1
|
Ahlström FH, Viisanen H, Karhinen L, Velagapudi V, Blomqvist KJ, Lilius TO, Rauhala PV, Kalso EA. Gene expression in the dorsal root ganglion and the cerebrospinal fluid metabolome in polyneuropathy and opioid tolerance in rats. IBRO Neurosci Rep 2024; 17:38-51. [PMID: 38933596 PMCID: PMC11201153 DOI: 10.1016/j.ibneur.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
First-line pharmacotherapy for peripheral neuropathic pain (NP) of diverse pathophysiology consists of antidepressants and gabapentinoids, but only a minority achieve sufficient analgesia with these drugs. Opioids are considered third-line analgesics in NP due to potential severe and unpredictable adverse effects in long-term use. Also, opioid tolerance and NP may have shared mechanisms, raising further concerns about opioid use in NP. We set out to further elucidate possible shared and separate mechanisms after chronic morphine treatment and oxaliplatin-induced and diabetic polyneuropathies, and to identify potential diagnostic markers and therapeutic targets. We analysed thermal nociceptive behaviour, the transcriptome of dorsal root ganglia (DRG) and the metabolome of cerebrospinal fluid (CSF) in these three conditions, in rats. Several genes were differentially expressed, most following oxaliplatin and least after chronic morphine treatment, compared with saline-treated rats. A few genes were differentially expressed in the DRGs in all three models (e.g. Csf3r and Fkbp5). Some, e.g. Alox15 and Slc12a5, were differentially expressed in both diabetic and oxaliplatin models. Other differentially expressed genes were associated with nociception, inflammation, and glial cells. The CSF metabolome was most significantly affected in the diabetic rats. Interestingly, we saw changes in nicotinamide metabolism, which has been associated with opioid addiction and withdrawal, in the CSF of morphine-tolerant rats. Our results offer new hypotheses for the pathophysiology and treatment of NP and opioid tolerance. In particular, the role of nicotinamide metabolism in opioid addiction deserves further study.
Collapse
Affiliation(s)
- Fredrik H.G. Ahlström
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Hanna Viisanen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Leena Karhinen
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, University of Helsinki, P.O. Box 20, FI-00014, Finland
| | - Kim J. Blomqvist
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Tuomas O. Lilius
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Tukholmankatu 8C, 00014, Finland
- Department of Emergency Medicine and Services, University of Helsinki and HUS Helsinki University Hospital, Haartmaninkatu 4, Helsinki 00290, Finland
| | - Pekka V. Rauhala
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- Individualized Drug Therapy Research Programme, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
| | - Eija A. Kalso
- Department of Pharmacology, Faculty of Medicine, Biomedicum 1, University of Helsinki, Haartmaninkatu 8, 00014, Finland
- SleepWell Research Programme, Faculty of Medicine, , University of Helsinki, Haartmaninkatu 3, 00014, Finland
- Department of Anaesthesiology and Intensive Care Medicine, Helsinki University Hospital and University of Helsinki, HUS, Stenbäckinkatu 9, P.O. Box 440, 00029, Finland
| |
Collapse
|
2
|
Singh M, Kim A, Young A, Nguyen D, Monroe CL, Ding T, Gray D, Venketaraman V. The Mechanism and Inflammatory Markers Involved in the Potential Use of N-acetylcysteine in Chronic Pain Management. Life (Basel) 2024; 14:1361. [PMID: 39598160 PMCID: PMC11595559 DOI: 10.3390/life14111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
N-acetylcysteine (NAC) has established use as an antidote for acetaminophen overdose and treatment for pulmonary conditions and nephropathy. It plays a role in regulating oxidative stress and interacting with various cytokines including IL-1β, TNFα, IL-8, IL-6, IL-10, and NF-κB p65. The overexpression of reactive oxygen species (ROS) is believed to contribute to chronic pain states by inducing inflammation and accelerating disease progression, favoring pain persistence in neuropathic and musculoskeletal pain conditions. Through a comprehensive review, we aim to explore the mechanisms and inflammatory pathways through which NAC may manage neuropathic and musculoskeletal pain. Evidence suggests NAC can attenuate neuropathic and musculoskeletal pain through mechanisms such as inhibiting matrix metalloproteinases (MMPs), reducing reactive oxygen species (ROS), and enhancing glutamate transport. Additionally, NAC may synergize with opioids and other pain medications, potentially reducing opioid consumption and enhancing overall pain management. Further research is needed to fully elucidate its therapeutic potential and optimize its use in pain management. As an adjuvant therapy, NAC shows potential for chronic pain management, offering significant benefits for public health.
Collapse
Affiliation(s)
- Mona Singh
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Alina Kim
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Amelie Young
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Deanna Nguyen
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Cynthia L. Monroe
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA;
| | - Tiffany Ding
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| | - Dennis Gray
- Vigilant Anesthesiology, PA, Tampa, FL 33193, USA;
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (M.S.); (A.K.); (A.Y.); (D.N.); (T.D.)
| |
Collapse
|
3
|
Haghighat Lari MM, Bakhoda MR, Shabani M, Taghizadeh M, Bahmani F, Hamidi G, Aghighi F, Talaei SA. Artichoke leaf hydroethanolic extract reduces neuropathic pain in a rat model of chronic constriction injury via attenuating the sciatic nerve oxidative stress. Arch Physiol Biochem 2024:1-7. [PMID: 39320929 DOI: 10.1080/13813455.2024.2406898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Neuropathic pain, a nerve damage consequence, presents symptoms such as dysesthesia, hyperalgesia, and allodynia. This study aimed to evaluate the alleviating potential of artichoke leaf extract in neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve in male rats. The hydroethanolic extract of artichoke leaf was administered via gavage at doses of 200, 400, and 800 mg/kg for 21 days. Behavioural tests were conducted on days 1, 4, 7, 14, and 21 post-surgeries. Only the dose of 800 mg/kg significantly reduced thermal hyperalgesia and allodynia from day 14 and mechanical allodynia from day 7, and the other doses did not affect behaviours. Biochemical analysis showed that artichoke extract decreased lipid peroxidation and restored antioxidant enzyme activities (SOD and GPx) in the sciatic nerve tissue. In conclusion, artichoke leaf extract administration diminishes neuropathic pain-related behaviours by enhancing antioxidant capacity and reducing oxidative stress in the rats' sciatic nerve.
Collapse
Affiliation(s)
- Mohammad Mehdi Haghighat Lari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Reza Bakhoda
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholamali Hamidi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Aghighi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Mills EP, Bosma RL, Rogachov A, Cheng JC, Osborne NR, Kim JA, Besik A, Bhatia A, Davis KD. Pretreatment Brain White Matter Integrity Associated With Neuropathic Pain Relief and Changes in Temporal Summation of Pain Following Ketamine. THE JOURNAL OF PAIN 2024; 25:104536. [PMID: 38615801 DOI: 10.1016/j.jpain.2024.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Neuropathic pain (NP) is a prevalent condition often associated with heightened pain responsiveness suggestive of central sensitization. Neuroimaging biomarkers of treatment outcomes may help develop personalized treatment strategies, but white matter (WM) properties have been underexplored for this purpose. Here we assessed whether WM pathways of the default mode network (DMN: medial prefrontal cortex [mPFC], posterior cingulate cortex, and precuneus) and descending pain modulation system (periaqueductal gray [PAG]) are associated with ketamine analgesia and attenuated temporal summation of pain (TSP, reflecting central sensitization) in NP. We used a fixel-based analysis of diffusion-weighted imaging data to evaluate WM microstructure (fiber density [FD]) and macrostructure (fiber bundle cross-section) within the DMN and mPFC-PAG pathways in 70 individuals who underwent magnetic resonance imaging and TSP testing; 35 with NP who underwent ketamine treatment and 35 age- and sex-matched pain-free individuals. Individuals with NP were assessed before and 1 month after treatment; those with ≥30% pain relief were considered responders (n = 18), or otherwise as nonresponders (n = 17). We found that WM structure within the DMN and mPFC-PAG pathways did not differentiate responders from nonresponders. However, pretreatment FD in the anterior limb of the internal capsule correlated with pain relief (r=.48). Moreover, pretreatment FD in the DMN (left mPFC-precuneus/posterior cingulate cortex; r=.52) and mPFC-PAG (r=.42) negatively correlated with changes in TSP. This suggests that WM microstructure in the DMN and mPFC-PAG pathway is associated with the degree to which ketamine reduces central sensitization. Thus, fixel metrics of WM structure may hold promise to predict ketamine NP treatment outcomes. PERSPECTIVE: We used advanced fixel-based analyses of MRI diffusion-weighted imaging data to identify pretreatment WM microstructure associated with ketamine outcomes, including analgesia and markers of attenuated central sensitization. Exploring associations between brain structure and treatment outcomes could contribute to a personalized approach to treatment for individuals with NP.
Collapse
Affiliation(s)
- Emily P Mills
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Rachael L Bosma
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Anton Rogachov
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Joshua C Cheng
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Natalie R Osborne
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Junseok A Kim
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ariana Besik
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Anuj Bhatia
- Department of Anesthesia and Pain Management, University Health Network, Toronto, Ontario, Canada; Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Karen D Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Singh SK, Weigel C, Brown RDR, Green CD, Tuck C, Salvemini D, Spiegel S. FTY720/Fingolimod mitigates paclitaxel-induced Sparcl1-driven neuropathic pain and breast cancer progression. FASEB J 2024; 38:e23872. [PMID: 39126272 DOI: 10.1096/fj.202401277r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Paclitaxel is among the most active chemotherapy drugs for the aggressive triple negative breast cancer (TNBC). Unfortunately, it often induces painful peripheral neuropathy (CIPN), a major debilitating side effect. Here we demonstrate that in naive and breast tumor-bearing immunocompetent mice, a clinically relevant dose of FTY720/Fingolimod that targets sphingosine-1-phosphate receptor 1 (S1PR1), alleviated paclitaxel-induced neuropathic pain. FTY720 also significantly attenuated paclitaxel-stimulated glial fibrillary acidic protein (GFAP), a marker for activated astrocytes, and expression of the astrocyte-secreted synaptogenic protein Sparcl1/Hevin, a key regulator of synapse formation. Notably, the formation of excitatory synapses containing VGluT2 in the spinal cord dorsal horn induced by paclitaxel was also inhibited by FTY720 treatment, supporting the involvement of astrocytes and Sparcl1 in CIPN. Furthermore, in this TNBC mouse model that mimics human breast cancer, FTY720 administration also enhanced the anti-tumor effects of paclitaxel, leading to reduced tumor progression and lung metastasis. Taken together, our findings suggest that targeting the S1P/S1PR1 axis with FTY720 is a multipronged approach that holds promise as a therapeutic strategy for alleviating both CIPN and enhancing the efficacy of chemotherapy in TNBC treatment.
Collapse
Affiliation(s)
- Sandeep K Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Christopher D Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Connor Tuck
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology School of Medicine and Institute for Translational Neuroscience, Saint Louis University, St. Louis, Missouri, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
6
|
Chen Y, Wang E, Sites BD, Cohen SP. Integrating mechanistic-based and classification-based concepts into perioperative pain management: an educational guide for acute pain physicians. Reg Anesth Pain Med 2024; 49:581-601. [PMID: 36707224 DOI: 10.1136/rapm-2022-104203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Chronic pain begins with acute pain. Physicians tend to classify pain by duration (acute vs chronic) and mechanism (nociceptive, neuropathic and nociplastic). Although this taxonomy may facilitate diagnosis and documentation, such categories are to some degree arbitrary constructs, with significant overlap in terms of mechanisms and treatments. In clinical practice, there are myriad different definitions for chronic pain and a substantial portion of chronic pain involves mixed phenotypes. Classification of pain based on acuity and mechanisms informs management at all levels and constitutes a critical part of guidelines and treatment for chronic pain care. Yet specialty care is often siloed, with advances in understanding lagging years behind in some areas in which these developments should be at the forefront of clinical practice. For example, in perioperative pain management, enhanced recovery protocols are not standardized and tend to drive treatment without consideration of mechanisms, which in many cases may be incongruent with personalized medicine and mechanism-based treatment. In this educational document, we discuss mechanisms and classification of pain as it pertains to commonly performed surgical procedures. Our goal is to provide a clinical reference for the acute pain physician to facilitate pain management decision-making (both diagnosis and therapy) in the perioperative period.
Collapse
Affiliation(s)
- Yian Chen
- Anesthesiology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Wang
- Anesthesiology and Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Brian D Sites
- Anesthesiology and Orthopaedics, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Steven P Cohen
- Anesthesiology, Neurology, Physical Medicine & Rehabilitation and Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Moreau N, Korai SA, Sepe G, Panetsos F, Papa M, Cirillo G. Peripheral and central neurobiological effects of botulinum toxin A (BoNT/A) in neuropathic pain: a systematic review. Pain 2024; 165:1674-1688. [PMID: 38452215 DOI: 10.1097/j.pain.0000000000003204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 03/09/2024]
Abstract
ABSTRACT Botulinum toxin (BoNT), a presynaptic inhibitor of acetylcholine (Ach) release at the neuromuscular junction (NMJ), is a successful and safe drug for the treatment of several neurological disorders. However, a wide and recent literature review has demonstrated that BoNT exerts its effects not only at the "periphery" but also within the central nervous system (CNS). Studies from animal models, in fact, have shown a retrograde transport to the CNS, thus modulating synaptic function. The increasing number of articles reporting efficacy of BoNT on chronic neuropathic pain (CNP), a complex disease of the CNS, demonstrates that the central mechanisms of BoNT are far from being completely elucidated. In this new light, BoNT might interfere with the activity of spinal, brain stem, and cortical circuitry, modulating excitability and the functional organization of CNS in healthy conditions. Botulinum toxins efficacy on CNP is the result of a wide and complex action on many and diverse mechanisms at the basis of the maladaptive plasticity, the core of the pathogenesis of CNP. This systematic review aims to discuss in detail the BoNT's mechanisms and effects on peripheral and central neuroplasticity, at the basis for the clinical efficacy in CNP syndromes.
Collapse
Affiliation(s)
- Nathan Moreau
- Laboratoire de Neurobiologie oro-faciale, EA 7543, Université Paris Cité, Paris, France
| | - Sohaib Ali Korai
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Sepe
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, Silk Biomed SL, Madrid, Spain
| | - Michele Papa
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Cirillo
- Division of Human Anatomy, Laboratory of Morphology of Neuronal Networks & Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
8
|
Ye S, Cheng Z, Zhuo D, Liu S. Different Types of Cell Death in Diabetic Neuropathy: A Focus on Mechanisms and Therapeutic Strategies. Int J Mol Sci 2024; 25:8126. [PMID: 39125694 PMCID: PMC11311470 DOI: 10.3390/ijms25158126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetic neuropathy (DN) is a common complication of diabetes, affecting over 50% of patients, leading to significant pain and a burden. Currently, there are no effective treatments available. Cell death is considered a key factor in promoting the progression of DN. This article reviews how cell death is initiated in DN, emphasizing the critical roles of oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and autophagy. Additionally, we thoroughly summarize the mechanisms of cell death that may be involved in the pathogenesis of DN, including apoptosis, autophagy, pyroptosis, and ferroptosis, among others, as well as potential therapeutic targets offered by these death mechanisms. This provides potential pathways for the prevention and treatment of diabetic neuropathy in the future.
Collapse
Affiliation(s)
- Shang Ye
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Zilin Cheng
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Dongye Zhuo
- Department of Clinical Medicine, School of Queen Mary, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.Y.); (Z.C.); (D.Z.)
| | - Shuangmei Liu
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
9
|
Drummond ISA, de Oliveira JNS, Niella RV, Silva ÁJC, de Oliveira IS, de Souza SS, da Costa Marques CS, Corrêa JMX, Silva JF, de Lavor MSL. Evaluation of the Therapeutic Potential of Amantadine in a Vincristine-Induced Peripheral Neuropathy Model in Rats. Animals (Basel) 2024; 14:1941. [PMID: 38998053 PMCID: PMC11240452 DOI: 10.3390/ani14131941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to evaluate the therapeutic potential of amantadine in a vincristine-induced peripheral neuropathy model in rats. Forty-eight male Wistar rats were used. The treated groups received oral amantadine at doses of 2, 5, 12, 25 and 50 mg/kg, with daily applications for 14 days. The mechanical paw withdrawal threshold was measured using a digital analgesimeter. Immunohistochemical analysis of IL-6, TNFα, MIP1α, IL-10, CX3CR1, CXCR4, SOD, CAT and GPx, and enzymatic activity analysis of CAT, SOD and GPx were performed, in addition to quantitative PCR of Grp78, Chop, Ho1, Perk, Bax, Bcl-xL, Casp 3, Casp 9, IL-6, IL-10, IL-18 and IL-1β. The results showed an increase in nociceptive thresholds in animals that received 25 mg/kg and 50 mg/kg amantadine. Immunohistochemistry showed a decrease in the immunostaining of IL-6, TNFα, MIP1α and CX3CR1, and an increase in IL-10. CAT and SOD showed an increase in both immunochemistry and enzymatic analysis. qPCR revealed a reduced expression of genes related to endoplasmic reticulum stress and regulation in the expression of immunological and apoptotic markers. Amantadine demonstrated antinociceptive, anti-inflammatory and antioxidant effects in the vincristine-induced peripheral neuropathy model in rats, suggesting that amantadine may be considered an alternative approach for the treatment of vincristine-induced peripheral neuropathic pain.
Collapse
Affiliation(s)
| | | | - Raquel Vieira Niella
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Álvaro José Chávez Silva
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Iago Santos de Oliveira
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Sophia Saraiva de Souza
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Claire Souza da Costa Marques
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Janaina Maria Xavier Corrêa
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Juneo Freitas Silva
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Mário Sérgio Lima de Lavor
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| |
Collapse
|
10
|
Guedes PEB, Pinto TM, Corrêa JMX, Niella RV, dos Anjos CM, de Oliveira JNS, Marques CSDC, de Souza SS, da Silva EB, de Lavor MSL. Efficacy of Preemptive Analgesia with Amantadine for Controlling Postoperative Pain in Cats Undergoing Ovariohysterectomy. Animals (Basel) 2024; 14:643. [PMID: 38396611 PMCID: PMC10886337 DOI: 10.3390/ani14040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to evaluate the effect of the preemptive administration of amantadine on postoperative analgesia in cats undergoing ovariohysterectomy and its influence on the physiological parameters. Twenty healthy domestic cats scheduled to undergo ovariohysterectomy at the Santa Cruz State University, Ilhéus, were divided into two groups: the control group (Group C; n = 10) and the amantadine group (Group A; n = 10). The cats in Group C received placebo capsules 30 min prior to the standard anesthetic protocol, whereas those in Group A received 5 mg/kg of amantadine orally 30 min prior to the standard anesthetic protocol. Postoperative pain was assessed using the visual analog scale and the UNESP-Botucatu multidimensional scale for the evaluation of postoperative pain in cats. The administration of amantadine had no effect on the physiological parameters evaluated. The pain scores in Group A were lower than those in Group C, indicating that the frequency of rescue analgesic administration cats in Group A was lower. That way, preemptive oral administration of amantadine at a dose of 5 mg/kg was effective at controlling postoperative pain in cats undergoing ovariohysterectomy. Moreover, no adverse effects or alterations in the physiological patterns were observed in the treated animals.
Collapse
Affiliation(s)
- Paula Elisa Brandão Guedes
- Postgraduate Program in Animal Science, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (P.E.B.G.); (T.M.P.); (J.M.X.C.); (R.V.N.); (C.M.d.A.); (J.N.S.d.O.); (C.S.d.C.M.); (S.S.d.S.)
| | - Taísa Miranda Pinto
- Postgraduate Program in Animal Science, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (P.E.B.G.); (T.M.P.); (J.M.X.C.); (R.V.N.); (C.M.d.A.); (J.N.S.d.O.); (C.S.d.C.M.); (S.S.d.S.)
| | - Janaína Maria Xavier Corrêa
- Postgraduate Program in Animal Science, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (P.E.B.G.); (T.M.P.); (J.M.X.C.); (R.V.N.); (C.M.d.A.); (J.N.S.d.O.); (C.S.d.C.M.); (S.S.d.S.)
| | - Raquel Vieira Niella
- Postgraduate Program in Animal Science, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (P.E.B.G.); (T.M.P.); (J.M.X.C.); (R.V.N.); (C.M.d.A.); (J.N.S.d.O.); (C.S.d.C.M.); (S.S.d.S.)
| | - Carolina Moreira dos Anjos
- Postgraduate Program in Animal Science, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (P.E.B.G.); (T.M.P.); (J.M.X.C.); (R.V.N.); (C.M.d.A.); (J.N.S.d.O.); (C.S.d.C.M.); (S.S.d.S.)
| | - Jéssica Natália Silva de Oliveira
- Postgraduate Program in Animal Science, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (P.E.B.G.); (T.M.P.); (J.M.X.C.); (R.V.N.); (C.M.d.A.); (J.N.S.d.O.); (C.S.d.C.M.); (S.S.d.S.)
| | - Claire Souza da Costa Marques
- Postgraduate Program in Animal Science, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (P.E.B.G.); (T.M.P.); (J.M.X.C.); (R.V.N.); (C.M.d.A.); (J.N.S.d.O.); (C.S.d.C.M.); (S.S.d.S.)
| | - Sophia Saraiva de Souza
- Postgraduate Program in Animal Science, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil; (P.E.B.G.); (T.M.P.); (J.M.X.C.); (R.V.N.); (C.M.d.A.); (J.N.S.d.O.); (C.S.d.C.M.); (S.S.d.S.)
| | - Elisângela Barboza da Silva
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil;
| | - Mário Sérgio Lima de Lavor
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil;
| |
Collapse
|
11
|
Thouaye M, Yalcin I. Neuropathic pain: From actual pharmacological treatments to new therapeutic horizons. Pharmacol Ther 2023; 251:108546. [PMID: 37832728 DOI: 10.1016/j.pharmthera.2023.108546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/07/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Neuropathic pain, caused by a lesion or disease affecting the somatosensory system, affects between 3 and 17% of the general population. The treatment of neuropathic pain is challenging due to its heterogeneous etiologies, lack of objective diagnostic tools and resistance to classical analgesic drugs. First-line treatments recommended by the Special Interest Group on Neuropathic Pain (NeuPSIG) and European Federation of Neurological Societies (EFNS) include gabapentinoids, tricyclic antidepressants (TCAs) and selective serotonin noradrenaline reuptake inhibitors (SNRIs). Nevertheless these treatments have modest efficacy or dose limiting side effects. There is therefore a growing number of preclinical and clinical studies aim at developing new treatment strategies to treat neuropathic pain with better efficacy, selectivity, and less side effects. In this review, after a brief description of the mechanisms of action, efficacy, and limitations of current therapeutic drugs, we reviewed new preclinical and clinical targets currently under investigation, as well as promising non-pharmacological alternatives and their potential co-use with pharmacological treatments.
Collapse
Affiliation(s)
- Maxime Thouaye
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
12
|
Rana MH, Khan AAG, Khalid I, Ishfaq M, Javali MA, Baig FAH, Kota MZ, Khader MA, Hameed MS, Shaik S, Das G. Therapeutic Approach for Trigeminal Neuralgia: A Systematic Review. Biomedicines 2023; 11:2606. [PMID: 37892981 PMCID: PMC10604820 DOI: 10.3390/biomedicines11102606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/05/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023] Open
Abstract
This umbrella review aimed to determine the various drugs used to treat trigeminal neuralgia (TN) and to evaluate their efficacies as well as side effects by surveying previously published reviews. An online search was conducted using PubMed, CRD, EBSCO, Web of Science, Scopus, and the Cochrane Library with no limits on publication date or patients' gender, age, and ethnicity. Reviews and meta-analyses of randomized controlled trials pertaining to drug therapy for TN, and other relevant review articles added from their reference lists, were evaluated. Rapid reviews, reviews published in languages other than English, and reviews of laboratory studies, case reports, and series were excluded. A total of 588 articles were initially collected; 127 full-text articles were evaluated after removing the duplicates and screening the titles and abstracts, and 11 articles were finally included in this study. Except for carbamazepine, most of the drugs had been inadequately studied. Carbamazepine and oxcarbazepine continue to be the first choice for medication for classical TN. Lamotrigine and baclofen can be regarded as second-line drugs to treat patients not responding to first-line medication or for patients having intolerable side effects from carbamazepine. Drug combinations using carbamazepine, baclofen, gabapentin, ropivacaine, tizanidine, and pimozide can yield satisfactory results and improve the tolerance to the treatment. Intravenous lidocaine can be used to treat acute exaggerations and botulinum toxin-A can be used in refractory cases. Proparacaine, dextromethorphan, and tocainide were reported to be inappropriate for treating TN. Anticonvulsants are successful in managing trigeminal neuralgia; nevertheless, there have been few studies with high levels of proof, making it challenging to compare or even combine their results in a statistically useful way. New research on other drugs, combination therapies, and newer formulations, such as vixotrigine, is awaited. There is conclusive evidence for the efficacy of pharmacological drugs in the treatment of TN.
Collapse
Affiliation(s)
- Muhammad Haseeb Rana
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Abdul Ahad Ghaffar Khan
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (A.A.G.K.); (I.K.); (M.I.); (F.A.H.B.); (M.Z.K.)
| | - Imran Khalid
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (A.A.G.K.); (I.K.); (M.I.); (F.A.H.B.); (M.Z.K.)
| | - Muhammad Ishfaq
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (A.A.G.K.); (I.K.); (M.I.); (F.A.H.B.); (M.Z.K.)
| | - Mukhatar Ahmed Javali
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (M.A.J.); (M.A.K.)
| | - Fawaz Abdul Hamid Baig
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (A.A.G.K.); (I.K.); (M.I.); (F.A.H.B.); (M.Z.K.)
| | - Mohammad Zahir Kota
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (A.A.G.K.); (I.K.); (M.I.); (F.A.H.B.); (M.Z.K.)
| | - Mohasin Abdul Khader
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (M.A.J.); (M.A.K.)
| | - Mohammad Shahul Hameed
- Department of Diagnostic Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sharaz Shaik
- Department of Prosthetic Dentistry, Lenora Institute of Dental Sciences, Rajahmundry 533101, India;
| | - Gotam Das
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| |
Collapse
|
13
|
Dickinson JE, Inzunza JAD, Perez-Villa L, Millar TG, Pushparaj AP. Case report: Ibogaine reduced severe neuropathic pain associated with a case of brachial plexus nerve root avulsion. FRONTIERS IN PAIN RESEARCH 2023; 4:1256396. [PMID: 37720911 PMCID: PMC10502345 DOI: 10.3389/fpain.2023.1256396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Brachial plexus nerve root avulsion results from complete separation of the nerve root from the spinal cord and is one of the most challenging types of neuropathic pain, coinciding with motor, sensory and autonomic deficits. The severe pain and typical impossibility of root reattachment often leads to requests for amputation. Ibogaine is an indole alkaloid producing psychoactive effects through reported actions upon multiple neurotransmitter systems, including NMDA, κ- and µ-opioid receptors and σ2 receptor sites, along with stimulation of neurotrophic factors GDNF and BDNF. In this case report we describe a 53-year-old male with two decades of severe intractable pain due to brachial plexus nerve root avulsion from vehicular trauma who was successfully treated with both high dose inpatient and low dose outpatient administrations of ibogaine. Though promising for future study, the adverse effects of high dose ibogaine administrations may limit tolerability of this saturation protocol to the most refractory cases.
Collapse
Affiliation(s)
| | | | | | | | - Abhiram P. Pushparaj
- Scientific Advisory, Ambio Life Sciences, Vancouver, BC, Canada
- Consulting Department, +ROI Regulatory Advisory, Toronto, ON, Canada
| |
Collapse
|
14
|
Basem JI, Bah FN, Mehta ND. A Brief Review on the Novel Therapies for Painful Diabetic Neuropathy. Curr Pain Headache Rep 2023; 27:299-305. [PMID: 37392335 DOI: 10.1007/s11916-023-01126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 07/03/2023]
Abstract
PURPOSE OF REVIEW Almost half of people diagnosed with diabetes mellitus will develop painful diabetic neuropathy (PDN), a condition greatly impacting quality of life with complicated pathology. While there are different FDA approved forms of treatment, many of the existing options are difficult to manage with comorbities and are associated with unwanted side effects. Here, we summarize the current and novel treatments for PDN. RECENT FINDINGS Current research is exploring alternative pain management treatments from the first line options of pregabalin, gabapentin, duloxetine, and amitriptyline which often have side effects. The use of FDA approved capsaicin and spinal cord stimulators (SCS) has been incredibly beneficial in addressing this. In addition, new treatments looking at different targets, such as NMDA receptor and the endocannabinoid system, show promising results. There are several treatment options that have been shown to be successful in helping treat PDN, but often require adjunct treatment or alterations due to side effects. While there is ample research for standard medications, treatments such as palmitoylethanolamide and endocannabinoid targets have extremely limited clinical trials. We also found that many studies did not evaluate additional variables other than pain relief, such as functional changes nor were there consistent measurement methods. Future research should continue trials comparing treatment efficacies along with more quality of life measures.
Collapse
Affiliation(s)
- Jade I Basem
- Pain Medicine, Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
| | - Fatoumata N Bah
- Pain Medicine, Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Neel D Mehta
- Pain Medicine, Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
15
|
Huerta MÁ, Garcia MM, García-Parra B, Serrano-Afonso A, Paniagua N. Investigational Drugs for the Treatment of Postherpetic Neuralgia: Systematic Review of Randomized Controlled Trials. Int J Mol Sci 2023; 24:12987. [PMID: 37629168 PMCID: PMC10455720 DOI: 10.3390/ijms241612987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The pharmacological treatment of postherpetic neuralgia (PHN) is unsatisfactory, and there is a clinical need for new approaches. Several drugs under advanced clinical development are addressed in this review. A systematic literature search was conducted in three electronic databases (Medline, Web of Science, Scopus) and in the ClinicalTrials.gov register from 1 January 2016 to 1 June 2023 to identify Phase II, III and IV clinical trials evaluating drugs for the treatment of PHN. A total of 18 clinical trials were selected evaluating 15 molecules with pharmacological actions on nine different molecular targets: Angiotensin Type 2 Receptor (AT2R) antagonism (olodanrigan), Voltage-Gated Calcium Channel (VGCC) α2δ subunit inhibition (crisugabalin, mirogabalin and pregabalin), Voltage-Gated Sodium Channel (VGSC) blockade (funapide and lidocaine), Cyclooxygenase-1 (COX-1) inhibition (TRK-700), Adaptor-Associated Kinase 1 (AAK1) inhibition (LX9211), Lanthionine Synthetase C-Like Protein (LANCL) activation (LAT8881), N-Methyl-D-Aspartate (NMDA) receptor antagonism (esketamine), mu opioid receptor agonism (tramadol, oxycodone and hydromorphone) and Nerve Growth Factor (NGF) inhibition (fulranumab). In brief, there are several drugs in advanced clinical development for treating PHN with some of them reporting promising results. AT2R antagonism, AAK1 inhibition, LANCL activation and NGF inhibition are considered first-in-class analgesics. Hopefully, these trials will result in a better clinical management of PHN.
Collapse
Affiliation(s)
- Miguel Á. Huerta
- Department of Pharmacology, University of Granada, 18016 Granada, Spain;
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Miguel M. Garcia
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Unidad Asociada I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain;
- High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), 28922 Alcorcón, Spain
| | - Beliu García-Parra
- Clinical Neurophysiology Section—Neurology Service, Hospital Universitari de Bellvitge, Universitat de Barcelona-Health Campus, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain;
| | - Ancor Serrano-Afonso
- Department of Anesthesia, Reanimation and Pain Clinic, Hospital Universitari de Bellvitge, Universitat de Barcelona-Health Campus, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain;
| | - Nancy Paniagua
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Unidad Asociada I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain;
- High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), 28922 Alcorcón, Spain
| |
Collapse
|
16
|
Attal N, Bouhassira D, Colvin L. Advances and challenges in neuropathic pain: a narrative review and future directions. Br J Anaesth 2023; 131:79-92. [PMID: 37210279 DOI: 10.1016/j.bja.2023.04.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 05/22/2023] Open
Abstract
Over the past few decades, substantial advances have been made in neuropathic pain clinical research. An updated definition and classification have been agreed. Validated questionnaires have improved the detection and assessment of acute and chronic neuropathic pain; and newer neuropathic pain syndromes associated with COVID-19 have been described. The management of neuropathic pain has moved from empirical to evidence-based medicine. However, appropriately targeting current medications and the successful clinical development of drugs acting on new targets remain challenging. Innovative approaches to improving therapeutic strategies are required. These mainly encompass rational combination therapy, drug repurposing, non-pharmacological approaches (such as neurostimulation techniques), and personalised therapeutic management. This narrative review reports historical and current perspectives regarding the definitions, classification, assessment, and management of neuropathic pain and explores potential avenues for future research.
Collapse
Affiliation(s)
- Nadine Attal
- Inserm U987, UVSQ-Paris-Saclay University, Ambroise Pare Hospital, Boulogne-Billancourt, France.
| | - Didier Bouhassira
- Inserm U987, UVSQ-Paris-Saclay University, Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Lesley Colvin
- University of Dundee, Ninewells Medical School, Ninewells Hospital, Dundee, UK
| |
Collapse
|
17
|
Ferraro MC, Cashin AG, Wand BM, Smart KM, Berryman C, Marston L, Moseley GL, McAuley JH, O'Connell NE. Interventions for treating pain and disability in adults with complex regional pain syndrome- an overview of systematic reviews. Cochrane Database Syst Rev 2023; 6:CD009416. [PMID: 37306570 PMCID: PMC10259367 DOI: 10.1002/14651858.cd009416.pub3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a chronic pain condition that usually occurs in a limb following trauma or surgery. It is characterised by persisting pain that is disproportionate in magnitude or duration to the typical course of pain after similar injury. There is currently no consensus regarding the optimal management of CRPS, although a broad range of interventions have been described and are commonly used. This is the first update of the original Cochrane review published in Issue 4, 2013. OBJECTIVES To summarise the evidence from Cochrane and non-Cochrane systematic reviews of the efficacy, effectiveness, and safety of any intervention used to reduce pain, disability, or both, in adults with CRPS. METHODS We identified Cochrane reviews and non-Cochrane reviews through a systematic search of Ovid MEDLINE, Ovid Embase, Cochrane Database of Systematic Reviews, CINAHL, PEDro, LILACS and Epistemonikos from inception to October 2022, with no language restrictions. We included systematic reviews of randomised controlled trials that included adults (≥18 years) diagnosed with CRPS, using any diagnostic criteria. Two overview authors independently assessed eligibility, extracted data, and assessed the quality of the reviews and certainty of the evidence using the AMSTAR 2 and GRADE tools respectively. We extracted data for the primary outcomes pain, disability and adverse events, and the secondary outcomes quality of life, emotional well-being, and participants' ratings of satisfaction or improvement with treatment. MAIN RESULTS: We included six Cochrane and 13 non-Cochrane systematic reviews in the previous version of this overview and five Cochrane and 12 non-Cochrane reviews in the current version. Using the AMSTAR 2 tool, we judged Cochrane reviews to have higher methodological quality than non-Cochrane reviews. The studies in the included reviews were typically small and mostly at high risk of bias or of low methodological quality. We found no high-certainty evidence for any comparison. There was low-certainty evidence that bisphosphonates may reduce pain intensity post-intervention (standardised mean difference (SMD) -2.6, 95% confidence interval (CI) -1.8 to -3.4, P = 0.001; I2 = 81%; 4 trials, n = 181) and moderate-certainty evidence that they are probably associated with increased adverse events of any nature (risk ratio (RR) 2.10, 95% CI 1.27 to 3.47; number needed to treat for an additional harmful outcome (NNTH) 4.6, 95% CI 2.4 to 168.0; 4 trials, n = 181). There was moderate-certainty evidence that lidocaine local anaesthetic sympathetic blockade probably does not reduce pain intensity compared with placebo, and low-certainty evidence that it may not reduce pain intensity compared with ultrasound of the stellate ganglion. No effect size was reported for either comparison. There was low-certainty evidence that topical dimethyl sulfoxide may not reduce pain intensity compared with oral N-acetylcysteine, but no effect size was reported. There was low-certainty evidence that continuous bupivacaine brachial plexus block may reduce pain intensity compared with continuous bupivacaine stellate ganglion block, but no effect size was reported. For a wide range of other commonly used interventions, the certainty in the evidence was very low and provides insufficient evidence to either support or refute their use. Comparisons with low- and very low-certainty evidence should be treated with substantial caution. We did not identify any RCT evidence for routinely used pharmacological interventions for CRPS such as tricyclic antidepressants or opioids. AUTHORS' CONCLUSIONS Despite a considerable increase in included evidence compared with the previous version of this overview, we identified no high-certainty evidence for the effectiveness of any therapy for CRPS. Until larger, high-quality trials are undertaken, formulating an evidence-based approach to managing CRPS will remain difficult. Current non-Cochrane systematic reviews of interventions for CRPS are of low methodological quality and should not be relied upon to provide an accurate and comprehensive summary of the evidence.
Collapse
Affiliation(s)
- Michael C Ferraro
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
- School of Health Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Aidan G Cashin
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
- School of Health Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Benedict M Wand
- The School of Health Sciences and Physiotherapy, The University of Notre Dame Australia, Fremantle, Australia
| | - Keith M Smart
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
- Physiotherapy Department, St Vincent's University Hospital, Dublin, Ireland
| | - Carolyn Berryman
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
- School of Biomedicine, The University of Adelaide, Kaurna Country, Adelaide, Australia
| | - Louise Marston
- Department of Primary Care and Population Health, University College London, London, UK
| | - G Lorimer Moseley
- IIMPACT in Health, University of South Australia, Kaurna Country, Adelaide, South Australia, Australia
| | - James H McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
- School of Health Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Neil E O'Connell
- Department of Health Sciences, Centre for Health and Wellbeing Across the Lifecourse, Brunel University London, Uxbridge, UK
| |
Collapse
|
18
|
Henze IS, Meira C, Baron Toaldo M, Nolff MC, Steblaj B. Anaesthetic management of three Maine Coon cats undergoing hybrid intervention for treatment of cor triatriatum sinister. VETERINARY RECORD CASE REPORTS 2023. [DOI: 10.1002/vrc2.604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Inken Sabine Henze
- Section of Anaesthesiology Department of Clinical Diagnostics and Services Vetsuisse Faculty of the University of Zurich Winterthurerstrasse Zurich Switzerland
| | - Carolina Meira
- Section of Anaesthesiology Department of Clinical Diagnostics and Services Vetsuisse Faculty of the University of Zurich Winterthurerstrasse Zurich Switzerland
| | - Marco Baron Toaldo
- Section of Cardiology Clinic for Small Animal Internal Medicine Vetsuisse Faculty of the University of Zurich Winterthurerstrasse Zurich Switzerland
| | - Mirja Christine Nolff
- Clinic for Small Animal Surgery Vetsuisse Faculty of the University of Zurich Winterthurerstrasse Zurich Switzerland
| | - Barbara Steblaj
- Section of Anaesthesiology Department of Clinical Diagnostics and Services Vetsuisse Faculty of the University of Zurich Winterthurerstrasse Zurich Switzerland
| |
Collapse
|
19
|
Joseph AM, Karas M, Jara Silva CE, Leyva M, Salam A, Sinha M, Asfaw YA, Fonseca A, Cordova S, Reyes M, Quinonez J, Ruxmohan S. The Potential Role of Etanercept in the Management of Post-stroke Pain: A Literature Review. Cureus 2023; 15:e36185. [PMID: 37065345 PMCID: PMC10103818 DOI: 10.7759/cureus.36185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 03/17/2023] Open
Abstract
Strokes are the second leading cause of death and disability worldwide. The brain injury resulting from stroke produces a persistent neuroinflammatory response in the brain, resulting in a spectrum of neurologic dysfunction affecting stroke survivors chronically, also known as post-stroke pain. Excess production of tumor necrosis factor alpha (TNF alpha) in the cerebrospinal fluid (CSF) of stroke survivors has been implicated in post-stroke pain. Therefore, this literature review aims to assess and review the role of perispinal etanercept in the management of post-stroke pain. Several studies have shown statistically significant evidence that etanercept, a TNF alpha inhibitor, can reduce symptoms present in post-stroke syndrome by targeting the excess TNF alpha produced in the CSF. Studies have also shown improvements in not only post-stroke pain but also in traumatic brain injury and dementia. Further research is needed to explore the effects of TNF alpha on stroke prognosis and determine the optimal frequency and duration of etanercept treatment for post-stroke pain.
Collapse
|
20
|
Bielewicz J, Kamieniak M, Szymoniuk M, Litak J, Czyżewski W, Kamieniak P. Diagnosis and Management of Neuropathic Pain in Spine Diseases. J Clin Med 2023; 12:jcm12041380. [PMID: 36835916 PMCID: PMC9961043 DOI: 10.3390/jcm12041380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Neuropathic pain is generally defined as a non-physiological pain experience caused by damage to the nervous system. It can occur spontaneously, as a reaction to a given stimulus, or independently of its action, leading to unusual pain sensations usually referred to as firing, burning or throbbing. In the course of spine disorders, pain symptoms commonly occur. According to available epidemiological studies, a neuropathic component of pain is often present in patients with spinal diseases, with a frequency ranging from 36% to 55% of patients. Distinguishing between chronic nociceptive pain and neuropathic pain very often remains a challenge. Consequently, neuropathic pain is often underdiagnosed in patients with spinal diseases. In reference to current guidelines for the treatment of neuropathic pain, gabapentin, serotonin and norepinephrine reuptake inhibitors and tricyclic antidepressants constitute first-line therapeutic agents. However, long-term pharmacologic treatment often leads to developing tolerance and resistance to used medications. Therefore, in recent years, a plethora of therapeutic methods for neuropathic pain have been developed and investigated to improve clinical outcomes. In this review, we briefly summarized current knowledge about the pathophysiology and diagnosis of neuropathic pain. Moreover, we described the most effective treatment approaches for neuropathic pain and discussed their relevance in the treatment of spinal pain.
Collapse
Affiliation(s)
- Joanna Bielewicz
- Department of Neurology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Maciej Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Michał Szymoniuk
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Correspondence:
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
21
|
Serrano A, Gálvez R, Paremés E, Navarro A, Ochoa D, Pérez C. Off-label pharmacological treatment for neuropathic pain: A Delphi study by the Spanish Pain Society Neuropathic Pain Task Force. Pain Pract 2023; 23:167-179. [PMID: 36308490 DOI: 10.1111/papr.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The use of off-label pharmacotherapies for neuropathic pain (NP) is growing relating to the many unmet needs of patients. However, clinical guidelines fail to address it, and the available evidence is sparse and fragmented. We arranged a formal expert consensus to address this controversial issue and provide some guidance on judicious use. METHODS A two-round standard Delphi survey that involved pain clinic specialists with experience in the research and management of NP was done over an ad hoc 40-item questionnaire prepared by the authors. Consensus on each statement was defined as at least either 80% endorsement or rejection after the second round. RESULTS Forty-three and thirty-seven panelists participated in the first and second round, respectively. Consensus was reached in 34 out of 40 statements. Endorsed alternatives for unresponsive patients include non-gabapentinoid antiepileptics (oxcarbazepine and eslicarbazepine), venlafaxine, intravenous lidocaine (when doses can be optimized), and some vaporized cannabinoids (under appropriate surveillance). In addition, lacosamide, low-dose naltrexone, propofol, or ketamine could prove beneficial if subjected to more research. Other options were rejected, and there was controversy about the usefulness of topical preparations. DISCUSSION For patients who do not respond to standard NP treatments, some other viable pharmacological options can be attempted before advancing to other therapeutic stages. This may help patients who are reluctant to or have some contraindication for interventional therapies.
Collapse
Affiliation(s)
- Ancor Serrano
- Pain Clinic, Department of Anesthesia and Reanimation, Hospital Universitari de Bellvitge, L'Hospital et de Llobregat, Spain
| | - Rafael Gálvez
- Pain Clinic, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Elena Paremés
- Pain Clinic, Department of Anesthesia and Reanimation, Hospital Povisa, Vigo, Spain
| | - Ana Navarro
- Centro de Salud Puerta del Ángel, Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology, Hospital de la Princesa, Madrid, Spain
| | | |
Collapse
|
22
|
Petroianu GA, Aloum L, Adem A. Neuropathic pain: Mechanisms and therapeutic strategies. Front Cell Dev Biol 2023; 11:1072629. [PMID: 36727110 PMCID: PMC9884983 DOI: 10.3389/fcell.2023.1072629] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
The physiopathology and neurotransmission of pain are of an owe inspiring complexity. Our ability to satisfactorily suppress neuropathic or other forms of chronic pain is limited. The number of pharmacodynamically distinct and clinically available medications is low and the successes achieved modest. Pain Medicine practitioners are confronted with the ethical dichotomy imposed by Hippocrates: On one hand the mandate of primum non nocere, on the other hand, the promise of heavenly joys if successful divinum est opus sedare dolorem. We briefly summarize the concepts associated with nociceptive pain from nociceptive input (afferents from periphery), modulatory output [descending noradrenergic (NE) and serotoninergic (5-HT) fibers] to local control. The local control is comprised of the "inflammatory soup" at the site of pain origin and synaptic relay stations, with an ATP-rich environment promoting inflammation and nociception while an adenosine-rich environment having the opposite effect. Subsequently, we address the transition from nociceptor pain to neuropathic pain (independent of nociceptor activation) and the process of sensitization and pain chronification (transient pain progressing into persistent pain). Having sketched a model of pain perception and processing we attempt to identify the sites and modes of action of clinically available drugs used in chronic pain treatment, focusing on adjuvant (co-analgesic) medication.
Collapse
|
23
|
Yun Y, Zhang Q, Zhao W, Ma T, Fan H, Bai L, Ma B, Qi S, Wang Z, An H, Yang F. Relationship between the tryptophan-kynurenine pathway and painful physical symptoms in patients with major depressive disorder. J Psychosom Res 2022; 163:111069. [PMID: 36335711 DOI: 10.1016/j.jpsychores.2022.111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To investigate the relationship between the tryptophan-kynurenine (TRP-KYN) pathway and painful physical symptoms (PPS) in major depressive disorder (MDD). METHODS Eighty-four patients with MDD (40 patients with PPS and 44 without PPS) and forty-six healthy controls (HC) were recruited. The serum levels of tryptophan (TRP), kynurenine(KYN), kynurenic acid (KA), quinolinic acid (QA), 3-hydroxy-kynurenine (3-HK), serotonin (5-HT) were measured using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Depression, anxiety and pain were assessed using Hamilton Depression Scale (HAMD), Hamilton Anxiety Scale (HAMA) and Short-form McGill pain questionnaire (SFMPQ) respectively. RESULTS Patients in the MDD group exhibited significantly lower KA and 5-HT levels than HC, whereas MDD patients with PPS showed higher KYN and QA levels, and a higher KYN/TRP ratio than those without. There was a positive correlation between the scores of SFMPQ and QA levels and a negative correlation between the scores of SFMPQ and TRP levels or KA/QA ratios in MDD patients with PPS group. Stepwise multiple regression analysis showed that the KYN/TRP ratios, the KA/QA ratios, and the HAMD scores were significant predictor factors for SFMPQ scores. CONCLUSIONS These results demonstrated that the TRP-KYN pathway may play a role in the pathophysiology of pain in patients with major depressive disorder, suggesting that further studies of this pathway as a potential biomarker or therapeutic target are required.
Collapse
Affiliation(s)
- Yajun Yun
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Qi Zhang
- Wuxi Mental Health Center, Wuxi, China
| | - Wenxuan Zhao
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Ting Ma
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hongzhen Fan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Luyuan Bai
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Botao Ma
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Siyuan Qi
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Zhiren Wang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Huimei An
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China.
| | - Fude Yang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China.
| |
Collapse
|
24
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
25
|
Liu YJ, Li YL, Fang ZH, Liao HL, Zhang YY, Lin J, Liu F, Shen JF. NMDARs mediate peripheral and central sensitization contributing to chronic orofacial pain. Front Cell Neurosci 2022; 16:999509. [PMID: 36238833 PMCID: PMC9553029 DOI: 10.3389/fncel.2022.999509] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022] Open
Abstract
Peripheral and central sensitizations of the trigeminal nervous system are the main mechanisms to promote the development and maintenance of chronic orofacial pain characterized by allodynia, hyperalgesia, and ectopic pain after trigeminal nerve injury or inflammation. Although the pathomechanisms of chronic orofacial pain are complex and not well known, sufficient clinical and preclinical evidence supports the contribution of the N-methyl-D-aspartate receptors (NMDARs, a subclass of ionotropic glutamate receptors) to the trigeminal nociceptive signal processing pathway under various pathological conditions. NMDARs not only have been implicated as a potential mediator of pain-related neuroplasticity in the peripheral nervous system (PNS) but also mediate excitatory synaptic transmission and synaptic plasticity in the central nervous system (CNS). In this review, we focus on the pivotal roles and mechanisms of NMDARs in the trigeminal nervous system under orofacial neuropathic and inflammatory pain. In particular, we summarize the types, components, and distribution of NMDARs in the trigeminal nervous system. Besides, we discuss the regulatory roles of neuron-nonneuronal cell/neuron-neuron communication mediated by NMDARs in the peripheral mechanisms of chronic orofacial pain following neuropathic injury and inflammation. Furthermore, we review the functional roles and mechanisms of NMDARs in the ascending and descending circuits under orofacial neuropathic and inflammatory pain conditions, which contribute to the central sensitization. These findings are not only relevant to understanding the underlying mechanisms, but also shed new light on the targeted therapy of chronic orofacial pain.
Collapse
Affiliation(s)
- Ya-Jing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie-Fei Shen Fei Liu
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie-Fei Shen Fei Liu
| |
Collapse
|
26
|
Smith S, Normahani P, Lane T, Hohenschurz-Schmidt D, Oliver N, Davies AH. Prevention and Management Strategies for Diabetic Neuropathy. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081185. [PMID: 36013364 PMCID: PMC9410148 DOI: 10.3390/life12081185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Diabetic neuropathy (DN) is a common complication of diabetes that is becoming an increasing concern as the prevalence of diabetes rapidly rises. There are several types of DN, but the most prevalent and studied type is distal symmetrical polyneuropathy, which is the focus of this review and is simply referred to as DN. It can lead to a wide range of sensorimotor and psychosocial symptoms and is a major risk factor for diabetic foot ulceration and Charcot neuropathic osteoarthropathy, which are associated with high rates of lower limb amputation and mortality. The prevention and management of DN are thus critical, and clinical guidelines recommend several strategies for these based on the best available evidence. This article aims to provide a narrative review of DN prevention and management strategies by discussing these guidelines and the evidence that supports them. First, the epidemiology and diverse clinical manifestations of DN are summarized. Then, prevention strategies such as glycemic control, lifestyle modifications and footcare are discussed, as well as the importance of early diagnosis. Finally, neuropathic pain management strategies and promising novel therapies under investigation such as neuromodulation devices and nutraceuticals are reviewed.
Collapse
Affiliation(s)
- Sasha Smith
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK; (S.S.); (P.N.); (T.L.)
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Pasha Normahani
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK; (S.S.); (P.N.); (T.L.)
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Tristan Lane
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK; (S.S.); (P.N.); (T.L.)
- Department of Vascular Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - David Hohenschurz-Schmidt
- Pain Research Group, Department of Surgery and Cancer, Imperial College London, London SW10 9NH, UK;
| | - Nick Oliver
- Section of Metabolic Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W2 1PG, UK;
- Division of Medicine and Integrated Care, Imperial College Healthcare NHS Trust, London W2 1NY, UK
| | - Alun Huw Davies
- Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK; (S.S.); (P.N.); (T.L.)
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London W6 8RF, UK
- Correspondence:
| |
Collapse
|
27
|
Anosike UG, Ouko I, Mwaura AW, Ongidi I, Mbonu CC. Phenotypes and Genotypes in Postherpetic Neuralgia Drug Therapy: A Narrative Mini-review. Clin J Pain 2022; 38:536-540. [PMID: 35703453 DOI: 10.1097/ajp.0000000000001045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
Neuropathic pain is a debilitating symptom reported by patients presenting with postherpetic neuralgia (PHN). Efforts to alleviate this pain have been projected to lie in individualization of pharmacological treatment through pain phenotyping and subsequent investigations into the genetic basis of PHN therapy. Understanding the various mechanisms related to these phenotypes can aid in improvement of available treatment options and discovery of new ones. Knowledge and application of genetic variations in PHN, structural proteins, and genes can aid in ascertaining risk, susceptibility to, severity of, and protection from PHN. This review summarizes the most recent information that has been published on phenotypes and genotypes with possible clinical applications and directions for future research.
Collapse
Affiliation(s)
- Udochukwu G Anosike
- Faculty of Medicine, Nnamdi Azikiwe University College of Health Sciences, Awka, Nigeria
| | - Innocent Ouko
- Department of Human Anatomy, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Anita W Mwaura
- Department of Human Anatomy, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Ibsen Ongidi
- Department of Human Anatomy, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Chijioke C Mbonu
- Faculty of Medicine, Nnamdi Azikiwe University College of Health Sciences, Awka, Nigeria
| |
Collapse
|
28
|
Zhang YY, Liu F, Lin J, Li YL, Fang ZH, Zhou C, Li CJ, Shen JF. Activation of the N-methyl-D-aspartate receptor contributes to orofacial neuropathic and inflammatory allodynia by facilitating calcium-calmodulin-dependent protein kinase II phosphorylation in mice. Brain Res Bull 2022; 185:174-192. [DOI: 10.1016/j.brainresbull.2022.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022]
|
29
|
Zhang L, Wang R, Chen Y, Yang P, Bai T, Song J, Hou X. EphrinB2/ephB2 activation facilitates colonic synaptic potentiation and plasticity contributing to long-term visceral hypersensitivity in irritable bowel syndrome. Life Sci 2022; 295:120419. [PMID: 35183555 DOI: 10.1016/j.lfs.2022.120419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
|
30
|
Guimarães Pereira JE, Ferreira Gomes Pereira L, Mercante Linhares R, Darcy Alves Bersot C, Aslanidis T, Ashmawi HA. Efficacy and Safety of Ketamine in the Treatment of Neuropathic Pain: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Pain Res 2022; 15:1011-1037. [PMID: 35431578 PMCID: PMC9007468 DOI: 10.2147/jpr.s358070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Ketamine is a N-methyl-D-aspartate (NMDA) antagonist with strong analgesic properties. Its addition to the treatment of neuropathic pain may reduce pain intensity and improve overall quality of life. A systematic review and meta-analysis of randomized controlled trials was performed to investigate the addition of ketamine to the treatment of patients with neuropathic pain. Patients and Methods GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach was used to rate the overall certainty of the evidence for each outcome. Eighteen (18) randomized controlled trials including 706 participants were included for further analysis. Results Ketamine addition to standard treatment of neuropathic pain (NP) resulted in a statistically significant reduction of pain intensity at one week after the end of treatment with ketamine (MD −2.14, 95% CI −2.65 to −1.63; p<0.00001) and after 30 days after the end of treatment with ketamine (MD −1.68, 95% CI −2.25 to −1.12; p<0.00001) and a statistically significant increase in discomfort (RR 4.06; 95% CI 1.18 to 13.95; p=0.03), and psychedelic effects (RR 4.94; 95% CI 2.76 to 8.84; p<0.00001). Conclusion There is a statistically significant pain reduction by adding ketamine to the treatment of chronic NP when compared to the standard treatment. However, such pain reduction comes at the expense of adverse outcomes, especially psychedelic effects related to the administration of ketamine. However, the overall quality of certainty of evidence is low due to the clinical heterogeneity among the intervention characteristics of the trials analyzed (different administration routes, dosing regimen, therapy durations, different clinical characteristics of the population investigated). Future large multi-centered trials are necessary to confirm or not the results of the present review.
Collapse
Affiliation(s)
- José Eduardo Guimarães Pereira
- Laboratório de Investigação Médica (LIM/08), Department of Anesthesiology, University of São Paulo Medical School - FMUSP, São Paulo, São Paulo, 05403-000, Brazil
- Department of Anesthesiology at Hospital Unimed Volta Redonda, Volta Redonda, Rio de Janeiro, 27259-000, Brazil
- Correspondence: José Eduardo Guimarães Pereira, Laboratório de Investigação Médica (LIM/08), Department of Anesthesiology, University of São Paulo Medical School - FMUSP, Av. Dr. Enéas de Carvalho Aguiar, 155, 2nd Floor, Room 2120, Setor Azul, Prédio dos Ambulatórios, São Paulo, São Paulo, 05403-000, Brazil, Email
| | | | - Rafael Mercante Linhares
- Department of Anesthesiology, Hospital Municipal Miguel Couto, Rio de Janeiro, Rio de Janeiro, 22430-160, Brazil
| | - Carlos Darcy Alves Bersot
- Department of Anesthesiology, Hospital Federal da Lagoa, Rio de Janeiro, Rio de Janeiro, 22470-050, Brazil
| | - Theodoros Aslanidis
- Intensive Care Unit, Saint Paul General Hospital, Thessaloniki, Central Macedonia, 54633, Greece
| | - Hazem Adel Ashmawi
- Laboratório de Investigação Médica (LIM/08), Department of Anesthesiology, University of São Paulo Medical School - FMUSP, São Paulo, São Paulo, 05403-000, Brazil
| |
Collapse
|
31
|
Staudt MD, Prabhala T, Sheldon BL, Quaranta N, Zakher M, Bhullar R, Pilitsis JG, Argoff CE. Current Strategies for the Management of Painful Diabetic Neuropathy. J Diabetes Sci Technol 2022; 16:341-352. [PMID: 32856490 PMCID: PMC8861791 DOI: 10.1177/1932296820951829] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of painful diabetic neuropathy (PDN) is a common complication of chronic diabetes that can be associated with significant disability and healthcare costs. Prompt symptom identification and aggressive glycemic control is essential in controlling the development of neuropathic complications; however, adequate pain relief remains challenging and there are considerable unmet needs in this patient population. Although guidelines have been established regarding the pharmacological management of PDN, pain control is inadequate or refractory in a high proportion of patients. Pharmacotherapy with anticonvulsants (pregabalin, gabapentin) and antidepressants (duloxetine) are common first-line agents. The use of oral opioids is associated with considerable morbidity and mortality and can also lead to opioid-induced hyperalgesia. Their use is therefore discouraged. There is an emerging role for neuromodulation treatment modalities including intrathecal drug delivery, spinal cord stimulation, and dorsal root ganglion stimulation. Furthermore, consideration of holistic alternative therapies such as yoga and acupuncture may augment a multidisciplinary treatment approach. This aim of this review is to focus on the current management strategies for the treatment of PDN, with a discussion of treatment rationale and practical considerations for their implementation.
Collapse
Affiliation(s)
- Michael D Staudt
- Department of Neurosurgery, Albany Medical College, Albany, New York, USA
| | - Tarun Prabhala
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany NY, USA
| | - Breanna L Sheldon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany NY, USA
| | - Nicholas Quaranta
- Department of Anesthesiology, Albany Medical College, Albany, New York, USA
| | - Michael Zakher
- Department of Anesthesiology, Albany Medical College, Albany, New York, USA
| | - Ravneet Bhullar
- Department of Anesthesiology, Albany Medical College, Albany, New York, USA
| | - Julie G Pilitsis
- Department of Neurosurgery, Albany Medical College, Albany, New York, USA
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany NY, USA
| | - Charles E Argoff
- Department of Neurology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
32
|
Uniyal A, Akhilesh, Singh Rathore A, Kumari Keshri P, Pratap Singh S, Singh S, Tiwari V. Inhibition of pan-Aurora kinase attenuates evoked and ongoing pain in nerve injured rats via regulating KIF17-NR2B mediated signaling. Int Immunopharmacol 2022; 106:108622. [PMID: 35183034 DOI: 10.1016/j.intimp.2022.108622] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
Kinesins (KIF's) are the motor proteins which are recently reported to be involved in the trafficking of nociceptors leading to chronic pain. Aurora kinases are known to be involved in the regulation of KIF proteins which are associated with the activation of N-methyl-D-aspartate (NMDA) receptors. Here, we investigated the effect of tozasertib, a pan-Aurora kinase inhibitor, on nerve injury-induced evoked and chronic ongoing pain in rats and the involvement of kinesin family member 17 (KIF17) and NMDA receptor subtype 2B (NR2B) crosstalk in the same. Rats with chronic constriction injury showed a significantly decreased pain threshold in a battery of pain behavioural assays. We found that tozasertib [10, 20, and 40 mg/kg intraperitoneally (i.p.)] treatment showed a significant and dose-dependent inhibition of both evoked and chronic ongoing pain in rats with nerve injury. Tozasertib (40 mg/kg i.p.) and gabapentin (30 mg/kg i.p.) treatment significantly inhibits spontaneous ongoing pain in nerve injured rats but did not produce any place preference behaviour in healthy naïve rats pointing towards their non-addictive analgesic potential. Moreover, tozasertib (10, 20, and 40 mg/kg i.p.) and gabapentin (30 mg/kg i.p.) treatment did not altered the normal pain threshold in healthy naïve rats and didn't produce central nervous system associated side effects as well. Western blotting and reverse transcription polymerase chain reaction studies suggested enhanced expressions of NR2B and KIF-17 along with increased nuclear factor kappa β (NFkβ), tumour necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6) levels in dorsal root ganglion (DRG) and spinal cord of nerve injured rats which was significantly attenuated on treatment with different does of Tozasertib. Findings from the current study suggests that inhibition of pan-Aurora kinase decreased KIF-17 mediated NR2B activation which further leads to significant inhibition of evoked and chronic ongoing pain in nerve-injured rats.
Collapse
Affiliation(s)
- Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sanjay Singh
- Baba Saheb Bhim Rao Ambedkar Central University (BBAU), Lucknow 226025, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
33
|
Opioids for chronic pain management in patients with dialysis-dependent kidney failure. Nat Rev Nephrol 2022; 18:113-128. [PMID: 34621058 PMCID: PMC8792317 DOI: 10.1038/s41581-021-00484-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 12/30/2022]
Abstract
Chronic pain is highly prevalent among adults treated with maintenance haemodialysis (HD) and has profound negative effects. Over four decades, research has demonstrated that 50-80% of adult patients treated with HD report having pain. Half of patients with HD-dependent kidney failure (HDKF) have chronic moderate-to-severe pain, which is similar to the burden of pain in patients with cancer. However, pain management in patients with HDKF is often ineffective as most patients report that their pain is inadequately treated. Opioid analgesics are prescribed more frequently for patients receiving HD than for individuals in the general population with chronic pain, and are associated with increased morbidity, mortality and health-care resource use. Furthermore, current opioid prescribing patterns are frequently inconsistent with guideline-recommended care. Evidence for the effectiveness of opioids in pain management in general, and in patients with HDKF specifically, is lacking. Nonetheless, long-term opioid therapy has a role in the treatment of some patients when used selectively, carefully and combined with an ongoing assessment of risks and benefits. Here, we provide a comprehensive overview of the use of opioid therapy in patients with HDKF and chronic pain, including a discussion of buprenorphine, which has potential as an analgesic option for patients receiving HD owing to its unique pharmacological properties.
Collapse
|
34
|
Voute M, Riant T, Amodéo J, André G, Barmaki M, Collard O, Colomb C, Créac’h C, Deleens R, Delorme C, Montgazon G, Dixneuf V, Dy L, Gaillard J, Gov C, Kieffer X, Lanteri‐Minet M, Le Borgne J, Le Caër F, Maamar F, Maindet C, Marcaillou F, Plantevin F, Pluchon Y, Rioult B, Rostaing S, Salvat E, Sep Hieng V, Sorel M, Vergne‐Salle P, Morel V, Chazeron I, Pickering G. Ketamine in chronic pain: a Delphi survey. Eur J Pain 2022; 26:873-887. [DOI: 10.1002/ejp.1914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/04/2022] [Accepted: 01/23/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Marion Voute
- CHU Clermont‐Ferrand Plateforme d’Investigation Clinique/CIC Inserm 1405 France
| | - Thibault Riant
- Unité douleur, Le Confluent, Catherine de Sienne Center Nantes France
| | | | | | | | - Olivier Collard
- Centre d'Evaluation et de Traitement de la Douleur, Clinique Sainte Clotilde Ile de la Réunion France
| | | | - Christelle Créac’h
- Centre d'Evaluation et de Traitement de la Douleur, CHU Sainte Etienne Saint Etienne France
| | - Rodrigue Deleens
- Centre d'Evaluation et de Traitement de la Douleur, CHU Rouen France
| | - Claire Delorme
- Centre d'Evaluation et de Traitement de la Douleur, CH Bayeux Bayeux France
| | | | - Véronique Dixneuf
- Evaluation et de Traitement de la Douleur, Clinique Brétéché Nantes France
| | - Lénaïg Dy
- Evaluation et de Traitement de la Douleur, Clinique mutualiste de la porte de l’orient Lorient France
| | | | - Christian Gov
- Centre d'Evaluation et de Traitement de la Douleur, Hôpital neurologique France
| | - Xavier Kieffer
- Centre de la Douleur Chronique et Rebelle, CH Versailles Le Chesnay France
| | - Michel Lanteri‐Minet
- Département d’Evaluation et Traitement de la Douleur Hopital de Cimiez Nice France
| | | | | | | | - Caroline Maindet
- Centre de la Douleur, Hôpital Albert Michallon La Tronche France
| | - Fabienne Marcaillou
- Centre d'Evaluation et de Traitement de la Douleur, CHU Clermont‐Ferrand Clermont‐Ferrand France
| | - Frédéric Plantevin
- Centre d'Evaluation et de Traitement de la Douleur, CH Mâcon Mâcon France
| | - Yves‐Marie Pluchon
- Centre d'Evaluation et de Traitement de la Douleur, CHD Vendée La Roche sur Yon France
| | - Bruno Rioult
- Unité douleur, Le Confluent, Catherine de Sienne Center Nantes France
| | | | - Eric Salvat
- Centre d'Evaluation et de Traitement de la Douleur, Hôpital de Hautepierre Strasbourg France
| | | | - Marc Sorel
- Centre de la Douleur, CH Nemours Nemours France
| | | | - Véronique Morel
- CHU Clermont‐Ferrand Plateforme d’Investigation Clinique/CIC Inserm 1405 France
| | - Ingrid Chazeron
- Service de Psychiatrie B, CHU Clermont‐Ferrand Clermont‐Ferrand France
| | - Gisèle Pickering
- CHU Clermont‐Ferrand Plateforme d’Investigation Clinique/CIC Inserm 1405 France
- Inserm, CIC 1405 UMR Neurodol 1407 Clermont‐Ferrand France
- Clermont Université, Laboratoire de Pharmacologie, Faculté de médecine Clermont‐Ferrand France
| |
Collapse
|
35
|
Vujović KS, Vučković S, Stojanović R, Divac N, Medić B, Vujović A, Srebro D, Prostran M. Interactions between Ketamine and Magnesium for the Treatment of Pain: Current State of the Art. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 20:392-400. [PMID: 33475079 DOI: 10.2174/1871527320666210121144216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/20/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Over the past three decades, NMDA-receptor antagonists have been shown to be efficient drugs for treating pain, particularly pain resistant to conventional analgesics. Emphasis will be on the old-new drugs, ketamine and magnesium, and their combination as a novel approach for treating chronic pain. METHODS The MEDLINE database was searched via PubMed for articles that were published up to March 1, 2020, with the keywords 'ketamine', 'magnesium', and 'pain' (in the title/abstract). RESULTS Studies in animals, as well as humans, have shown that interactions of ketamine and magnesium can be additive, antagonistic, and synergistic. These discrepancies might be due to differences in magnesium and ketamine dosage, administration times, and the chronological order of drug administration. Different kinds of pain can also be the source of divergent results. CONCLUSION This review explains why studies performed with a combination of ketamine and magnesium have given inconsistent results. Because of the lack of efficacy of drugs available for pain, ketamine and magnesium in combination provide a novel therapeutic approach that needs to be standardized with a suitable dosing regimen, including the chronological order of drug administration.
Collapse
Affiliation(s)
- Katarina S Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sonja Vučković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Radan Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nevena Divac
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branislava Medić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
36
|
Mirabelli E, Elkabes S. Neuropathic Pain in Multiple Sclerosis and Its Animal Models: Focus on Mechanisms, Knowledge Gaps and Future Directions. Front Neurol 2022; 12:793745. [PMID: 34975739 PMCID: PMC8716468 DOI: 10.3389/fneur.2021.793745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States.,Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
37
|
Klowak M, Boggild AK. A review of nutrition in neuropathic pain of leprosy. Ther Adv Infect Dis 2022; 9:20499361221102663. [PMID: 35677111 PMCID: PMC9168857 DOI: 10.1177/20499361221102663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/03/2022] [Indexed: 11/15/2022] Open
Abstract
Leprosy is a neglected tropical disease (NTD) that continues to burden low- and middle-income countries (LMICs), despite being eliminated as a public health concern by the World Health Organization (WHO) in 2000. The causative agents, Mycobacterium leprae and Mycobacterium lepromatosis, affect nearly 200,000 individuals globally each year, with over 19,000 new cases detected in the Americas in 2020 alone. Canada has experienced an increasing incidence of leprosy, due to rising levels of travel and migration from endemic areas, reaching over 37,000 individuals with leprosy by the end of 2020. Patients experience a spectrum of signs and symptoms including hypopigmented cutaneous macules alongside peripheral neuropathy including peripheral neuropathic pain (PNP) and disabling sensory neuropathies. Despite the development of effective and curative therapeutics via multidrug therapy (MDT), many barriers to treatment adherence and effective immunological control of the pathogen challenge the care of patients with leprosy. Socioeconomic barriers, such as disability-related social stigma and often undiagnosed nutritional deficiencies, have resulted in heightened disease severity. PNP therapeutics are associated with significant side effects and remain ineffective as the majority of individuals will not experience a greater than 30% reduction of symptoms. Nutrient supplementation is known to be instrumental in reducing host oxidative stress, strengthening the immune system and mitigating comorbidities. Likewise, dietary lifestyle interventions known to be physiologically beneficial have recently emerged as powerful tools conferring neuroprotective effects, potentially mitigating PNP severity. However, a significant knowledge gap concerning the effect of adequate nutrition on host immunological control of leprosy and PNP severity exists. Further evaluation of this relationship will provide key insight into the pathogenesis of leprosy, strengthening the current body of literature.
Collapse
Affiliation(s)
- Michael Klowak
- Institute of Medical Science, University of
Toronto, Toronto, ON, Canada
| | - Andrea K. Boggild
- Tropical Disease Unit, Toronto General
Hospital, 200 Elizabeth Street, 13EN-218, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of
Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto,
Toronto, ON, Canada
| |
Collapse
|
38
|
Wei W, Liu W, Du S, Govindarajalu G, Irungu A, Bekker A, Tao YX. A Compound Mitigates Cancer Pain and Chemotherapy-Induced Neuropathic Pain by Dually Targeting nNOS-PSD-95 Interaction and GABA A Receptor. Neurotherapeutics 2021; 18:2436-2448. [PMID: 34796458 PMCID: PMC8804143 DOI: 10.1007/s13311-021-01158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 10/19/2022] Open
Abstract
Metastatic bone pain and chemotherapy-induced peripheral neuropathic pain are the most common clinical symptoms in cancer patients. The current clinical management of these two disorders is ineffective and/or produces severe side effects. The present study employed a dual-target compound named as ZL006-05 and examined the effect of systemic administration of ZL006-05 on RM-1-induced bone cancer pain and paclitaxel-induced neuropathic pain. Intravenous injection of ZL006-05 dose-dependently alleviated RM-1-induced mechanical allodynia, heat hyperalgesia, cold hyperalgesia, and spontaneously ongoing nociceptive responses during both induction and maintenance periods, without analgesic tolerance, affecting basal/acute pain and locomotor function. Similar behavioral results were observed in paclitaxel-induced neuropathic pain. This injection also decreased neuronal and astrocyte hyperactivities in the lumbar dorsal horn after RM-1 tibial inoculation or paclitaxel intraperitoneal injection. Mechanistically, intravenous injection of ZL006-05 potentiated the GABAA receptor agonist-evoked currents in the neurons of the dorsal horn and anterior cingulate cortex and also blocked the paclitaxel-induced increase in postsynaptic density-95-neuronal nitric oxide synthase interaction in dorsal horn. Our findings strongly suggest that ZL006-05 may be a new candidate for the management of cancer pain and chemotherapy-induced peripheral neuropathic pain.
Collapse
Affiliation(s)
- Wei Wei
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Weili Liu
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Shibin Du
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Gokulapriya Govindarajalu
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Antony Irungu
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, 185 S. Orange Ave., MSB, F-661, Newark, NJ, 07103, USA.
- Department of Physiology, Rutgers New Jersey Medical School, The State University of New Jersey, Pharmacology & Neuroscience, Newark, NJ, 07103, USA.
- Department of Cell Biology & Molecular Medicine, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
39
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
40
|
Uniyal A, Thakur V, Rani M, Tiwari V, Akhilesh, Gadepalli A, Ummadisetty O, Modi A, Tiwari V. Kinesin Nanomotors Mediated Trafficking of NMDA-Loaded Cargo as A Novel Target in Chronic Pain. ACS Chem Neurosci 2021; 12:2956-2963. [PMID: 34324307 DOI: 10.1021/acschemneuro.1c00319] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic pain is among the most prevalent burdensome disorders worldwide. The N-methyl-d-aspartate (NMDA) receptor system plays a critical role in central sensitization, a primary feature of chronic pain. Despite the proven efficacy of exogenous ligands to this receptor system in preclinical studies, evidence for the clinical efficacy of NMDA antagonists for the treatment of chronic pain is weak. Researchers are studying alternate approaches, rather than direct inhibition of the NMDA receptors in pain processing neurons. This indirect approach utilizes the modulation of molecular switches that regulates the synthesis, maturation, and transport of receptors from cellular organelles to the synaptic membrane. Kinesins are nanomotors that anterogradely transport the cargo using microtubule tracks across the neurons. Various members of the kinesin family, including KIF17, KIF11, KIF5b, and KIF21a, regulate the intracellular transport of NMDA receptors. Pharmacological targeting of these ATP-driven nanomotors could be a useful tool for manipulating the NMDAR functioning. It could provide the potential for the development of a novel strategy for the management of chronic pain.
Collapse
Affiliation(s)
- Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Vaibhav Thakur
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Mousmi Rani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Vineeta Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Obulapathi Ummadisetty
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Ajay Modi
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology B.H.U., Varanasi 221005, India
| |
Collapse
|
41
|
Tanaka M, Török N, Tóth F, Szabó Á, Vécsei L. Co-Players in Chronic Pain: Neuroinflammation and the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines 2021; 9:biomedicines9080897. [PMID: 34440101 PMCID: PMC8389666 DOI: 10.3390/biomedicines9080897] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023] Open
Abstract
Chronic pain is an unpleasant sensory and emotional experience that persists or recurs more than three months and may extend beyond the expected time of healing. Recently, nociplastic pain has been introduced as a descriptor of the mechanism of pain, which is due to the disturbance of neural processing without actual or potential tissue damage, appearing to replace a concept of psychogenic pain. An interdisciplinary task force of the International Association for the Study of Pain (IASP) compiled a systematic classification of clinical conditions associated with chronic pain, which was published in 2018 and will officially come into effect in 2022 in the 11th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-11) by the World Health Organization. ICD-11 offers the option for recording the presence of psychological or social factors in chronic pain; however, cognitive, emotional, and social dimensions in the pathogenesis of chronic pain are missing. Earlier pain disorder was defined as a condition with chronic pain associated with psychological factors, but it was replaced with somatic symptom disorder with predominant pain in the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) in 2013. Recently clinical nosology is trending toward highlighting neurological pathology of chronic pain, discounting psychological or social factors in the pathogenesis of pain. This review article discusses components of the pain pathway, the component-based mechanisms of pain, central and peripheral sensitization, roles of chronic inflammation, and the involvement of tryptophan-kynurenine pathway metabolites, exploring the participation of psychosocial and behavioral factors in central sensitization of diseases progressing into the development of chronic pain, comorbid diseases that commonly present a symptom of chronic pain, and psychiatric disorders that manifest chronic pain without obvious actual or potential tissue damage.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - Nóra Török
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - Fanni Tóth
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (F.T.)
| | - Ágnes Szabó
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (F.T.)
- Interdisciplinary Excellence Centre, Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary;
- Correspondence: ; Tel.: +36-62-545-351
| |
Collapse
|
42
|
Kotliarova A, Sidorova YA. Glial Cell Line-Derived Neurotrophic Factor Family Ligands, Players at the Interface of Neuroinflammation and Neuroprotection: Focus Onto the Glia. Front Cell Neurosci 2021; 15:679034. [PMID: 34220453 PMCID: PMC8250866 DOI: 10.3389/fncel.2021.679034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
Well-known effects of neurotrophic factors are related to supporting the survival and functioning of various neuronal populations in the body. However, these proteins seem to also play less well-documented roles in glial cells, thus, influencing neuroinflammation. This article summarizes available data on the effects of glial cell line derived neurotrophic factor (GDNF) family ligands (GFLs), proteins providing trophic support to dopaminergic, sensory, motor and many other neuronal populations, in non-neuronal cells contributing to the development and maintenance of neuropathic pain. The paper also contains our own limited data describing the effects of small molecules targeting GFL receptors on the expression of the satellite glial marker IBA1 in dorsal root ganglia of rats with surgery- and diabetes-induced neuropathy. In our experiments activation of GFLs receptors with either GFLs or small molecule agonists downregulated the expression of IBA1 in this tissue of experimental animals. While it can be a secondary effect due to a supportive role of GFLs in neuronal cells, growing body of evidence indicates that GFL receptors are expressed in glial and peripheral immune system cells. Thus, targeting GFL receptors with either proteins or small molecules may directly suppress the activation of glial and immune system cells and, therefore, reduce neuroinflammation. As neuroinflammation is considered to be an important contributor to the process of neurodegeneration these data further support research efforts to modulate the activity of GFL receptors in order to develop disease-modifying treatments for neurodegenerative disorders and neuropathic pain that target both neuronal and glial cells.
Collapse
Affiliation(s)
- Anastasiia Kotliarova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Yulia A Sidorova
- Laboratory of Molecular Neuroscience, Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
43
|
Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog Neurobiol 2021; 201:102030. [PMID: 33711402 DOI: 10.1016/j.pneurobio.2021.102030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP. Objective assessment of pain in these different animal models represents a significant challenge for pre-clinical research. Multiple behavioral approaches are used to investigate and to validate pain phenotypes including withdrawal reflex to evoked stimuli, vocalizations, spontaneous pain, but also emotional and affective behaviors. Furthermore, animal models were very useful in investigating the mechanisms of NP. This review will focus on a detailed description of rodent models of NP and provide an overview of the assessment of the sensory and emotional components of pain. A detailed inventory will be made to examine spinal mechanisms involved in NP-induced hyperexcitability and underlying the current pharmacological approaches used in clinics with the possibility to present new avenues for future treatment. The success of pre-clinical studies in this area of research depends on the choice of the relevant model and the appropriate test based on the objectives of the study.
Collapse
Affiliation(s)
- Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Marc Landry
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
44
|
Mata-Bermudez A, Ríos C, Burelo M, Pérez-González C, García-Martínez BA, Jardon-Guadarrama G, Calderón-Estrella F, Manning-Balpuesta N, Diaz-Ruiz A. Amantadine prevented hypersensitivity and decreased oxidative stress by NMDA receptor antagonism after spinal cord injury in rats. Eur J Pain 2021; 25:1839-1851. [PMID: 33982314 DOI: 10.1002/ejp.1795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Neuropathic pain (NP) after spinal cord injury (SCI) is a disabling condition, without an effective treatment. Hyperexcitability of N-methyl-D-aspartate (NMDA) receptors and oxidative stress have been reported to be associated with pain development. Amantadine, an NMDA receptor antagonist, has been proposed as a potential therapy for NP. However, its use has not been tested for NP after SCI. METHODS To produce SCI, 120 female Wistar rats were used, a contusion injury to the T10 and T12 thoracic vertebrae was performed from heights of 6.25 mm and 12.5 mm. Nociceptive behaviour, was evaluated with the use of von Frey filaments for 31 days. The final products of lipid peroxidation (LP) and concentration of reduced glutathione (GSH) in the injured tissue were quantified by fluorescence spectrophotometry. The antinociceptive effect of the acute (15 days after the injury) and chronic (once daily for three days immediately after the injury) with amantadine (6.25-50 mg/Kg. I.p.) was determined. Finally, the LP and GSH were quantified in the injured tissue. RESULTS Acute treatment with amantadine reduced nociceptive behaviour. Concomitantly, LP was decreased by Amantadine treatment while GSH increased in the injured tissue. Similar effects were observed with chronic treatment with amantadine. CONCLUSIONS Data from this study suggested that the antinociceptive effects of amantadine treatment are modulated through oxidative stress and excitotoxicity reduction associated with N-methyl-D-aspartate receptors activation. SIGNIFICANCE This study suggests that acute treatment with amantadine decreases hypersensitivity threshold and frequency of hypersensitivity response in a dose-dependent manner, in rats with SCI, by decreasing oxidative stress. Since amantadine is an easily accessible drug and has fewer adverse effects than current treatments for hypersensitivity threshold and frequency of hypersensitivity response, amantadine could represent a safe and effective therapy for the treatment of neuropathic pain. However, further research is required to provide evidence of the effectiveness and feasibility.
Collapse
Affiliation(s)
- Alfonso Mata-Bermudez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, México.,Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, México
| | - Masha Burelo
- Laboratorio de Neurofarmacología Molecular, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, México
| | - Cuauhtémoc Pérez-González
- Laboratorio de Investigación Química Orgánica, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México, México
| | | | - Gustavo Jardon-Guadarrama
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, México
| | | | - Norman Manning-Balpuesta
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, México
| | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Ciudad de México, México
| |
Collapse
|
45
|
Borges JP, Mekhail K, Fairn GD, Antonescu CN, Steinberg BE. Modulation of Pathological Pain by Epidermal Growth Factor Receptor. Front Pharmacol 2021; 12:642820. [PMID: 34054523 PMCID: PMC8149758 DOI: 10.3389/fphar.2021.642820] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic pain has been widely recognized as a major public health problem that impacts multiple aspects of patient quality of life. Unfortunately, chronic pain is often resistant to conventional analgesics, which are further limited by their various side effects. New therapeutic strategies and targets are needed to better serve the millions of people suffering from this devastating disease. To this end, recent clinical and preclinical studies have implicated the epidermal growth factor receptor signaling pathway in chronic pain states. EGFR is one of four members of the ErbB family of receptor tyrosine kinases that have key roles in development and the progression of many cancers. EGFR functions by activating many intracellular signaling pathways following binding of various ligands to the receptor. Several of these signaling pathways, such as phosphatidylinositol 3-kinase, are known mediators of pain. EGFR inhibitors are known for their use as cancer therapeutics but given recent evidence in pilot clinical and preclinical investigations, may have clinical use for treating chronic pain. Here, we review the clinical and preclinical evidence implicating EGFR in pathological pain states and provide an overview of EGFR signaling highlighting how EGFR and its ligands drive pain hypersensitivity and interact with important pain pathways such as the opioid system.
Collapse
Affiliation(s)
- Jazlyn P Borges
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Katrina Mekhail
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Costin N Antonescu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Benjamin E Steinberg
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
46
|
Jeon M, Jagodnik KM, Kropiwnicki E, Stein DJ, Ma'ayan A. Prioritizing Pain-Associated Targets with Machine Learning. Biochemistry 2021; 60:1430-1446. [PMID: 33606503 DOI: 10.1021/acs.biochem.0c00930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
While hundreds of genes have been associated with pain, much of the molecular mechanisms of pain remain unknown. As a result, current analgesics are limited to few clinically validated targets. Here, we trained a machine learning (ML) ensemble model to predict new targets for 17 categories of pain. The model utilizes features from transcriptomics, proteomics, and gene ontology to prioritize targets for modulating pain. We focused on identifying novel G-protein-coupled receptors (GPCRs), ion channels, and protein kinases because these proteins represent the most successful drug target families. The performance of the model to predict novel pain targets is 0.839 on average based on AUROC, while the predictions for arthritis had the highest accuracy (AUROC = 0.929). The model predicts hundreds of novel targets for pain; for example, GPR132 and GPR109B are highly ranked GPCRs for rheumatoid arthritis. Overall, gene-pain association predictions cluster into three groups that are enriched for cytokine, calcium, and GABA-related cell signaling pathways. These predictions can serve as a foundation for future experimental exploration to advance the development of safer and more effective analgesics.
Collapse
Affiliation(s)
- Minji Jeon
- Department of Pharmacological Sciences, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1603, New York, New York 10029, United States
| | - Kathleen M Jagodnik
- Department of Pharmacological Sciences, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1603, New York, New York 10029, United States
| | - Eryk Kropiwnicki
- Department of Pharmacological Sciences, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1603, New York, New York 10029, United States
| | - Daniel J Stein
- Department of Pharmacological Sciences, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1603, New York, New York 10029, United States
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Knowledge Management Center for Illuminating the Druggable Genome (KMC-IDG), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P.O. Box 1603, New York, New York 10029, United States
| |
Collapse
|
47
|
Obeng S, Hiranita T, León F, McMahon LR, McCurdy CR. Novel Approaches, Drug Candidates, and Targets in Pain Drug Discovery. J Med Chem 2021; 64:6523-6548. [PMID: 33956427 DOI: 10.1021/acs.jmedchem.1c00028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because of the problems associated with opioids, drug discovery efforts have been employed to develop opioids with reduced side effects using approaches such as biased opioid agonism, multifunctional opioids, and allosteric modulation of opioid receptors. Receptor targets such as adrenergic, cannabinoid, P2X3 and P2X7, NMDA, serotonin, and sigma, as well as ion channels like the voltage-gated sodium channels Nav1.7 and Nav1.8 have been targeted to develop novel analgesics. Several enzymes, such as soluble epoxide hydrolase, sepiapterin reductase, and MAGL/FAAH, have also been targeted to develop novel analgesics. In this review, old and recent targets involved in pain signaling and compounds acting at these targets are summarized. In addition, strategies employed to reduce side effects, increase potency, and efficacy of opioids are also elaborated. This review should aid in propelling drug discovery efforts to discover novel analgesics.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Takato Hiranita
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia 29208, United States
| | - Lance R McMahon
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
48
|
Joshi HP, Jo HJ, Kim YH, An SB, Park CK, Han I. Stem Cell Therapy for Modulating Neuroinflammation in Neuropathic Pain. Int J Mol Sci 2021; 22:ijms22094853. [PMID: 34063721 PMCID: PMC8124149 DOI: 10.3390/ijms22094853] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain (NP) is a complex, debilitating, chronic pain state, heterogeneous in nature and caused by a lesion or disease affecting the somatosensory system. Its pathogenesis involves a wide range of molecular pathways. NP treatment is extremely challenging, due to its complex underlying disease mechanisms. Current pharmacological and nonpharmacological approaches can provide long-lasting pain relief to a limited percentage of patients and lack safe and effective treatment options. Therefore, scientists are focusing on the introduction of novel treatment approaches, such as stem cell therapy. A growing number of reports have highlighted the potential of stem cells for treating NP. In this review, we briefly introduce NP, current pharmacological and nonpharmacological treatments, and preclinical studies of stem cells to treat NP. In addition, we summarize stem cell mechanisms—including neuromodulation in treating NP. Literature searches were conducted using PubMed to provide an overview of the neuroprotective effects of stem cells with particular emphasis on recent translational research regarding stem cell-based treatment of NP, highlighting its potential as a novel therapeutic approach.
Collapse
Affiliation(s)
- Hari Prasad Joshi
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Spinal Cord Research Centre, Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Hyun-Jung Jo
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Yong-Ho Kim
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
| | - Seong-Bae An
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
| | - Chul-Kyu Park
- Gachon Pain Center, Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Gyeonggi-do, Korea; (H.-J.J.); (Y.-H.K.)
- Correspondence: (C.-K.P.); (I.H.)
| | - Inbo Han
- Department of Neurosurgery, School of Medicine, CHA University, CHA Bundang Medical Center, Seongnam-si 13496, Gyeonggi-do, Korea; (H.P.J.); (S.-B.A.)
- Correspondence: (C.-K.P.); (I.H.)
| |
Collapse
|
49
|
Effects of Gocovri (Amantadine) Extended Release Capsules on Non-Motor Symptoms in Patients with Parkinson's Disease and Dyskinesia. Neurol Ther 2021; 10:307-320. [PMID: 33864229 PMCID: PMC8140024 DOI: 10.1007/s40120-021-00246-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction Gocovri (amantadine) extended release capsules are approved for treatment of dyskinesia and as a levodopa adjunct for OFF episodes in patients with Parkinson’s disease (PD). We report treatment-related effects on non-motor symptoms (NMS) assessed as secondary outcomes in two trials using the Movement Disorder Society–Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) Part I. Methods EASE LID and EASE LID 3 enrolled levodopa-treated patients with PD and ≥ 1 h/day ON time with troublesome dyskinesia. Patients were randomized to Gocovri (274 mg) or placebo taken daily at bedtime. Treatment differences from baseline to week 12 in MDS-UPDRS Part I were evaluated for the pooled population (N = 196) from both trials. Correlation analyses of NMS (MDS-UPDRS Part I) with dyskinesia using Unified Dyskinesia Rating Scale (UDysRS) scores were performed. Results For changes in the MDS-UPDRS Part I items, the treatment difference favored Gocovri in daytime sleepiness (P = 0.006) and depression (P = 0.049) scores, but favored placebo in cognitive impairment (P = 0.038), and hallucinations and psychosis (P < 0.001) scores. The treatment difference for the changes in total Part I score was −0.8, favoring Gocovri (P = 0.22). At baseline, MDS-UPDRS Part I modestly correlated with UDysRS score (r +0.25, P < 0.001), and improvement in NMS correlated with improvement in dyskinesia at week 12 for Gocovri (r +0.39, P < 0.001) but not placebo (r +0.12, P = 0.29). The most commonly reported adverse events for Gocovri were hallucination (21%); dizziness, dry mouth, and peripheral edema (16% each); and constipation, falls, and orthostatic hypotension (13% each). Conclusion This post hoc analysis shows potential benefit with Gocovri treatment for the NMS of daytime sleepiness and depression in dyskinetic PD patients. Overall, improvement in NMS scores correlated with improvement in dyskinesia. Trial Registration ClinicalTrials.gov identifiers: NCT02136914 and NCT02274766
Collapse
|
50
|
Li J, Zhang L, Xu C, Shen YY, Lin YH, Zhang Y, Wu HY, Chang L, Zhang YD, Chen R, Zhang ZP, Luo CX, Li F, Zhu DY. A pain killer without analgesic tolerance designed by co-targeting PSD-95-nNOS interaction and α2-containning GABA ARs. Am J Cancer Res 2021; 11:5970-5985. [PMID: 33897893 PMCID: PMC8058733 DOI: 10.7150/thno.58364] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/07/2021] [Indexed: 01/22/2023] Open
Abstract
Overactivation of N-methyl-D-aspartate receptor (NMDAR) in the spinal cord dorsal horn (SDH) in the setting of injury represents a key mechanism of neuropathic pain. However, directly blocking NMDAR or its downstream signaling, interaction between postsynaptic density-95 (PSD-95) and neuronal nitric oxide synthase (nNOS), causes analgesic tolerance, mainly due to GABAergic disinhibition. The aim of this study is to explore the possibility of preventing analgesic tolerance through co-targeting NMDAR downstream signaling and γ-aminobutyric acid type A receptors (GABAARs). Methods: Mechanical/thermal hyperalgesia were quantified to assess analgesic effects. Miniature postsynaptic currents were tested by patch-clamp recording to evaluate synaptic transmission in the SDH. GABA-evoked currents were tested on HEK293 cells expressing different subtypes of recombinant GABAARs to assess the selectivity of (+)-borneol and ZL006-05. The expression of α2 and α3 subunits of GABAARs and BDNF, and nNOS-PSD-95 complex levels were analyzed by western blotting and coimmunoprecipitation respectively. Open field test, rotarod test and Morris water maze task were conducted to evaluate the side-effect of ZL006-05. Results: (+)-Borneol selectively potentiated α2- and α3-containing GABAARs and prevented the disinhibition of laminae I excitatory neurons in the SDH and analgesic tolerance caused by chronic use of ZL006, a nNOS-PSD-95 blocker. A dual-target compound ZL006-05 produced by linking ZL006 and (+)-borneol through an ester bond blocked nNOS-PSD-95 interaction and potentiated α2-containing GABAAR selectively. Chronic use of ZL006-05 did not produce analgesic tolerance and unwanted side effects. Conclusion: By targeting nNOS-PSD-95 interaction and α2-containing GABAAR simultaneously, chronic use of ZL006-05 can avoid analgesic tolerance and unwanted side effects. Therefore, we offer a novel candidate drug without analgesic tolerance for treating neuropathic pain.
Collapse
|