
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Päivi Lakkisto
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Mari A. Kaunisto
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Ville Pettilä
- Division of Intensive Care Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | |
Collapse
|
50
|
Eltobshy SAG, Hussein AM, Elmileegy AA, Askar MH, Khater Y, Metias EF, Helal GM. Effects of heme oxygenase-1 upregulation on isoproterenol-induced myocardial infarction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:203-217. [PMID: 31080351 PMCID: PMC6488703 DOI: 10.4196/kjpp.2019.23.3.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/23/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
Abstract
The present study was designed to examine the effect of heme oxygenase-1 (HO-1) induction by cobalt protoporphyrin (CoPP) on the cardiac functions and morphology, electrocardiogram (ECG) changes, myocardial antioxidants (superoxide dismutase [SOD] and glutathione [GSH]), and expression of heat shock protein (Hsp) 70 and connexin 43 (Cx-43) in myocardial muscles in isoproterenol (ISO) induced myocardial infarction (MI). Thirty two adult male Sprague Dawely rats were divided into 4 groups (each 8 rats): normal control (NC) group, ISO group: received ISO at dose of 150 mg/kg body weight intraperitoneally (i.p.) for 2 successive days; ISO + Trizma group: received (ISO) and Trizma (solvent of CoPP) at dose of 5 mg/kg i.p. injection 2 days before injection of ISO, with ISO at day 0 and at day 2 after ISO injections; and ISO + CoPP group: received ISO and CoPP at a dose of 5 mg/kg dissolved in Trizma i.p. injection as Trizma. We found that, administration of ISO caused significant increase in heart rate, corrected QT interval, ST segment, cardiac enzymes (lactate dehydrogenase, creatine kinase-muscle/brain), cardiac HO-1, Hsp70 with significant attenuation in myocardial GSH, SOD, and Cx-43. On the other hand, administration of CoPP caused significant improvement in ECG parameters, cardiac enzymes, cardiac morphology; antioxidants induced by ISO with significant increase in HO-1, Cx-43, and Hsp70 expression in myocardium. In conclusions, we concluded that induction of HO-1 by CoPP ameliorates ISO-induced myocardial injury, which might be due to up-regulation of Hsp70 and gap junction protein (Cx-43).
Collapse
Affiliation(s)
- Somaia A G Eltobshy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdelaziz M Hussein
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Asaad A Elmileegy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mona H Askar
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yomna Khater
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Emile F Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ghada M Helal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|